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This study demonstrates the impact of systematic risk on the prices of individual equity
options. The option prices are characterized by the level and slope of implied volatility
curves, and the systematic risk is measured as the proportion of systematic variance in the
total variance. Using daily option quotes on the S&P 100 index and its 30 largest component
stocks, we show that after controlling for the underlying asset’s total risk, a higher amount
of systematic risk leads to a higher level of implied volatility and a steeper slope of the
implied volatility curve. Thus, systematic risk proportion can help differentiate the price
structure across individual equity options. (JEL: G10, G13)

Empirical work in the derivatives literature has uncovered some intriguing fea-
tures of option prices: (i) the Black-Scholes implied volatility is higher than
the historical or realized volatility and (ii) the risk-neutral negative skewness is
more pronounced than that in the physical distribution, and the index options
have a more pronounced volatility smile/smirk than individual equity options
(e.g., Jackwerth, 2000; Dennis and Mayhew, 2002; and Bakshi, Kapadia, and
Madan, 2003). Collectively, these features indicate structural differences be-
tween the risk-neutral and physical return distributions.

Our study is motivated by this observed structural difference. In particular,
since the two distributions are linked through the risk premiums of the sys-
tematic risk factors, the structural difference must be related to the systematic
risk of the underlying asset. Most of the existing studies focus only on index
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University, HEC Montréal, The Hong Kong University of Science and Technology, McMaster University, Peking
University, Queen’s University, York University, the 2005 annual meeting of the Northern Finance Association,
the 16th Annual Derivatives Securities and Risk Management Conference, the 2006 International Symposium on
Financial Engineering and Risk Management, the 2006 Annual Meeting of the China International Conference
in Finance, and the 2006 Annual Meeting of the Financial Management Association for their comments. We
especially thank Melanie Cao, Raymond Kan, Craig Lewis, Jin Zhang, and an anonymous referee for helpful com-
ments. Both authors acknowledge financial support from the Social Sciences and Humanities Research Council
of Canada. Send correspondence to Jason Wei, Joseph L. Rotman School of Management, University of Toronto,
Toronto, Canada, M5S 3E6; telephone: 416-978-3687; fax: 416-971-3048. E-mail: wei@rotman.utoronto.ca.

C© The Author 2008. Published by Oxford University Press on behalf of The Society for Financial Studies.
All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org
doi:10.1093/rfs/hhn057 Advance Access publication January 13, 2008



The Review of Financial Studies / v 22 n 5 2009

options, and therefore have little to offer in terms of the relative contribution
of systematic risk in option pricing. Our study fills this gap by investigating
how the price structure of individual equity options is affected by the amount
of systematic risk in the underlying assets. Using the implied volatility to rep-
resent the option price structures, our empirical results demonstrate a clear
link between option prices and the systematic risk. Specifically, after con-
trolling for the overall level of total risk, a higher amount of systematic risk
leads to a higher level of implied volatility and a steeper implied volatility
curve.

The empirical study uses daily option quotes on the S&P 100 index and its
30 largest component stocks from 1 January 1991 to 31 December 1995, a data
set identical to that in the study by Bakshi, Kapadia, and Madan (2003) (BKM
hereafter). The systematic risk is measured by the systematic risk proportion,
defined as the ratio of the systematic variance over the total variance. We test two
null hypotheses: (i) the level of implied volatility is unrelated to the systematic
risk proportion and (ii) the slope of the implied volatility curve is unrelated to
the systematic risk proportion. Both hypotheses are strongly rejected, indicating
that the systematic risk plays an important role in determining option prices.
Our empirical findings are robust in subsamples and to different specifications
and estimations. The empirical results can potentially be reconciled with several
theories in which the premiums of the systematic risk factors drive a wedge
between the risk-neutral and physical return distributions.

As mentioned, most of the existing studies focus on index options when
attempting to explain the structural difference in distributions. For instance,
Bates (2000); Buraschi and Jackwerth (2001); Bakshi and Kapadia (2003);
and Jones (2006) documented the existence of additional risk factors, such as
stochastic volatility or jump fears, in index option prices. Dennis and Mayhew
(2002); and BKM (2003) are two exceptions.

Dennis and Mayhew (2002) investigated the relative importance of various
firm characteristics (e.g., implied volatility, firm size, trading volume, leverage,
and beta) in explaining the risk-neutral skewness implied from option prices.
Among other things, they empirically established a link between the risk-
neutral skewness and the systematic risk of the underlying stock. Specifically,
the risk-neutral skewness tends to be more negative for stocks with larger
betas, indicating the importance of market risk in option pricing. Their focus
was on uncovering the driving factors for the risk-neutral skewness observed
in option prices. BKM (2003) developed a theoretical relationship between the
implied volatility and the risk-neutral skewness and kurtosis, and empirically
demonstrated that the differential pricing of individual stock options and index
options is indeed related to their differences in the risk-neutral skewness and
kurtosis. Our study goes further by demonstrating that the price structure of
individual equity options depends on the proportion of systematic risk in the
total risk. We show that the systematic risk is the driver for the behavior of the
implied volatility, the risk-neutral skewness and kurtosis.
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Instead of relying on more general distributions or introducing more risk
factors, Bollen and Whaley (2004) appealed to the demand-based arguments in
resolving the different structures in option prices. Motivating their arguments
based on limits to arbitrage (Shleifer and Vishny, 1997; and Liu and Longstaff,
2004), they showed that the extent of imbalance in demand and supply could
determine the level and the slope of the implied volatility curve. Thus, the
differential price structures among individual equity options is attributed to the
different extents of imbalance. As we will argue later, their model does not
answer why net buying or selling pressure exists. Therefore, the framework
is more effective in explaining the steeper slope of the index options’ implied
volatility curve (due to net excess demand of out-of-the-money put options
for insurance purposes), but less so in differentiating the price structures of
individual equity options. In contrast, our systematic risk-based explanation is
clear-cut and applies to all options.

The remainder of this paper is organized as follows. Section 1 presents
the hypotheses and testing procedures, and reports the main results. Various
robustness checks are documented in Section 2. Section 3 explores potential
theoretical reconciliations of the empirical findings. Section 4 concludes the
paper.

1. Empirical Relation Between Systematic Risk and the Structure of Option
Prices

According to the Black-Scholes (1973) option pricing theory, option prices do
not depend on how much systematic risk is contained in the underlying asset as
long as its total risk is fixed. When the option prices are converted into implied
volatilities, they should not be related to the proportion of systematic risk
relative to the total risk. Therefore, we have the following two null hypotheses.

• Hypothesis 1: The implied volatility level of the options is unrelated to
the systematic risk proportion of the underlying asset.

• Hypothesis 2: The slope of the implied volatility smile/smirk curve of
the options is unrelated to the systematic risk proportion of the underlying
asset.

As mentioned earlier, many empirical studies (e.g., Bates, 2000; Buraschi
and Jackwerth, 2001; Bakshi and Kapadia, 2003; and Jones, 2006) indicate the
existence of systematic risk factors (such as jumps and volatility risk) in option
prices. These systematic risk factors become part of the pricing kernel, and
how much they account for the total risk will obviously impact the characteris-
tics of the risk-neutral distribution. Therefore, our alternative hypotheses are:
(i) both the level and the slope of the implied volatility curve will depend on
the systematic risk and (ii) the amount of systematic risk will differentiate the
price structures of individual equity options.
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The most natural definition for the systematic risk proportion, denoted as
b j , is the ratio of the systematic variance over the total variance. The logical
variables representing the option price structures are the level and slope of the
implied volatility. As in BKM (2003) and other studies, working with implied
volatilities facilitates comparisons across option strikes and maturities for the
same stock as well as comparisons across options on different stocks.

We will show as part of the preliminary tests why the systematic risk propor-
tion is the appropriate metric to use. Here, we offer one theoretical motivation
for the two hypotheses, with an emphasis on the importance of b j . The key
building blocks are from BKM (2003), and our specific arguments are provided
in Appendix A. Assuming a one-factor model with a normally distributed id-
iosyncratic error term under the risk-neutral measure, the following relation for
a given maturity is obtained:

σ
imp
j (K/S) ≈ q1(K/S) + 3q3(K/S) + q2(K/S)Skew(rn)

m b3/2
j

+ q3(K/S)(Kurt(rn)
m − 3)b2

j , (1)

where σ
imp
j is the implied volatility, Skew(rn)

m and Kurt(rn)
m are the risk-neutral

skewness and kurtosis for the market, and q1, q2, and q3 are coefficients written
explicitly as functions of the option’s moneyness, K/S.

Clearly, the implied volatility is related to the systematic risk proportion of the
underlying asset, and the degree to which it is related depends on the moneyness
of the option. As long as the market return is skewed and/or leptokurtic, the
level and slope of the implied volatility curve will be related to the systematic
risk proportion. More significantly, the measure of the systematic risk for this
purpose is not the absolute amount or beta; rather, it is the relative proportion.

Several empirical issues need to be sorted out before we proceed to the tests.
To begin, how do we estimate the average volatility, or the overall level of
total risk? Since we use the Black-Scholes implied volatility to characterize
the option price structure, it is natural to use some version of the historical
volatility to proxy the future average volatility. The key issue is how far back
we should go in the estimation. Balancing between estimation efficiency from a
larger sample and the relatively shorter options maturities, we opt for a one-year
(250 days) rolling window. Specifically, we run daily, one-year rolling window
OLS regressions in (A1) for stock j and estimate the systematic risk proportion
as

β2
j σ

2
m

σ2
j

. If we need a measure of systematic risk proportion for a period of, say,
four weeks, the daily estimates are averaged. In our study, we first average the
daily variances over the period, and then calculate b j .

Another issue is the empirical characterization of the implied volatility
curve. BKM (2003) assumed a constant slope on the logarithmic scale for
the curve. While this strategy simplifies the testing procedures, it tends to
cloud the intricate features of the curve. To reveal potentially different features
for different moneyness regions as apparent in Equation (1), we piecewise
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linearize the implied volatility curve into four distinct moneyness buckets, i.e.,
K/S = [0.9, 0.95), [0.95, 1.0), [1.0, 1.05) and [1.05, 1.10], and conduct tests
within each bucket.

To test our hypotheses, we follow BKM (2003) and perform the Fama-
MacBeth (1973) type two-pass regressions. We need to obtain time series of
estimates for the level and slope of the implied volatility curve, which are used
to run the cross-sectional regressions to determine whether they are related to
the systematic risk proportion. The cross-sectional regression is repeated for
nonoverlapping periods and the average regression coefficients are used to test
the hypotheses.

While a weekly, nonoverlapping window in the first-pass regressions pro-
vides a sufficient number of observations in the study by BKM (2003), we must
increase the window length because the option data have been further divided
into four moneyness buckets. Thus, we adopt a window of one month (four
weeks), and the second-pass regression is performed on a monthly basis.1 The
calculation of the risk-neutral skewness and kurtosis is based on the results in
BKM (2003), and the procedure is briefly outlined in Appendix B.

With this in mind, we proceed with hypothesis testing. In the first-pass
regression, for each stock and moneyness bucket, we lump all the observations
in a four-week period and repeat the following regression for the j th stock:

σ
imp
jk − σhis

j = a0 j + a1 j (y jk − ȳ j ) + ε jk, k = 1, 2, . . . , I j (2)

for 65 times (260 weeks divided by 4). In the above expression, I j is the number
of options in a particular moneyness bucket for the j th stock, y jk = K jk/Sjk ,
and ȳ j is the sample average of y jk . The intercept α0 j and regression coefficient
a1 j are measures of the level and the slope of the implied volatility, after
adjusting for the j th stock’s total risk, σhis

j .2

In the second pass, we perform three versions of cross-sectional regressions
using the intercept from the first-pass regressions as the dependent variable:
for j = 1, 2, . . . , 31,

a0 j = γ0 + γ1b j + e j , (3)

a0 j = γ0 + γ2Skew(rn)
j + γ3Kurt(rn)

j + e j , (4)

a0 j = γ0 + γ1b j + γ2Skew(rn)
j + γ3Kurt(rn)

j + e j . (5)

1 Even with a window of four weeks, some stocks in certain buckets still have too few observations for the time-
series regressions. To ensure that regressions are based on a reasonable sample size, we have set a minimum of 10
observations in both the time-series and the cross-section regressions. The screening criterion for cross-sectional
regressions is not binding most of the time.

2 Historical volatility for the j th stock is actually day specific. The time subscript is omitted to simplify notation.
We subtract the historical volatility from the implied volatility in order to control for the difference in total risk
across stocks. Moreover, the moneyness variable y jk is adjusted by its mean to ensure that the intercept α0 j is
the average difference between the implied and the historical volatilities.
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The time series of the regression coefficients, 65 in total, are then averaged
and its corresponding t-statistic is calculated using the Newey-West standard
error with three lags (651/4 ≈ 3). Regression (3) is an unconditional test of
Hypothesis 1, which should not be rejected if γ1 = 0. Regression (5) is a
conditional test of Hypothesis 1, controlling for the effects of the risk-neutral
skewness and kurtosis, and we should obtain γ1 = 0 if the systematic risk
proportion exerts no effect once the influence of risk-neutral skewness and
kurtosis is considered. Regression (4) is performed purely for comparison
purposes.

To test Hypothesis 2, we simply repeat the regressions in (3), (4), and (5) by
using the slope a1 j from the first-pass regression as the dependent variable.

To ensure that our results are not due to the two-pass testing procedure,
we will also perform a one-pass panel regression to test the two hypotheses.
Moreover, we will control for some firm-specific characteristics.

1.1 Data summary and preliminary investigations
The option data used in this study are identical to those in BKM (2003),
covering options written on the S&P 100 index and its 30 largest component
stocks. Please see Appendix C for details.

Tables 1A and 1B report summary statistics. Table 1A reports the average
implied volatility for each maturity-moneyness group. It also reports the average
historical volatility and the average proportion of systematic risk for each stock.
Several observations are in order. First, the volatility smile/smirk is clearly
present for all stocks. The curve is mostly downward sloping. Second, within
the same moneyness bucket, the implied volatility is generally lower for longer
term options. Third, the average implied volatility is generally higher than the
average historical volatility (for 19 out of 30 stocks), and the S&P 100 index
has the highest volatility differential, which is 0.0327. Finally, excluding the
S&P 100 index, the systematic risk proportions range from 0.089 for MCI
Communications to 0.380 for General Electric. The average proportion across
all stocks excluding the S&P 100 index is 0.235.

To see the general association between the stocks’ key characteristics and the
systematic risk proportion, we sort the stocks into quintiles by their systematic
risk proportions and calculate the average value of the characteristic variables
for each quintile. The variables we examine are the ones used for later tests,
namely: (i) the average implied volatility minus the average historical volatility;
(ii) the average slope of the implied volatility curve; (iii) the average risk-
neutral skewness; and (iv) the average risk-neutral kurtosis. Since the last two
quantities do not change across moneyness, we divide the sample only into
maturity buckets. Given the magnitude of the S&P 100 index’s systematic risk
proportion, we put it in a separate group, the fifth quintile. The first quintile
contains six stocks and the other three contain eight stocks each. The sorting
is done monthly, and the average values are calculated for each quintile. We
then average the monthly quantities for each quintile over 65 months. Table 1B
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Table 1A
Summary statistics—implied volatility, historical volatility, and systematic risk proportion

Short-term options: 20–70 days Medium-term options: 71–120 days Long-term Options: 121–180 days
in maturity in maturity in Maturity

Moneyness, K/S Moneyness, K/S Moneyness, K/S

[0.90– [0.95– [1.00– [1.05– [0.90– [0.90– [0.95– [1.00– [1.05– [0.90– [0.90– [0.95– [1.00– [1.05– [0.90–
0.95) 1.00) 1.05) 1.10] 1.10] 0.95) 1.00) 1.05) 1.10] 1.10] 0.95) 1.00) 1.05) 1.10] 1.10]

Average
implied

volatility

Average
historical
volatility

Systematic
risk

proportion

1. AIG American Int’l 0.2371 0.2281 0.2125 0.2146 0.2231 0.2282 0.2277 0.2126 0.2125 0.2207 0.2253 0.2268 0.2109 0.2099 0.2187 0.2214 0.2093 0.275
2. AIT Ameritech 0.2226 0.2056 0.1710 0.1806 0.1941 0.2189 0.2176 0.1684 0.1664 0.1928 0.2233 0.2273 0.1602 0.1583 0.1923 0.1933 0.1824 0.229
3. AN Amoco 0.2197 0.1927 0.1717 0.1910 0.1920 0.2003 0.1978 0.1676 0.1715 0.1842 0.2020 0.2028 0.1660 0.1662 0.1841 0.1879 0.1922 0.127
4. AXP American Express 0.3140 0.2935 0.2868 0.3009 0.2986 0.3060 0.2962 0.2979 0.3064 0.3010 0.3047 0.2948 0.2898 0.2959 0.2966 0.2986 0.2995 0.207
5. BA Boeing Company 0.2734 0.2539 0.2372 0.2481 0.2528 0.2563 0.2537 0.2316 0.2343 0.2434 0.2528 0.2498 0.2302 0.2292 0.2401 0.2473 0.2408 0.165
6. BAC Bank America Corp. 0.3078 0.2924 0.2664 0.2662 0.2838 0.2977 0.2989 0.2632 0.2588 0.2792 0.2929 0.2877 0.2564 0.2515 0.2723 0.2800 0.2700 0.257
7. BEL Bell Atlantic 0.2324 0.2084 0.1794 0.1978 0.2038 0.2219 0.2160 0.1816 0.1788 0.1995 0.2227 0.2227 0.1796 0.1723 0.1995 0.2017 0.2076 0.214
8. BMY Bristol-Myers 0.2304 0.2143 0.1884 0.2039 0.2088 0.2157 0.2110 0.1801 0.1849 0.1979 0.2147 0.2170 0.1783 0.1800 0.1970 0.2031 0.2003 0.290
9. CCI Citicorp 0.3403 0.3156 0.3058 0.3045 0.3168 0.3326 0.3241 0.3105 0.3033 0.3177 0.3279 0.3123 0.3006 0.2982 0.3101 0.3153 0.3357 0.208

10. DD DuPont 0.2512 0.2430 0.2188 0.2254 0.2347 0.2438 0.2451 0.2134 0.2151 0.2298 0.2433 0.2429 0.2117 0.2112 0.2273 0.2317 0.2211 0.261
11. DIS Walt Disney 0.2975 0.2820 0.2608 0.2603 0.2751 0.2921 0.2835 0.2629 0.2588 0.2743 0.2827 0.2807 0.2568 0.2547 0.2689 0.2733 0.2540 0.268
12. F Ford Motor 0.3200 0.3014 0.2807 0.2867 0.2974 0.3118 0.2974 0.2763 0.2752 0.2906 0.3089 0.3040 0.2723 0.2718 0.2895 0.2936 0.2928 0.237
13. GE General Electric 0.2402 0.2141 0.1849 0.1899 0.2073 0.2257 0.2187 0.1809 0.1788 0.2012 0.2253 0.2216 0.1789 0.1736 0.2002 0.2040 0.1862 0.380
14. GM General Motors 0.3125 0.2918 0.2880 0.2904 0.2960 0.3031 0.2846 0.2875 0.2852 0.2905 0.3008 0.2940 0.2869 0.2864 0.2921 0.2937 0.3010 0.234
15. HWP Hewlett-Packard 0.3323 0.3251 0.3095 0.3121 0.3199 0.3260 0.3232 0.3094 0.3094 0.3173 0.3127 0.3154 0.2935 0.2980 0.3051 0.3154 0.3230 0.212
16. IBM Int. Bus. Machines 0.2874 0.2675 0.2589 0.2616 0.2685 0.2787 0.2703 0.2527 0.2513 0.2630 0.2696 0.2647 0.2453 0.2452 0.2562 0.2642 0.2544 0.218
17. JNJ Johnson & Johnson 0.2531 0.2406 0.2243 0.2259 0.2363 0.2437 0.2425 0.2205 0.2153 0.2312 0.2416 0.2390 0.2135 0.2112 0.2274 0.2329 0.2336 0.303
18. KO Coca Cola Co. 0.2605 0.2382 0.2157 0.2142 0.2331 0.2403 0.2344 0.2096 0.1987 0.2216 0.2381 0.2334 0.2096 0.1951 0.2193 0.2267 0.2148 0.326
19. MCD McDonald’s Corp. 0.2687 0.2416 0.2229 0.2287 0.2411 0.2504 0.2413 0.2236 0.2163 0.2328 0.2513 0.2448 0.2259 0.2219 0.2361 0.2378 0.2255 0.230
20. MCQ MCI Comm. 0.3574 0.3285 0.2983 0.3137 0.3255 0.3368 0.3253 0.2995 0.3051 0.3175 0.3311 0.3208 0.2980 0.3015 0.3134 0.3207 0.4037 0.089
21. MMM Minn Mining 0.2252 0.2044 0.1819 0.1883 0.1992 0.2147 0.2057 0.1761 0.1744 0.1928 0.2106 0.2057 0.1743 0.1721 0.1908 0.1956 0.1783 0.270
22. MOB Mobil Corp. 0.2079 0.1920 0.1675 0.1788 0.1856 0.1928 0.1933 0.1633 0.1625 0.1786 0.1969 0.1966 0.1572 0.1587 0.1773 0.1815 0.1777 0.122
23. MRK Merck & Co. 0.2710 0.2545 0.2392 0.2547 0.2549 0.2579 0.2552 0.2345 0.2413 0.2479 0.2530 0.2491 0.2309 0.2403 0.2439 0.2506 0.2332 0.356
24. NT Northern Telecom 0.3172 0.3013 0.2825 0.2902 0.2979 0.2955 0.2900 0.2766 0.2744 0.2843 0.3057 0.2937 0.2784 0.2809 0.2900 0.2930 0.2764 0.216
25. PEP PepsiCo Inc. 0.2732 0.2302 0.2258 0.2316 0.2404 0.2684 0.2375 0.2320 0.2194 0.2387 0.2533 0.2359 0.2118 0.2143 0.2297 0.2373 0.2438 0.272
26. SLB Schlumberger Ltd. 0.2567 0.2507 0.2344 0.2403 0.2451 0.2474 0.2484 0.2270 0.2241 0.2367 0.2459 0.2495 0.2227 0.2240 0.2356 0.2409 0.2506 0.118
27. T AT&T 0.2319 0.2035 0.1865 0.2019 0.2062 0.2185 0.2034 0.1839 0.1897 0.1990 0.2173 0.2020 0.1855 0.1836 0.1973 0.2024 0.1961 0.260
28. WMT Wal-Mart 0.3022 0.2819 0.2556 0.2698 0.2790 0.2818 0.2843 0.2524 0.2676 0.2716 0.2825 0.2778 0.2614 0.2556 0.2705 0.2749 0.2581 0.349
29. XON Exxon Corp. 0.1991 0.1710 0.1525 0.1649 0.1717 0.1831 0.1726 0.1425 0.1449 0.1613 0.1807 0.1770 0.1424 0.1377 0.1592 0.1661 0.1688 0.166
30. XRX Xerox Corp. 0.2715 0.2623 0.2361 0.2345 0.2512 0.2626 0.2630 0.2303 0.2263 0.2458 0.2612 0.2618 0.2203 0.2198 0.2412 0.2475 0.2333 0.180
31. OEX S&P 100 index 0.1846 0.1470 0.1162 0.1171 0.1444 0.1716 0.1503 0.1209 0.1136 0.1421 0.1667 0.1523 0.1256 0.1188 0.1422 0.1435 0.1108 0.952

This table reports the average implied volatilities within each moneyness bucket under a particular maturity range for options on the S&P100 index and its 30 largest component stocks. The third last column of
the table contains the average implied volatility for the entire sample, while the second last column contains the average historical volatility. The last column contains the average proportion of systematic variance
in the total variance.
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Table 1B
Sorting of stocks’ characteristics by systematic risk proportion

Implied volatility minus historical volatility
Systematic risk

Quintile proportion Short term Medium term Long term Overall

1 0.112 −0.009 −0.015 −0.019 −0.012
2 0.188 −0.00 −0.007 −0.008 −0.004
3 0.253 0.009 0.004 0.003 0.006
4 0.346 0.011 0.006 0.004 0.008
5 0.952 0.032 0.030 0.028 0.031

Systematic risk Slope of implied volatility curve

Quintile Proportion Short term Medium term Long term Overall

1 0.112 −0.215 −0.220 −0.251 −0.224
2 0.188 −0.207 −0.221 −0.239 −0.216
3 0.253 −0.230 −0.213 −0.225 −0.225
4 0.346 −0.266 −0.250 −0.255 −0.258
5 0.952 −0.586 −0.497 −0.458 −0.550

Systematic risk Risk-neutral skewness

Quintile Proportion Short term Medium term Long term Overall

1 0.112 −0.626 −0.778 −0.818 −0.806
2 0.188 −0.683 −0.800 −0.832 −0.812
3 0.253 −0.696 −0.764 −0.764 −0.757
4 0.346 −0.798 −0.857 −0.907 −0.853
5 0.952 −1.656 −1.517 −1.426 −1.588

Systematic risk Risk-neutral kurtosis

Quintile Proportion Short term Medium term Long term Overall

1 0.112 4.033 3.622 3.003 3.564
2 0.188 4.181 3.757 3.140 3.750
3 0.253 4.145 3.559 2.925 3.554
4 0.346 4.428 3.651 3.095 3.749
5 0.952 6.452 4.152 3.385 5.305

This table summarizes the properties of five groups of individual stocks/index sorted by their systematic
risk proportions. The properties are (i) the average implied volatility minus the average historical volatility,
(ii) the average slope of the implied volatility curves, (iii) the average risk-neutral skewness, and (iv) the average
risk-neutral kurtosis. The maturity ranges for short-term, medium-term, and long-term options are, respectively,
20–70 days, 71–120 days, and 121–180 days. The heading “Overall” is for all maturities combined. Given the
large magnitude of the S&P 100 index’s systematic risk proportion, we put in a separate group, the fifth quintile.
The first quintile contains six stocks and the other three contain eight stocks each. To be consistent with the
estimation procedures described in Section 2, we estimate the variables monthly. Thus, the sorting is also done
monthly, and the average variables are calculated for each quintile. We then average the monthly quantities for
each quintile.

contains the results. The most striking result is the positive association between
the systematic risk proportion and the implied volatility differential. For the
other three variables, although not entirely monotonic, we see a general positive
association between the systematic risk proportion and the magnitude of the
variables. Therefore, the sorting results already indicate a strong rejection of
the two null hypotheses.

Before proceeding to the formal tests, we carry out two preliminary investi-
gations. First, we perform a quick test of Hypothesis 1. Second, we demonstrate
why the systematic risk proportion is a better measure than beta for our tests.
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Table 2
Preliminary tests: Regressing the volatility differential on alternative measures of systematic risk

Measure of systematic risk: Measure of systematic risk:
systematic risk proportion beta

With index Without index With index Without index

Overall R2(%) 25.89 32.77 1.94 1.95
t 3.183 3.694 −0.757 −0.746

K/S: 0.90–0.95 R2(%) 35.02 33.28 3.86 4.20
t 3.954 3.746 −1.079 −1.109

K/S: 0.95–1.00 R2(%) 20.67 26.39 6.01 6.16
t 2.748 3.169 −1.361 −1.356

K/S: 1.00–1.05 R2(%) 19.85 30.48 0.01 0.06
t 2.680 3.504 −0.149 −0.128

K/S: 1.05–1.10 R2(%) 15.32 27.65 0.48 0.45
t 2.290 3.271 −0.376 −0.358

Short maturity R2(%) 23.90 32.32 2.43 2.44
t 3.018 3.657 −0.850 −0.838

Medium maturity R2(%) 27.11 33.92 0.84 0.81
t 3.284 3.791 −0.496 −0.479

Long maturity R2(%) 27.10 31.23 2.20 2.24
t 3.283 3.566 −0.808 −0.801

This table contains results for two univariate cross-sectional regressions under various sample constructions.
In the first regression, the dependent variable is the volatility differential—the average difference between
the implied volatility and the historical volatility—and the explanatory variable is the average systematic risk
proportion, σimp

j − σhis
j = γ0 + γ1b j + e j . In the second regression, the explanatory variable is the average beta,

i. e., σ
imp
j − σhis

j = γ0 + γ1β j + e j . The averages are taken or calculated from Table 1A. The regressions are
run for the entire sample first, which corresponds to the “Overall” case. We then run the regressions for each
of the four moneyness buckets. Finally, we run the regressions for each of the three maturity ranges. For each
particular sample construction, we run regressions either with or without the S&P 100 index. For each pair of
numbers, the first is the R2 value, and the second is the t-value for the regression coefficient γ1 (a negative t-value
indicates that the regression coefficient is negative). The t-values in bold type are significant at the 10% level or
higher for two-tailed tests. The maturity ranges for short term, medium term, and long term are, respectively,
20–70 days, 71–120 days, and 121–180 days.

To this end, we first regress the volatility differential on the average systematic
risk proportion; we then do the same regression using average beta as the ex-
planatory variable. The average volatilities and systematic risk proportions are
from Table 1A. Average betas are calculated separately. OLS regressions are
done for the entire sample and for various moneyness and maturity buckets.
For each bucket, we run two versions of the regression: one with the S&P
100 index and one without it. The results are reported in Table 2. The R2 and
t-values show overwhelmingly that the volatility differential is positively re-
lated to the systematic risk proportion, while having no statistically significant
relation to beta. This observation applies to all moneyness/maturity buckets,
with or without the index. Thus, Hypothesis 1 is rejected with a high level of
confidence.

It should not be surprising that beta is not a good measure of systematic risk
for our purpose. Our hypotheses focus on the amount of systematic risk, given
the amount of total risk. A higher beta does not always mean that the systematic
risk accounts for most of the total risk. By the same token, equal betas do not
mean equal systematic risk proportions. This point can be illustrated by a simple
example. Suppose the market volatility is σm = 0.2 and there are two stocks, A
and B, with σA = 0.4 and σB = 0.5. If the stocks’ correlations with the market
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are ρA = 0.75 and ρB = 0.60 respectively, then the two stocks will have the
same beta, 1.50, yet very different systematic risk proportions, 0.563 versus
0.360.

Finally, we perform a diagnostic check. Intuition would suggest that the
systematic risk proportion may potentially be a proxy for the total volatility,
especially for large stocks. To check if this is the case, we regress the total
volatility (implied or historical) on the systematic risk proportion across the
30 stocks. The R2 values are 0.49% and 6.74%, respectively, and the t-values
for the regression coefficients are −0.372 and −1.422, respectively. Therefore,
the total volatility and systematic risk proportion are unrelated.

1.2 Level-effect tests
We now proceed to the formal tests. Table 3 reports the test results for the level
effect—i.e., tests pertaining to Hypothesis 1. To conserve space, we do not
report the intercepts from the second-pass regressions. Panel A reveals a strong
rejection of Hypothesis 1. The coefficient γ1 is positive across all moneyness
and maturity buckets, and all the corresponding t-values are significant. In
fact, almost all of them are significant at the 1% level. The vast majority
of the 65 γ1 estimates are positive, as indicated by the percentages under
γ1 > 0. Moving to Panel B, where we control for the effects of the risk-
neutral skewness and kurtosis, all the γ1 estimates save two are still significant.
Overall, the unconditional and conditional tests both show a strong level effect.
The implied volatility levels, controlling for the stock-specific total volatilities,
are significantly and positively related to the systematic risk proportion of the
underlying stock. The empirical finding confirms the theoretical prediction
derived from the relationship in Equation (1).

In terms of economic significance, the R2 shows that the systematic risk
proportion does a better job for the lower moneyness range in explaining the
cross-sectional differences in the level of implied volatilities. For the univari-
ate regressions covering all maturities, the systematic risk proportion alone
explains 14.5%, 7.8%, 7.3%, and 5.4% of the cross-sectional variations in the
implied volatility for the four moneyness buckets, respectively. When the risk-
neutral skewness and kurtosis are added to the regressions, the corresponding
numbers are 25.0%, 19.6%, 19.6%, and 17.8%.

The regression results also offer some other interesting insights. First of all,
judging by the magnitude and t-value of the regression coefficient γ1 as well
as the percentage of positive entries, we see that the effect of systematic risk
proportion itself also takes a smirk pattern across moneyness. The effect is
much stronger for the lower moneyness buckets. As the exercise price becomes
higher, the level effect becomes weaker. This is consistent with the pattern of
the implied volatilities.

Second, in terms of maturities, it is clear that the effect is stronger for short-
term options (20–70 days), and it becomes weaker as the maturity gets longer.
This is true for both the unconditional and conditional tests.
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Table 3
Regression tests for the level effect

Panel A: Separate regressions on systematic risk proportion, and skewness and kurtosis

γ1 γ2 γ3

Average t γ1 > 0 R2(%) Average t Average t R2(%)

Moneyness All maturities 0.077 19.239 100.0% 14.5 −0.013 −3.458 0.000 0.336 12.7
K/S Short term 0.074 17.418 100.0% 15.9 −0.015 −3.561 0.000 −0.021 16.1

0.90–0.95 Medium term 0.064 12.813 100.0% 23.1 −0.028 −3.960 −0.008 −2.504 22.2
Long term 0.104 4.573 79.6% 13.1 −0.016 −1.603 −0.004 −1.050 23.2

Moneyness All maturities 0.051 14.240 100.0% 7.8 −0.014 −2.958 −0.003 −2.623 11.3
K/S Short term 0.044 12.708 98.5% 7.3 −0.013 −3.685 −0.002 −2.128 16.7

0.95–1.00 Medium term 0.036 6.647 93.6% 8.3 −0.009 −0.928 −0.003 −1.251 22.7
Long term 0.032 1.712 63.9% 7.7 −0.012 −2.986 −0.006 −4.757 17.7

Moneyness All maturities 0.047 7.719 98.5% 7.3 −0.002 −0.311 −0.001 −0.493 10.7
K/S Short term 0.037 6.257 96.9% 5.6 0.002 0.404 −0.001 −1.340 13.1

1.00–1.05 Medium term 0.027 5.664 90.9% 9.0 −0.008 −1.121 −0.004 −1.635 21.3
Long term 0.093 4.139 78.6% 14.9 0.007 1.046 −0.001 −0.235 22.4

Moneyness All maturities 0.037 6.660 96.9% 5.4 0.002 0.552 0.001 0.708 10.9
K/S Short term 0.024 4.600 78.5% 4.2 0.008 2.181 0.002 1.943 15.6

1.05–1.10 Medium term 0.023 4.608 84.0% 5.5 −0.004 −0.440 −0.004 −0.893 24.8
Long term 0.051 2.478 71.4% 11.0 −0.001 −0.295 0.000 −0.120 17.5

Panel B: Combined regressions on systematic risk proportion, skewness and kurtosis

γ1 γ2 γ3

Average t γ1 > 0 Average t Average t R2(%)

Moneyness All maturities 0.074 16.785 100.0% −0.009 −2.218 −0.001 −0.794 25.0
K/S Short term 0.070 12.319 98.3% −0.004 −1.011 −0.001 −0.655 29.6

0.90–0.95 Medium term 0.063 6.729 87.0% −0.014 −2.174 −0.002 −0.667 38.9
Long term 0.115 2.920 72.7% −0.014 −1.327 −0.002 −0.516 34.0

Moneyness All maturities 0.055 8.997 96.9% −0.011 −2.174 −0.005 −3.097 19.6
K/S Short term 0.041 7.154 89.7% −0.008 −2.136 −0.003 −2.359 23.9

0.95–1.00 Medium term 0.026 4.296 75.0% −0.005 −0.426 −0.003 −0.972 30.5
Long term 0.029 0.696 50.0% −0.012 −4.033 −0.007 −5.371 28.2

Moneyness All maturities 0.052 7.466 93.8% 0.000 0.067 −0.002 −0.988 19.6
K/S Short term 0.044 6.594 89.8% 0.006 1.332 −0.002 −1.837 22.6

1.00–1.05 Medium term 0.029 4.994 84.0% −0.002 −0.333 −0.002 −0.694 28.5
Long term 0.106 2.163 71.0% 0.008 0.922 0.000 −0.061 36.9

Moneyness All maturities 0.044 7.088 95.4% 0.004 0.922 0.000 −0.231 17.8
K/S Short term 0.025 4.592 75.9% 0.012 2.814 0.002 2.004 20.6

1.05–1.10 Medium term 0.033 3.420 84.2% −0.001 −0.050 −0.004 −0.622 33.0
Long term 0.052 1.679 61.1% 0.001 0.177 −0.001 −0.642 28.8

This table contains two-pass regression results for the level-effect tests. In the first pass, for each stock, we regress
the difference between the implied volatility and the historical volatility on moneyness for nonoverlapping
periods of one month (i.e., four weeks): σ

imp
i − σhis

i = a0 + a1(yi − y) + εi . We thus obtain a monthly time
series of the intercept a0 and the slope coefficient a1 for all stocks including the S&P100 index. The moneyness
variable is adjusted by the sample mean within the month, so that the intercept a0 is the average of the
difference between the implied volatility and the historical volatility. In the second pass, we cross-sectionally
regress the intercept on the systematic risk proportion, the risk-neutral skewness and kurtosis. This regression
is done every month in three different forms: a0 j = γ0 + γ1b j + e j , a0 j = γ0 + γ2Skew(rn)

j + γ3Kurt(rn)
j + e j

and a0 j = γ0 + γ1b j + γ2Skew(rn)
j + γ3Kurt(rn)

j + e j . The monthly regression coefficients are then averaged,
and the corresponding t-values calculated using the Newey-West standard error (with three lags). The results for
the first two regressions are reported in Panel A, while those for the last are in Panel B. To conserve space, we
omit the regression intercept and its t-value. The t-values in bold type are significant at the 10% level or higher
for two-tailed tests. The entries under γ1 > 0 are percentages of the monthly coefficient γ1 that are positive. The
reported R2 is the average R2 from monthly cross-sectional regressions. The risk-neutral skewness and kurtosis
are estimated using the results in BKM (2003), and the calculation procedure is outlined in Appendix B. The
maturity ranges for short term, medium term, and long term are, respectively, 20–70 days, 71–120 days, and
121–180 days. The regressions are performed separately for four moneyness buckets.

1991



The Review of Financial Studies / v 22 n 5 2009

Finally, in both the unconditional and conditional tests, the coefficients for
the risk-neutral skewness and kurtosis are mostly insignificant and the signs
are mixed. Nevertheless, as shown in Panel B, the effect of the systematic
risk proportion on the implied volatility level remains significant, even after
controlling for the risk-neutral skewness and kurtosis.

1.3 Slope-effect tests
Table 4 reports the results for the slope-effect tests—i.e., tests pertaining to
Hypothesis 2. The results are similar to those in Table 3, albeit slightly weaker,
in terms of rejecting the hypothesis. For most parts, the slope of the implied
volatility curve is related to the systematic risk proportion in a statistically
significant fashion. The bigger the systematic risk proportion, the steeper the
slope. The significance largely remains after controlling for the risk-neutral
skewness and kurtosis. Therefore, Hypothesis 2 is also rejected.

Other observations regarding moneyness and maturity are also similar to
those in Table 3. The weakening of the systematic risk effect on the slope is
especially pronounced with the upper tail of the moneyness range, i.e., 1.05–
1.10. This is due to the slight, curving back of the implied volatility curve in
this region. As for maturity, we also observe a weaker effect with long-term
options.

BKM (2003) predicted positive coefficients for the risk-neutral skewness
and kurtosis in describing the slope of implied volatilities. We do observe
positive (and sometimes significant) γ2 and γ3 for many cases, but the signs
are by no means uniform across the moneyness buckets. When we combine
the moneyness buckets and run a single regression as in BKM (2003), we do
obtain the sign and significance as shown in BKM (2003). This implies that it
is very crucial to separate moneyness buckets when examining the properties
of the implied volatility.

In terms of economic significance, the R2 is lower than its level-effect coun-
terpart. For the univariate regressions covering all maturities, the systematic risk
proportions explain 4.7%, 4.8%, 5.5%, and 1.6% of the cross-sectional varia-
tions in the slope for the four moneyness buckets, respectively. The numbers
improve to 18.8%, 16.7%, 17.9%, and 12.8% when the risk-neutral skewness
and kurtosis are added to the regressions.

1.4 A combined test of the level and slope effects using panel regressions
To make sure that our conclusions are not due to the two-pass testing procedure,
we run a single-pass panel regression and test the two hypotheses therein.
Specifically, we run the following panel regression for each moneyness/maturity
bucket:

σ
imp
i j − σhis

i j = [α0 + α1(bi j − b̄i )] + [β0 + β1(bi j − b̄i )](yi j − ȳ j ) + εi j

= α0 + α1(bi j − b̄i ) + β0(yi j − ȳ j ) + β1(bi j − b̄i )(yi j − ȳ j )

+ εi j , (6)
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Table 4
Regression tests for the slope effect

Panel A: Separate regressions on systematic risk proportion, and skewness and kurtosis

γ1 γ2 γ3

Average t γ1 < 0 R2 (%) Average t Average t R2 (%)

Moneyness All maturities −0.431 −5.213 86.2% 4.7 0.121 2.326 −0.031 −1.287 14.7
K/S Short term −0.363 −4.549 78.5% 3.2 0.157 1.933 −0.033 −1.251 20.2

0.90–0.95 Medium term −0.411 −8.415 93.6% 10.0 0.153 3.990 0.027 2.579 13.4
Long term −0.183 −1.180 54.6% 9.2 0.011 0.235 −0.032 −1.409 17.5

Moneyness All maturities −0.441 −5.921 92.3% 4.8 −0.006 −0.223 −0.046 −3.002 11.3
K/S Short term −0.583 −10.520 95.4% 6.1 −0.022 −0.397 −0.058 −2.937 17.4

0.95–1.00 Medium term −0.534 −14.074 100.0% 15.8 0.037 0.656 −0.028 −1.275 17.4
Long term −0.212 −2.004 63.9% 5.6 0.032 0.763 0.007 0.346 13.7

Moneyness All maturities −0.557 −7.193 98.5% 5.5 0.172 3.981 0.076 4.672 10.7
K/S Short term −0.612 −7.541 93.9% 6.0 0.191 2.647 0.062 3.286 13.7

1.00–1.05 Medium term −0.500 −8.706 97.0% 16.7 0.170 1.831 0.095 3.933 24.9
Long term −0.563 −3.001 73.8% 8.7 0.123 3.627 0.032 2.274 19.5

Moneyness All maturities 0.003 0.047 49.2% 1.6 0.056 1.996 0.060 3.387 9.6
K/S Short term −0.053 −0.974 56.9% 2.1 −0.015 −0.287 0.024 1.555 16.0

1.05–1.10 Medium term −0.158 −2.339 68.0% 6.0 0.167 2.855 0.047 2.117 17.1
Long term −0.311 −1.682 54.3% 9.0 −0.015 −0.284 −0.012 −0.439 21.0

Panel B: Combined regressions on systematic risk proportion, skewness and kurtosis

γ1 γ2 γ3

Average t γ1 < 0 Average t Average t R2 (%)

Moneyness All maturities −0.203 −2.304 66.2% 0.107 2.141 −0.026 −1.041 18.8
K/S Short term −0.070 −0.735 57.6% 0.126 1.474 −0.041 −1.397 24.3

0.90–0.95 Medium term −0.372 −5.621 78.3% 0.041 0.881 −0.008 −0.429 20.9
Long term −0.043 −0.314 51.5% 0.006 0.151 −0.035 −1.295 28.0

Moneyness All maturities −0.476 −7.207 89.2% −0.040 −1.551 −0.032 −1.911 16.7
K/S Short term −0.675 −7.922 91.4% −0.131 −2.446 −0.059 −2.930 27.5

0.95–1.00 Medium term −0.570 −9.393 95.0% −0.093 −1.415 −0.055 −2.358 31.8
Long term −0.276 −1.346 55.0% 0.014 0.300 0.003 0.142 21.3

Moneyness All maturities −0.606 −6.449 93.8% 0.141 3.149 0.097 5.271 17.9
K/S Short term −0.552 −4.264 83.1% 0.102 1.370 0.059 2.589 21.3

1.00–1.05 Medium term −0.480 −6.328 88.0% 0.087 0.821 0.076 2.023 37.0
Long term −0.460 −1.592 61.3% 0.147 3.659 0.047 2.321 32.3

Moneyness All maturities 0.015 0.138 50.8% 0.086 2.113 0.077 3.300 12.8
K/S Short term 0.000 0.001 48.3% −0.010 −0.161 0.030 1.967 18.7

1.05–1.10 Medium term −0.024 −0.387 42.1% 0.172 2.746 0.050 1.832 21.2
Long term −0.234 −1.053 55.6% −0.021 −0.409 −0.006 −0.194 26.6

This table contains two-pass regression results for the slope-effect tests. In the first pass, for each stock, we regress
the difference between the implied volatility and the historical volatility on moneyness for nonoverlapping
periods of one month (i.e., four weeks): σ

imp
i − σhis

i = a0 + a1(yi − y) + εi . We thus obtain a monthly time
series of the intercept a0 and the slope coefficient a1 for all stocks, including the S&P100 index. The moneyness
variable is adjusted by the sample mean within the month, so that the intercept a0 is the average of the
difference between the implied volatility and the historical volatility. In the second pass, we cross-sectionally
regress the slope on the systematic risk proportion, the risk-neutral skewness and kurtosis. This regression is
done every month in three different forms: a1 j = γ0 + γ1b j + e j , a1 j = γ0 + γ2Skew(rn)

j + γ3Kurt(rn)
j + e j and

a1 j = γ0 + γ1b j + γ2Skew(rn)
j + γ3Kurt(rn)

j + e j . The monthly regression coefficients are then averaged, and
the corresponding t-values calculated using the Newey-West standard error (with three lags). The results for the
first two regressions are reported in Panel A, while those for the last are in Panel B. To conserve space, we omit
the regression intercept and its t-value. The t-values in bold type are significant at the 10% level or higher for
two-tailed tests. The entries under γ1 < 0 are percentages of the monthly coefficient γ1 that are negative. The
reported R2 is the average R2 from monthly cross-sectional regressions. The risk-neutral skewness and kurtosis
are estimated using the results in BKM (2003), and the calculation procedure is outlined in Appendix B. The
maturity ranges for short term, medium term, and long term are, respectively, 20–70 days, 71–120 days, and
121–180 days. The regressions are performed separately for four moneyness buckets.
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where b̄i is the observation-weighted, cross-sectional average of the systematic
risk proportion for each day, ȳ j is the sample average of moneyness for stock
j within the bucket. Broadly speaking, α0 can be understood as the average
differential between the implied volatility and the historical volatility over all
names within the entire sample period. Similarly, β0 can be understood as the
average slope of the implied volatility curve. They are not exactly the said
quantities due to the interaction term bi j ∗ yi j . The coefficient α1 indicates the
level effect. If the systematic risk proportion does not affect the price level or
the volatility differential, then α1 should not be different from zero, statistically
speaking. A positive α1 would confirm the level effect. By the same token, the
coefficient β1 indicates the slope effect. A negative β1 would imply that a stock
with a higher than average systematic risk proportion will have a slope steeper
than the average slope of all implied volatility curves.

Table 5 reports the results. Based on the t-values of the coefficient α1,
Hypothesis 1 is rejected at an extraordinary level of significance, reaffirming
the level effect. As for the coefficient β1, except for three cases, the t-values
are significant and large. Therefore, Hypothesis 2 is also rejected, confirming
the slope effect. If anything, the panel regressions lead to a stronger rejection
of the two hypotheses than did our two-pass regression tests. We have also
repeated the tests by calculating b̄i as the simple average of the systematic
risk proportions (i.e., not weighted by the number of observations). The results
remain almost identical.3

1.5 Controlling for firm-specific characteristics
Dennis and Mayhew (2002) linked the risk-neutral skewness to the follow-
ing firm-specific variables: (i) implied volatility as a measure of overall risk;
(ii) trading volume of the underlying stock as a measure of liquidity; (iii) beta
as a measure of systematic risk; (iv) leverage; (v) firm size; and (vi) trading
pressure. The last variable, defined as the ratio of average daily put volume
to average daily call volume within a week, is meant to measure the impact
of imbalance in option demand. It is useful to know if the systematic risk can
still explain the price structures in individual equity options after controlling
for these firm-specific variables. Here, we include only the stock’s trading vol-
ume, leverage, and firm size. We omit the implied volatility and beta, since
they are already the subjects of our study. The trading pressure variable is not
included because we do not have data on options’ trading volumes, and this
variable turned out to be insignificant in Dennis and Mayhew (2002). We re-
run the panel regression in Equation (6) by adding the three control variables.
We exclude the index in the tests because the control variables are available
for the individual firms but not for the index. To ensure meaningful compar-
isons, we first rerun the panel regression in Equation (6) without the index.

3 Incidentally, it is seen that the coefficient α0 is negative for the moneyness measure K/S above 1.0. This should
be intuitive given the downward-sloping feature of a typical implied volatility curve: implied volatilities in the
moneyness range above 1.0 are lower than the average volatility at the midpoint or the at-the-money point.
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Table 5
Level- and slope-effect tests based on panel regressions

α0 t α1 t β0 t β1 t R2(%)

Moneyness All maturities 0.032 225.24 0.068 143.46 −0.361 −36.74 −0.730 −21.88 23.7
K/S Short term 0.038 188.15 0.066 100.35 −0.566 −39.50 −0.615 −13.25 23.8

0.90–0.95 Medium term 0.032 129.59 0.064 85.19 −0.275 −16.16 −0.636 −12.06 29.5
Long term 0.016 55.14 0.088 33.45 −0.021 −1.07 −0.660 −3.60 6.6

Moneyness All maturities 0.018 141.22 0.037 85.62 −0.229 −24.92 −0.616 −20.58 10.6
K/S Short term 0.018 95.65 0.036 60.20 −0.318 −24.25 −0.654 −15.68 10.5

0.95–1.00 Medium term 0.022 97.10 0.038 55.64 −0.202 −12.33 −0.524 −10.87 15.5
Long term 0.015 51.96 0.053 21.06 −0.026 −1.29 −0.511 −2.79 3.0

Moneyness All maturities −0.007 −53.81 0.028 63.67 −0.057 −6.22 −0.409 −13.47 5.3
K/S Short term −0.006 −30.28 0.022 36.59 −0.050 −3.84 −0.428 −10.26 3.5

1.00–1.05 Medium term −0.004 −18.34 0.029 43.31 −0.090 −5.56 −0.427 −8.92 9.5
Long term −0.014 −48.34 0.075 28.78 −0.026 −1.26 −0.098 −0.53 5.0

Moneyness All maturities −0.008 −53.31 0.021 31.73 0.070 6.40 0.050 0.95 1.8
K/S Short term −0.003 −13.91 0.014 15.16 0.201 12.50 −0.117 −1.59 1.3

1.05–1.10 Medium term −0.011 −37.30 0.021 20.60 −0.010 −0.50 0.240 2.87 2.9
Long term −0.017 −56.35 0.066 22.52 −0.055 −2.66 −0.415 −1.96 3.6

This table contains panel regression results for the level and slope effects. For each moneyness/maturity
bucket, instead of running the Fama-MacBeth two-pass regressions, we lump the entire sample and run the
following panel regression: σ

imp
i j − σhis

i j = [(α0 + α1(bi j − bi )] + [(β0 + β1(bi j − bi ))(yi j − y j )] + εi j , where
bi is the cross-sectional average of the systematic risk proportion for each day, and y j is the sample average of
moneyness for stock j within the bucket. This panel regression tests the level and slope effects simultaneously.
Specifically, if the systematic risk proportion does not affect the price level or the level of the implied volatility
(after adjusting for the historical volatility), then the coefficient α1 should not be significantly different from
zero; likewise, if the systematic risk proportion does not affect the slope of the implied volatility curve, then
the coefficient β1 should not be significantly different from zero. The t-values in bold type are significant at the
10% level or higher for two-tailed tests.

Table 6 reports the results. All three control variables, especially the trading
volume and firm size, exert strong influence. Nonetheless, the t-values for the
level- and slope-effect tests, albeit smaller in most cases, retain their statistical
significance.

2. Robustness Checks

2.1 Alternative ways of calculating and estimating the systematic risk
proportion

Recall that the monthly systematic risk proportion, b j , is calculated by using
the average systematic and total risks within the four-week period. To see if
our testing results are sensitive to how b j is calculated, we repeat the tests
by using the average b′

j s within the four-week period. In other words, we first
calculate the daily proportions and then average them to obtain a single estimate
for the four-week period. The results remain virtually the same, for both the
two-pass regressions and the panel regressions. We have also repeated the
tests by using

√
b j = | β j σm

σ j
|. The results are slightly weaker, but the statistical

significance is retained in most cases. There is an intuitive justification for using
the variance ratio rather than the standard deviation ratio. After all, variance is
the natural measure of risk since it is additive for independent risks.

Another potential concern has to do with the estimation of the historical
volatility and its composition, which employs a one-year rolling window with
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Table 6
Panel regressions controlling for firm-specific characteristics

Without firm-specific characteristics With firm-specific characteristics: trading volume (γ1), firm size (γ2), and leverage (γ3)

α1 t β1 t R2 (%) α1 t β1 t γ1 t γ2 t γ3 t R2 (%)

Moneyness All maturities 0.098 55.332 −0.756 −6.081 5.8 0.063 32.318 −0.694 −5.674 −0.007 −29.265 0.014 41.449 0.009 9.399 8.9
K/S Short term 0.101 38.277 −0.755 −4.058 7.0 0.065 22.272 −0.681 −3.708 −0.005 −13.246 0.013 26.374 0.005 3.884 9.3

0.90–0.95 Medium term 0.095 26.615 −0.764 −3.059 5.4 0.065 16.630 −0.847 −3.451 −0.007 −15.214 0.013 19.855 0.010 5.814 8.6
Long term 0.100 31.830 −0.578 −2.607 6.0 0.059 17.441 −0.388 −1.816 −0.011 −28.663 0.017 30.523 0.015 9.583 12.8

Moneyness All maturities 0.073 42.420 −0.340 −2.764 3.4 0.050 26.505 −0.388 −3.199 −0.008 −35.321 0.011 32.922 0.003 3.753 6.3
K/S Short term 0.074 29.785 −0.427 −2.378 3.5 0.056 20.143 −0.450 −2.531 −0.006 −18.793 0.008 17.733 0.000 0.148 5.2

0.95–1.00 Medium term 0.083 23.009 −0.165 −0.632 4.2 0.054 13.845 −0.291 −1.139 −0.007 −17.029 0.013 19.309 0.003 1.960 8.0
Long term 0.063 19.816 −0.487 −2.120 2.7 0.036 10.377 −0.521 −2.351 −0.011 −29.346 0.014 24.297 0.011 6.898 9.3

Moneyness All maturities 0.084 50.026 0.048 0.402 4.0 0.064 34.261 0.069 0.582 −0.002 −10.616 0.007 22.886 −0.001 −1.312 5.0
K/S Short term 0.083 34.317 −0.212 −1.227 3.6 0.063 23.669 −0.194 −1.127 −0.002 −7.627 0.007 15.620 −0.002 −1.901 4.6

1.00–1.05 Medium term 0.080 23.226 0.553 2.227 4.0 0.066 17.275 0.577 2.330 −0.002 −3.760 0.005 8.362 0.003 1.703 4.6
Long term 0.098 30.359 0.069 0.297 5.6 0.072 20.062 0.081 0.354 −0.003 −6.355 0.009 15.707 −0.001 −0.531 7.4

Moneyness All maturities 0.071 38.241 −0.520 −4.061 2.9 0.043 21.234 −0.542 −4.283 −0.002 −7.622 0.010 30.244 −0.004 −3.882 5.3
K/S Short term 0.065 23.921 −0.826 −4.370 2.7 0.030 10.005 −0.845 −4.552 −0.002 −4.871 0.012 24.580 −0.006 −4.555 6.1

1.05–1.10 Medium term 0.081 21.149 −0.287 −1.079 3.8 0.057 13.836 −0.267 −1.015 −0.002 −3.674 0.009 13.628 −0.001 −0.582 5.7
Long term 0.080 23.855 −0.408 −1.769 4.1 0.057 15.805 −0.434 −1.899 −0.003 −6.738 0.009 15.209 0.001 0.698 5.9

This table reports panel regression results controlling for firm-specific characteristics used by Dennis and Mayhew (2002). The regression setup is the same as in Table 5, except that we
exclude the index, since we are controlling for firm-specific characteristics. For meaningful comparisons, we rerun the panel regression in Table 5 without the index and report the results
under the heading “Without firm-specific characteristics.” To conserve space, we report only the R2, the coefficients, and t-values for the level effect (α1) and the slope effect (β1). We
then run the panel regression with the three control variables: log of the daily trading volume of the underlying stock, log of the firm size (which is the product of the number of shares
outstanding and the share price), and the leverage (which is the sum of long-term debt and the par value of the preferred stock divided by the said sum plus the market value of equity).
The results are reported under the heading “With firm-specific characteristics: trading volume (γ1), firm size (γ2), and leverage (γ3)”. The t-values in bold type are significant at the 10%
level or higher for two-tailed tests.
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daily frequency. The shorter window and higher data frequency raise the con-
cern that the resulting risk estimates may be highly time-varying and do not
necessarily reflect changes in the systematic risk proportion. To address this
concern, we repeat the tests using a five-year rolling window at weekly fre-
quency (by sampling data points on Wednesdays). For both the level-effect and
the slope-effect tests, the statistical significance remains, albeit some t-values
decrease slightly.

2.2 Systematic risk estimation using Fama-French factors
So far, all the tests use systematic risk estimates from a single factor model,
the market model. We now reestimate the systematic risk by adding the two
Fama-French factors (i.e., SMB and HML) to the market factor. By definition,
the systematic risk proportion estimated with the two additional factors will
be higher. The question is, will it increase proportionally across stocks so
that our level and slope effects would hold up? To answer this question, we
repeat the tests using the newly estimated systematic risk proportions. Since the
panel regression results are stronger, to be conservative, we show the two-pass
regression results. To conserve space, we report the test results for the level and
slope effects in one table, Table 7. For brevity, we only report the regression
coefficient and its t-value, together with R2 for the univariate regression (with
the systematic risk proportion being the only explanatory variable) and the
multivariate regression (with the risk-neutral skewness and kurtosis as well as
the systematic risk proportion as the explanatory variables).

Comparing Table 7 with Table 3 (level effect) and Table 4 (slope effect), we
see that the results remain virtually the same. This is another indirect support
for the choice of the systematic risk proportion over the beta for our study. Since
we have controlled for the overall level of risk, what matters is the composition
of the total risk, not the absolute magnitude of the components. As long as the
same estimation procedure is applied to all stocks, the cross-sectional feature
would manifest itself. Therefore, one may also infer that our results are likely
robust to more sophisticated estimation methods, e.g., a Bayesian shrinkage
estimator or a certain type of optimal estimator, for the systematic risk.

We have also conducted robustness checks on subsamples and the influence
of the index. For the former, the results remain for the two equal-half samples;
for the latter, after removing all index options, the significance remains for the
level-effect tests, and weakens for the slope-effect tests. All said, our results
are robust to various alternative specifications.

3. Reconciliation with the Existing Literature

As discussed in the introductory section, our study offers an alternative ex-
planation to the observed difference in price structures across equity options.
Existing explanations, some of which are reviewed earlier, include the volatility
risk premium (e.g., Buraschi and Jackwerth, 2001; Bakshi and Kapadia, 2003;
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Table 7
Level and slope effect tests using systematic risk estimates derived from Fama-French factors

Panel A: Level effects

Univariate regressions Multivariate regressions

γ1 γ1 γ2 γ3

Average t R2 (%) Average t Average t Average t R2 (%)

Moneyness All maturities 0.069 15.681 12.0 0.064 13.180 −0.014 −3.379 −0.004 −3.640 23.4
K/S Short term 0.069 17.573 14.2 0.059 12.827 −0.013 −3.295 −0.004 −4.536 28.7

0.90–0.95 Medium term 0.064 11.809 21.9 0.051 7.387 −0.018 −3.794 −0.004 −2.972 36.2
Long term 0.074 5.789 8.9 0.081 2.872 −0.019 −1.847 −0.004 −1.578 29.7

Moneyness All maturities 0.045 12.171 6.3 0.038 7.460 −0.015 −3.534 −0.005 −6.138 19.7
K/S Short term 0.041 11.245 6.6 0.029 5.351 −0.012 −3.975 −0.004 −5.767 23.0

0.95–1.00 Medium term 0.032 5.769 7.6 0.016 2.320 −0.009 −1.012 −0.002 −1.217 32.9
Long term 0.010 0.664 6.5 0.041 1.268 −0.010 −3.377 −0.004 −4.305 30.3

Moneyness All maturities 0.040 5.931 6.1 0.039 5.453 0.001 0.164 −0.001 −1.324 18.6
K/S Short term 0.032 4.847 5.2 0.030 3.903 0.005 1.043 −0.001 −1.181 21.8

1.00–1.05 Medium term 0.025 4.168 8.9 0.022 3.818 −0.003 −0.576 −0.002 −1.993 28.4
Long term 0.071 3.240 13.4 0.095 2.290 0.008 0.928 0.000 −0.027 38.6

Moneyness All maturities 0.030 4.998 4.5 0.032 5.407 0.002 0.528 −0.001 −0.781 16.2
K/S Short term 0.020 3.790 3.9 0.021 3.875 0.007 2.123 0.000 −0.110 18.7

1.05–1.10 Medium term 0.020 3.390 5.6 0.016 2.083 −0.002 −0.198 −0.002 −0.779 31.1
Long term 0.024 1.461 10.6 0.045 1.938 −0.003 −0.476 −0.001 −0.933 28.7

1998



P
rice

Structure
ofIndividualE

quity
O

ptions

Panel B: Slope effects

Moneyness All maturities −0.464 −6.089 5.1 −0.402 −4.381 0.080 1.327 0.000 −0.002 20.4
K/S Short term −0.372 −4.870 3.3 −0.263 −3.440 0.117 1.285 0.004 0.213 24.4

0.90–0.95 Medium term −0.430 −9.063 10.1 −0.451 −5.690 0.038 0.595 0.005 0.277 24.1
Long term −0.231 −1.600 10.4 −0.016 −0.132 0.027 0.663 −0.015 −0.935 28.5

Moneyness All maturities −0.426 −6.451 4.8 −0.528 −9.310 −0.013 −0.458 −0.009 −1.001 15.5
K/S Short term −0.558 −10.964 5.5 −0.760 −11.245 −0.070 −1.414 −0.016 −1.362 24.7

0.95–1.00 Medium term −0.522 −16.746 14.9 −0.666 −10.417 −0.107 −2.263 −0.060 −4.557 30.7
Long term −0.133 −1.315 5.2 0.136 0.821 0.011 0.224 −0.010 −1.067 19.6

Moneyness All maturities −0.507 −6.644 4.8 −0.420 −5.572 0.119 3.328 0.053 6.068 17.5
K/S Short term −0.564 −6.812 5.5 −0.373 −3.131 0.101 1.412 0.042 3.050 22.0

1.00–1.05 Medium term −0.492 −8.068 15.6 −0.340 −4.313 0.059 0.743 0.037 2.166 35.1
Long term −0.481 −2.777 8.9 −0.438 −1.883 0.129 2.920 0.034 2.973 31.3

Moneyness All maturities −0.007 −0.129 1.7 0.071 0.863 0.070 2.097 0.031 2.912 11.9
K/S Short term −0.047 −0.786 2.3 0.146 2.063 0.068 1.316 0.035 3.176 18.8

1.05–1.10 Medium term −0.158 −2.481 5.9 0.025 0.401 0.175 3.033 0.038 2.155 21.2
Long term −0.255 −1.447 8.9 −0.323 −1.526 0.030 0.756 0.019 1.405 25.6

This table contains two-pass regression results for the level and slope effects using systematic risk estimates derived from the Fama-French factors. The testing procedures are otherwise
the same as those in Tables 3 and 4. Panel A corresponds to Table 3 and Panel B corresponds to Table 4. In Tables 3 and 4, the systematic risk is estimated by regressing the stock’s
returns on the market returns (S&P 500). Here, the systematic risk is estimated by regressing the stock’s returns on the two Fama-French factors as well as on the market returns. To
conserve space, we report only the regression coefficients, the t-values, and the average R2. For brevity, we also omit the results for regressions whose explanatory variables are only
the skewness and kurtosis. The t-values in bold type are significant at the 10% level or higher for two-tailed tests.
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and Jones, 2006), the jump risk premium (e.g., Bates, 1988, 2000; and Buraschi
and Jackwerth, 2001), the demand-based option pricing (e.g., Bollen and
Whaley, 2004), and the GARCH option pricing model (e.g., Duan, 1995; and
Duan and Wei, 2005). Except for Bollen and Whaley (2004), the studies lead to
one common realization: the empirical regularities are ultimately due to a wedge
driven between the physical and risk-neutral distributions of the underlying.
This wedge is in turn caused by the entry of the risk premium into the second
and/or higher moments of the risk-neutral distribution. In other words, as long
as the additional risk factors are systematic or priced, they would influence
option prices and determine the features of the risk-neutral distribution.

To check the above assertion, we regress the risk-neutral skewness and
kurtosis on the systematic risk proportion. That is, we run the following cross-
sectional regressions,

Skew(rn)
j = γ0 + γ1b j + e j (7)

Kurt(rn)
j = γ0 + γ2b j + e j (8)

on a monthly basis as in Section 1 and calculate the average regression coef-
ficients and the associated t-statistics using Newey-West standard errors. For
the risk-neutral skewness, we find γ̂0 = −0.615 with a t-value of −13.001 and
γ̂1 = −0.921 with a t-value of −9.117. This result indicates that the risk-neutral
return distributions are on average negatively skewed and the degree of the neg-
ative skewness is proportional to the systematic risk proportion. Our regression
results for the risk-neutral kurtosis are γ̂0 = 3.294 with a t-value of 46.890
and γ̂2 = 2.032 with a t-value of 4.531. This finding suggests that the stocks
in our sample have on average leptokurtic risk-neutral return distributions and
the kurtosis is increasing in the systematic risk proportion.

In BKM (2003), the level and slope of the implied volatility curve have been
found to be related to the risk-neutral skewness and kurtosis. Our results suggest
that the level and slope of the implied volatility curve and the risk-neutral
skewness and kurtosis are all influenced by the systematic risk proportion.

As for the channels through which the risk factors enter into the option
price structure, different models postulate specific mechanisms. For instance,
Bakshi and Kapadia (2003), through examining delta-hedge gains/losses, found
conclusively that there is a negative risk premium for market volatility. A
negative volatility risk premium would increase the drift of the risk-neutral
volatility, which could explain the observed higher implied volatility relative
to its physical counterpart. In contrast, jump risks, when priced by the market,
enter the risk-neutral density via the third and fourth moments. As pointed out
by Bakshi and Kapadia (2003), in a typical jump-diffusion setting, the jump
size governs the risk-neutral skew while the jump intensity governs the risk-
neutral kurtosis. A fear of market crashes would lead to a negative skew. Based
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on the results in BKM (2003), the more negatively skewed the risk-neutral
distribution, the steeper the implied volatility curve.4

In a recent study, Bakshi and Madan (2006) theoretically showed how and
when the risk-neutral and physical index volatilities can be different. Within
their framework, the risk-neutral volatility is higher than its physical coun-
terpart when investors are risk-averse and when the physical distribution is
negatively skewed and leptokurtic. Therefore, combining this result with the
finding in BKM (2003), it appears that a wider gap between the risk-neutral and
physical volatilities would also be accompanied by a steeper slope of the im-
plied volatility curve. A casual comparison of the S&P 100 index with stocks in
Table 1A certainly confirms this (a rough measure of the slope can be obtained
by finding the difference between the implied volatilities of the two extreme
moneyness buckets). It is seen that, when the systematic risk proportion is
approaching 1 (i.e., b j → 1), the spread between the implied and historical
volatilities is the largest, and the implied volatility slope is the steepest, as
manifested by the S&P 100 index options; the opposite is generally true when
the total risk is mostly idiosyncratic (i.e., b j → 0), as apparent in the stocks
with lower systematic risk proportions.

Which factor has a bigger systematic risk component, the stochastic volatility
or jumps? Bakshi and Kapadia’s (2003) is the only study that provides a direct
answer: the stochastic volatility. Through examining the time series of hedge
gains/losses, they found only minor impacts of jump fears. A more direct
support for the bigger role of the stochastic volatility came from their finding
that the implied volatility was already higher than the historical, even before
the 1987 stock market crash. Some other studies also identified systematic
risk factors in option prices, but did not identify the relative contributions of
stochastic volatility and jumps. For instance, Buraschi and Jackwerth (2001)
were able to rule out the potential role of a stochastic interest rate, but allowed
both the stochastic volatility and jumps to be potential systematic risk factors.
Jones (2006) uncovered two or three latent factors in the S&P 500 index option
returns, and pointed to volatility risk and possibly jump risk.

In contrast to a continuous-time setup where the stochastic volatility or jumps
exert their impact on option price structures through their risk premiums, the
discrete-time GARCH setup requires only the risk premium of the underlying
asset. As shown by Duan (1995), when the physical GARCH process is con-
verted to its risk-neutral counterpart, the risk premium of the underlying asset
does not vanish; instead, it enters into the volatility process. In this setting,
the risk-neutral volatility, skewness, and kurtosis are all affected by the risk
premium. Specifically, holding other parameters fixed, a bigger (positive) risk
premium would lead to a higher volatility, a more negative skew and fatter tails

4 As shown in Theorem 2 of BKM (2003), a negative skew under the physical measure would carry over to the
risk-neutral measure. However, a negative risk-neutral skew can still exist even if the physical distribution is
symmetrical, as long as there exist risk aversion and fat tails in the physical distribution. One way or the other,
jump fears would lead to a negative risk-neutral skew.
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under the risk-neutral measure. Therefore, under GARCH, when the risk pre-
mium is high, the higher implied volatility is a direct result, while the steeper
slope of the implied volatility curve is through the more negative skew. Duan
and Wei (2005), by assuming a one-factor stochastic discount factor with the
GARCH feature, derived an explicit link between the risk premium and the
systematic risk proportion. Specifically, a higher systematic risk proportion
leads to a higher risk premium.

Finally, the arguments put forth by Bollen and Whaley (2004) represent a
somewhat different line of reasoning. Instead of pursuing alternative distribu-
tions or risk factors, they appealed to demand-based pricing. Motivating their
arguments based on limits to arbitrage (Shleifer and Vishny, 1997; and Liu and
Longstaff, 2004), they put forth two hypotheses. First, the implied volatility
would be higher than the actual realized volatility, since market makers demand
a compensation for bearing hedging costs; second, the implied volatility curve
for index options would be downward sloping if demand and supply are not
balanced for different regions of the exercise price, particularly if the demand
by institutional investors for out-of-the-money put index options is well over
the supply. Their empirical results seem to support the hypotheses.

Though appealing on the intuitive level, this framework does not postulate
why demand pressures are different across names and across moneyness for
the same name. The framework can indeed explain the features of the implied
volatility for the index in light of the well-known demand for out-of-the-money
put options for insurance purposes, but it offers very little in explaining the
difference in individual equity options. In contrast, our explanation is grounded
on valuation theories (namely, risk premiums affect the moments of the risk-
neutral distribution) and is capable of offering predictions for individual equity
options as well as index options.

4. Summary and Conclusions

The derivatives literature has established, among other things, the following
empirical findings: (i) the risk-neutral return distribution departs from its physi-
cal counterpart (e.g., Bakshi, Kapadia, and Madan, 2003); (ii) the index options
have a more pronounced volatility smile/smirk than individual equity options
(e.g., Jackwerth, 2000; and Bakshi, Kapadia, and Madan, 2003); and (iii) option
prices seem to contain risk factors in addition to the Brownian innovation of
the underlying asset (e.g., Buraschi and Jackwerth, 2001; Bakshi and Kapadia,
2003; and Jones, 2006). Collectively, these findings indicate that the additional
risk factors may be the cause of the departure between the risk-neutral and phys-
ical distributions, and that the same factors may be priced differently across
equity options.

Our study is motivated by the above realization. While most of the exist-
ing studies focus on index options in uncovering the price structure across
moneyness, we instead examine the price structure across individual equity
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options. We demonstrate empirically how the systematic risk affects equity
option prices. Insofar, as the wedge between the risk-neutral and physical
distributions is driven by the premiums of the systematic risk factors, the sys-
tematic risk must be the factor that differentiates individual equity options in
price structure.

We show conclusively that option prices are indeed related to the proportion
of systematic risk in the total risk. Controlling for the overall risk level, a higher
amount of systematic risk leads to a higher level of implied volatility and a
steeper implied volatility curve. The effect remains robust to various alternative
estimations of the variables and specifications of the tests.

Our empirical results could be reconciled with several theoretical paradigms.
For instance, in a continuous-time setting, a negative risk premium for the
volatility risk (as documented by Bakshi and Kapadia, 2003) would lead to
option prices such that the higher the systematic risk, the higher the implied
volatility relative to the historical volatility; alternatively, in a discrete-time
GARCH setting, a higher systematic risk would predict a higher implied volatil-
ity and steeper slope of the implied volatility curve.

Appendix A: Relating Implied Volatility to the Systematic Risk Proportion

First, empirical evidence in the literature strongly indicates that the risk-neutral market return
(manifested in, e.g., S&P 500 index options) is negatively skewed and leptokurtic. An individual
stock’s risk-neutral skewness and kurtosis are expected to be related to the market return’s coun-
terparts with the systematic risk proportion serving as the linkage. To this end, assume a standard
one-factor market model for stock j ,

R jt = α j + β j Rmt + ξ j t . (A1)

In addition to the usual assumptions for the factor model, we require ξ j t to be a normal random
variable. This assumption allows us to relate explicitly the implied volatility to the systematic risk
proportion and the moments of the market return’s distribution. Note also that the systematic risk
proportion is essentially the R2 of the regression model (A1).

Second, as in Theorem 3 in BKM (2003), we assume that the same factor model structure
holds under the risk-neutral measure, except that α j may undergo a mean shift. Preserving the

same structure ensures that R2 remains unchanged under the risk-neutral measure—i.e., b(rn)
j = b j

(hereinafter, the superscript rn stands for “risk-neutral”). By part (a) of Theorem 3 in BKM (2003)
and our normality assumption, we can relate stock j’s skewness to the market’s as follows:

Skew(rn)
j = b3/2

j Skew(rn)
m . (A2)

One can also follow the same reasoning to relate stock j’s kurtosis to its market counterpart,

Kurt(rn)
j = b2

j

(
Kurt(rn)

m − 3
) + 3. (A3)

Note that if the market return is normally distributed under the risk-neutral measure, then so is the
stock return irrespective of the value for b j .

Third, Theorem 4 of BKM (2003) shows that, for a given maturity, the Black-Scholes implied
volatility is related to the stock’s risk-neutral skewness and kurtosis in the following fashion:

σ
imp
j (K/S) ≈ q1(K/S) + q2(K/S)Skew(rn)

j + q3(K/S)Kurt(rn)
j , (A4)
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where the coefficients q1, q2, and q3 are written explicitly as functions of the option’s moneyness,
K/S.

Finally, substituting the skewness and kurtosis in Equation (A2) and Equation (A3) into Equation
(A4), we have

σ
imp
j (K/S) ≈ q1(K/S) + 3q3(K/S) + q2(K/S)Skew(rn)

m b3/2
j + q3(K/S)(Kurt(rn)

m − 3)b2
j .

Appendix B: Calculation of the Risk-Neutral Skewness and Kurtosis Using
Option Prices

The calculation of the risk-neutral skewness and kurtosis is based on the theoretical results in
BKM (2003). Since a continuum of out-of-the-money calls and puts can span any payoff (Bakshi
and Madan, 2000), one must be able to span payoffs based on the second, third, and fourth
moments of the stock returns. In other words, the risk-neutral moments can be backed out from
out-of-the-money option prices.

Following BKM (2003), let R(t, τ) ≡ ln S(t+τ)
S(t) denote the τ-period stock return. Let V (t, τ),

W (t, τ), and X (t, τ) represent the fair value of payoffs R(t, τ)2, R(t, τ)3, and R(t, τ)4, respectively.
According to Theorem 1 of BKM (2003), the τ-period risk-neutral skewness and kurtosis can be
expressed as

Skew(t, τ) = erτW (t, τ) − 3μ(t, τ)erτV (t, τ) + 2μ(t, τ)3

[erτV (t, τ) − μ(t, τ)2]3/2
,

Kurt(t, τ) = erτ X (t, τ) − 4μ(t, τ)erτW (t, τ) + 6μ(t, τ)2erτV (t, τ) − 3μ(t, τ)4

[erτV (t, τ) − μ(t, τ)2]2
,

where

μ(t, τ) ≡ erτ − 1 − erτ

2
V (t, τ) − erτ

6
W (t, τ) − erτ

24
X (t, τ),

V (t, τ) ≡
∫ ∞

S(t)

2
(

1 − ln K
S(t)

)
K 2

C(t, τ, K )d K +
∫ S(t)

0

2
(

1 + ln S(t)
K

)
K 2

P(t, τ, K )d K ,

W (t, τ) ≡
∫ ∞

S(t)

6 ln K
S(t) − 3

(
ln K

S(t)

)2

K 2
C(t, τ, K )d K

−
∫ S(t)

0

6 ln S(t)
K + 3

(
ln S(t)

K

)2

K 2
P(t, τ, K )d K ,

X (t, τ) ≡
∫ ∞

S(t)

12
(

ln K
S(t)

)2 − 4
(

ln K
S(t)

)3

K 2
C(t, τ, K )d K

+
∫ S(t)

0

12
(

ln S(t)
K

)2 + 4
(

ln S(t)
K

)3

K 2
P(t, τ, K )d K .

In the above, C(t, τ, K ) is the value of a call option with time-to-maturity τ and exercise price
K , and P(t, τ, K ) is the corresponding put option value. The integrals can be approximated in a
straightforward fashion using options available on each day. Our implementation is similar to that
of Dennis and Mayhew (2002). Specifically, we use the trapezoidal approximation and require that
there are at least two calls and two puts for each maturity. To illustrate, suppose there are J call
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options available for maturity τ at time t , then the first integral in W (t, τ) can be approximated as

w (K1) C(t, τ, K1)�K1 + 1

2

J∑
j=2

[w
(
K j−1

)
C(t, τ, K j−1) + w

(
K j

)
C(t, τ, K j )]�K j ,

where K J > K J−1 > . . . > K1 > S(t), w(K j ) =
6 ln

K j
S(t) −3

(
ln

K j
S(t)

)2

K 2
j

, �K1 = K1 − S(t), �K2 =
K2 − K1 and so on. All the other integrals can be approximated in a similar fashion.

Appendix C: Data Description

The option data used in this study are identical to those in BKM (2003), covering the period of
1 January 1991 to 31 December 1995, for a total of 260 weeks. We refer readers to BKM (2003)
for detailed descriptions. The data consist of triple-panel (stock, maturity, and exercise price) bid-
ask quotes for options written on the 30 largest component stocks of the S&P 100 index and on
the S&P 100 index itself. The options are American style and traded on the Chicago Board of
Options Exchange. The data frequency is daily, and the bid-ask quotes are the last quotes prior to
3:00 p.m. (CST). Only out-of-the-money call and put options are retained in this data set. Since out-
of-the-money puts (calls) correspond to in-the-money calls (puts), the data set effectively covers
the whole moneyness spectrum.

As in BKM (2003), the data are screened on three fronts: (i) we retain only options that have
both bid and ask quotes; (ii) we eliminate option prices that violate the arbitrage conditions (i.e., the
option price must be smaller than the stock price, but larger than the stock price minus the present
value of the exercise price and the dividends); and (iii) we eliminate the deep out-of-the-money
puts (i.e., K/S < 0.9) and calls (i.e., K/S > 1.1) and retain the moneyness range from 0.9 to
1.1. BKM (2003) cleansed the very short and very long maturity options, and retained only those
with more than nine days and less than 120 days to expiration. In our study, we extend the cutoff
for the longer maturity to 180 days. (It turns out that the index option observations concentrate
mostly in the maturity range shorter than 120 days. This is the main reason why BKM (2003)
omitted maturities beyond 120 days. We decide to include the long-term range, since all individual
stocks have enough observations in this range.) In addition, since we use a four-week window for
time-series regressions, we set a lower cutoff of maturity to 20 days. Therefore, for our empirical
study, we examine three maturity ranges: short term, 20–70 days; medium term, 71–120 days; and
long term, 121–180 days.

For each particular option, the implied volatility based on the Black-Scholes formula is available.
BKM (2003) showed that these implied volatilities are close to their counterparts backed out from
the binomial tree. In other words, the difference between the precise American style implied
volatilities and the European-style Black-Scholes volatilities is negligible. In our study, the implied
volatility based on the Black-Scholes formula is used.

The daily stock prices, downloaded from www.finance.yahoo.com, are used to calculate histor-
ical volatilities and the proportion of systematic risk in the total risk. We use the S&P 500 index as
a proxy for the market portfolio.
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