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Abstract 

 

Skyscrapers are urbanism in the extreme, but they have received surprisingly little direct 

attention in urban economics.  The standard urban model emphasizes differentials in access 

across locations, which determine land price differentials and building heights.  This 

explanation leaves out an important force that appears to have historically influenced 

skyscraper construction:  an inherent value placed on being the tallest.  In this paper, we 

present a game-theoretic model of skyscraper development that captures this additional force.  

The model predicts dissipative competition over the prize of being tallest, a prediction 

consistent with the historical record.  The paper discusses the implications of this result for 

the nature and efficiency of urban development and for the operation of urban real estate 

markets.
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I. Introduction 

 

 Skyscrapers are urbanism in the extreme, but they have received surprisingly little 

direct attention in urban economics.  Typically, these very tall buildings are treated as being 

one of many phenomena explained by the standard urban model (Alonso (1964), Mills 

(1967), and Muth (1969)). As Mills (1967, pp 197-199) puts it, 

 

It is not unusual for land values to vary by a factor of from ten to one hundred within 

a distance of ten or twenty miles in a large metropolitan area.  And the tremendous 

variation in capital-land ratios – from skyscrapers and high-rise apartments 

downtown to single story factories and single family homes on two-acre lots in the 

suburbs – is the market’s response to those dramatic variations in relative factor 

prices. 

 

Thus, skyscrapers are seen as manifestations of the fundamental tradeoffs of land economics, 

with differentials in access across locations determining land price differentials, which in turn 

determine building heights differentials. 

 However, tall buildings have never been about economy alone, at least in the narrow 

sense discussed above.  Ever since the development of the first skyscrapers, the actions and 

statements of builders suggest that building height has importance in and of itself,  beyond 

the pro forma attribution of value to saleable or leaseable space.  One dimension of building 

height that appears to have been important to builders is relative height.   Five-and-dime 

entrepreneur F.W. Woolworth revised the plans for his eponymous New York City building 

to ensure that it was larger than the Metropolitan Life Building, and so the largest in the 

world at the time, save for the unoccupied Eiffel Tower.  The Manhattan Company Building 

(40 Wall Street) was planned to be the largest in the world.  It was, if only for the brief period 

prior to the vertex being added to the Chrysler Building.  This secret addition to his 

building’s height allowed Walter Chrysler to achieve his ambition of developing the world’s 

tallest building.  Unlike the Manhattan Company Building, the Chrysler Building was taller 

than the Eiffel Tower, and so was tallest on every list.  The Chrysler Building’s place at the 

top of the tallest-buildings list was also short-lived.  The Empire State Building initially had 

five floors added to its planned height to top the Chrysler Building, but this gave it the lead 

by only four feet.  Given the lengths to which Chrysler had gone to top the Manhattan 
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Company Building, such a slim margin was not enough.  Consequently, a dirigible mooring 

mast was added to the Empire State Building, putting it at the top of the list of tallest-

buildings for forty years.  In all these instances, it seems clear that builders assigned value to 

being tallest that was independent of the narrow value of a skyscraper as a piece of real 

estate. 

 Placing value on being tallest was not a phenomenon confined to the boom years of 

early 20th Century New York City.  Later in New York’s history, Governor Nelson 

Rockefeller pushed the development of the World Trade Center with the hope that 

developing the world’s tallest building would spur the renewal of Lower Manhattan.  The 

Sears Tower, however, took the top position soon after the World Trade Center was 

completed.  Such contests continue today.  The Petronas Towers in Kuala Lumpur were the 

tallest in the world from 1998 until they were exceeded by Taipei 101 in 2004.  In the 

summer of 2007, the height of completed floors of the Burj Dubai, currently under 

construction, surpassed the height of Taipei 101.  The bottom line of all of this is that 

skyscraper construction sometimes takes place in the context of a contest between rival 

builders. 

 This paper carries out a game-theoretic analysis of such a skyscraper contest.  A 

builder is assumed to have a payoff function that depends in part on profits, as derived from a 

standard model of urban spatial structure.  Builder payoff also depends on whether the 

builder has developed the tallest structure in his or her market.  The paper considers both 

simultaneous- and sequential-move skyscraper games. 

 The main conclusion that emerges from the analysis is that the contest results in 

dissipation, with the value of the tallest-building prize at least partially lost in the poor 

economics of skyscrapers.  In the simultaneous-move version of the game, all but the highest-

value builder gain no expected value whatsoever from competing in the skyscraper contest.  

Although the highest-value builder does enjoy positive expected surplus from the contest, 

there is partial expected dissipation of the fruits of victory for this builder as well.   This sort 

of race is at least broadly consistent with the historical evidence sketched above.  In a 

sequential version of the game, the dissipation takes the form of costly pre-emption, where 

the leader builds a tall-enough building to deter competitors.   This pre-emption also seems to 

be consistent with observation, in particular with the Empire State Building’s long stay at the 

top of the tallest-building list. 



  

 

3
 

 These results are relevant to several significant issues in urban economics.  First, they 

bear on agglomeration in that skyscrapers allow the concentration of great numbers of 

workers and businesses in very close proximity.  It is well-known that in the presence of 

positive externalities associated with agglomeration, there exists a tendency for density to be 

inefficiently low in the market equilibrium.  The results of our analysis of skyscraper contests 

suggest that an opposing tendency may exist to build at excessive densities.  Second, the 

results also bear on the related issues of the health of central cities and so-called “urban 

sprawl.”   Opponents of sprawl argue that the tendency to decentralize spatially is 

inefficiently strong in equilibrium since suburbanites and exurbanites do not bear the full 

costs of commuting or decentralized public good and service provision.   The skyscraper 

contest results suggest an opposing tendency, one that tends towards a more centralized urban 

spatial structure.  Third, the results bear on the tendency towards overbuilding in real estate 

markets.  Overbuilding has been identified as an important aspect of real estate cycles in 

nearly every city.  It has been variously attributed to irrationality on the parts of builders and 

lenders, to incentive problems in banking, and to particular features of tax codes.  This 

paper’s results suggest another possible foundation, one arising from strategic interactions 

between builders. 

 In carrying out a game-theoretic analysis of skyscrapers, the paper fills an important 

gap in the urban economics literature.   As noted above, the typical way to explain 

skyscrapers has been to consider them in the context of the standard model.  There has been 

almost no work that has isolated skyscrapers as being important in their own right.  One 

exception is Grimaud (1989), who considers the relationship of building heights to 

agglomeration economies in a model of spatial interactions.  Another is Sullivan (1991), who 

shows that the low cost of vertical transportation by an elevator can encourage the 

construction of tall buildings even on cheap land.   Helsley and Strange (2007) also employ a 

model of spatial interactions.  They show that skyscrapers can be seen as a second-best 

internalization of agglomeration externalities.   There is no paper in the urban economics 

literature that considers the implications of rivalry among builders of tall buildings. 

 The paper also builds also on work in game theory.  The contest that we consider is a 

kind of all-pay auction.  Builders expend resources (which is like bidding for an object) and 

the highest bidder wins (like winning the auction).  Unlike the most common auction forms, 

however, all bidders pay what they have bid, even the losers.  The all-pay auction under 

complete information is considered by Moulin (1986) and Baye et al (1996).  It has been 
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applied previously to political lobbying (Baye et al (1993)) and to the arms race (O’Neill 

(1986)).  To the best of our knowledge, skyscraper contests have never been mentioned 

previously as instances of all pay-auctions. 

 The remainder of the paper is organized as follows.  Section II presents a history of 

skyscraper development, establishing the importance to builders of being tallest.  Section III 

specifies and solves a version of the standard model of spatial structure that is suitable to 

considering skyscrapers.  Section IV sets out and solves a sequential model of a skyscraper 

deelopment.  Section V analyzes skyscrapers through a simultaneous-move game.  Section 

VI concludes. 

 

II. A brief history of skyscrapers 

 

A. Tall buildings in pre-industrial times:  masonry and monuments 

  

 This section will selectively review the history of tall buildings, focusing on the 

identification of contests between rival builders.  For much of recorded history, the world’s 

tallest building has been the Great Pyramid of Giza.  It is difficult to think of a better 

illustration of the importance that builders can assign to a building’s size.  It is also difficult 

to think of a better illustration of the limits of masonry construction.  Given the building 

technology of the ancient period, the higher levels of a pyramid become narrower and 

narrower, while the lower levels must be very large in order to support what will rise above 

them. 

 The Great Pyramid remained the world’s tallest building until the middle-ages, when 

it was supplanted by a series of cathedrals.  Again, it is easy to understand the inherent 

importance of size.  It is worth noting that this importance is not limited to being biggest in 

the world.  Importance was also placed on a simple church steeple being the tallest building 

in a town or city, and so being closest to God. 

 At the conclusion of the era of masonry construction, the tallest building in the world 

was the Washington Monument (1884 -1889).   It remains the tallest free-standing stone 

structure in the world.  As world’s tallest, it was supplanted by the Eiffel Tower (1889), 

whose height was made possible by structural steel.  

 

B. Early skyscrapers 
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 None of the structures mentioned thus far were built for human habitation.  It is easy 

to understand why.  As discussed above, as a masonry building grows taller, the loads borne 

by lower floors require wider and wider walls.  This means less usable space.  In addition, the 

need to walk up to higher floors means lower rents, further reducing the marginal revenue 

associated with building height.  Structural steel allowed building height to grow without 

increasingly wide exterior walls.  The elevator improved street access to high floors, allowing 

them to command greater rents.  The Equitable Life Building (New York, 1870) was the first 

office building to employ Elisha Otis’ invention of a steam powered elevator.  William 

LeBaron Jenney’s Home Insurance Building (Chicago, 1885) was the first to be completely 

supported by a steel skeleton.  At this point, the limits to the size of an occupied building 

were no longer largely technological, but were instead imposed by the ambition of builders. 

 This ambition would soon prove to be substantial.   Table 1 presents a history of the 

tallest occupied buildings from the beginning with the New York World Building (also 

known as the Pulitzer Building, for the newspaper’s editor), built in 1890 at the dawn of the 

age of skyscrapers.  Taking advantage of its elevators, Joseph Pulitzer’s office was in the 

building’s dome, allowing him a commanding view of the city spread out below him.  The 

New York World Building was succeeded by the Manhattan Life Insurance Building in 1894 

and by the Milwaukee City Hall in 1895.  It is notable that with a population just over 

200,000, Milwaukee was the country’s 16th largest city according to the 1890 Census.  Given 

the close relationship between population and land rents, it is difficult to explain the choice of 

height by economic forces alone.  The Park Row Building became the tallest occupied 

building in the world in 1899.  All of these buildings were smaller than 400 feet in height, 

making all of them smaller than the Washington Monument at 555 feet and much smaller 

than the Eiffel Tower at nearly 1000 feet.1  

 The next holder of the title to the world’s tallest buildings was sewing machine 

entrepreneur Isaac Singer.  The Singer Building opened in 1908 at more than six hundred feet 

in height, having doubled in height from its initial plans in order to ensure its position as 

                                                   
1 A tall unoccupied building seems to have less claim to greatness than a building that is both tall and in 
some sense useful.  Many will know that the Empire State Building was once the world’s tallest, and that 
the current tallest building is in Asia.  Fewer will be able to identify the world’s tallest structure and the 
world’s tallest unsupported structure as of this writing.  They are respectively the KVLY mast in North 
Dakota and Toronto’s CN Tower.   It has been common to refer to the world’s tallest building with the 
qualification about occupation being understood.   Unless otherwise noted, we will follow this convention. 
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tallest.  It was the first building bigger than the Great Pyramid and the Washington 

Monument, although it was much smaller than the Eiffel Tower.  In 1909, the Singer 

Building was exceeded by the Metropolitan Life Building.  In 1913, the Woolworth Building 

was completed, displacing the Metropolitan Life Building at the top of the list of the world’s 

tallest buildings.  In private conversations with builder Louis Horowitz, Frank W. Woolworth 

made it clear that an accounting that related the costs of the building to its leasing revenues 

failed to capture the great value that accrued to being tallest: 

 

Woolworth told Horowitz that he had something up his sleeve:  The intangible profits 

in publicity and brand-name recognition that his firm would receive for erecting the 

world’s tallest building far outweighed any real losses he might suffer from the 

venture.  Woolworth realized that all successful entrants in the biggest or highest of 

something, from the time when pharaoh vied with pharaoh and matched tomb against 

tomb, were essentially in the same race and reaped the same benefits.  The day after 

the world’s tallest building opened in 1913, Woolworth knew, practically every 

newspaper would cover the story.  The building would be pointed out to every tourist 

visiting the city, it would be written up in every guidebook to the city, and entered in 

every almanac and encyclopedia.  Whatever the medium, the corporate name would 

be forever attached to the building.  (Tauranac, 1995,  p. 48) 

 

Put simply, Woolworth assigned value to being tallest that was independent of the narrow 

value of the skyscraper as a piece of real estate.   As will be seen below, this situation is one 

that has repeated itself several times, with builders assigning value to being biggest and so 

topping each other with structures of undeniable symbolic significance but doubtful 

economy. 

 

C. The great skyscraper race 

 

 The Woolworth Building retained its position at the top of the tallest buildings list 

through the 1920s.  The first challenge to the Woolworth Building was mounted by the 

Chrysler Building.  It was initially planned at a height of 809 feet and 62 stories.  This height 

would have made the Chrysler Building the world’s occupied structure, although it would 

still have been smaller than the unoccupied Eiffel Tower.  Not long after the Chrysler 
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Building’s construction had begun, the Manhattan Company Building (40 Wall Street) was 

announced.  It was planned to be even taller at 840 feet and 68 stories.   The contest between 

these two buildings had both geographic and personal dimensions.  The geographic aspect of 

the rivalry was between Midtown Manhattan, whose growth had accelerated explosively after 

the construction of the Grand Central Terminal in 1913, and Downtown Manhattan.  The 

personal aspect of the rivalry was between William Van Allen, the chief architect of the 

Chrysler Building, and H. Craig Severance, Van Allen’s former partner and now bitter 

competitor. 

 To this mix must be added Walter Chrysler’s obvious desire to establish his own 

position by building the world’s tallest building.  He was clear in instructing his architect:   

“Make this building higher than the Eiffel Tower.”  He elaborates in the language of his 

industry: 

 

Van, you’ve just got to get up and do something.  It looks as if we’re not going to be 

the highest after all.  Think up something.  Your valves need grinding.  There’s a 

knock in you somewhere.  Speed up your carburetor.  Go to it!  (Bascomb, 2003, p. 

112) 

 

It should be no surprise that Chrysler was willing to add floors in order to top the Manhattan 

Company Building.  Van Allen’s plans were altered, being changed to call for a 925 foot 

tower with 72 stories.  The response of the builders of the Manhattan Company Building was 

to add four stories to the Manhattan Company Building, ultimately bringing it to a height of 

927 feet, barely larger than the Chrysler Building.  Upon its completion, therefore, the 

Manhattan Company Building was the world’s tallest.  Since the Chrysler Building’s steel 

skeleton had already been completed, the contest seemed to be over. 

 This victory was to be short lived.  Severance did not know that the plans for the 

Chrysler Building had been changed.  Previously, a dome had been planned for the building’s 

pinnacle.  This was replaced with a tapered vertex that would take the Chrysler Building to 

1048 feet.  At this height, it would not only be much taller than the Manhattan Company 

Building, it would also be taller than the Eiffel Tower, and so it would be the world’s tallest 

in every sense.  Predictably, those associated with the Manhattan Company Building would 

challenge the Chrysler Building’s legitimacy as tallest, since the former had higher occupied 
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floors.  To the great dismay of Severance and others, however, these challenges did not seem 

to affect public perceptions of which building was really tallest. 

 The great skyscraper race of the 1920s and 1930s was not over even at this point, 

however.  Prior to the construction of either the Chrysler Building or the Manhattan 

Company Building, a group of investors assembled by Pierre du Pont and John Raskob 

bought the Waldorf Astoria Hotel with the intention of replacing it with a skyscraper, the 

Empire State Building.  Despite the deepening of the Great Depression, Raskob pressed on 

with his building, reassuring investors about the economy and employing former New York 

governor and presidential candidate Al Smith to market the building.  The size of the building 

was increased during the planning stages, ultimately stopping at 1050 feet.  This was only 

slightly larger than the Chrysler Building, an uncomfortably slim edge given the 

demonstrated abilities and inclinations of Chrysler and Van Allen to find creative ways to 

add to their building’s height.  In order to ensure victory, a dirigible mooring mast was added 

to the Empire State Building at a cost of more than $750,000.  This feature of the building 

was quietly forgotten after its completion, and it is difficult to see it as being serious.  It did, 

however, bring the Empire State Building’s height to an unassailable 1250 square feet. 

 In the end, all of these buildings were completed shortly after the onset of the Great 

Depression.  All were built on already tenuous economic foundations, and none proved to be 

a good investment.  The Manhattan Company Building’s lead investor George L. Ohrstrom 

would later apologize to fellow investors.  The Empire State Building became known as the 

Empty State Building, with more than forty vacant floors during the depression. 

 

D. Other skyscraper contests 

 

 The Empire State Building remained the world’s tallest building until the completion 

of the North Tower of the World Trade Center in 1972.  The World Trade Center project (as 

conceived by New York governor Nelson Rockefeller, his banker brother David, and others) 

had as its goal the revival of Lower Manhattan.  Only later was it decided to construct the 

world’s tallest building.  The owners of the Empire State Building responded by undertaking 

analysis of adding another 11 stories and retaking top position.  This clearly illustrates the 

importance of being tallest.  The possibility of adding height was actually announced 

publicly.  This idea was ultimately dropped, either because of its questionable feasibility or 

because of the announcement of the Sears Tower in Chicago, which was even higher than the 
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World Trade Center.  The importance of being tallest was illustrated again at this point, with 

the antennae on top of the World Trade Center being lengthened in an attempt to be 

perceived as being taller than the Sears Tower. 

 The 1990s have brought renewed vigor to the contest to have the world’s tallest 

building.  In 1998, the Petronas Towers in Kuala Lumpur replaced the Sears Tower as the 

world’s tallest.  They held the crown for six years, being replaced by Taiwan’s Taipei 101 in 

2004 at 1670 feet in height.  There are currently buildings under construction that are 

expected to surpass Taipei 101.  Most noteworthy among these is the Burj Dubai in Dubai.  It 

has been speculated that this “superscraper” will reach a height of 2313 feet.  This estimate is 

quite imprecise because Emaar Properties, the builder, will not release its final planned 

height, in part out of concern with what rival builders might do with this information.  One 

can claim with some precision, though, that the skyscraper contest is ongoing as of this 

writing. 

 We have focused thus far on the race to build the world’s tallest building.  There are 

many other situations where a contest might exist.  For instance, many buildings are referred 

to as being tallest in some other context.  When Los Angeles’ Library Tower (U.S. Bank 

Tower) was announced to have been a potential terrorist target, it was referred to as the tallest 

building West of the Mississippi.  It is, of course, also the tallest in Los Angeles and in 

California.  Previously, the Smith Tower in Seattle (1913) was referred to as the tallest 

building outside of New York and Chicago.  These are only a few examples.  The tallest 

building in any country, state, or city presumably has prestige attached to it.  So does the 

tallest building in a class, such as tallest education building (at Moscow University) or the 

tallest residential building (Q1 Tower in Queensland Australia).  The bottom line is that 

prestige is assigned to being tall. 

 All of this suggests several general patterns characterizing skyscraper contests.   First, 

builders assign value to being tallest, and there are situations where there are contests among 

builders.  Second, the contests are sometimes resolved when one participant builds at a pre-

emptive height that thus deters successive builders from further building-height competition.  

Third, building at great height has frequently proven to be uneconomical.  Later in the paper, 

we will specify and solve game-theoretic models that are consistent with these patterns.  

Before doing this, however, we will set out the place of skyscrapers in standard urban 

economic analysis. 
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III. Skyscrapers in the standard urban model 

 

A. Overview 

 

 This section will examine the place of skyscrapers in the standard urban model 

associated with Alonso (1964), Mills (1967), and Muth (1969).  This approach solves 

simultaneously for land rent, the rent on structural space the spatial structure of a city.  The 

aspect of spatial structure of concern here is building height or, equivalently, the ratio of 

capital to land in the production of space.  The key determinant of this is factor prices.  Since 

the price of capital is not thought to vary much within a city, the price of land is decisive. 

 

B. Model 

 

 The model begins by considering rents, which are derived from the profits earned by 

land users.  We will refer to these land users as tenants.  In our model, tenants are identical 

business service producers, broadly conceived.   Each is assumed to occupy one unit of 

building space.  We normalize this to equal one floor of a building.  We consider a discrete 

location space where the location of a tenant, or, more precisely, the location of the building 

in which the tenant rents space, is denoted by i = 1,2,...N.  For simplicity, we do not consider 

the labor demands of tenants.   

 A tenant’s output is given by the increasing and concave production function q(K).  K 

represents the quality of the city’s business environment.  As such, it includes the full range 

of agglomeration economies.  Marshall (1890) identifies input-sharing, labor market pooling, 

and knowledge spillovers as aspects of a city that have the potential to augment productivity.  

Jacobs (1969) argues for an even broader range of interactions that create “new work.”2  We 

treat K as being fixed, but it is obviously possible to endogenize K by supposing it to be 

determined by the individual contributions made by tenants.  See Helsley and Strange (2007) 

for one approach to endogenizing K.     

 Tenants incur a location-specific cost of obtaining K and thus interacting with the 

city’s other businesses.  We suppose that the interaction cost for a tenant at location i is given 

                                                   
2 See Duranton and Puga (2004) for a survey of models of the microfoundations of agglomeration 
economies and Rosenthal and Strange (2004) for evidence.    
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by ti.  Locations are ranked by accessibility, so t1 < t2 < t3 and so on.  The price of tenant 

output is p.  Under these assumptions, the profit of a tenant at location i is 

 

pq(K) – ti – ri,    (3.1) 

 

where ri denotes the rent per unit space (per floor) at location i. 

 The market for space is competitive.  Bidding for land must therefore ensure that the 

profits of tenants are the same at every location, with ρ0 denoting the common level.  The 

bid-rent for floor-space at location i is therefore equal to 

 

ri = pq(K) – ti – ρ0.   (3.2) 

 

 There is one unit of land at each location.  Each location is owned by a builder, also 

indexed by i.  The profit in the next-best use of a builder’s land is for simplicity assumed to 

equal zero.   If a builder chooses to put up a building, height (equivalent to density) will be 

chosen to maximize profits.  The profit of builder i is 

 

πi(hi) = ri hi – c(hi),    (3.3) 

 

where c(-) is the cost of construction.  We suppose c(-) to be increasing and convex, giving a 

concave profit function.  It is worth pointing out that revenues may decline with height at an 

increasing rate.  As a building grows taller, the elevator and stair systems take up a greater 

fraction of the building’s footprint, reducing the amount of saleable space.  This tends to 

reinforce the concavity of the profit function. 

 The profit-maximizing building height for location i satisfies 

 

ri – c′(hi) = 0,    (3.4) 

 

with the second-order condition satisfied by the convexity of c(-).  This implicitly defines 

profit-maximizing building height in the standard model, hi*.   

 The key comparative statics are: 
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Proposition 1: The height of the building constructed on site i, hi, (a) increases in the value 

of the local business environment, K, and (b) decreases in interaction cost, ti. 

 

Proof: Both claims can be obtained by substituting (3.2) into (3.4) and applying the implicit 

function theorem. QED. 

 

Since output increases in K, building height increases in K at all locations.  Differences in 

heights across locations will be driven by differences in accessibility, broadly conceived.  A 

corollary to the obvious result (b) is that locations with similar access characteristics two 

(e.g., lots that are nearby) should be built to similar heights in equilibrium. 

 Composing hi* into the expression for builder profit defines the firm’s maximum 

profit πi* = π(hi*).  Since output increases in K, builder profit increases in K at all locations.  

Since the locations are ranked by accessibility, builder profit decreases in i.  The extent of 

development is determined as follows.  For all developed sites, we must have πi* ≥ 0.  Since 

πi* is decreasing in i, the last occupied location I will have the property that πI* ≥ 0 and πI+1* 

< 0.  The set of occupied locations will be larger the larger is K. 

 Throughout this paper, we treat the price of output, p, as given.  It is worth discussing 

an alternative specification.  Suppose that business services are consumed locally, with 

tenants facing a downward sloping demand function p(Q), where Q is the aggregate output of 

all firms, given by  

 

 Q = q(K) hi
i=1

I

∑ .   (3.5) 

 

In this case the height choices of builders at different locations would be interdependent, and 

familiar issues related to small numbers competition and strategic interactions between 

builders would arise.  For example, in a Stackelberg building height game, where builders 

choose heights to maximize profit but one builder chooses first, the leader will increase 

building height relative to the Cournot-Nash equilibrium and capture a larger share of the 

market for space.  The model's basic results would persist if p were endogenous.3 

                                                   
3 See Helsley and Strange [1994] for a model of strategic interaction between rival developers.  In this 
model, the focus is on very large developers and competition between cities. The key strategic interaction is 
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C. Is the standard model consistent with patterns of skyscraper construction? 

 

 To summarize the preceding analysis, the standard model makes several predictions 

regarding skyscraper construction.  First, if larger cities offer greater agglomeration 

economies to firms locating there (larger K), then larger cities should have taller buildings.  

Second, nearby lots (similar ti) should be developed to similar heights.  Third, skyscrapers 

should be economical.   These predictions are not entirely consistent with observation. 

 The first prediction of the standard model is that since bigger cities offer greater 

agglomeration economies, they should also have taller buildings.  For the U.S., there does 

appear to be a positive relationship between building height and city size.  Looking at the 

tallest buildings in the twenty largest U.S. cities, the correlation between metropolitan area 

population and height of the tallest building is 0.65.  The correlation between metropolitan 

area population density and height of the tallest building is 0.50.  These are broadly 

consistent with the standard model.  However, the correlation is not perfect.  Chicago has the 

tallest building in North America, but is smaller than New York City.  Similarly, Kuala 

Lumpur, Taipei, and Dubai are all smaller than other cities in their regions (i.e., Singapore, 

Hong Kong, and Riyadh).  The latter does not seem to be consistent with the standard model.   

It is possible, however, to argue that an extended version of the standard model could better 

explain the patterns.  Skyscrapers are durable, and so building height should relate not just to 

the current degree of agglomeration but to anticipated growth in agglomeration.  While this 

explanation fits the construction of tall buildings in early 20th Century New York and in 

Shanghai currently, it does not seem to explain the construction of very tall buildings in, for 

instance, Dubai.  Regardless, expected future growth does not does not explain the historical 

tendency to build the tallest building, it instead only offers a possible explanation for building 

large buildings. 

 The standard model’s second prediction is that nearby lots should be developed at 

similar heights.  This prediction does not hold.  The Sears Tower is 96 meters larger than any 

other building in Chicago.  The Library Tower is 49 meters larger than the next largest 

building in Los Angeles.  The Empire State Builiding is 62 meters larger than its nearest rival 

in New York.  Table 2 presents the difference between the largest and next largest buildings 
                                                                                                                                                       
between rivals’ choices of the quantity of construction rather than their choices of the relative heights of 
particular buildings. 
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in the twenty largest cities in the U.S.  The average difference is 27 meters, or approximately 

11% of the average height of the tallest building in one of these cities.  Despite the possibility 

of building a similar building nearby, the tallest buildings in America’s large cities are much 

taller than their rivals. 

 A corollary to the second prediction is that when it is efficient to build a very large 

structure at one point in time, it should be efficient to build a very large structure slightly 

later.  This corollary also fails to be consistent with observation.  In the relatively brief era of 

skyscrapers, there have been three long periods when the world’s tallest building retained its 

position in the hierarchy for many years.  The pre-eminence of the Woolworth Building 

lasted 17 years, the Empire State Building was at the top of the list for 41 years, and the Sears 

Tower was world’s tallest for 24 years.  The situation is similar when one considers the 

tallest buildings in individual cities.  Of the twenty largest cities, the median date of the 

construction of the tallest building is 1980. 

 It is sensible to ask whether a richer version of the standard model would be able to 

predict these patterns.  For instance, vintage models of urban spatial growth (Brueckner 

[1980]) allow for discontinuities in building heights, reflecting variations in development 

dates and economic conditions over time.  However, within a particular time period, nearby 

lots continue to be developed at similar heights, as in the static model.  Thus, dynamics and 

durable capital alone do not explain radical discontinuities in building heights for 

contemporaneous development.  Land assembly is also worth considering.  A skyscraper 

nearly always requires a very large lot.  For literally all of the buildings we have discussed in 

this paper, prior to the construction of the skyscraper, the lots had been in other urban use for 

some time.  The construction of a skyscraper requires that the new development's revenues 

cover both the out-of-pocket costs of construction and the opportunity cost of lost rents from 

current use.  It is possible, then, that nearby lots are developed differently because of 

idiosyncrasies in pre-skyscraper land use.  We cannot rule out that skyscraper development 

has followed a pattern consistent with this sort of extension of the standard model.  However, 

we believe that the differences discussed above between heights of buildings built near each 

other in time and space are too large to be completely explained in this way.  

 The third prediction of the standard model is that skyscraper construction is 

economical.  It is difficult to see the ex post performance of New York’s great skyscrapers as 

evidence for their economy.  In retrospect, it is also difficult to see the ex ante economic case 

for these buildings as persuasive.  Pioneering urban economist W. Colin Clark carried out an 
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analysis of the economics of New York City skyscrapers.4  His main conclusion was that at a 

land price of $200 per square foot, characteristic of midtown Manhattan in 1929 (review), a 

63-story building was optimal.  To justify the construction of a 75-story building, the price of 

land would have had to double to $400 per square foot.  To put these heights into context, the 

Manhattan Company Building had 70 floors, the Chrysler Building 77, and the Empire State 

Building 101. 5  In any case, it is even more difficult to see design features such as the 

Chrysler Building's vertex or the Empire State Building's mooring mast as being 

economically motivated. 

 In sum, observed patterns of skyscraper construction suggest that the standard model 

does not provide a complete explanation of the construction of very tall buildings.  The 

remainder of the paper will consider a game-theoretic model of skyscraper construction that 

augments the standard model and better fits the historical record. 

 

IV. A strategic analysis of skyscrapers 

 

A. Primitives 

 

 This section will specify and solve a simple game of skyscraper development.  In 

order to focus on the strategic issues, we begin by considering a situation where there are 

only two builders.  We assume them to be risk-neutral.  The two builders are denoted i = 1,2.  

Each owns a site and chooses building height.  As above, we suppose that the indexes are 

chosen so that builder 1’s location offers better access.  Thus, under the standard model we 

would have h1* >  h2*.   Unlike the standard model, we now assume that there is an 

exogenous value v > 0 associated with constructing the tallest building in the market. 

 Formally, we suppose that the payoff to builder i is: 

 

δv + πi(hi),    (4.1) 

 

                                                   
4 As reported in the New York Times, September 22, 1929. 
5 The number of floors for the Manhattan Company Building (currently the Trump Building) is reported as 
70 (Emporis) and 72 (Trump Building website).  This presumably reflects changes to the internal 
configuration of the building.   
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where δ is an indicator variable equal to 1 if the builder’s skyscraper is strictly tallest and 

equal to 0 otherwise.   In this setup, there is a contest among builders.  This is consistent with 

Section III, which presented extensive evidence that builders attach value to having the tallest 

structure in a given market.  The market in question in this section’s model could be an 

industry, with value accruing to having a taller building than one’s rivals.  This seems to have 

been one relevant aspect of the rivalry between Walter Chrysler and his eponymous building 

and the Empire State Building, spearheaded by John Raskob and Pierre duPont of General 

Motors.  The market in question could instead be geographic, with value accruing to having 

the tallest building in a city, region, nation, or in the entire world. 

 There are many reasons a premium might be placed on winning the skyscraper 

contest.  First, the premium may be a matter of taste alone.  An oversized building is a good 

match for an oversized ego.  Second, a building’s stature may serve as advertising.  It may 

make consumers aware of a product, or it may change the image that a product has.   These 

are the sorts of “intangible benefits” that motivated F.W. Woolworth, as noted in Section II.  

Third, there may be signaling.  It is clear that Walter Chrysler saw his building’s competition 

with the Bank of Manhattan Building as being partly competition between Chrysler and 

General Motors.  One can conceive of Chrysler’s dogged pursuit of victory in the skyscraper 

race as an attempt to signal his company’s fitness.  This could have favorable effects on 

product market competition.  Similarly, when the public sector is heavily involved in 

skyscraper construction, it may be motivated by a desire to signal the fitness of the city.  For 

instance, the recent construction boom in Dubai signals that Dubai’s institutions are favorable 

to business. 

 In the absence of a contest, builder i would choose height hi* as discussed above.  A 

builder would also choose hi* if defeat in the skyscraper race were certain.  In these cases, the 

builder’s payoff would be πi(hi*).  If the builder were to win the contest with certainty, a 

larger height would give the same payoff.  This height is defined by: 

 

v + πi (hi
P) = πi(hi*).   (4.2) 

 

For any hi > hi
P, v + πi (hi

P) < πi(hi*).  The superscript “P” refers to pre-emption in the sense 

that if a rival builder j chose height hj ≥ hi
P, builder i would concede the contest because it 
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would never be in the builder’s interest to choose a height that would win.  See Figure 1 for 

an illustration of the determination of hi
P.6 

 In general, because h1* > h2*, (4.2) implies h1
P > h2

P.  It is possible that the builders 

are so different that the contest is uninteresting.  If h1* > h2
P, then builder 1 would pre-empt 

builder 2 even if v = 0.  This case is parallel to the case of blockaded entry in industrial 

organization.  Because it is uninteresting, we suppose that h1* < h2
P in what follows.  

Returning to the standard model, this assumption is equivalent to assuming that access is 

similar for the properties owned by rival builders. 

 

B. A simple sequential game 

 

 We will consider several ways that a skyscraper contest might be specified.  It is 

natural to begin with a particularly simple sequential game.  Specifically, we suppose for now 

that builders choose hi sequentially, with builder 1 choosing first.  There is no possibility of 

waiting.    

 The next result characterizes the solution of this simple game: 

 

Proposition 2. If two builders choose heights sequentially, with builder 1 choosing first, then 

the subgame perfect equilibrium outcome is for builder 1 to pre-empt (h1 = h2
P) and for 

builder 2 to concede (h2 = h2*). 

 

Proof: Builder 2’s equilibrium strategy is to choose h2* if builder 1 chooses h1 ≥ h2
P and to 

choose max{h2*, h1 + ε} for some small ε if builder 1 chooses h1 < h2
P.  It is clearly optimal 

for builder 2 to concede if builder 1 builds beyond builder 2’s pre-emptive height.  Likewise, 

it is optimal for builder 2 to build at the profit-maximizing height h2* if builder 1 picks a 

lower height.  Finally, if builder 1’s height is between these levels, builder 2 will just top 

builder 1’s height in order to win the contest.  This strategy is a best response to builder 1 

choosing h1 = h2
P by the definition of h2*.  Builder 1 cannot improve on choosing h1 = h2

P 

when playing against this strategy.  If builder 1 were to choose h1 < h2
P, then builder 2 would 

                                                   
6 In the closed specification, where p is endogenous, the maximizing choice of each builder depends on the 
choice of the rival.  Denoting this best response by hi

*(hj), the condition that defines the pre-emption height 
becomes v + πi (hi

P) = πi(hi
*(hi

P)).  The analysis and basic results of this section are essentially unchanged 
in this case. 
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win, and builder 1 would receive at most π1(h1*).  Builder 1 would prefer to play h2
P, win the 

contest, and earn v + π1(h2
P).   Because builder 1 has been assumed to occupy the better site, 

h2
P < h1

P, and so v + π1(h2
P) > π1(h1

P) = π1(h1*).  Choosing h1 > h2
P would generate a lower 

payoff for builder 1, since π1(h1) is decreasing for h1 > h1*.  QED. 

 

 The key characteristic of the equilibrium is costly pre-emption.  The builder of the 

tallest building wins the race by putting up a building that the rival chooses not to top. In 

equilibrium, builder 1 will retain surplus relative to a case where there is no prize for the 

tallest building.  This surplus will equal v + π1(h2
P) - π1(h1*).  Builder 2 receives a payoff 

exactly equal to the payoff that would be received if v = 0.  The increase in builder 1’s payoff 

is 

 

v + π1(h2
P) - π1(h1*) < v,   (4.3) 

 

by the definition of h1*.  The pre-emption is therefore dissipative.  In order to win the contest, 

the winning builder overbuilds relative to the profit-maximizing level.  In the case where the 

two builders are identical, the result is even stronger.   When h1
P = h2

P, both the winner and 

loser earn πi(hi*) as in the v = 0 situation.  In this case, dissipation is complete.  It is worth 

noting that our model is, in a sense, biased against dissipation since it does not allow for the 

price of space to be negatively impacted by overbuilding. 

 We believe that the simple race model captures forces that the standard model does 

not.  It thus helps to explain some otherwise puzzling patterns of skyscraper construction.  

The existence of a tallest building premium allows for significant differences in the heights of 

nearby buildings.  It also allows for long periods of pre-emption, where one building is 

sufficiently tall that construction of taller buildings is discouraged.  The model is also 

consistent with tall buildings being built in medium-sized cities if the premium for being 

tallest is large enough.  Finally, and probably most importantly, the race model is consistent 

with the common observation that skyscrapers have tenuous economics.  The nature of a 

skyscraper contest is that victory is always Pyrrhic, at least in a narrow economic sense. 

 These results extend readily to a situation where there are many builders moving in 

inverse order of access.   By pre-empting builder 2, builder 1 automatically pre-empts all the 

other builders.  The results do not extend to changes in move order.  Suppose that there are 
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only two builders and that the high-type builder moves second.  In this case, the subgame 

perfect equilibrium outcome is for builder 2 to begin the game by choosing h2 = h2* and for 

builder 1 to respond by building a slightly taller building.  In this case builder 1 (the second 

mover), receives the entire surplus.  This shows that the game has a second-mover advantage.  

It also shows that the dissipation result requires pre-emption. 

 This suggests that the crucial question is whether a builder typically anticipates 

rivalry after construction.  The historical record suggests that a builder should anticipate such 

competition.  The Waldorf Astoria Hotel (site of the Empire State Building) had been 

purchased for redevelopment prior to the construction of the Chrysler Building and the 

Manhattan Company Building.   Equitable Life announced a very large building while the 

Empire State Building was being constructed.  There were many additional plans for 

skyscrapers that either were built as smaller buildings or not built at all.  More recently, when 

Taipei 101 was completed, there were already plans for other tall buildings, possibly taller.  It 

seems clear that no builder can safely assume that his or her building is the last one to be 

built, thus allowing for cheap pre-emption.  Builders face strong potential competition, and 

this presumably impacts any pre-emptive strategies that they pursue.  Our sense, therefore, is 

that the simple game where the highest-type builder moves first is more reasonable than one 

where the highest-type builder moves last because it captures potential competition.   Even 

so, given these complications, it seems advisable to consider a model where results do not 

depend on move order.  The next section does this by considering a simultaneous-move 

game. 

 

V. A model of a skyscraper race 

 

A. Basics 

 

 One aspect of the previous section’s solutions that seems at odds with evidence is that 

the skyscraper contest features one builder pre-empting and the other (or others) conceding.  

In the case of the NY race of the 1920s and 1930s and the current Asian situation, the 

evidence suggests a race where many builders actively compete for the prize.  In this section, 

we will consider a simultaneous-move game which will have this feature.   

 Suppose that the game is as above with the modification that builders choose heights 

simultaneously.  It can be readily seen that the equilibrium with pre-emption described above 
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(h1 = h2
P and h2 = h2*) is not a pure strategy Nash equilibrium of the simultaneous game.  

While builder 2’s choice to concede is a best-response to builder 1’s choice of the pre-

emptive height, builder 1’s choice is not a best response.  Instead builder 1 would be better 

off choosing h1*.  The next result generalizes this. 

 

Proposition 3:  The simultaneous move game has no equilibrium in pure strategies as long as 

builder 2 is not blockaded, that is, so long as h2
P > h1*. 

 

Proof:  Suppose not, so there exists a pure strategy equilibrium (h1,h2).  It must always be the 

case that h1 ∈ [h1*,h1
P] and h2 ∈ [h2*,h2

P], by the definitions of hi* and hi
P.  Suppose that in 

the candidate equilibrium h1 > h2.  In this candidate equilibrium, builder 2 loses the contest 

and so sets h2 = h2*.  In this case, builder 1's best response is to set h1 = h1*.  Thus, the 

candidate equilibrium is (h1*,h2*).  However, this cannot be an equilibrium.  Because h1* <  

h2
P, builder 2 could improve on the candidate equilibrium by topping builder 1.  Thus, there 

can be no pure strategy equilibrium with h1 > h2.  The case for h2 > h1 is parallel.  If h1 = h2, 

then neither buider wins.  If h1 = h2 > h1*, then both builders could raise payoffs by building 

at lower height.  If h1 = h2 < h1*, then builder 1 could raise its payoff by topping builder 2.  

Thus, there can be no pure strategy equilibrium with h1 = h2 .  QED. 

 

Intuitively, there can be no pure strategy equilibrium because either the winner would like to 

win more cheaply or the loser would be unwilling to incur the costs of building a tall building 

without the prospect of winning.7 

 

B. Mixed strategy equilibrium 

 

 In order to find the equilibrium with simultaneous choices, we therefore consider 

mixed strategies.  This seems to be appropriate given the nature of the skyscraper contest.  It 

is clear from Section II’s discussion of revised and re-revised plans that a builder was never 

completely certain how high rival buildings would go.  In addition, there were many credible 

announcements of new contenders for the world’s tallest building.  Particularly notable 

among these was the Metropolitan Life Company, which began construction of a building 

                                                   
7 See Moulin (1986) and Baye et al (1996) for parallel results for all-pay auctions.    
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that was slated to rise to 100 stories, and thus could potentially have denied the Empire State 

Building the title of world’s tallest that its builders so fervently sought.  Further evidence of 

the uncertainty that confronted a builder in this environment is that bookmakers placed odds 

on the height that the Empire State Building would achieve.  This uncertainty continued long 

after the great skyscraper race was concluded.  The owners of the Empire State Building 

considered adding 11 stories in order to top the World Trade Center.  The heights of 

buildings in planning and in construction are sometimes closely guarded secrets, as with the 

Burj Dubai.  In sum, the participants in contests do not always know for sure what the other 

participants are doing.  Supposing that players in the game play mixed strategies is a sensible 

way to characterize this situation.   

 The basic characteristic of a mixed strategy equilibrium is that each player must be 

indifferent among all pure strategies that it plays with positive probability.  Let the 

cumulative distribution function Φi(h) denote the probability that builder i chooses a building 

height less than or equal to h.  For builder 1 the indifference requirement means that 

 

Φ2(h)v + π1(h) = k1   (5.1) 

 

for all h ∈ H1.  k1 is a positive constant equal to builder 1’s payoff for playing any pure 

strategy in its support, which is denoted by H1  Intuitively, the left side of (5.1) is the 

probability that builder 1 wins the contest when choosing h1 times the value of the prize plus 

the economic value of the building.  The complication of this and all mixed strategies is that 

this probability depends on the randomization chosen by the other player, captured in (5.1) by 

Φ2(h).  For builder 2, the indifference requirement is 

 

 Φ1(h)v + π2(h) = k2   (5.2) 

 

for all h ∈  H2.  k2 is a positive constant equal to builder 2’s payoff for playing any pure 

strategy in its support, H2. 

 The following result characterizes the mixed strategy equilibrium of the skyscraper 

game. 
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Proposition 4:  The mixed strategy equilibrium of the two-player skyscraper contest is:  (a) 

builder 1 randomizes over heights according to the distribution function Φ1(h) = 1+ [π1(h2
P) - 

π2(h)] /v for v ∈ [h1*,h2
P], and (b) builder 2 randomizes over heights according to the 

distribution function Φ2(h) = [π1(h1*) - π1(h)] /v for v ∈ [h1*,h2
P], with a point-mass equal to 

[π2(h2*) - π2(h1*)] /v at h = h2*. 

 

Proof:  See the Appendix. 

 

 The mixed strategy equilibrium has several key features.  The first is that, as in the 

sequential games considered above, skyscraper construction is dissipative.  In equilibrium, 

builder 2 places positive probability weight on h2*.  This implies that the expected payoff for 

builder 2 is equal to π2(h2*).  Builder 2 is thus no better off in expected payoff than in the 

absence of the prize.  The expected payoff of builder 1 equals the probability that builder 2 

plays h2* times the value of the prize, plus π1(h1*).  Thus, the expected payoff of builder 1 

rises by less than the amount of the prize.  Together, these results establish the robustness of 

our earlier result that in a race skyscraper construction is likely to be uneconomical.   

 The second key feature of the mixed strategy equilibrium is that, unlike the sequential 

games, there is active participation by both builders.  This is unlike the sequential games 

where builder 2 effectively conceded the prize in response to pre-emption by builder 1.  This 

simultaneous game thus resembles the skyscraper races discussed in Section II.  As with the 

sequential game, the simultaneous game can explain phenomena that are unaccounted for in 

the standard urban model.  In the mixed strategy equilibrium, nearby buildings need not be 

similar in height, there is no guarantee of a tight relationship between city size and the height 

of the tallest building, and tall buildings may be uneconomical. 

 

C. Overbuilding 

 

 One especially notable feature of the mixed strategy equilibrium is the existence of 

overbuilding.  Since neither builder places any probability weight on heights less than h*i, 

expected building height must exceed the profit maximizing building height in the mixed 

strategy equilibrium.  This “overbuilding” is easy to characterize when the builders and lots 
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are identical.  Let π(h) denote the common profit function of a builder under these conditions.  

All builders’ mixed strategies now have the same support, H = [h*,hP]. 

 Proceeding as above, in the case where there are only two builders, playing h* 

guarantees payoff π(h*) for both.  Thus, (5.1) and (5.2) yield 

 

Φj(hi)v + π(hi) = π(h*)   (5.3) 

 

for all hi∈ {h*,hP} and j = 1,2.  This defines the common distribution function 

  

Φj(hi) = [π(h*) - π(hi)]/v, hi∈ [h*,hP]. (5.4) 

 

Differentiation yields 

 

φ(hi) = −π′(hi)/v,   (5.5) 

 

φ′(hi) = −π′′(hi)/v > 0,   (5.6) 

 

where φ′(hi) > 0 by the concavity of π(h).  Expected building height is 

 

E[h] = −( ′ π (h
h*

h P

∫ ) /v)h dh.  (5.7) 

 

Integrating by parts, using the definition of hP and rearranging terms yields: 

 

E[h] = h*+
1
v

π(h
h*

h P

∫ ) dh − π(hP)(hP − h*) 
  

 
   > h*, (5.8) 

 

where the term in brackets is positive since π(h) is decreasing on [h*,hP].  Thus, there is 

overbuilding in the sense that expected building height exceeds the profit maximizing 

building height for each active builder. 

 If there are I identical builders, then the basic equilibrium condition (5.3) becomes 

 

Φj(hi)(I –1)v + π(hi) = π(h*),  (5.9) 
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which generates the equilibrium function: 

 

Φj(hi) = [[π(h*) - π(hi)]/v]1/(I-1),  (5.10) 

 

Φj(hi) is increasing in I.  This means that, for any hi, the equilibrium strategy places more 

probability weight below hi as I increases.  Intuititvely, as I increases, the probability that any 

height wins the contest decreases, and so each builder reduces his equilibrium "bid" or 

height.  Expected building height in this case can be written: 

 

E[h] = hP −
π(h*) − π(hi)

v
 
  

 
  h*

h P

∫
1/(I−1)

dhi, (5.11) 

 

where the integrand is just the distribution function Φj(hi).  Since Φj(hi) is increasing in I, it 

must also be the case that E[h] is decreasing in I.  In fact, in the limit as I approaches infinity, 

Φj(hi) approaches 1 for all hi, and so the expected building height approaches h*.  In this 

sense, competition discourages overbuilding in a skyscraper contest.  This analysis is 

summarized in the following proposition. 

 

Proposition 5:  The mixed-strategy equilibrium features overbuilding:  expected building 

height exceeds the profit maximizing building height for each active builder.  When builders 

and lots are identical, the degree of overbuilding decreases as the number of active builders 

rises. 

 

Proof:  see above. 

 

 Our analysis suggests that contests to build tall buildings result in the construction of 

buildings that are, in a probabilistic sense, too large.  Most of the discussion in the paper has 

been concerned with the most notorious of these contests, the building of the world’s tallest 

structure.  It is important to recognize that the phenomenon of building tall to win a prize is 

more general than that in several ways.  First, as noted above, there are many markets in 

which it is possible to be biggest.  A web search by geography or use or both will reveal that 
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building owners find it worth advertising their buildings’ positions at the top of lists of tallest 

in various categories.  Second, there may be value in being among the tallest in some market 

without necessarily being the tallest. 

 

VI. Conclusion 

 

 This paper has considered the game-theoretics of a contest between rival builders of 

skyscrapers.  A review of the history of skyscraper construction is consistent with the 

existence of such contests, as is the current state of skyscraper construction.  We conclude by 

considering the implications of our results for the nature and efficiency of urban development 

and the operation of urban real estate markets. 

 Skyscraper contests impact urban development in several ways.  First, by 

constructing a very tall building, a builder can pre-empt later rivals.  Thus, one can expect 

long periods where the tallest building’s primacy is unchallenged, as with the Woolworth 

Building (world’s tallest 1913-1930), the Empire State Building (1931-1972), and the Sears 

Tower (1974-1998).  Second, winning the skyscraper contest involves dissipation, in some 

situations complete dissipation.  This can help to explain the dubious economy of very tall 

buildings.  The nature of the skyscraper game ensures that the tallest buildings will be 

uneconomical in this narrow sense.  Third, the distortions associated with the skyscraper 

contest work in the opposite direction from other important market imperfections.  It is well 

known that positive Marshallain externalities associated with the spatial concentration of 

production can lead to an equilibrium that is excessively decentralized.  Similarly, according 

to opponents of “sprawl,” congestion and pollution externalities lead to excessive 

suburbanization.  A tendency to overbuild in order to win a skyscraper contest pushes the city 

toward a more centralized spatial structure. 

 Skyscraper contests also have implications for the operation of urban real estate 

markets.  First, a skyscraper contest can help explain overbuilding.  The results in Sections 

IV and V show that every participant in a skyscraper contest chooses a building height that 

weakly exceeds the height dictated by profit maximization.  Aggregating all of the choices 

results in overbuilding.  Second, this overbuilding can also contribute to real estate cycles. 

Although skyscrapers are typically not given special attention in the cycles literature, it is not 

hard to see how the construction of tall buildings can contribute to increases in vacancies and 

declines in rents, leading to subsequent slowdowns or even shutdowns in construction.  The 
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magnitude of the effect of a skyscraper race on a local real estate market can be significant.  

Together, the Empire State Building, Manhattan Company Building, and Chrysler Building 

added more than 4,000,000 square feet of commercial space to the New York market.  This 

amounted to roughly 20% of the stock.  It seems likely that this construction frenzy 

prolonged the slump in commercial real estate in New York that began with the Great 

Depression.  More recently, Taipei 101 added an amount to Taipei’s office market equal to 

roughly one year’s construction.  If there were a downturn in the Taipei market, one would 

expect the size of Taipei 101 to impact the rate of the real estate sector's recovery.
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Appendix 

 

Proposition 4:  The mixed strategy equilibrium of the two-player skyscraper contest is:  (a) 

builder 1 randomizes over heights according to the distribution function Φ1(h) = 1+ [π1(h2
P) - 

π2(h)] /v for v ∈ [h1*,h2
P], and (b) builder 2 randomizes over heights according to the 

distribution function Φ2(h) = [π1(h1*) - π1(h)] /v for v ∈ [h1*,h2
P], with a point-mass equal to 

[π2(h2*) - π2(h1*)] /v at h = h2*. 

 

Proof:  The first step is to characterize the supports for the probability distributions.  It is easy 

to see that builder i would not place positive probability on any height below hi*.  

Furthermore, builder 2 will place no probability on any height in the interval (h2*, h1*) 

because in this region builder 2 loses for sure and earns a lower payoff than at h2*.  In 

addition, neither builder would place positive probability on any height greater than h2
P.  

Builder 2 would sacrifice payoff relative to h2*, while builder 1 would win for sure at h2
P, 

and would earn lower profits at greater heights.  In sum, builder 1’s support must be 

contained in [h1*,h2
P], while builder 2’s support is contained in  {h2*} ∪ [h1*,h2

P]. 

 Consider the upper bounds of the two builders’ supports, denoted H1
+ and H2

+ 

respectively.  Suppose that one is bigger than the other.  Without loss of generality, let H1
+ > 

H2
+.  In this case, the builder 1 could raise its profits by reallocating some probability down 

from the interval (H2
+, H1

+], since profits would be greater and the probability of winning 

would remain unchanged.  The argument would be identical for the case H2
+ > H1

+. Thus, the 

upper supports must be equal. 

 Let H1
- and H2

- respectively denote the lower bounds of the two builders’ supports on 

the interval [h1*,h2
P].  Suppose that one is bigger than the other.  Without loss of generality, 

let H1
- > H2

-.  In this case, the builder 2 could raise its profits by reallocating some probability 

from the interval [H2
-, H1

-] to h2*, since costs would be lower and the probability of winning 

would remain unchanged.  The argument for the case H2
- > H2

+ would be the same with the 

only modification being that builder 1 would reallocate the probability to h1*.  Thus, the 

lower supports on the interval [h1*,h2
P] must be equal as well. 

 It is straightforward to show that there can be no height greater than h2* played with 

strictly positive probability (atoms).  Suppose first that there were such a height on the 

interior of the interval [h1*,h2
P].  Denote the height by η ∈ (h1*,h2

P).  If builder i chose height 
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η with positive probability, then builder j would have a payoff that increased discontinuously 

at hj = η.  Thus, there would exist an ε-neighborhood below η over which builder j would 

assign no probability.  In this case, builder i would not want to place at atom at η, since a 

lower height would increase profit.  Thus, there can be no height in the open interval (h1*,h2
P) 

played with positive probability in a mixed strategy equilibrium. 

 There can also be no atoms at the common upper bound of the supports, h2
P.   If 

builder 1 had an atom at h2
P, then there would exist an ε-neighborhood below h2

P where 

builder 2 would do better by reallocating probability to h2*.  This gap would imply that 

builder 1 would not want to play h2
P with positive probability.  If builder 2 had an atom at 

h2
P, there would be an ε-neighborhood below h2

P where builder 1 would do better by 

reallocating probability to slightly above h2
P because of the discontinuity in the probability of 

winning.  Finally, neither builder can place strictly positive probability on h1*.  For builder 2, 

doing so would be dominated by h2*.  For builder 1, an atom at h1* would encourage builder 

2 to place an atom at a slightly greater height, which has been ruled out above. 

 To complete the solution, we must solve for the constants k1 and k2 from (5.1) and 

(5.2).  First, note that there must be a probability mass at h2* for builder 2.  Suppose not.  

Without a probability mass at h2*, k1 = π1(h1*).  However, builder 1 could instead play a pure 

strategy of h2
P, which would earn a strictly greater payoff.  It is thus necessary that there be a 

probability mass at h2*.   Since builder 2 loses with certainty at height h2*, this implies that k2 

= π2(h2*).  By the definition of h2
P, this implies that the upper support for the builder 2 must 

equal h2
P .  If this were not true, then there would exist a height were builder 2 earned a 

payoff strictly greater than π2(h2*).  The upper support for builder 1 must also equal h2
P.  

Evaluating (5.1) at h2
P then implies that k1 = π1(h2

P) + v. 

 Substituting for k1 in (5.1) and rearranging gives 

 

Φ2(h1) = [π1(h1*) - π1(h1)] /v  (A.1) 

 

for v > 0 and for all h ∈ H1.   Substituting for k2 in (5.2) and rearranging gives 

 

Φ1(h2) = 1+ [π1(h2
P) - π2(h2)] /v, (A.2) 
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for v > 0 and for  all h ∈  H2.   Evaluating (A.2) at h2 = h2* gives the value of the probability 

atom at h2*, 

 

α(h2*) = [π2( h2*) - π2(h1*)] /v.  (A.3) 

 

This completes the characterization of the mixed strategy equilibrium. 
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Figure 1.  Pre-emptive building height 
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Table 1.  The world’s tallest buildings since 1873 
 
Built Building City Country Floors Roof Pinnacle 

1890 New York World Building New York 
City 

U.S. 20 309 ft 349 ft 

1894 Manhattan Life Insurance 
Building 

New York 
City 

U.S. 18 348 ft  

1895 Milwaukee City Hall Milwaukee U.S. 9 350 ft  

1899 Park Row Building New York 
City 

U.S. 30 391 ft  

1908 Singer Building New York 
City 

U.S. 47 612 ft  

1909 Met Life Tower New York 
City 

U.S. 50 700 ft  

1913 Woolworth Building New York 
City 

U.S. 57 792 ft  

1930 40 Wall Street New York 
City 

U.S. 71  927 ft 

1930 Chrysler Building New York 
City 

U.S. 77 925 ft 1046 ft 

1931 Empire State Building New York 
City 

U.S. 102 1250 ft 1472 ft 

1972 World Trade Center (North 
tower) 

New York 
City 

U.S. 110 1368 ft 1729 ft 

1974 Sears Tower Chicago U.S. 108 1451 ft 1729 ft 

1998 Petronas Towers Kuala Lumpur Malaysia 88  1483 ft 

2004 Taipei 101 Taipei Republic of China 
(Taiwan) 

101 1474 ft 1671 ft 

 
Source: data are © Emporis. 
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Table 2.  Tallest Buildings by City Size (20 Largest Cities 1990)  
 

Rank City 
Population 
(thousands) 

Land 
Area 
(sqr. 
miles) 

Population 
Density 
(thousands 
/sqr. mile) 

Height 
of 
Tallest 
(meters) 

Height 
of Next 
Tallest 
(meters) Difference 

As 
Percentage 
of Tallest 
Height 

1 New York, NY  7323 309 23.69903 381 318.9 62.1 0.162992 

2 
Los Angeles, 
CA  3485 469 7.430704 310.3 261.5 48.8 0.157267 

3 Chicago, IL  2784 227 12.26432 442.3 346.3 96 0.217047 
4 Houston, TX  1631 540 3.02037 305.4 302.4 3 0.009823 

5 
Philadelphia, 
PA 1586 135 11.74815 288 242 46 0.159722 

6 San Diego, CA  1111 324 3.429012 152.4 152.1 0.3 0.001969 
7 Detroit, MI  1028 139 7.395683 221.5 192.6 28.9 0.130474 
8 Dallas, TX  1007 342 2.944444 280.7 270.1 10.6 0.037763 
9 Phoenix, AZ  983 420 2.340476 148.1 124.1 24 0.162053 

10 
San Antonio, 
TX  936 333 2.810811 135.3 123.1 12.2 0.09017 

11 San Jose, CA  782 171 4.573099 86.9 85.3 1.6 0.018412 
12 Baltimore, MD  736 81 9.08642 161 155.1 5.9 0.036646 

13 
Indianapolis, 
IN  731 362 2.019337 253 154 99 0.391304 

14 
San Francisco, 
CA  724 47 15.40426 260 237.4 22.6 0.086923 

15 
Jacksonville, 
FL  635 759 0.836627 188 163.1 24.9 0.132447 

16 Columbus, OH  633 191 3.314136 191.7 169.2 22.5 0.117371 

17 
Milwaukee, 
WI  628 96 6.541667 183.2 167.3 15.9 0.08679 

18 Memphis, TN  610 256 2.382813 143.3 131.1 12.2 0.085136 

19 
Washington, 
DC  607 61 9.95082 57 57 0 0 

20 Boston, MA  574 48 11.95833 240.7 228.4 12.3 0.051101 
      Average 27.44 0.1097 

Source: 1990 Census for population and land area; height data are from www.skyscraperpage.com 


