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Abstract

This paper develops a multi-factor, Markov chain model for rating migrations and credit
spreads that is applicable to both sovereign and corporate debts. The model’s central feature
is to allow transition matrices to be time-varying and driven by rating specific latent variables
which encompass economic factors like the business cycle. There are three main contributions.
First, the model incorporates well-documented empirical properties of transition matrices such
as their dependence on business/credit cycles, and it also allows for inter-rating variations in
credit quality changes. Second, instead of focusing solely on empirical modeling of rating
transitions, the paper also shows how the empirical model can be implemented for actual
valuations. Third, the estimation and calibration procedures are easy to follow and implement.
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1. Introduction

In the past several years, credit risk modeling and credit derivatives valuation have
received tremendous attention around the globe. The main impetus for the increasing
attention was the high-profile debt defaults by sovereigns as well as major corpora-
tions. On the international scene, in the early 1990s, the Mexican peso crisis lead
to some debt defaults; in 1997, the Asian currency crisis triggered a chain of credit
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failures; and in August 1998, the Russian ruble devaluation caused the Russian
government to default on some dollar denominated debts. On the domestic scene in
the US, major financial fiascos such as the collapse of the long term capital manage-
ment also raised concerns about the impact of credit risks on the financial system.
The ever increasing sophistication of derivative instruments, the pursuit of protection
against counter-party losses in financial crises such as those listed above, and the
stepping up of regulatory efforts have all spurred research on credit risk management.

The literature on credit risk management has grown along two related strands. On
the one hand, many authors have modeled and empirically studied default risk and
rating migrations. Examples include Altman and Kao (1992a), Lucas and Lonski
(1992), Carty and Fons (1994), Fons (1994), Belkin et al. (1998), Duffee (1998),
and Helwege and Turner (1999). On the other hand, some authors have proposed
various credit risk/rating migration models to value credit derivatives such as default
swaps and yield spread options. Examples here include Jarrow et al. (1997), Kijima
and Komoribayashi (1998), Lando (1998), Bielecki and Rutkowski (2000), and
Lando (2000). Recently, some studies have compared and evaluated various credit
risk models currently being used in the industry. Examples include Crouhy et al.
(2000), Gordy (2000), and Lopez and Saidenberg (2000). All the aforementioned
studies address credit risk of corporate issuers. Very little attention has been given to
the potential application of the existing models to sovereign credit risk management.

In their seminal study of credit spread, Jarrow et al. (1997) model rating transitions
as a time-homogenous Markov chain. Within their model, whether a firm’s rating
will change in the next period is not affected by its rating history (hence, Markov),
and the probability of changing from one rating (e.g., AA) to another (e.g., BBB)
remains the same over time (hence, time-homogenous). Moreover, the market risk
and credit risk are assumed to be independent. For valuation purposes, the observed
transition matrices such as those published by Moody’s and Standard and Poor’s
must be transformed to incorporate risk premium information embedded in the bond
price data. Jarrow et al. (1997) accomplish this by relying on the time-homogeneity
and Markov assumptions, and the additional assumption that the credit risk premiums
are time-varying to reflect the changing credit spreads in corporate bonds. While
retaining all the critical assumptions of Jarrow et al. (1997) and Kijima and Komori-
bayashi (1998) make a modification to the Jarrow–Lando–Turnbull framework to
perfect the empirical estimation of the model.

While the study by Jarrow et al. (1997) represents a major step forward in credit
risk modeling, their setup can be extended in several dimensions. First, as pointed
out by the authors themselves, time-homogeneity is assumed solely for simplicity
of estimation. Empirical evidence in the Moody’s Special Report (Lucas and Lonski,
1992) and the Standard and Poor’s Special Report (1998) indicates that transition
probabilities are time-varying, especially for speculative grade bonds. Specifically,
Belkin et al. (1998) and Nickell et al. (2000) have shown that probability transition
matrices of bond ratings depend on business cycles. Similarly, Helwege and Kleiman
(1997) and Alessandrini (1999) have shown respectively that default rates and credit
spreads depend on the stage of the business cycle. Lando (1998) extends the Jarrow–
Lando–Turnbull model by allowing for dependence between the market risk and
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credit risk, and by allowing the transition rates between ratings to depend on the
state variables. Although Lando (1998) does not model business cycles per se, his
framework is a major improvement over the fixed, time-homogenous setup of Jarrow
et al. (1997). In addition, Bielecki and Rutkowski (2000) model the random transition
probabilities among multiple ratings based on Heath et al. (1992) methodology which
utilizes the credit spreads and recovery rates as inputs.

Second, a time-homogenous setup rules out not only the dependence on business
cycles, but also the possibility that different ratings respond to the same credit con-
dition change at different rates. Although there is no known empirical study that
directly examines this aspect of credit risk behavior (which itself is another gap in
the literature), inter-rating differences in credit quality changes are indeed a plausible
conjecture. In fact, Altman and Kao (1992b) find that, over time, higher-rated bonds
tend to be more stable than lower-rated bonds as far as retaining their original ratings
is concerned. This can be considered as an indirect support for the conjecture.

Third, theoretically, it is not clear why credit risk premiums should change drasti-
cally year by year. Intuitively, the premium per unit of risk should remain more or
less constant unless investors’ risk attitude changes, and it is the varying level of
risk, or credit cycle, which leads to the changes in spreads. As reported by Belkin et
al. (1998), defaults are more likely in economic downturns than in economic booms.

Despite the obvious importance of recognizing the impact of business cycles on
rating transitions, the literature is very scanty on this issue. There are only two known
studies which explicitly link business cycles to rating transitions. Belkin et al. (1998)
employed a univariate model whereby all ratings respond to business cycle shifts in
the same manner, and they do not deal with estimating matrices under the equivalent
martingale measure.1 Nickell et al. (2000) propose an ordered probit model which
allows a transition matrix to be conditioned on the industry, the country domicile,
and the business cycle. Although they require a large quantity of data to estimate
reliable parameters, their approach is conceptually very appealing. Insofar as the
reference asset for most credit derivatives is company/institution/country specific,
the ability to condition a transition matrix on the industry (to which the company
belongs) is definitely desirable. However, since they also need to model the business
cycle as a Markov chain, computing multi-period transition matrices becomes a very
involved process, and as a result, it becomes quite challenging to estimate risk pre-
miums in order to obtain the risk-neutral matrices for valuations. In addition, for
estimation purposes, they need to assume cross-sectional independence in rating
changes.

The objective of the current paper is to build a general, credit risk model which
circumvents the aforementioned shortcomings and meanwhile retains the positive
features of the existing models such as the incorporation of credit/business cycles.
Specifically, I propose a multi-factor, Markov chain model for the evolution of credit

1 Kim (1999), in a short article appearing in a special issue of Risk, proposes a model very similar
to that of Belkin et al. (1998). However, he attempts to link some macroeconomic variables to the shifts
of transition probabilities.
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ratings for both sovereign and corporate debts. The Markov condition is employed
to facilitate estimations. The multi-factor structure will allow the transition matrix
to evolve according to credit cycles, and allow different ratings to respond in a
correlated yet different fashion to the same change in the general economic con-
ditions. In so doing, I will also ensure that the credit risk premiums are kept constant.
The model can then be applied to value such credit derivatives as default swaps and
credit spread options pertaining to sovereign or corporate debts.

The rest of the paper is organized in six sections. The next section contains a
brief overview of the time-homogenous Markov chain model. Section 3 outlines
the general framework and estimation procedures. Section 4 delineates the model’s
application to sovereign debts. Section 5 presents the model’s application to corpor-
ate debts. This section has two sub-sections, the first presenting the data, and the
second reporting and discussing estimation results. Section 6 contains some general
discussions and caveats. The last section concludes.

2. Overview of the time-homogenous Markov chain model

Let � be the set of all possible credit states (including default), and i (i = 1, 2,
……, K) be the index of its elements, where K is the total number of possible states.
For example, for a bond rating system consisting of AAA, AA, A, BBB, BB, B,
CCC, and D (default), i�[1, 8] and K = 8. Furthermore, let pij denote the probability
of state i transiting to state j. Then, the discrete time, time-homogenous transition
matrix can be represented by

P � �
p11 p12 p13 % p1K

p21 p22 p23 % p2K

% %

% %

% %

pK�1,1 pK�1,2 pK�1,3 % pK�1,K

0 0 0 % 1

� (1)

where pij�0 ∀ i,j and ΣK
j = 1pij = 1 ∀ i. The default state, K is assumed to be absorbing

so that pKK = 1. The Markovian assumption implies that the n-period transition
matrix, P0, n is simply the product of the single-period matrix itself, Pn.

The matrix in Eq. (1) contains the observed or empirical transition probabilities.
For valuation purposes, the empirical matrix needs to be transformed into a risk-
neutral transition matrix under the equivalent martingale measure. Let Q denote such
a matrix. Without further assumptions, the transition matrix under the new measure
need not be Markovian, certainly not time-homogenous. To signify this, let qij(t, t
+ 1) denote the transition probability from state i to state j at time t. Then the
transition matrix under the martingale measure becomes
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Qt,t+1 (2)

� �
q11(t,t � 1) q12(t,t � 1) q13(t,t � 1) % q1K(t,t � 1)

q21(t,t � 1) q22(t,t � 1) q23(t,t � 1) % q2K(t,t � 1)

%

%

%

qK�1,1(t,t � 1) qK�1,2(t,t � 1) qK�1,3(t,t � 1) % qK�1,K(t,t � 1)

0 0 0 % 1

�
where conditions for Eq. (1) must also be satisfied here, together with the equivalence
condition that qij(t, t + 1) � 0 if and only if pij � 0. To utilize the empirical transition
matrix P in estimation and to simplify the estimation itself, Jarrow et al. (1997)
assume the following transformation:

qij(t,t � 1) � πi(t)Pij ∀ i,j, i � j, and qii(t,t � 1) � 1��
jg1

πi(t)pij ∀ i (3)

where πi(t) is at most a function of time, and πi(t) � 0. Of course, a feasible set of
πi(t) must also ensure that the entries for a particular row in the matrix represent
probabilities: qij�0 ∀ j and ΣK

j = 1, i � jqij�1. There is no guarantee though that the
above conditions are met in actual estimations. The transformation in Eq. (3) together
with the restrictions on πi(t) ∀ i give the adjustments πi(t) ∀ i an interpretation of risk
premiums, and the transition matrix will be non-homogenous but the underlying
process is still Markov. (If πi(t) is j specific and is path dependent, then the matrix
Q will not be Markovian.) By necessity, πK(t) = 1 and need not be estimated. With
the above, the n-period transition matrix is now given by

Q0,n � Q0,1Q1,2%Qn�2,n�1Qn�1,n. (4)

To estimate the risk premiums, πi(t) ∀ i, bond price data and assumptions on recov-
ery rates are required. To this end, let v0(t, T) be the time-t price of a riskless unit
discount bond maturing at time T, and let vi(t, T) be its risky counterpart for the
rating class, i. As shown by Jarrow et al. (1997), under the assumptions that (1) the
Markov process and the interest rate are independent under the equivalent martingale
measure, and (2) bond holders will recover a fraction d of the par at maturity in
case default occurs any time prior to maturity, the following holds:

vi(t,T) � v0(t,T)[d � (1�d)probt{ti � T}], ∀ i�� (5)

where probt(τi � T) is the probability under the equivalent martingale measure that
the bond with rating i will not default before time T. It is clear that

probt{ti � T} � �K�1

j � 1

qij(t,T) � 1�qiK(t,T), (6)

which holds for time t�T, including the current time, t = 0. Combining Eqs. (3),
(5) and (6) leads to
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πi(0) �
v0(0,1)�vi(0,1)
(1�d)v0(0,1)piK

. (7)

Once πi(0) ∀ i are obtained via Eq. (7), applying Eq. (3) for all entries leads to Q0,1.
With Q0,1 on hand, Eq. (4) together with Eqs. (3), (5) and (6) can be utilized to find
πi(1) ∀ i and hence Q1,2 and Q0,2. Repeated application of the above procedures using
prices of progressively longer bonds will lead to all the desired matrices, Q0,t for t
= 1, 2, … , n. Valuation of credit derivatives can then proceed by simply calculating
risk-neutral, discounted expected payoffs, utilizing the transition probabilities.

It should be pointed out that the adjustment scheme in Eq. (3) is by no means
unique. Instead of adjusting all entries other than the diagonal entry, Kijima and Komo-
ribayashi (1998) propose to adjust all entries other than the default column entry:

qij(t,t � 1) � πi(t)pij ∀ i,j,j � K, and qiK(t,t � 1) � 1��
j � k

πi(t)pij � 1 (8)

�πi(1�piK) ∀ i

Their procedure leads to the following estimate for the risk premium:

πi(0) �
vi(0,1)�dv0(0,1)

(1�d)v0(0,1)
1

1�piK

. (9)

It is apparent that a zero or near-zero default probability would cause the risk pre-
mium estimate to explode in Eq. (7), but would still lead to a meaningful estimate
in Eq. (9). For this reason, Kijima and Komoribayashi’s approach will be used in
this paper.2

The above framework assumes that the average, empirical transition matrix
remains constant over time, and the per-period risk-neutral transition matrix varies
over time to accompany the changes in bond prices. As discussed earlier, it is more
plausible to assume that the empirical transition matrix adjusts over time according
to business cycles while the risk premium remains constant. Moreover, different
ratings may react to the same economic shock in very different intensities. In the
following section, I will extend the Jarrow–Lando–Turnbull framework by incorpor-
ating the aforementioned desirable features.

3. A general multi-factor Markov chain model

As a starting point, assume that there exists an average transition matrix similar
to the one in Eq. (1), whose fixed entries represent average, per-period transition

2 Note that all entries in the default column must be strictly positive in order for Eq. (7) to be well-
defined. Although not explicitly discussed by Kijima and Komoribayashi (1998), their modified procedure
of estimating the risk premiums requires the same condition in order to guarantee the equivalence between
the observed probability matrix and the risk-neutral matrix. To see this, notice from Eq. (9) that a risk
premium is well-defined even if piK is zero. In this case, as long as the risk premium is not exactly 1.0, the
corresponding risk-neutral default probability will not be zero, which violates the equivalence condition.
In this paper, I replace the zero entries in the default column by the smallest non-zero entry in the
transition matrix.
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probabilities across all credit cycles. This matrix can be thought of as a matrix appli-
cable to a typical, average credit condition. Depending on the condition of the econ-
omy for a particular year, the entries will deviate from the averages, and the size of
deviations can be different for different rating categories. In order to facilitate mode-
ling and estimations, I choose to work with a set of credit variables that drive the
time-variations of the transition probabilities. It is therefore necessary to define a set
of average credit scores which correspond to the average transition matrix, and model
the movement of these credit scores or variables to reflect the period-specific tran-
sition matrices.

The first step is to devise a mapping through which the average transition prob-
abilities can be translated into credit scores. To this end, a methodology similar to
that of CreditMetrics will be adopted. For a sovereign bond, the link between
transition probabilities and credit scores can be considered as a mapping between a
country’s overall macroeconomic conditions and possible ratings. For a corporate
bond, the methodology can be understood as mapping a firm’s future asset returns
to possible ratings, assuming that higher returns correspond to higher ratings, and
vice versa. The mapping may employ any meaningful statistical distribution,
although ease of calculation and estimation may dictate the choice, given the absence
of strong preference for a particular distribution. In this paper, I use the normal
distribution. The detailed procedure is described below.

Since the row sum for any rating in a matrix is always 1.0, one could, for each
rating class in the average transition matrix, construct a sequence of joint bins cover-
ing the domain of the normal variable. This is done by inverting the cumulative
normal distribution function starting from the default column. To illustrate, suppose
the issuer is currently rated A, and the average probabilities for A to transit to AAA,
AA, A, BBB, BB, B, CCC, and D are 0.0026, 0.0159, 0.8905, 0.0740, 0.0148,
0.0013, 0.0006, and 0.0003 (the sum of which is 1.0). Since the default probability
of 0.0003 corresponds to all negative values up to N �1(0.0003) = 3.432, the first
bin is (�	, �3.432]. Next, summing 0.0003 and 0.0006 gives us the total probability
that the new rating is either CCC or D. Hence, N �1(0.0009) = �3.121, and the next
bin is (�3.432, �3.121]. By repeating the above, other bins can be calculated as
(�3.121, �2.848], (�2.848, �2.120], (�2.120, �1.335], (�1.335, 2.086], (2.086,
2.795], and (2.795, +	). In other words, one could partition the domain of a standard
normal variable by a series of z-scores. An average transition matrix as in Eq. (1)
can then be represented as

Z � �
z12 z13 z14 % z1K

z22 z23 z24 % z2K

%

%

%

zK�1,2 zK�1,3 zK�1,4 % zK�1,K

�. (10)
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Notice that the z-score matrix is (K�1) by (K�1) because there is no need to convert
the row for the absorbing default state, and because the upper limit of rating AA is
the lower limit of the highest rating AAA. Obviously, given a z-score matrix, a
corresponding transition matrix can also be obtained.

Once the average credit score matrix is obtained, the next step is to model devi-
ations from those scores. To this end, it is assumed that the deviations are driven
by K mutually independent, normally distributed factors scaled to a standard normal.
Without loss of generality, let the first factor denote the common factor for all ratings,
and the rest denote rating class specific factors. Formally, generalizing the framework
of Belkin et al. (1998), define

yij � a(x � xi) � �1�2a2eij, i � 1,2,…,K�1, j � 1,2,…,K (11)

where x is the common factor, xi (i = 1, 2, …, K�1) is the rating specific factor,
and eij is a non-systematic, idiosyncratic factor. By assumption, x, xi and eij are i.i.d.
standard normal variables, and the correlation between the aggregate factors of any
two rating classes is the same, viz, corr(yij, yml) = a 2 for all i, j, m, and l where i
� m. For an average year, by definition, the realized deviations for all rating classes
should be close to zero. For each rating or row i, eij (j = 1, 2, ……, K) represents
the idiosyncratic factor. The factors x and xi can be considered as latent variables
which encompass the impacts of all economic variables relevant to rating changes.
In this sense, they can naturally be thought of as credit cycle variables.3

When seeking for the fitted transition matrix for each year, we are essentially
implying the realized values for the latent variables x and xi by minimizing the
residual errors eij (j = 1, 2, ……, K) as described in Procedure A below. In other
words, the realized or implied deviation factors or credit cycle variables, x and xi,
are applied to Eq. (10) to shift the average z-scores, and a fitted transition matrix is
then inverted from the adjusted average z-score matrix. Therefore, the key assump-
tion is the equal magnitude of shifts in z-scores for a particular rating/row. It is easy
to see that, for a given rating, a downward shift in the z-scores leads to an increase
in probabilities of transiting to ratings higher than or equal to the rating in question,
and a decrease in probabilities of transiting to lower ratings/states; and an upward
shift in the z-scores leads to the opposite. For a given row, the deviations of prob-
abilities from the average transition matrix need not be equal for all columns. In
fact, it is almost certain that they are different, given that the shifts in z-scores are
of the same size and that the density function is curved. Here, the unknown shift is
subtracted from the average z-scores, so that a positive shift means an improvement
in credit quality, and vice versa.

The proposed framework can now be summarized as follows. First, Eq. (11) can
be fitted into the historical average z-score matrix and the realized annual z-score
matrices to estimate the parameter, a, and then the annual fitted transition matrices

3 Notice that a more general setup such as yij = ax + bxi + √1�a2�b2eij is in principle the same as
that in Eq. (11). Since x captures the common effect, the two setups imply the same correlation structure.
The only difference is the scaling of xi which has no qualitative consequence anyway.
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can be obtained via a. Second, the constant risk premiums can be estimated using
the fitted transition matrices and historical discount bond prices. Third, with the
constant risk premium estimates and the current prices of discount bonds of various
maturities, the future transition matrices under the equivalent martingale measure
can be implied, and the valuation of credit derivative securities can then proceed.
Detailed estimation procedures are outlined below.4

(A) Estimating the factor realizations and fitted transition matrices:

1. calculate the historical average transition matrix and convert it into a z-score
matrix;

2. for each period t, find the shift for each row (of the z-score matrix) to minimize
the sum of deviations of the fitted probabilities from the observed probabilities;
this procedure will yield a time series of z-score deviations for all ratings and all
periods, 
zt,i ∀ t = 1,2,…,T and ∀ i = 1,2,…,K�1;5

3. calculate the average of the seven shifts for each year, denoted by 
zt, which
represents the common/systematic shift;

4. calculate the variance of the time series obtained in Step 3, denoted by Var(
z),
and compute the quantity, â = √Var(
z), which shall be the estimate of a;

5. for each period t, calculate x̄t = 
zt /a (since by definition x captures the com-
mon shift);

6. within the same period t, for each rating class i, calculate the rating specific devi-
ation as (in Steps 5 and 6, use the estimated a from Step 4);

7. obtain the fitted transition matrix for each period by using the average historical
matrix and the z-score adjustments or deviations estimated in Steps 5 and 6 (or
simply from Step 2). (Note: Steps 5 and 6 can be omitted if the values of realized
factors are not of interest.)

Notice that, in a univariate model such as that of Belkin et al. (1998), Step 2 is
applied to the whole matrix for a particular year to find the common shift, and the
parameter a is estimated in a similar fashion. One could follow this procedure to

4 The constant risk premiums can also be estimated directly via the observed (as opposed to the fitted)
transition matrices. In this case, estimating the parameter a will not be essential. However, the use of
fitted matrices is recommended since this will be consistent with the procedure when implying transition
matrices for the future. In addition, by estimating Eq. (11) and the z-score deviations, one can study the
credit cycle effect, as is done in Section 5.

5 To improve the estimation results for each row, I follow Belkin et al. (1998) to weigh the square of
deviations by the inverse of the approximate sample variance of each entry’s probability estimate. In my
case though, the number of observations (i.e., bonds) for each row is irrelevant since it remains constant
across columns. Furthermore, unlike Belkin et al. (1998), and Kim (1999), I do not scale the adjusted z-
score by √1�2a2 because this scaling will lead to the unnatural result that the average z-scores are
adjusted/scaled even when the shift is zero. Notice also that the above procedure will distort the meaning
of the residual term in Eq. (11). Specifically, there is no guarantee that the sum of the residual is zero
as it should be in a usual regression setting. However, this seems to be a reasonable price to pay, as
directly minimizing the sum of squares of z-score deviations leads to very poor fit of transition matrices.
The poor fit results from the negligence of the highly non-linear relation between z-scores and prob-
abilities.
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estimate a first, and then in the second pass, given the common shift, find the row-
specific shifts. In the current paper, I estimate all quantities in one-pass as outlined
above, in order to be consistent with the assumption of independence between x and
xi. However, as shown later, the two methods lead to very similar estimates for a.

(B) Estimating the constant risk premiums: Within the proposed framework, the
risk premium for each rating class i is assumed to be constant. Therefore, only (K�1)
risk premium parameters need to be estimated. Specifically,

1. for each period t, following Kijima and Komoribayashi (1998), express the prob-
ability transition matrix under the equivalent martingale measure as the risk
adjusted, fitted transition matrix obtained in Procedure A: Q = P(π) (i.e., multiply-
ing the entries of the fitted transition matrix by the unknown risk premiums while
leaving the default column as the adjusting column to ensure row sum of 1.0);

2. estimate the risk premiums for period t via Eq. (9). Since bond prices of various
maturities are typically available for each time period, a fitting procedure must
be used to estimate the risk premiums.

(C) Estimating implied future transition matrices under the equivalent martingale
measure: Since time-homogeneity is not assumed, the transition matrix for each of
the future periods must be estimated or implied in order to do valuations. Similar
to the procedure in Jarrow et al. (1997), the estimation is recursive: starting from one
period out, and successively working out the matrices for long periods. Specifically,

1. via Eq. (5), using single-period bond prices and an assumed recovery rate to imply
the default probabilities under the equivalent martingale measure for all ratings,
q1K(0, 1), q2K(0, 1), …, and qK�1,K(0,1), as (v0(0,1)�vi(0,1)) / ((1�d)v0(0,1)) ∀ i
= 1,2,…,K�1;

2. for each row of the average historical z-score matrix, adjust the z-scores by sub-
tracting some unknown amount: a(x + xi) � a
i ∀ i = 1,2,…,K�1;

3. for each rating i, by construction, 1�πi(1�N[(ziK�a
i)]) = qiK(0,1) (where ziK is
defined in Eq. (10)), which leads to an estimate for the adjustment:


t �
ziK�N�1[1�(1�qiK(0,1) /πi)]

a

(both πi and a are known by now);
4. repeat Step 3 for each rating/row and complete the adjustment of the z-score

matrix;
5. convert the adjusted z-score matrix into a probability transition matrix, and, using

the risk premium estimates, transform this matrix into a matrix that is applicable
under the equivalent martingale measure, Q0, 1;

6. multi-period transition matrices are estimated recursively by utilizing Eq. (4) and
bond prices with successively longer maturities. (Matrix inversion is necessary
for the second period and beyond. For example, once Q0, 1 and the default column
of Q0, 2 (calculated using the expression similar to the one in Step 1) are known,
Q0, 1 is inverted to obtain the default column of Q1,2.)
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Once the transition matrices for all future periods are obtained under the equivalent
martingale measure, valuation of credit derivatives such as default swaps can then
proceed. In the next two sections, I will discuss the model’s applications to sovereign
and corporate debts, respectively. The estimations will be performed only for corpor-
ate bonds since they have a much longer rating history which covers a period of 18
years and larger sample size which encompasses more than 7000 issues. In contrast,
the sample size for sovereign debts is much smaller (around 200 issues) and covers
a much shorter period.

4. Application to sovereign debts

As mentioned in Introduction, the Asian currency crisis and the Russian default
on some dollar denominated bonds have all drawn increasing attention to the model-
ling and management of sovereign credit risk. Sovereign ratings are gaining increas-
ing importance as more governments with higher default risk, e.g., the emerging
market economies, borrow in international bond markets. Governments themselves
often seek credit ratings in order to have better access to international capital markets.
For better risk assessment, investors also prefer rated securities over unrated ones,
all else being equal.

Similar to corporate debts, sovereign debts are typically rated by major rating
agencies such as Moody’s and Standard and Poor’s. Each agency rates debt issues
by about 100 sovereigns. The scale of sovereign defaults is actually larger than that
of corporate defaults. Figs. 1 and 2 plot the default history for sovereign and corpor-

Fig. 1. Default history for corporate debts.
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Fig. 2. Default history for sovereign debts.

ate debts. It can be seen that the dollar amount of default by sovereigns is much
larger than the corporates’ .

The rating of a sovereign debt is a comprehensive assessment of the issuing coun-
try’s economic, social and political situation. In fact, Cantor and Packer (1996) find
that rating assignments to sovereigns by Moody’s and Standard and Poor’s can be
explained by a small number of well-defined variables such as GDP growth, inflation
rate, and external debt. In addition, they found that the rankings of the sovereign
debt yields broadly agree with the rating rankings: sovereign yields tend to rise as
ratings decline. This correlation is also confirmed for emerging markets by Cun-
ningham et al. (2001), and Sy (2001).

Insofar as sovereign ratings closely reflect macroeconomic fundamentals as shown
by Cantor and Packer (1996) and a country’s economy does go through cycles, the
framework and estimation procedures outlined in Section 3 clearly apply to sovereign
debts. For estimation inputs, annual transition matrices and yields for sovereign debts
are required. Standard and Poor’s started publishing sovereign annual transition matr-
ices in 1998. Appendix A contains the average 1-year transition matrix for sovereign
foreign currency debts based on about 200 issues. Moody’s also publishes the
detailed rating history for sovereign debts issued by more than 100 nations, and
transition matrices can be easily constructed from the rating changes. As for bond
yields, it is customary in the literature to treat the US treasury yield as default free,
and use the yields on actively traded euro–dollar bonds issued by the sovereign in
question to approximate the yields on sovereign debts (Cantor and Packer, 1996;
Cunningham et al., 2001). Bloomberg L.P. reports on a regular basis the spread of
a sovereign’s bond yield over that of a comparable US treasury bond.

With the transition matrices and bond yields, estimations outlined in Section 3
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can then proceed. Once the future implied transition matrices are implied, credit
derivatives pertaining to sovereign debts such as credit default swaps and credit
linked notes can be valued. However, as mentioned at the end of Section 3, the
sovereign rating history is relatively short, and the sample is also small. I therefore
use corporate bonds to demonstrate the estimations in the next section.

5. Application to corporate debts

5.1. Data

Annual transition matrices for 1981–1998 (inclusive) and the average annual tran-
sition matrix covering the same period are published by Standard and Poor’s (1999)
for corporate bonds. Weekly treasury and industrial corporate bond yields for various
maturities (1, 5, 10, 15, 20, and 25) and ratings (AAA, AA, A, BBB, BB+, BB/BB�,
and B) are obtained from the weekly publication, Credit Week (by Standard and
Poor’s). The starting date of the bond yields publication is March 1996.

For the transition matrices, several adjustments are made to smooth the transition
probabilities. First of all, the raw matrices from Standard and Poor’s contain a col-
umn titled “N.R.”—not rated. Following Jarrow et al. (1997), I simply redistribute
the “N.R.” portion to other ratings on a pro rata basis. Unlike Jarrow et al. (1997),
I leave the default column unchanged given that the “not rated” bonds are non-
defaulting bonds (see discussions in Standard and Poor’s (1999)). Second, within
each row, the probability should decline monotonically on each side of the diagonal
entry. Whenever there is a violation, the entry is set equal to the previous rating’s
entry and the difference is equally distributed among the entries between the diagonal
entry and the entry in question. Third, within each column, the entries on each side
of the diagonal entry should also monotonically decline. To minimize excessive arbi-
trary adjustments, whenever there is a violation, I simply swap the entry in question
with the previous entry, and adjust the two row’s diagonal entries to ensure a row
sum of 1.0. In certain situations, this swapping may have to be done in several
consecutive turns before the proper ranking is achieved. The default column is kept
unchanged throughout the adjustments. Appendix B shows, as an illustration, the
original raw matrix for the average annual transition, and the final matrix with the
above adjustments. It is worth noting that the ranking adjustment is not very frequent
in that the original matrices already satisfy the conditions most of the time. It should
be pointed out that the monotonic smoothing is not necessary for our estimations,
and there is no strong theory that dictates the monotone conditions. The smoothing
is purely based on intuition. For instance, in the original raw matrix shown in Appen-
dix B, row-wise for rating CCC, the transition probabilities to higher ratings B, BB,
BBB, and A are progressively declining, which makes intuitive sense. There hap-
pened to be a transition to AAA but not AA in the sample period. Intuitively, the
chance of transiting to a remote rating should be lower than that to a nearby rating,
as shown in the adjusted matrix. Similarly, column-wise for rating AAA, intuitively,
the probabilities for rating AA, A, BBB, and so on, to transit to AAA should be
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progressively lower. Presumably, when the sample is large and long enough, the
observed transition matrix will automatically have the monotone feature.

For the bond yields, since annual transition matrices are of concern, they are
sampled only at the beginning of the year for 1996, 1997 and 1998. To imply future
matrices, I use the data of June 1999, which happen to be the end of the data set.
The first three years are used to estimate the constant risk premiums, and the last
year’s bond yields are used to demonstrate how to imply future transition matrices.
For simplicity, I will only use the one-year-maturity bond prices to estimate the
constant risk premiums via minimizing the sum of squared deviations between model
prices and observed prices. The bond yields are tabulated in Appendix C.

Several issues pertaining to bond yields need to be addressed. First, the corporate
bond yields reported in Credit Week are for industrials, whereas the transition matr-
ices are based on ratings covering a range of industries (e.g., industrials, utilities,
and financial institutions) in the US and overseas. Notwithstanding the dominance
of US industrials in the rating history (see Nickell et al., 2000 for statistics), the
estimation results should be taken with a grain of salt. Second, Credit Week reports
yields separately for BB+ and BB/BB�. I simply use the average of the two yields
to proxy the overall yield for BB. Third, yields for rating CCC are not available. In
light of the yield vs. rating profile depicted in Fig. A1 in Appendix C, I only use
yields for BBB, BB and B to quadratically extrapolate the yield for rating CCC by
assuming that rating classes are equally spaced. Fourth, for 1999, I use the yields
of 1-, 5-, and 10-year bonds to quadratically interpolate the yields for other maturities
between 1 and 10 years. Only yields with maturities up to 5 years are used to demon-
strate the estimation, since most credit derivatives have a maturity less than 5 years.
The extrapolated/interpolated yields are tabulated in Appendix C. Finally, when
implying future transition matrices beyond one year out, yields of zero-coupon bonds
should be used. Unfortunately, given the lack of information, it is impossible to infer
the pure yield curves from the average yield curves. I simply assume that the reported
bond yields are close approximations for discount bond yields.

5.2. Estimation results and interpretations

5.2.1. Shifts of z-scores and the fitted transition matrices
By following the estimation procedures outlined in Section 3, the parameter a in

Eq. (11) is estimated to be 0.1116, which indicates that, on average, the correlation
between credit migrations of any two rating classes is about 0.0125. (When the two-
pass, sequential procedure is followed, the estimate for a is 0.1213, very close to
the one-pass estimate.) The estimated z-score deviations (defined as x + xi in Eq.
(11)) are summarized in Table 1. The sample average is �0.016 as opposed to a
theoretical value of zero, and the variance of the average z-score shifts is 1.0 by
design. The overall results are very similar to that of Belkin et al. (1998). For
example, the 1980s saw predominantly lower than average ratings, while the 1990s
saw better than average ratings. The year 1990 represents the worst year, while 1996
is the best year, similar to the findings of Belkin et al. (1998). Crouhy et al. (2000)
also document that 1990 and 1991 have the most default occurrences, while 1993
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has the least. The findings in Table 1 are further corroborated by Fig. 1 which shows
the default history for corporate bonds rated by Standard and Poor’s. The model’s
ability to capture the default behavior is rather striking. The higher default fre-
quencies depicted in Fig. 1 for years 1982, 1986, 1990, 1991, 1995, and 1998 clearly
correspond to the sizable, negative z-score deviations under the default rating in
Table 1.

More striking are the inter-rating variations in rating changes for a particular year.
In many cases, certain rating classes experience a credit deterioration while others
enjoy an improvement. The unison in rating quality drifts is clear and strong only
for the years which represent business cycle troughs (e.g., 1982, 1990, 1991) and
peaks (e.g., 1996, 1997). This observation offers another way of understanding the
relatively smaller average correlation estimated from the system: the average corre-
lation is higher only when all ratings’ credit quality changes are in the same direction.
For most years, different rating categories experience different rating shifts, and
hence the overall average correlation is low over the whole sample period. Neverthe-
less, the lower correlation itself is not necessarily a bad thing. In fact, it indicates
that, unless the business/credit cycle is close to its peak or trough, rating specific
shifts in credit quality dominate the overall change. This feature can only be accom-
modated by a multi-factor model such as the one considered in the current paper.
As shown below, the improvement in fitting from a univariate model to a multi-
variate model is tremendous.

In order to assess the performance of the proposed multi-factor model, a measure
of goodness of fit need to be developed. Since there is no standard goodness of fit
measure for the estimation procedure here, I will develop two sensible measures
here. The first measure gauges the average percentage deviation. Specifically, for
each year, a statistic is calculated as one minus the L1-norm of the matrix (PO�
PF) divided by 7, where PO and PF are the observed and the fitted transition matrices,
respectively. Essentially, this statistic is the (weighted) average absolute percentage
deviation between the observed probabilities and the fitted probabilities. To see this,
notice that for a given entry in row, i, �PO

ij �PF
ij� /PO

ij represents the absolute percentage
deviation. Since the row sum of a transition matrix is one, for a particular row, it
is natural to use the observed probabilities as weights to calculate the row average
of percentage absolute deviations. (Without weighting, small probability entries will
tend to distort the true goodness of fit.) This leads to a row average of ΣK

j = 1�PO
ij �

PF
ij�. Since the L1-norm of (PO�PF) is simply the sum of the absolute values of its

entries, and since there are seven rows, it follows that the L1-norm divided by 7 is
the average, absolute percentage deviation. One minus this quantity represents good-
ness of fit.

The second measure is similar to an R-square for a regression. Specifically, I
calculate the following statistic,

��
i,j,t

(PO
ij,t�Pavg

ij )(PF
ij,t�Pavg

ij )�2

�
i,j,t

(PO
ij,t�Pavg

ij )2�
i,j,t

(PF
ij,t�Pavg

ij )2
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where PO
ij,t and PF

ij,t are defined as before, except for the time index, t. Pavg
ij represents

a similar entry for the average transition matrix. Given that the mean of both
PO

ij,t�Pavg
ij and PF

ij,t�Pavg
ij is zero by the nature of transition matrices, the above statistic

is indeed the standard definition of R-square for a linear regression. Since the esti-
mation procedure is slightly different from linear regressions as discussed in Footnote
5, I will call the above statistic a quasi R-square.

The last two columns of Table 1 contain the goodness of fit measures. Comparing
the multi-variate model with a univariate model, although the improvement in aver-
age percentage deviations is marginal, the quasi R-square improves substantially,
from 0.051 to 0.446, an almost 10-fold increase. Consistent with the magnitude of
a, the large improvement in the quasi R-square indicates that, it is essential to allow
inter-rating variations when modeling rating migrations. Incidentally, for the multi-
factor model, the smallest entry for the first statistic is 0.835 for the year 1981, which
indicates an average percentage deviation of 16.5%. The average across the 18 years
is 0.911, which indicates an average deviation of 8.9%. For a fitting procedure, this
is an encouraging result.

Finally, once the parameter a and the z-score shifts are estimated, a fitted transition
matrix for each year can then be calculated easily. However, those fitted matrices
are only useful for such purposes as estimating the risk premiums. For brevity, I
only report, in Table 2, the fitted matrix for 1998, together with the actual transition
matrix for the year and the average annual transition matrix for the whole sample per-
iod.

5.2.2. Risk premiums
In order to estimate the risk premiums via Eq. (9), one needs to assume a recovery

rate and also calculate the bond prices. As shown by Jarrow et al. (1997) and others,
the recovery rate depends on the seniority of the debt and tends to change over time.
One can easily make the recovery rate in Eq. (9) time- and rating-dependent. How-
ever, for illustration purposes, I simply assume a constant recovery rate of 0.4, which
is the average recovery rate for the period 1974–1991 across all ratings (see Moody’s
Special Report, Lucas and Lonski, 1992). Moreover, throughout the estimations,
bond prices are calculated by simple discounting:

vi(0,t) �
1

(1 � ri)t (12)

where ri represents the yield for rating class i. The default probabilities are taken
from the fitted transition matrices. Using fitted transition matrices for 1996, 1997
and 1998, and the one-year-maturity bond yields reported in the appendix, the risk
premiums are estimated via minimizing the sum of squared deviations between bond
prices based on Eqs. (9) and (12). They are reported below.

AAA AA A BBB BB B CCC

0.9959 0.9953 0.9941 0.9932 0.9856 1.001 1.121
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Table 2
Fitted transition matrix for 1998

Average annual transition matrix, 1981–1998

AAA AA A BBB BB B CCC D

AAA 91.93 7.46 0.48 0.08 0.04 0.00 0.00 0.00
AA 0.64 91.82 6.77 0.62 0.08 0.06 0.01 0.00
A 0.07 2.27 91.65 5.12 0.56 0.25 0.03 0.04
BBB 0.04 0.27 5.56 87.89 4.83 1.02 0.17 0.22
BB 0.04 0.10 0.61 7.76 81.55 7.90 1.11 0.92
B 0.00 0.10 0.43 0.81 7.00 82.86 3.99 4.82
CCC 0 0.04 0.28 0.47 2.57 12.69 63.56 20.39
Observed annual transition matrix for 1998

AAA 93.12 6.56 0.31 0.00 0.00 0.00 0.00 0.00
AA 0.19 93.66 5.97 0.19 0.00 0.00 0.00 0.00
A 0.18 1.55 92.65 5.43 0.19 0.00 0.00 0.00
BBB 0.1 0.24 2.99 90.61 4.78 0.72 0.24 0.34
BB 0 0.00 0.24 5.93 83.56 6.59 3.03 0.65
B 0 0.00 0.16 1.24 6.67 81.95 5.51 4.47
CCC 0 0.00 0.00 0.67 1.24 23.60 37.82 36.67
Fitted annual transition matrix for 1998

AAA 93.12 6.40 0.38 0.06 0.03 0.00 0.00 0.00
AA 0.84 92.94 5.64 0.47 0.06 0.04 0.01 0.00
A 0.08 2.33 91.72 5.02 0.55 0.24 0.03 0.04
BBB 0.03 0.21 4.81 87.75 5.49 1.21 0.21 0.28
BB 0.03 0.07 0.44 6.26 81.01 9.49 1.44 1.26
B 0.00 0.09 0.39 0.75 6.61 82.81 4.19 5.16
CCC 0.00 0.02 0.17 0.31 1.82 10.10 62.31 25.26

If the risk premiums were to be plotted against the ratings, a skewed, U-shaped
curve would emerge, with the trough corresponding to rating BB. Interestingly, this
is very similar to the results reported by Kijima and Komoribayashi (1998) who,
using a different set of data, estimate the time-varying risk premiums for a specific
point in time: May 16, 1997. The fact that most of the risk premiums are close to
one implies that the entries for non-default ratings of a transition matrix do not
change very much when the change of measure is performed. In contrast, as shown
by Kijima and Komoribayashi (1998), the Jarrow–Lando–Turnbull method of chang-
ing measures can cause the probability entries to change significantly.

Eq. (8) reveals that when the risk premium is exactly unity, the default probability
will remain unchanged when the change of measure is performed, i.e., qiK = piK ∀ i.
A risk premium smaller than 1.0 means qiK � piK, and vice versa. For higher ratings
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such as AAA and AA, the historical default rate is almost zero, but the observed
bond prices almost always imply a non-zero default probability (in the risk-neutral
world). In this case, it can be seen from Eq. (9) that, the combination of a lower
piK and a bigger credit spread (or, equivalently, a smaller value of vi(0,1)�
dv0(0,1) � 0) would lead to a smaller estimate of the risk premium. In other words,
the smaller risk premium estimate compensates for the bigger discrepancy between
default rates under the physical world and the risk-neutral world. The opposite holds
for risk premiums larger than 1.0. The implication is that, ideally, the sample period
of the bond prices should match that of the historical transition matrices to obtain
more reliable estimates of risk premiums.

5.2.3. Implied transition matrices for future periods
With the risk premiums estimated above, transition matrices under the risk-neutral

measure for any future year can be easily implied from the current prices of zero-
coupon bonds. However, the estimation procedure is recursive for transition matrices
beyond the current year. Assuming that the average bond yields tabulated in Appen-
dix C are for zero-coupon bonds, a straightforward application of the procedures
outlined in Section 3 gives us the implied matrices. Specifically, the probabilities in
the default column can be computed via Eq. (5) using treasury and corporate bond
yields by assuming a recovery rate of 0.4. The probabilities in other columns can
be calculated based on the default column entries, the risk premiums and the average
annual transition matrix. For brevity, I report in Table 3 only the cumulative tran-
sition matrices under the risk-neutral measure for 1, 2, 3, 4 and 5 years into the
future. These matrices can then be used to value credit derivatives.6

It is seen that, for a particular rating, transitions to other ratings, especially the
default state, tend to increase over time. In fact, in a Markov transition framework,
all ratings eventually converge to the absorbing state, which is the default state. It
is also interesting to observe the “mean-reverting” effect in rating changes: ratings
A and BBB seem to be the “pulling” states toward which all other non-default states
tend to move. In other words, over time, higher ratings tend to drift downward and
lower ratings upward. This same effect has been observed by other authors such as
Altman and Kao (1992b), and Carty and Fons (1994).

6. General discussions and caveats

Before concluding in the next section, some general discussions are in order. First,
although interest rate risk is not explicitly modeled, the framework in this paper does
not require the absence of interest rate risk. In fact, as in the case of Jarrow et al.
(1997), as long as the interest rate process and the underlying Markov process are
independent under the equivalent martingale measure, the model applies. However,

6 See Kijima and Komoribayashi (1998) and Lando (2000) for examples of valuing credit derivatives
using risk-neutral transition matrices.
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Table 3
Cumulative transition matrices under the equivalent martingale measure

One-year transition matrix

AAA AA A BBB BB B CCC D

AAA 88.06 10.46 0.82 0.15 0.08 0.00 0.00 0.43
AA 0.07 76.61 18.63 3.00 0.51 0.48 0.10 0.60
A 0.00 0.32 78.59 15.45 2.74 1.62 0.26 1.03
BBB 0.01 0.05 1.71 81.75 10.97 3.17 0.64 1.71
BB 0.01 0.03 0.23 3.96 77.18 12.76 2.21 3.62
B 0.00 0.10 0.44 0.84 7.17 82.94 3.91 4.59
CCC 0 0.09 0.58 0.88 4.37 18.45 70.98 4.65
Two-year transition matrix

AAA 54.19 33.07 8.01 2.13 1.11 0.17 0.04 1.30
AA 0.06 48.42 34.78 10.40 2.33 1.95 0.42 1.64
A 0.01 0.37 58.93 26.80 6.69 3.98 0.72 2.50
BBB 0.01 0.08 2.62 67.04 17.96 7.00 1.43 3.87
BB 0.01 0.06 0.44 6.09 60.17 21.56 4.06 7.61
B 0.00 0.13 0.67 1.59 10.63 70.23 6.78 9.96
CCC 0 0.12 0.86 1.60 7.15 27.65 51.64 10.99
Three-year transition matrix

AAA 28.99 38.17 19.52 6.76 2.75 1.07 0.24 2.51
AA 0.04 28.53 40.02 18.55 5.05 3.89 0.85 3.07
A 0.01 0.35 43.83 33.21 10.50 6.49 1.28 4.34
BBB 0.01 0.09 3.14 55.97 21.68 10.51 2.24 6.35
BB 0.01 0.07 0.64 7.47 48.12 26.40 5.42 11.86
B 0.00 0.12 0.79 2.24 12.15 60.14 8.69 15.86
CCC 0 0.11 0.95 2.17 8.65 31.22 38.42 18.47
Four-year transition matrix

AAA 14.35 31.51 28.88 13.20 4.88 2.61 0.58 3.99
AA 0.02 15.72 38.83 25.36 8.06 5.87 1.31 4.83
A 0.01 0.30 33.06 36.14 13.63 8.60 1.81 6.44
BBB 0.01 0.11 3.50 47.95 23.50 12.96 2.88 9.08
BB 0.02 0.09 0.86 8.80 40.01 27.79 6.19 16.25
B 0.00 0.11 0.85 2.92 12.79 51.60 9.67 22.07
CCC 0.00 0.10 0.96 2.70 9.39 31.26 28.97 26.62
Five-year transition matrix

AAA 8.99 19.32 33.45 20.01 7.19 4.39 1.00 5.65
AA 0.02 7.62 35.06 30.42 10.90 7.43 1.70 6.86
A 0.02 0.26 25.73 37.28 15.97 9.85 2.18 8.73
BBB 0.02 0.13 3.89 42.67 24.23 13.91 3.21 11.94
BB 0.03 0.11 1.19 10.86 34.37 26.46 6.28 20.71
B 0.01 0.09 0.94 3.87 13.02 43.99 9.71 28.37
CCC 0.01 0.08 0.98 3.40 9.70 29.09 21.74 35.00
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some studies have shown that interest rate and credit risk are somewhat related. (See
e.g., Longstaff and Schwartz, 1995; Duffee, 1998; Fridson et al., 1997; Alessandrini,
1999) Theoretical modeling of the direct relationship between interest rate risk and
credit risk is scanty. General discussions and modeling can be found in Jarrow et
al. (1997) and Jarrow and Turnbull (2000). Das and Tufano (1996) ingeniously tackle
the problem by modeling a correlation between the interest rate and the stochastic
recovery rate. Another important study that allows for a correlation between interest
rate and credit risks is by Lando (1998). His model reduces the complex credit risk
modeling to the usual modeling of term structure of interest rates. Although each
paper takes a different angle and focus, as a future research avenue, the framework
in this paper may be somehow combined with that of Das and Tufano (1996) or
Lando (1998) in order to relax the independence assumption.

Second, the latent variables which drives the transition matrix are not identified
in the current framework. As a next step in future research, efforts can be directed
at explicitly linking the latent variables to business cycles as in Nickell et al. (2000)
or macroeconomic variables as in Kim (1999). The benefit of this extension is the
identification of the different impacts of business cycle variables on the rating shifts
for each rating class. Relatedly, the current setup can not explicitly account for
migration fluctuations over shorter periods of time. To explain the bond price changes
over a shorter time period, one has to make some scale-based adjustments to the
risk premiums. In contrast, Lando’s (1998) continuous-time formulation based on
intensities can easily incorporate migration fluctuations over any time interval.7

Third, it is known that the recovery rate depends on both the rating in question
and the stage of the business cycle (see e.g., Moody’s Special Report, Lucas and
Lonski, 1992). The proposed framework can easily accommodate rating specific,
time-varying recovery rates. For estimations, rating specific, realized historical recov-
ery rates can be used; for implying future transition matrices, some type of forecasts
would be necessary. At any rate, there is no need to make fundamental modifications
to the framework.

Fourth, a normal distribution is assumed for the latent credit variables, which to
a large extent describes reality quite well. Nonetheless, some empirical evidence
(e.g., Carty and Lieberman, 1997) suggests that credit migration exhibits memory
in its behavior in that a downgrading is more likely to be followed by another downg-
rading, and vice versa. Such dynamics imply autoregressive behavior and would call
for ARCH or GARCH type of empirical models. Alternatively, migration memory
can also be modeled by assuming finer partition of credit states as done by Arvanitis
et al. (1999). The current framework does not allow memories in credit migrations.

Finally, when applied to corporate debts, the estimation procedures can be easily
modified to achieve the conditioning effect similar to that in Nickell et al. (2000),
despite that the usual transition matrices are based on industry-aggregate. For
example, to condition on an industry, one could use the industry specific bond price
data (for all ratings) to estimate the risk premiums and to subsequently imply tran-

7 I am indebted to an anonymous referee for the insights expressed in this paragraph.
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sition matrices for future periods. In this case, the conditioning is achieved through
the risk premium estimations. For valuation purposes, this type of modification is
meaningful and sufficient. As for business cycles, unlike that of Nickell et al. (2000),
the framework here does not require an explicit modeling of the business cycle.
Future dynamics of business cycles are fully captured by the observed bond prices
used to imply future transition matrices. The same logic applies to sovereign debts,
except that the conditioning is on a country rather than an industry.

7. Conclusions

In this paper, I propose a multi-factor Markov chain model for bond rating
migrations and credit spreads that is applicable to both sovereign and corporate debts.
The model takes the historical average transition matrix as the starting point, and
allows the actual realized matrices to deviate from this average. The deviations are
driven by a set of latent, credit cycle variables which are assumed to be normally
distributed. In contrast to most existing models, the current model allows the tran-
sition probabilities to be business cycle dependent. The paper discusses the model’s
applications to both sovereign and corporate debts. Specifically, using historical tran-
sition matrices and bond prices for corporate debts rated by Standard and Poor’s,
the paper shows how to estimate the risk premiums required to convert transition
matrices from the physical measure to the risk-neutral measure which can be used
to value credit derivatives.

The estimation results indicate that the overall, average correlation between ratings
in credit quality changes is weak. It is only the business cycle trough and peak years
that saw a clear correlation in that all ratings tend to deteriorate or improve at the
same time. For other years, inter-rating variations in credit quality changes are fre-
quently present. This implies that, although incorporating the business cycle impact
is important in rating migration modeling, it is crucial to allow inter-rating variations,
which can only be achieved by a multi-variate model such as the one considered in
this paper. It is shown that the quasi R-square, as a measurement of goodness of
fit, improves by almost 10-fold when a univariate model is replaced by a multi-
variate model.

There are several advantages of the multi-factor Markov chain model. First, it
allows the rating transition probabilities to be time-varying and driven by business
or economic cycles. This is desirable because the time-varying nature of transition
matrices and default rates has been documented by many studies (e.g., Moody’s
Special Report, Lucas and Lonski, 1992; Helwege and Kleiman, 1997; Belkin et al.,
1998; Standard and Poor’s Special Report, 1998; Alessandrini, 1999; Nickell et al.,
2000). And it is indeed intuitive to think that the ability of a firm or a sovereign
nation to service their debts would depend on, among other things, the state of
the economy.

Second, the model allows for different ratings to react differently to the same
credit condition change. For instance, an economic downturn will increase the chance
for most bonds to be downgraded. But conceivably, lower-rated bonds will be more
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susceptible to the overall credit deterioration. Meantime, the model also allows for
the rating shifts to be cross-sectionally correlated, which is again a desirable feature.

Third, unlike most studies on credit risk or credit spreads, the framework in this
paper weaves together credit risk modeling and credit derivatives valuation. It shows
how the framework can be implemented for valuation purposes. This is why it is
also a credit spread model. The increasing attention to debts’ rating status and the
growing popularity of credit derivatives in risk management have made a model like
the current one ideal. The current model makes it possible to value credit derivative
securities in a uniform framework where ratings and yields are jointly utilized.
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Appendix A

Table A1.

Table A1
Sovereign foreign currency average one-year transition rates (1975–2000)

AAA AA A BBB BB B CCC SD

AAA 97.32 2.68 0.00 0.00 0.00 0.00 0.00 0.00
AA 1.84 96.33 0.61 0.00 0.61 0.61 0.00 0.00
A 0.00 3.09 94.85 2.06 0.00 0.00 0.00 0.00
BBB 0.00 0.00 4.67 90.65 3.74 0.92 0.00 0.00
BB 0.00 0.00 0.00 7.02 83.33 7.02 0.00 2.63
B 0.00 0.00 0.00 0.00 13.33 80.00 3.33 3.34
CCC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Source: Standard and Poor’s, “Rating Performance 1999” , February 2000. Note: “SD” stands for selected
default. Unlike corporate issuers, sovereigns can choose to default on only part of the total debts in
foreign currency.
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Appendix B

Table B1.
Table B1
The average annual transition matrix for the period of 1981–1998

Before adjustments

AAA AA A BBB BB B CCC D N.R.

AAA 89.48 7.26 0.47 0.08 0.04 0.00 0.00 0.00 2.67
AA 0.62 88.99 6.55 0.58 0.06 0.11 0.03 0.00 3.06
A 0.07 2.18 87.95 4.91 0.54 0.24 0.01 0.04 4.06
BBB 0.04 0.25 5.23 82.66 4.54 0.96 0.16 0.22 5.94
BB 0.04 0.09 0.55 7.04 73.98 7.17 1.01 0.92 9.20
B 0.00 0.09 0.25 0.41 6.14 73.15 3.50 4.82 11.64
CCC 0.16 0.00 0.32 0.64 2.09 10.43 52.01 20.39 13.96
After adjustments

AAA 91.93 7.46 0.48 0.08 0.04 0.00 0.00 0.00
AA 0.64 91.82 6.77 0.62 0.08 0.06 0.01 0.00
A 0.07 2.27 91.65 5.12 0.56 0.25 0.03 0.04
BBB 0.04 0.27 5.56 87.89 4.83 1.02 0.17 0.22
BB 0.04 0.10 0.61 7.76 81.55 7.90 1.11 0.92
B 0.00 0.10 0.43 0.81 7.00 82.86 3.99 4.82
CCC 0.00 0.04 0.28 0.47 2.57 12.69 63.56 20.39

Appendix C. Bond yield data

Tables C1 and C2 and Fig. A1.

Table C1
Beginning of the year bond yields for one-year maturity

Raw data

Treasury AAA AA A BBB BB+ BB/BB� B

1996 5.02 5.32 5.34 5.41 5.63 6.05 7.13 8.29
1997 5.37 5.57 5.67 5.74 5.95 6.19 7.29 7.69
1998 5.50 5.77 5.78 5.91 6.00 6.56 7.22 7.64

After combining BB sub-ratings and extrapolating for CCC

Treasury AAA AA A BBB BB B CCC

1996 5.02 5.32 5.34 5.41 5.63 6.59 8.29 10.73
1997 5.37 5.57 5.67 5.74 5.95 6.74 7.69 8.80
1998 5.50 5.77 5.78 5.91 6.00 6.89 7.64 8.25
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Fig. A1 Bond yields vs. rating classes.

Table C2
Bond yields at the beginning of June 1999

Raw data

Maturity (years) Treasury AAA AA A BBB BB+ BB/BB� B

1 4.87 5.14 5.25 5.52 5.96 6.82 7.58 7.84
5 5.44 6.17 6.33 6.58 7.02 8.00 8.55 9.45
10 5.49 6.41 6.80 6.86 7.27 8.31 8.76 9.94

After combining BB sub-ratings and performing extrapolating for CCC and interpolation for interim
maturities

Maturity (years) Treasury AAA AA A BBB BB B CCC

1 4.87 5.14 5.25 5.52 5.96 7.20 7.84 7.88
2 5.06 5.47 5.58 5.85 6.30 7.54 8.34 8.70
3 5.21 5.75 5.87 6.14 6.59 7.83 8.78 9.42
4 5.34 5.98 6.12 6.38 6.83 8.08 9.15 10.03
5 5.44 6.17 6.33 6.58 7.02 8.27 9.45 10.53
6 5.51 6.31 6.50 6.73 7.17 8.42 9.68 10.93
7 5.55 6.41 6.64 6.83 7.26 8.52 9.85 11.22
8 5.56 6.45 6.73 6.89 7.31 8.58 9.95 11.41
9 5.54 6.46 6.78 6.90 7.32 8.58 9.98 11.49
10 5.49 6.41 6.80 6.86 7.27 8.53 9.94 11.47
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