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Model Comparison Using the Hansen-Jagannathan Distance

ABSTRACT

Although it is of interest to test whether or not a particular asset pricing model is literally true,

a more useful task for empirical researchers is to determine how wrong a model is and to compare

the performance of competing asset pricing models. In this paper, we propose a new methodology to

test whether or not two competing linear asset pricing models have the same Hansen-Jagannathan

distance. We show that the asymptotic distribution of the test statistic depends on whether the

competing models are correctly specified or misspecified, and on whether the competing models are

nested or non-nested. In addition, given the increasing interest in misspecified models, we propose

a simple methodology for computing the standard errors of the estimated stochastic discount factor

parameters that are robust to model misspecification. Using monthly data on 25 size and book-

to-market ranked portfolios and the one-month T-bill, we show that the commonly used returns

and factors are, for the most part, too noisy for us to conclude that one model is superior to the

other models in terms of Hansen-Jagannathan distance. Specifically, there is little evidence that

conditional and intertemporal capital asset pricing model (CAPM)-type specifications outperform

the simple unconditional CAPM. In addition, we show that many of the macroeconomic factors

commonly used in the literature are no longer priced once potential model misspecification is taken

into account.



Asset pricing models are, at best, approximations of reality. Although it is of interest to test

whether or not a particular asset pricing model is literally true, a more useful task for empirical

researchers is to determine how wrong a model is and to compare the performance of competing asset

pricing models. The latter task requires a scalar measure of model misspecification. While there

are many reasonable measures that can be used, the one introduced by Hansen and Jagannathan

(1997) has gained tremendous popularity in the empirical asset pricing literature. Their proposed

measure, called the Hansen-Jagannathan distance (HJ-distance), has been used both as a model

diagnostic and as a tool for model selection by many researchers. Examples include Jagannathan

and Wang (1996); Jagannathan, Kubota, and Takehara (1998); Campbell and Cochrane (2000);

Lettau and Ludvigson (2001); Hodrick and Zhang (2001); Farnsworth, Ferson, Jackson, and Todd

(2002); Dittmar (2002); and Chen and Ludvigson (2004), among others.

While the HJ-distance is an attractive tool for comparing competing asset pricing models, no

formal model comparison test using the HJ-distance has yet been proposed.1 The existing tests

proposed by Hansen, Heaton, and Luttmer (1995), Jagannathan and Wang (1996), and Hansen

and Jagannathan (1997) allow us to test only whether a given model has a particular HJ-distance

value but not whether or not two competing models have the same HJ-distance.2 Because the

p-values from this kind of test are not a good way to compare models, researchers typically focus

on the values of the sample HJ-distances of competing models and conclude that the model with

the lowest sample HJ-distance is the best model. However, this practice is not entirely satisfactory

because the difference in sample HJ-distances of two models is subject to statistical variations, so

that a model with lower sample HJ-distance may not significantly outperform its competitor. The

first methodological contribution of this paper is the proposal of a methodology to formally test

whether or not two competing linear asset pricing models have the same HJ-distance. We provide

the asymptotic distribution of our test statistic under general distributional assumptions and show

that the asymptotic distribution of the test statistic depends on whether the competing models are

correctly specified or misspecified, and on whether the competing models are nested or non-nested.

In addition to model comparisons, researchers are also interested in whether or not a particular

1Wang and Zhang (2005) use simulation-based methods to compare the HJ-distances of two competing models,
but they do not provide a formal model comparison tool.

2The asymptotic distribution of the squared sample HJ-distance presented in Hansen, Heaton, and Luttmer (1995)
and Hansen and Jagannathan (1997) is valid when the HJ-distance of the model is nonzero, whereas the one presented
in Jagannathan and Wang (1996) is valid when the model is correctly specified.
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factor in an asset pricing model is “priced.” This is typically determined by testing if the stochastic

discount factor (SDF) parameter associated with that factor is significantly different from zero. All

existing studies perform this test using a standard error that assumes that the model is correctly

specified. It is difficult to justify this assumption when estimating the SDF parameters for many

different models because some (if not all) of the models are bound to be misspecified. The second

methodological contribution of this paper is the proposal of robust standard errors for the estimates

of the SDF parameters that are applicable to both correctly specified and misspecified models. We

find that the asymptotic variances of the SDF parameter estimates tend to be larger under a

misspecified model than under a correctly specified model. The difference depends on the extent of

model misspecification as well as on the correlation between factors and returns. We show that the

misspecification adjustment term can be very large when the underlying factor is poorly mimicked

by asset returns, a situation that typically arises when the factors are macroeconomic variables.

After describing the econometric methodology, we provide an in-depth empirical analysis to

demonstrate the relevance of our new tests. We focus on the empirical performance of several

unconditional and conditional asset pricing models using monthly data and two different sets of

test assets. First, we investigate whether model misspecification substantially affects the properties

of the SDF parameter estimates. Statistically significant SDF parameter estimates are often inter-

preted as evidence that the underlying factors are important sources of systematic risk. Consistent

with our theoretical results, we find that the t-ratios and the p-values under correctly specified

and potentially misspecified models are about the same for factors that are returns on well diver-

sified portfolios, while they differ greatly for factors that are not traded, such as macroeconomic

factors. For non-traded factors, the evidence that the t-ratios under potentially misspecified mod-

els are substantially smaller than the t-ratios under correctly specified models is overwhelming.

Therefore, by ignoring model misspecification and using the traditional way of computing standard

errors (i.e., assuming that the model is correctly specified), one might mistakenly conclude that a

factor is priced. Second, we empirically investigate whether different asset pricing models exhibit

significantly different HJ-distance measures. Overall, our econometric analysis suggests that the

commonly used returns and factors are too noisy for us to conclude that one model clearly outper-

forms the others. For example, we find little evidence that conditional and intertemporal capital

asset pricing model (CAPM)-type specifications such as the Campbell (1996) and Jagannathan and
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Wang (1996) models outperform the simple unconditional CAPM in terms of HJ-distance.

The rest of the paper is organized as follows. Section 1 presents an asymptotic analysis of

the sample HJ-distance under correctly specified and misspecified models. In addition, we provide

an asymptotic analysis of the estimates of the SDF parameters under potentially misspecified

models. Section 2 introduces tests of equality of HJ-distances for two competing models and

provides the asymptotic distributions of the test statistics for different scenarios. Section 3 presents

the empirical analysis. The final section summarizes our findings, and the Appendix contains proofs

of all propositions.

1. Asymptotic Analysis under Potentially Misspecified Models

1.1 Pricing Errors and HJ-Distance

Let y be a proposed SDF and R be a vector of gross returns on N test portfolios. If y correctly

prices the N portfolios, the pricing errors, e, of the N portfolios are

e ≡ E[Ry]− 1N = 0N , (1)

where 1N is an N -vector of ones and 0N is an N -vector of zeros.3 However, if y is a misspecified

model, then the pricing errors of the model are nonzero. In most cases, the proposed discount factor

y involves some unknown parameters λ, and it is customary to suggest that y(λ) is a misspecified

model if for all values of λ

e(λ) = E[Ry(λ)]− 1N 6= 0N . (2)

When an asset pricing model is misspecified, researchers are often interested in obtaining a scalar

measure of the magnitude of the misspecification. The popular HJ-distance is defined as the square

root of a quadratic form of the pricing errors

δ =
[
e(λ)′U−1e(λ)

] 1
2 , (3)

where U = E[RR′] is the second moment matrix of R. Equation (3) shows that δ depends on

the parameters λ. When the model is misspecified, it is customary to choose λ to minimize the

3We assume that the elements of R are all gross returns so that their costs are given by the vector 1N . If some of
the elements of R are returns on zero net investment portfolios, we replace 1N with q, where q 6= 0N is a vector of
initial costs of the N test assets. A separate appendix (available upon request) shows the necessary modifications of
our analysis when all the elements of R are excess returns (i.e., q = 0N ).
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HJ-distance. Under this choice of λ, the HJ-distance is defined as

δ =

[
min
λ
e(λ)′U−1e(λ)

] 1
2

. (4)

It is important to note that δ is also well defined for other choices of λ, but we focus on Equation (4)

in this paper because this is the most popular way of calculating the HJ-distance in the empirical

literature.

In this paper, we focus on linear asset pricing models because they are the most popular models

in the empirical asset pricing literature. A linear factor asset pricing model suggests that y is a

linear function of K systematic factors f

y(λ0, λ1) = λ0 + λ′1f = λ′x, (5)

where x = [1, f ′]′ and λ = [λ0, λ
′
1]
′.

To prepare for our analysis, we define Y = [f ′, R′]′ and its mean and covariance matrix as

µ = E[Y ] ≡

[
µ1

µ2

]
, (6)

V = Var[Y ] ≡

[
V11 V12

V21 V22

]
. (7)

Under the linear SDF, the pricing errors of the N assets are given by

e(λ) = E[Ry]− 1N = E[Rx′λ]− 1N = Dλ− 1N , (8)

where D = E[Rx′] = [µ2, V21 + µ2µ
′
1]. Although the standard definition of the HJ-distance uses

U−1 as the weighting matrix, Kan and Zhou (2004) show that for linear factor models, using V −122 as

the weighting matrix would produce mathematically identical results for both the SDF parameters

and the HJ-distance. Using V −122 as the weighting matrix, the squared HJ-distance is given by

δ2 = min
λ

(Dλ− 1N )′V −122 (Dλ− 1N ) = 1′NV
−1
22 1N − 1′NV

−1
22 D(D′V −122 D)−1D′V −122 1N . (9)

We assume that V21 is of full column rank (which implies that D is also of full column rank). Hence,

there exists a unique λ that minimizes e(λ)′V −122 e(λ), which we denote by

λHJ = (D′V −122 D)−1(D′V −122 1N ). (10)

In the subsequent analysis, we drop the subscript from λHJ for brevity. In addition, when it is

clear from the context, we write the pricing errors e(λHJ) simply as e and the SDF y(λHJ) = λ′HJx

simply as y.
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1.2 Asymptotic Distribution of the Sample HJ-Distance under Correctly Spec-
ified and Misspecified Models

In practice, the population HJ-distance of a model is unobservable and has to be estimated using

the sample HJ-distance. In this subsection, we summarize the asymptotic distribution of the sample

HJ-distance for the case of linear factor models. Let Yt = [f ′t , R
′
t]
′, where ft is a vector of proposed

factors at time t and Rt is a vector of gross returns on N test assets at time t. Suppose that we

have T observations on Yt and denote the sample moments of Yt by

µ̂ =

[
µ̂1

µ̂2

]
=

1

T

T∑
t=1

Yt, (11)

V̂ =

[
V̂11 V̂12

V̂21 V̂22

]
=

1

T

T∑
t=1

(Yt − µ̂)(Yt − µ̂)′. (12)

The sample squared HJ-distance and the SDF parameter estimates are simply the sample counter-

parts of Equations (9) and (10),

δ̂2 = 1′N V̂
−1
22 1N − 1′N V̂

−1
22 D̂(D̂′V̂ −122 D̂)−1D̂′V̂ −122 1N , (13)

λ̂ = (D̂′V̂ −122 D̂)−1(D̂′V̂ −122 1N ), (14)

where D̂ = [µ̂2, V̂21 + µ̂2µ̂
′
1]. Under a correctly specified model (δ = 0), the asymptotic distribution

of δ̂2 is well known. For linear factor models, Jagannathan and Wang (1996) show that when δ = 0,

T δ̂2
A∼
N−K−1∑
i=1

ξixi, (15)

where the xi’s are independent χ2
1 random variables and the weights ξ′is are equal to the nonzero

eigenvalues of

S
1
2V −122 S

1
2 − S

1
2V −122 D(D′V −122 D)−1D′V −122 S

1
2 , (16)

where S is the asymptotic covariance matrix of

1√
T

T∑
t=1

(Rtx
′
tλ− 1N ). (17)

The asymptotic distribution of δ̂ under a misspecified model is also well known. Hansen, Heaton,

and Luttmer (1995) and Hansen and Jagannathan (1997) show that when δ 6= 0,

√
T (δ̂2 − δ2) A∼ N(0, v), (18)
√
T (δ̂ − δ) A∼ N

(
0,

v

4δ2

)
, (19)
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where v is the asymptotic variance of 1√
T

∑T
t=1 qt and

qt = y2t − (yt − η′Rt)2 − 2η′1N − δ2 = 2η′Rtyt − (η′Rt)
2 − 2η′1N − δ2, (20)

with η = U−1e. When the SDF is linear in the factors and λ is chosen to minimize the HJ-

distance, the first-order condition suggests that D′V −122 e = 0K+1. It follows that η = V −122 e and

η′1N = e′V −122 (Dλ− e) = −δ2. Then, we can simplify qt to

qt = 2utyt − u2t + δ2, (21)

where ut = e′V −122 Rt.

In conducting statistical tests, we need a consistent estimator of v. This can be accomplished

by using one of the frequency zero spectral density estimators described by Newey and West (1987)

or Andrews (1991) and replacing qt with

q̂t = 2ûtŷt − û2t + δ̂2, (22)

where ût = ê′V̂ −122 Rt, ŷt = λ̂′xt, with λ̂ = (D̂′V̂ −122 D̂)−1D̂′V̂ −122 1N , and ê = D̂λ̂− 1N .

There are situations in which we may like to construct a confidence interval for δ2 (or equiv-

alently for δ). However, this exercise is nontrivial since the asymptotic variance of
√
T (δ̂2 − δ2)

depends on δ2. Consequently, one cannot simply use δ̂2 ± 2 × s.e.(δ̂2) to obtain a 95% confidence

interval for δ2. One way of constructing a confidence interval for δ2 is to use the statistical method

(see, for example, Casella and Berger 1990, Section 9.2.3).4 Using this methodology, we first plot

the 2.5 and 97.5 percentiles of the distribution of δ̂2 for different values of δ2. We then draw a

horizonal line at the observed value of δ̂2. This horizontal line will intersect the 97.5 percentile line

first and then the 2.5 percentile line of δ̂2. The interval between these two intersection points gives

us a 95% confidence interval for δ2.

In implementing this method, there is one more issue to overcome: the asymptotic variance of

δ̂2 depends not only on δ2 but also on other nuisance parameters. For example, when the factors

and the returns are i.i.d. multivariate normally distributed, it can be easily shown that

v = 4(µ2y + σ2y)δ
2 + 2δ4, (23)

4Lewellen, Nagel, and Shanken (2006) use the statistical method to construct a confidence interval for the adjusted
generalized least squares (GLS) R2 in a cross-sectional regression, and Kan and Robotti (2007) use the statistical
method to construct a confidence interval for the Hansen-Jagannathan bound.
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where µy = E[yt] = λ0 + λ′1µ1 and σ2y = Var[yt] = λ′1V11λ1. As a result, one needs to know µy

and σ2y to construct the confidence interval for δ2. In practice, we replace µy and σ2y by their

consistent estimators. For the more general case, the asymptotic distribution of δ̂2 depends on

many more nuisance parameters, and we need to estimate these nuisance parameters to come up

with a consistent estimator of v. In our empirical work, we replace q̂t with

q̃t = 2ũtŷt − ũ2t + δ2 (24)

to construct a consistent estimator of v for a given value of δ2, where ũt = δût/δ̂. By scaling ût to

ũt, we can ensure that
∑T

t=1 ũ
2
t /T = δ2. This amounts to scaling the pricing errors to make sure

that the model has the desired δ2.

1.3 Asymptotic Distribution of the SDF Parameter Estimates under Potentially
Misspecified Models

In many empirical studies, interest lies in the point estimates of the SDF parameters λ. A statis-

tically significant λ̂ associated with a given factor is often interpreted as evidence that the factor

is priced. However, when computing the standard error of λ̂, researchers typically rely on the

asymptotic distribution under the assumption that the model is correctly specified. This practice

is difficult to justify, especially when the model is rejected by the data. In this subsection, we study

the asymptotic distribution of λ̂ under potentially misspecified models. Our analysis closely follows

those of Hall and Inoue (2003) and Kan and Robotti (2008).5 A similar analysis is also performed

by Hou and Kimmel (2006) in the context of two-pass GLS cross-sectional regressions.

Proposition 1. Under a potentially misspecified model

√
T (λ̂− λ)

A∼ N(0K+1, V (λ̂)), (25)

where

V (λ̂) =
∞∑

j=−∞
E[hth

′
t+j ], (26)

5Gallant and White (1988) first considered GMM with misspecified models, but, as Hall and Inoue (2003) note,
they did not treat the important case of a stochastic weighting matrix. However, Theorem 6.10 of White (1994)
can be used to obtain asymptotic results under misspecified GMM with a stochastic weighting matrix. It should be
noted that Hansen, Heaton, and Luttmer (1995, Appendix C) also present the asymptotic distribution of the SDF
parameters for a misspecified model. However, their results do not contain an explicit expression of the asymptotic
covariance matrix.
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with

ht = −HD′V −122 Rtyt +H[D′V −122 (Rt − µ2)− xt]ut + λ, (27)

where H = (D′V −122 D)−1 and ut = e′V −122 Rt. When the model is correctly specified, e = 0N , ut = 0,

and ht can be simplified to

ht = −HD′V −122 Rtyt + λ. (28)

It is easily verified that under the linear SDF, Proposition 1 coincides with Theorem 2 in Hall

and Inoue (2003). When estimating the standard errors of λ̂, it is advisable to use the sample

counterpart of Equation (27) instead of the sample counterpart of Equation (28). This is because

the latter is valid only when the model is correctly specified, whereas the former is valid for both

correctly specified and misspecified models.

Note that when the model is misspecified, ht has an extra term of

H[D′V −122 (Rt − µ2)− xt]ut. (29)

There are situations in which this term is relatively unimportant. The first case arises when

model misspecification (δ2) is small. In this case, ut = e′V −122 Rt has a very small variance because

1√
T

∑T
t=1 ut

A∼ N(0, δ2) and the term in Equation (29) tends to be very small. The second case

occurs when the constant term and the factors can be very well mimicked by the returns. In this

case, D′V −122 (Rt − µ2)− xt is very small, and misspecification does not have much of an impact on

the asymptotic variance of λ̂.

While we cannot prove that misspecification always increases the asymptotic variance of λ̂ for

the general case, we can show that this is true for the special case when factors and returns are

multivariate elliptically distributed. Lemma 1 presents this result.

Lemma 1. Suppose Yt = [f ′t , R
′
t]
′ is i.i.d. multivariate elliptically distributed with finite fourth

moments and its multivariate kurtosis parameter is κ. Let µy = λ0 + λ′1µ1 and σ2y = λ′1V11λ1. The

asymptotic variance of
√
T (λ̂− λ) is given by

V (λ̂) = [µ2y + (1 + κ)σ2y ]H +

[
σ2y − µ2y + λ20 + 2κ(µ′1λ1)

2 (λ0 − 2κµ′1λ1)λ
′
1

(λ0 − 2κµ′1λ1)λ1 (1 + 2κ)λ1λ
′
1

]

+ δ2H

(
[1 + (1 + κ)µ′2V

−1
22 µ2]

[
1

µ1

][
1

µ1

]′
+

[
0 0′K

0K (1 + κ)(V11 − V12V −122 V21)

])
H,(30)
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where H = (D′V −122 D)−1.

When the model is correctly specified (i.e., δ = 0),

V (λ̂) = [µ2y + (1 + κ)σ2y ]H +

[
σ2y − µ2y + λ20 + 2κ(µ′1λ1)

2 (λ0 − 2κµ′1λ1)λ
′
1

(λ0 − 2κµ′1λ1)λ1 (1 + 2κ)λ1λ
′
1

]
. (31)

We call the last term in Equation (30) the misspecification adjustment term since it exists only

when the model is misspecified (i.e., δ > 0). Since 1 + κ > 0, this adjustment term is positive

semidefinite.6 Consequently, misspecification always increases the asymptotic variance of λ̂.

Besides depending on the magnitude of misspecification (δ2), the misspecification adjustment

term also depends crucially on how well the factors can be mimicked by the returns. Specifically,

V11−V12V −122 V21 is the covariance matrix of the residuals from regressing factors on returns. When

the factors are portfolio returns, this term tends to be very small and the misspecification ad-

justment is relatively minor. However, if the factors are macroeconomic factors, then the matrix

V11 − V12V
−1
22 V21 tends to be very large and misspecification can have a serious impact on the

asymptotic variance of λ̂. Ignoring model misspecification and using the traditional way of com-

puting standard errors (i.e., assuming that the model is correctly specified), one can mistakenly

conclude that a factor is priced. A similar point was also made by Hou and Kimmel (2006) and Kan

and Robotti (2008) for the case of excess returns. The only difference is that in the case of gross

returns, we still have a misspecification adjustment term even when the factors are fully mimicked

by the returns (i.e., when V11 − V12V −122 V21 is a zero matrix). This is because the constant term

in the SDF cannot be written as a linear combination of the returns unless V22 is singular. As a

result, we cannot fully mimic the SDF with the returns, and there is still some room for model

misspecification to affect the asymptotic variance of λ̂.

2. Tests of Equality of the HJ-Distances of Two Models

Our analysis in this section is similar in spirit to the model selection methodology of Vuong (1989);

Rivers and Vuong (2002); and Golden (2003). Vuong’s (1989) model selection methodology is

based on the likelihood function and is limited to the i.i.d. situation. Hence, it is not directly

applicable here. The analyses of Rivers and Vuong (2002) and Golden (2003) allow for more general

6Bentler and Berkane (1986) show that κ > −2/(N +K+2) for multivariate elliptical distributions, which implies
that 1 + κ > 0.
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model selection criteria as well as less restrictive distributional assumptions, and their results are

applicable to our problem. In particular, Golden’s methodology can be used directly to study our

problem. Besides specializing Golden’s analysis to linear models, the additional contribution of

this section is to provide a refinement of Golden’s analysis and to present a simpler sequential test

of δ21 = δ22 for the case of non-nested models. In addition, because our models are linear, we are

able to provide explicit expressions for all the test statistics, making our results readily accessible

to finance researchers.

We consider two competing models. Let x1 = [1, f ′1, f
′
2]
′ and x2 = [1, f ′1, f

′
3]
′, where f1 to f3

are three sets of distinct factors, and fi is of dimension Ki × 1, i = 1, 2, 3. We assume that the

SDF of model 1 is linear in x1 and is given by y1 = η′x1, whereas the SDF of model 2 is linear in

x2 and is given by y2 = λ′x2. Let D1 = E[Rx′1] and D2 = E[Rx′2] and assume that both D1 and

D2 have full column rank, so that the SDF parameters that minimize the HJ-distances of the two

models are uniquely identified as

η = (D′1V
−1
22 D1)

−1D′1V
−1
22 1N , (32)

λ = (D′2V
−1
22 D2)

−1D′2V
−1
22 1N . (33)

It follows that the pricing errors and the squared HJ-distances of the two models are given by

ei = Di(D
′
iV
−1
22 Di)

−1D′iV
−1
22 1N − 1N , i = 1, 2, (34)

δ2i = 1′NV
−1
22 1N − 1′NV

−1
22 Di(D

′
iV
−1
22 Di)

−1D′iV
−1
22 1N , i = 1, 2. (35)

When K1 = 0, the two models do not share a common factor. When K2 = 0, the second model

nests the first model as a special case. Similarly, when K3 = 0, the first model nests the second

model as a special case. When both K2 > 0 and K3 > 0, the two models are not nested.7 We

study the nested models case in the next subsection and deal with the non-nested models case in

Section 2.2.

2.1 Nested Models

Without loss of generality, we assume K2 = 0, so that model 2 nests model 1 as a special case. For

the nested models case, the following lemma shows that δ21 = δ22 implies some restrictions on the

7Vuong (1989) defines this case as the overlapping models case. He also deals with a separate case of strictly
non-nested models in which x1 and x2 do not share a common element. Since linear SDFs always contain a constant
term, we do not have to deal with the case of strictly non-nested models here.
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SDF parameters of model 2.

Lemma 2. δ21 = δ22 if and only if λ2 = 0K3, where λ2 is a vector of the last K3 elements of λ.

Note that Lemma 2 is applicable even when the models are misspecified. In order to test the

equality of HJ-distances of the two models, Lemma 2 suggests that one can simply perform a test

of H0 : λ2 = 0K3 in model 2. Suppose that V̂ (λ̂2) is a consistent estimator of the asymptotic

variance of
√
T (λ̂2 − λ2). Then, under the null hypothesis H0 : λ2 = 0K3 ,

T λ̂′2V̂ (λ̂2)
−1λ̂2

A∼ χ2
K3
, (36)

which can be used for testing H0 : δ21 = δ22 . However, it is important to note that, in general,

we cannot conduct this test using the usual standard error of λ̂2, which assumes that model 2 is

correctly specified. Instead, we need to rely on the misspecification robust standard errors of λ̂2

based on Equation (27) to perform the test of H0 : λ2 = 0K3 .

Alternatively, we can derive the asymptotic distribution of δ̂21 − δ̂22 and use it for the purpose of

testing H0 : δ21 = δ22 . Proposition 2 presents the asymptotic distribution of δ̂21 − δ̂22 .

Proposition 2. Partition H2 = (D′2V
−1
22 D2)

−1 as

H2 =

[
H2,11 H2,12

H2,21 H2,22

]
, (37)

where H2,22 is K3 ×K3. Under the null hypothesis H0 : δ21 = δ22

T (δ̂21 − δ̂22)
A∼

K3∑
i=1

ξixi, (38)

where the xi’s are independent χ2
1 random variables and the ξi’s are the eigenvalues of H−12,22V (λ̂2),

with V (λ̂2) being the asymptotic variance of
√
T (λ̂2 − λ2).

Again, it should be emphasized that the misspecification robust version of V (λ̂2) should be used

to test H0 : δ21 = δ22 . This is because model misspecification tends to create additional sampling

variation in δ̂21 − δ̂22 . Without taking into account potential model misspecification, one might

mistakenly reject H0 : δ21 = δ22 . In actual testing, we replace ξi with its sample counterpart ξ̂i,

where the ξ̂i’s are the eigenvalues of Ĥ−12,22V̂ (λ̂2), and Ĥ2,22 and V̂ (λ̂2) are consistent estimators of

H2,22 and V (λ̂2), respectively.

11



2.2 Non-Nested Models

For the nested models case, Lemma 2 suggests that δ21 = δ22 holds if and only if λ2 = 0K3 (i.e.,

y1 = y2). In contrast, δ21 = δ22 can occur under two different scenarios for non-nested models.

The first scenario is y1 = y2, which clearly implies e1 = e2 and δ21 = δ22 . The second scenario

is y1 6= y2 (i.e., e1 6= e2), but the aggregate pricing errors in the two models are the same—

e′1V
−1
22 e1 = e′2V

−1
22 e2— so that δ21 is still equal to δ22 . As it turns out, the asymptotic distributions

of δ̂21 − δ̂22 under these two scenarios are very different and we have to deal with them separately.

2.2.1 Tests of Equality of Two Stochastic Discount Factors

The condition y1 = y2 imposes parametric restrictions on η and λ. Suppose we partition η and

λ as η = [η′1, η
′
2]
′ and λ = [λ′1, λ

′
2]
′, where η1 and λ1 are the first K1 + 1 elements of η and λ,

respectively. At first sight, it may appear that y1 = y2 holds if and only if η1 = λ1, η2 = 0K2

and λ2 = 0K3 . The following lemma shows that the restriction η1 = λ1 is redundant because it is

implied by the other two restrictions.

Lemma 3. For non-nested models, y1 = y2 if and only if η2 = 0K2 and λ2 = 0K3.

Note that Lemma 3 is applicable even when the models are misspecified. It suggests that we can

test H0 : y1 = y2 by simply testing the parametric hypothesis H0 : η2 = 0K2 , λ2 = 0K3 . Let

ψ = [η′2, λ
′
2]
′ and ψ̂ = [η̂′2, λ̂

′
2]
′. Using the same proof of Proposition 1, we can establish that the

asymptotic distribution of ψ̂ under potentially misspecified models is given by

√
T (ψ̂ − ψ)

A∼ N(0K2+K3 , V (ψ̂)), (39)

where

V (ψ̂) =
∞∑

j=−∞
E[h̃th̃

′
t+j ], (40)

with

h̃t ≡

[
h̃1t

h̃2t

]
=

[
−H1bD

′
1V
−1
22 Rty1t +H1b[D

′
1V
−1
22 (Rt − µ2)− x1t]u1t + η2

−H2bD
′
2V
−1
22 Rty2t +H2b[D

′
2V
−1
22 (Rt − µ2)− x2t]u2t + λ2

]
, (41)

where u1t = e′1V
−1
22 Rt, u2t = e′2V

−1
22 Rt, H1b is the last K2 rows of (D′1V

−1
22 D1)

−1, and H2b is the

last K3 rows of (D′2V
−1
22 D2)

−1.
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Suppose that V̂ (ψ̂) is a consistent estimator of V (ψ̂). Then under the null hypothesis H0 : ψ =

0K2+K3 ,

T ψ̂′V̂ (ψ̂)−1ψ̂
A∼ χ2

K2+K3
, (42)

and this can be used as a statistic for testing H0 : y1 = y2.
8 Just like in the nested models case, it is

important that we conduct this test using the robust standard error of ψ̂ based on Equations (40)

and (41).

When y1 = y2, the asymptotic distribution of δ̂21 − δ̂22 is given by the following proposition.

Proposition 3. Let H1 = (D′1V
−1
22 D1)

−1 and H2 = (D′2V
−1
22 D2)

−1, and partition them as

H1 =

[
H1,11 H1,12

H1,21 H1,22

]
, H2 =

[
H2,11 H2,12

H2,21 H2,22

]
, (43)

where H1,11 and H2,11 are of dimension (K1+1)×(K1+1). Under the null hypothesis H0 : y1 = y2,

we have

T (δ̂21 − δ̂22)
A∼
K2+K3∑
i=1

ξixi, (44)

where the xi’s are independent χ2
1 random variables and the ξi’s are the eigenvalues of[

−H−11,22 0K2×K3

0K3×K2 H−12,22

]
V (ψ̂). (45)

Note that Equation (44) allows us to construct a test of H0 : y1 = y2 using δ̂21 − δ̂22 . However, it

should be pointed out that unlike the Wald test in Equation (42), there are cases (as we shall see

later) in which y1 6= y2 but yet Equation (44) fails to reject H0 : y1 = y2 with probability one as T

goes to infinity.

Before moving on to the case of y1 6= y2, a couple of remarks are in order. The first remark is

that we can think of the results of the nested models case as a special case of testing H0 : y1 = y2

with K2 = 0. The only difference is that the ξi’s in Proposition 2 are all positive, whereas some

of the ξi’s in Proposition 3 are negative. As a result, we need to perform a two-sided test for the

non-nested models case when we use Equation (44) to test H0 : y1 = y2. The second remark is

more subtle. Unlike Equations (36) and (38), which are tests of H0 : δ21 = δ22 for the nested models

8Note that we should not perform a Wald test of H0 : η1 = λ1, ψ = 0K2+K3 . This is because the asymptotic
variance of

√
T [η̂′1− λ̂′

1, ψ̂
′]′ is singular under H0, and the Wald test statistic does not have the standard asymptotic

χ2
K1+K2+K3+1 distribution. The proof of this result is available upon request.
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case, Equations (42) and (44) for the non-nested models case are only tests of H0 : y1 = y2. They

should not be interpreted as pure tests of H0 : δ21 = δ22 . This is because y1 = y2 is a sufficient but

not a necessary condition for δ21 = δ22 . We can have δ21 = δ22 even when y1 6= y2, and these cases are

taken up in the next subsection.

2.2.2 Tests of Equality of the HJ-Distances of Two Distinct Stochastic Discount Fac-
tors

For non-nested distinct SDFs (i.e., y1 6= y2), the asymptotic distribution of δ̂21 − δ̂22 under the null

hypothesis H0 : δ21 = δ22 depends on whether (1) both models are correctly specified, or (2) both

models are misspecified.

The first case is a little peculiar and it requires some explanation. In the likelihood ratio setting

of Vuong (1989), we cannot have two distinct non-nested models that are both correctly specified.

One may wonder how two distinct SDFs can be both correctly specified. Two asset pricing models

are considered to be correctly specified when they both produce zero pricing errors. This occurs

when the vector 1N is in the span of D1 as well as in the span of D2. A simple example of this is

when the first model is the correctly specified model and the second model has f3 = f2 + ε, where

ε is a vector of pure measurement errors with mean zero and independent of the returns. In this

case, D2 = E[Rx′2] = E[Rx′1] = D1 and the second model also produces zero pricing errors even

though y1 6= y2.

The following proposition presents a simple chi-squared test for testing if both models 1 and 2

are correctly specified.

Proposition 4. Let n1 = N −K1−K2− 1 and n2 = N −K1−K3− 1. Also, let P1 be an N ×n1
orthonormal matrix with its columns orthogonal to V

− 1
2

22 D1 and P2 be an N×n2 orthonormal matrix

with its columns orthogonal to V
− 1

2
22 D2. Define

gt(θ) =

[
g1t(η)

g2t(λ)

]
=

[
Rtx

′
1tη − 1N

Rtx
′
2tλ− 1N

]
, (46)

where θ = [η′, λ′]′, and

S =
∞∑

j=−∞
E[gt(θ)gt+j(θ)

′] =

[
S11 S12

S21 S22

]
. (47)
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When y1 6= y2 and under the null hypothesis H0 : δ21 = δ22 = 0,

T

 P̂ ′1V̂
− 1

2
22 ê1

P̂ ′2V̂
− 1

2
22 ê2

′  P̂ ′1V̂
− 1

2
22 Ŝ11V̂

− 1
2

22 P̂1 P̂ ′1V̂
− 1

2
22 Ŝ12V̂

− 1
2

22 P̂2

P̂ ′2V̂
− 1

2
22 Ŝ21V̂

− 1
2

22 P̂1 P̂ ′2V̂
− 1

2
22 Ŝ22V̂

− 1
2

22 P̂2

−1  P̂ ′1V̂
− 1

2
22 ê1

P̂ ′2V̂
− 1

2
22 ê2

 A∼ χ2
n1+n2

, (48)

where ê1 and ê2 are the sample pricing errors of models 1 and 2, and P̂1, P̂2, Ŝ are consistent

estimators of P1, P2, and S, respectively.

When y1 6= y2, the asymptotic distribution of δ̂21 − δ̂22 when both models are correctly specified

is given in the following proposition.

Proposition 5. Using the notation in Proposition 4, when y1 6= y2 and under the null hypothesis

H0 : δ21 = δ22 = 0,

T (δ̂21 − δ̂22)
A∼
n1+n2∑
i=1

ξixi, (49)

where the xi’s are independent χ2
1 random variables and the ξi’s are the eigenvalues of P ′1V
− 1

2
22 S11V

− 1
2

22 P1 P ′1V
− 1

2
22 S12V

− 1
2

22 P2

−P ′2V
− 1

2
22 S21V

− 1
2

22 P1 −P ′2V
− 1

2
22 S22V

− 1
2

22 P2

 . (50)

Note that the ξi’s are not all positive, because δ̂21 − δ̂22 can be negative. Therefore, we need to

perform a two-sided test of H0 : δ21 = δ22 instead of a one-sided test, as in the nested models

case. Comparing Propositions 3 and 5, we see that δ̂21 − δ̂22 = OP (T−1) when y1 = y2 as well as

when y1 6= y2 and δ21 = δ22 = 0. Therefore, the test in Proposition 3 is not consistent against the

alternative of y1 6= y2 when both models are correctly specified.

Finally, similar to the asymptotic distribution of δ̂2, the asymptotic distribution of δ̂21 − δ̂22

changes when the models are misspecified. Consequently, we cannot use Proposition 5 to test

H0 : δ21 = δ22 when the models are misspecified. Proposition 6 presents the appropriate asymptotic

distribution of δ̂21 − δ̂22 when both non-nested models are misspecified and y1 6= y2.

Proposition 6. Suppose y1 6= y2. Let dt = q1t − q2t, where

q1t = 2u1ty1t − u21t + δ21 ,

q2t = 2u2ty2t − u22t + δ22 ,
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with u1t = e′1V
−1
22 Rt and u2t = e′2V

−1
22 Rt. When δ1 6= 0 and δ2 6= 0,

√
T (δ̂21 − δ̂22 − (δ21 − δ22))

A∼ N(0, vd), (51)

where

vd =

∞∑
j=−∞

E[dtdt+j ]. (52)

Under the null hypothesis H0 : δ21 = δ22 6= 0,

√
T (δ̂21 − δ̂22)

A∼ N(0, vd) (53)

and dt can be simplified to

dt = 2u1ty1t − u21t − 2u2ty2t + u22t. (54)

The expression of dt in Equation (54) reveals that there are situations in which one cannot use

the normal test in Proposition 6 to test H0 : δ21 = δ22 . This can happen when (1) y1t = y2t, which

implies u1t = u2t and hence dt = 0; or (2) y1t 6= y2t but both models are correctly specified—i.e.,

u1t = u2t = 0, which also leads to dt = 0. Golden (2003) presents a test of vd = 0 that can be used

to determine whether the normal test should be used or not. His test is a weighted chi-squared test

based on the sample estimate of vd, and it effectively combines the two tests in our Propositions 3

and 5 without the need to distinguish the two reasons for dt = 0. Nevertheless, we prefer to

keep these two cases separate because we believe that researchers can benefit from learning the

underlying reason for dt = 0. In addition, by separating the two cases of dt = 0, we can obtain a

chi-squared test, which is much easier to implement than the weighted chi-squared test.

2.3 Summary and Discussion

Under the null hypothesis H0 : δ21 = δ22 , δ̂21 − δ̂22 can be either OP (T−1) or OP (T−
1
2 ). For the

nested models case, the situation is quite clear: T (δ̂21 − δ̂22) is asymptotically distributed as a linear

combination of χ2
1 random variables with positive weights. For the non-nested models case, the

asymptotic distribution depends on whether y1 = y2 or not. If y1 = y2, T (δ̂21− δ̂22) is asymptotically

distributed as a linear combination of χ2
1 random variables with both positive and negative weights.

If y1 6= y2 and both models are correctly specified, T (δ̂21− δ̂22) is still asymptotically distributed as a

linear combination of χ2
1 random variables, but the weights and the number of χ2

1 random variables

16



are different from the case of y1 = y2. Finally, if y1 6= y2 and both models are misspecified,
√
T (δ̂21 − δ̂22) is asymptotically normally distributed.

The three different asymptotic distributions of δ̂21 − δ̂22 in the non-nested models case present a

significant challenge in testing H0 : δ21 = δ22 . Namely, which asymptotic distribution should we use

to perform the test of H0 : δ21 = δ22? One approach is to perform a sequential test, as suggested by

Vuong (1989). In our context, this procedure involves first testing H0 : y1 = y2 using Equation (42).

If we reject H0 : y1 = y2, then we use Equation (48) to test H0 : δ21 = δ22 = 0. If this hypothesis

is rejected, then we use Equation (53) to test H0 : δ21 = δ22 6= 0.9 Suppose α1, α2, and α3 are the

asymptotic significance levels used in these three tests. Then the sequential test has a significance

level that is asymptotically bounded above by max[α1, α2, α3]. Thus, if α1 = α2 = α3 = 0.05, the

significance level of this procedure, as a test of H0 : δ21 = δ22 , is asymptotically no larger than 5%.

Another approach is to just perform the normal test in Proposition 6. This amounts to assuming

that y1 6= y2 and that both models are misspecified. The first assumption seems reasonable since

most of our models have only the constant term in common. Consequently, y1 = y2 implies that

the risk premia in both models are jointly equal to zero, a very unlikely scenario. The second

assumption is sensible because asset pricing models are approximations of reality and we do not

expect them to be correctly specified.

We implement both tests in our empirical analysis. Out of the 126 pairwise non-nested model

comparisons that we perform, the sequential test produces only seven rejections of equality of HJ-

distances at the 5% level, even less than the 14 rejections produced by the normal test. Therefore,

the results from using the sequential test strengthen our claim that the data are too noisy for us

to conclude that one model clearly outperforms the others. Nevertheless, for simplicity and ease

of comparison, we report only the results based on the normal test for non-nested models in our

tables.10

9We can also use a sequential test based on Golden’s (2003) test of vd = 0. However, unlike Golden’s test, which
involves a weighted chi-squared distribution, our test is much easier to implement since it involves only a chi-squared
distribution.

10The results from using the sequential test are available upon request.
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3. Empirical Analysis

We illustrate the relevance of our methodology with an empirical application. First, we describe

the data used in the empirical analysis and outline the different specifications of the linear SDFs

considered. Second, we present our results.

3.1 Data

3.1.1 Asset Returns and Conditioning Variables

We use monthly returns on the 25 Fama-French size and book-to-market ranked portfolios in excess

of the one-month T-bill rate and the gross one-month T-bill rate (26 portfolios) to compare various

asset pricing models. The returns on the size and book-to-market ranked portfolios are from

Kenneth French’s Web site. The one-month T-bill rate is from Ibbotson Associates (SBBI module)

and pertains to a bill with at least one month to maturity.11 For most of our time series, the

data are from January 1952 to December 2006 (660 monthly observations). Following Hodrick and

Zhang (2001), we consider unconditional as well as conditional models. For conditional models,

the conditioning variables are either the cyclical part of the natural logarithm of the industrial

production index lagged one period (Lag IP) or a January dummy (JAN). The industrial production

index is from the Board of Governors of the Federal Reserve System. To initialize the cyclical series

we use the Hodrick-Prescott (1997) filter on the five years of data that precede the starting date of

our sample.12

3.1.2 Economic Variables and Asset Pricing Models

In our empirical analysis, we analyze six asset pricing models. These are the same models that

were considered by Hodrick and Zhang (2001). The first model is the CAPM, which assumes that

the SDF is

yt = λ0 + λvwr
vw
t , (55)

where rvwt is the excess return on the value-weighted combined NYSE-AMEX-NASDAQ index from

the Center for Research in Security Prices (CRSP).

11In an earlier version of the paper, we also perform an additional analysis using quarterly data. The central
messages of the paper are not affected by the choice of the return horizon.

12We set the smoothing parameter equal to 4,800, a fairly common value when using monthly data.
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The second model is a linearized consumption CAPM (C-CAPM) that assumes that the SDF

is

yt = λ0 + λcgr
cg
t , (56)

where rcgt is the growth rate in real nondurables consumption from the Bureau of Economic Analysis,

U.S. Department of Commerce. For the C-CAPM, we have only monthly data starting in February

1959 (575 monthly observations).

The third model (JW) is the conditional CAPM of Jagannathan and Wang (1996), which

assumes that the SDF is

yt = λ0 + λjvwr
jvw
t + λpremr

prem
t−1 + λlabr

lab
t , (57)

where rjvwt is the return on the valued-weighted combined NYSE-AMEX-NASDAQ index from

CRSP, rpremt−1 is the lagged yield spread between BAA and AAA rated corporate bonds (from the

Board of Governors of the Federal Reserve System), and rlabt is the growth rate in per capita labor

income. Per capita labor income, L, is defined as the difference between total personal income and

dividend payments divided by the total population (from the Bureau of Economic Analysis, U.S.

Department of Commerce). Following Jagannathan and Wang (1996), we use a two-month moving

average to construct the growth rate in per capita labor income, rlabt = (Lt−1 + Lt−2)/(Lt−2 +

Lt−3)− 1, for the purpose of minimizing the influence of measurement error.

The fourth model (CAMP) is a linearized version of Campbell’s (1996) intertemporal capital

asset pricing model that assumes that the SDF is

yt = λ0 + λrvwr
rvw
t + λclabr

clab
t + λdivr

div
t−1 + λrtbr

rtb
t−1 + λtrmr

trm
t−1 , (58)

where rrvwt is the real return on the CRSP value-weighted index, rclabt is the monthly growth rate

in real labor income (constructed differently from the JW labor series), rdivt−1 is the dividend yield

on the CRSP value-weighted market portfolio, rrtbt−1 is the difference between the one-month T-bill

rate and its one-year backward moving average, and rtrmt−1 is the yield spread between long-term and

short-term government bonds. The last three variables are lagged variables for forecasting returns,

and they are known to the market at the end of month t−1. Following Campbell (1996), the factors

used in the model are in fact innovations (in percentage points per month) in these five variables

from a first-order vector autoregression. For the CAMP model, the data are obtained directly from
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Campbell, and we have only monthly data covering the period from February 1952 to December

1990 (467 monthly observations).

The fifth model (FF3) is the Fama-French (1993) three-factor model, which assumes that the

SDF is

yt = λ0 + λvwr
vw
t + λsmbr

smb
t + λhmlr

hml
t , (59)

where rsmbt is the return difference between portfolios of small and large stocks and rhmlt is the return

difference between portfolios of high and low book-to-market ratios. The Fama-French factors are

from Kenneth French’s Web site.

The sixth model (FF5) is the Fama-French (1993) five-factor model, which assumes that the

SDF is

yt = λ0 + λvwr
vw
t + λsmbr

smb
t + λhmlr

hml
t + λtermr

term
t + λdefr

def
t , (60)

where rtermt is the return spread between a 30-year Treasury bond and the one-month T-bill (from

Ibbotson Associates), and rdeft is the return spread between long-term corporate and long-term

government bonds (from Ibbotson Associates).

To form conditional models, we assume that the λ’s are linear functions of a conditioning

variable (either Lag IP or JAN). This is equivalent to scaling the factors of the unconditional

monthly models described above by a constant and the conditioning variable. Consequently, in the

conditional case, the smallest model will have four factors and the biggest model will have twelve

factors.13 Scaling factors by instruments is one popular way of allowing factor risk premia to vary

over time. Examples of this type of practice are found in Ferson and Harvey (1991, 1999) and

Campbell (1996), among others.

3.2 Results

First, we provide a summary of the different asset pricing models considered. Second, we analyze

the impact of potential model misspecification on the statistical properties of the estimated SDF

parameters. Third, we present the results of our tests of equality of the HJ-distances of two models.

13Although the JW and the CAMP models are already unconditional versions of conditional models, we follow
Hodrick and Zhang (2001) and scale their factors by a constant and either Lag IP or JAN.
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3.2.1 Summary of the Models

Table 1 provides a summary of the estimation results of different asset pricing models. The estimates

of the HJ-distance are denoted by δ̂. The p-value of the test of H0 : δ = 0 from Equation (15)

is p(δ = 0). The standard error of the sample HJ-distance from Equation (19) computed under

the alternative hypothesis that δ 6= 0 is se(δ̂).14 The 95% confidence interval for δ based on the

statistical method is CI(δ). “No. of par.” is the number of parameters in each asset pricing model.

Table 1 about here

In Panel A, we present the estimation results for the unconditional asset pricing models, and

we find that all models are rejected by the data at the 5% level. This provides compelling evidence

to incorporate model misspecification into our statistical analysis. Despite having the lowest HJ-

distance, the CAMP model still does not pass the test of H0 : δ = 0 at the 5% level. Moreover,

an examination of the 95% confidence interval for its δ also indicates that the HJ-distance of this

model is far from zero. At this point, it is necessary to enter a caveat: although in Panel A the

specification tests and the confidence intervals analyses produce outcomes that are consistent with

each other, this does not always have to be the case. There can be cases where the specification

test cannot reject H0 : δ = 0, but the asymptotic confidence interval for δ does not cover zero.

The reason behind possibly different outcomes provided by the specification tests and confidence

intervals analyses is that they are based on different asymptotic distributions. The p-value from

testing H0 : δ = 0 is computed under the hypothesis that the model is correctly specified, whereas

the confidence interval for δ is constructed using the asymptotic distribution of δ̂ under misspecified

models. It is important to emphasize that this type of behavior arises because of the discontinuity

of the asymptotic distribution of δ̂ at δ = 0.15

In addition to the rejection of the models, the confidence intervals for δ of different models signif-

icantly overlap with each other, possibly suggesting that, after accounting for sampling variability,

14The se(δ̂)’s are computed assuming no serial correlation. A separate set of results (available upon request)
considers a 12-lag Newey-West (1987) adjustment. Overall, accounting for serial correlation in the data makes the
standard errors of δ̂ and the p-values for testing H0 : δ = 0 slightly higher.

15In the statistics literature, it is not uncommon to see dramatic changes in the asymptotic distribution of parameter
estimates and sample test statistics moving from one true value to another. For example, in the unit-root literature,
the asymptotic distribution of the AR(1) parameter estimate substantially changes when the true parameter is near
or on the unit boundary.
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it might be difficult to detect substantial differences in the HJ-distances of competing models.

In Panels B and C, we report the estimation results when we scale the factors by either Lag IP

or JAN, respectively. In both cases, the estimates of the HJ-distances of the conditional models are

smaller than the corresponding estimates of the unconditional models. There can be two reasons

for the smaller HJ-distances of the conditional models: (i) the conditioning information reduces

the pricing errors by allowing the prices of risk to vary with the business cycle; and (ii) the use

of conditioning information effectively doubles the number of factors and parameters making the

conditional models better able to fit the data. In the scaled factor case, some models pass the

HJ-distance test. Specifically, when we scale the factors by Lag IP, the JW, CAMP, and FF5

models are not rejected by the data at the 5% level, as shown in Panel B. When scaling the factors

by JAN, the JW and the CAMP models are not rejected by the data at the 5% level, as shown in

Panel C. However, an inspection of the confidence intervals for the HJ-distances suggests that the

HJ-distances of all models are far from zero. In addition, the confidence intervals for δ of different

models significantly overlap with each other.

By observing that conditional models always deliver smaller sample HJ-distances than the un-

conditional models, one might be tempted to conclude that conditional models perform better than

their unconditional counterparts. However, there are two issues to be aware of when considering

conditional models. The first effect of scaling is that the standard errors of δ̂ become larger. The

larger standard errors reflect the additional noise brought into the model by the instruments. A

direct implication is that it may be hard to distinguish conditional models from their unconditional

counterparts. The formal model comparison tests discussed below will confirm this intuition. The

second effect of scaling is that the number of factors becomes large relative to the number of assets.

When K is large relative to N , Kan and Zhou (2004) argue that using asymptotic results might

not be entirely appropriate and derive the finite sample distribution of δ̂ under the null and the

alternative hypotheses for the case in which factors and returns are jointly normally distributed.

From this preliminary analysis, one may conclude that no model consistently outperforms the

others because (i) different models pass the HJ-distance test depending on the scaling; and (ii) the

confidence intervals for the HJ-distances of different models significantly overlap with each other.

However, neither the p-values of the sample HJ-distances nor the confidence intervals analysis

allow us to compare models formally. In the subsequent empirical analysis, we conduct our tests
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of equality of HJ-distances to investigate whether a specific asset pricing model outperforms the

others.

3.2.2 Properties of the SDF Parameter Estimates under Correctly Specified and
Potentially Misspecified Models

Before turning to model comparison, we empirically investigate whether model misspecification

substantially affects the properties of the SDF parameter estimates. Statistically significant SDF

parameter estimates are often interpreted as evidence that the underlying factors are priced sources

of risk. All existing studies test whether or not a factor is priced by using a standard error that

assumes that the model is correctly specified. As we argued in the introduction, it is difficult to

justify this practice when estimating the SDF parameters for many different models because some

(if not all) of the models are bound to be misspecified. In this subsection, we empirically investi-

gate whether using an asymptotic variance that is robust to model misspecification instead of an

asymptotic variance that assumes a correctly specified model could lead us to different conclusions

in terms of a factor being priced or not.

In Table 2, we focus on the SDF parameter estimates, λ̂, of unconditional models. For each

model, we report λ̂ and associated t-ratios under correctly specified and potentially misspecified

models.16 In computing t-ratios under correctly specified models, we use the sample counterpart

of Equation (28), while in computing t-ratios under potential model misspecification, we use the

sample counterpart of Equation (27). Consistent with our theoretical results, we find that the

t-ratios under correctly specified and potentially misspecified models are about the same for factors

that are traded, while they largely differ for factors that are not traded, such as macroeconomic

factors. Consider, for example, the CAPM results. The t-ratios on λ̂vw for correctly specified and

potentially misspecified models are practically identical. The same type of conclusion emerges from

an inspection of the FF3 model. However, when we consider models with non-traded factors, the

picture substantially changes. For example, for the C-CAPM, we go from a t-ratio on λ̂cg of −2.97

to a t-ratio of −1.91 and, for the JW model, we go from a t-ratio on λ̂lab of 2.90 to a t-ratio of 1.40.

To summarize, we find that for non-traded factors, all the t-ratios under potentially misspecified

16The t-ratios are computed by assuming that the errors have no serial correlation. A separate set of results
(available upon request) considers a 12-lag Newey-West (1987) adjustment. Overall, accounting for serial correlation
in the data makes the standard errors of λ̂ bigger.
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models are smaller (in absolute value) than the t-ratios under correctly specified models. Hence,

ignoring model misspecification can lead to the erroneous conclusion that certain factors are priced.

Table 2 about here

For many of the conditional models there are a lot of parameters. Instead of reporting all the

parameter estimates, we explore the impact of potential model misspecification on the Wald tests

of joint significance of the parameters. The null hypothesis of the Wald test is that the parameters

associated with the scaled factors are jointly equal to zero. Given the results in Lemma 2, this

Wald test is also a test of H0 : δ21 = δ22 , where model 1 is the unconditional model, which is nested

by model 2, the conditional model. In Table 3, we report the Wald test statistics under correct

specification (cs) and potential misspecification (m) for various conditional models. Panels A and B

contain the results when we scale the factors by Lag IP and JAN, respectively. Once again, we find

that ignoring potential model misspecification makes a substantial difference in terms of the p-values

of the Wald tests. When using the traditional Wald test that assumes the models are correctly

specified, we can reject the null that the parameters of the scaled factors are jointly equal to zero for

several conditional models (see, for example, the C-CAPM and the JW model). However, when we

account for potential model misspecification, the p-values of the Wald tests substantially increase,

and we can no longer reject the null hypothesis that the conditional C-CAPM is just as good as

its unconditional version.17 Therefore, although conditional models always deliver lower sample

HJ-distances than unconditional models, we do not find strong statistical evidence to conclude that

conditional models are better than unconditional models in terms of HJ-distance after we account

for potential model misspecification.

Table 3 about here

Although not reported (results are available upon request), we also compute the t-ratios of

the estimates of the conditional models under both correctly specified and potentially misspecified

models. We find that most of the scaled factors have very low correlations with returns. As a result,

many of the scaled factors are no longer statistically significant once potential model misspecification

17The p-values of the Wald tests are computed assuming no serial correlation. A separate set of results (available
upon request) considers a 12-lag Newey-West adjustment. Overall, accounting for serial correlation in the data makes
the p-values even larger.
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is taken into account. For example, for the C-CAPM with the consumption growth scaled by JAN,

we go from a t-ratio of −2.19 under correctly specified models to a t-ratio of −1.41 under potentially

misspecified models. For the CAMP model, we go from a t-ratio of 2.25 to a t-ratio of 1.73 for the

trm factor that is scaled with JAN.

To summarize, accounting for model misspecification can often make a qualitative difference in

determining whether or not a factor is priced, especially when the factor has low correlation with

asset returns. This would typically be the case when the factor is a macroeconomic factor, or when

the factor is scaled by an instrument. Unless one is certain that a model is correctly specified,

potential model misspecification should be accounted for when computing the standard errors of

the estimates of SDF parameters.

3.2.3 Tests of Equality of the HJ-Distances of Two Models

In this subsection, we empirically investigate whether competing asset pricing models exhibit sig-

nificantly different sample HJ-distances. Failure to find significant differences across models would

imply that the commonly used returns and factors are too noisy for us to conclude that one model

is clearly superior to the others. In the theoretical section of the paper, we show that the asymp-

totic distribution of our test statistic, the difference between the sample squared HJ-distances of

two models, depends on whether the competing models are correctly specified or misspecified and

on whether they are nested or non-nested. For nested models, we use Proposition 2 instead of

Lemma 2 to conduct the tests of equality of HJ-distances.18 For nested models, we report our re-

sults using the misspecification robust version of V̂ (λ̂2) because it is applicable to correctly specified

as well as misspecified models. For non-nested models, we use the asymptotic normal distribution

in Proposition 6 to compute the p-value of the test statistic.

In Table 4, we report pairwise tests of equality of squared HJ-distances for different models,

some of them being nested models and others being non-nested models. In Panel A, we provide

pairwise comparisons of different unconditional models. In Panels B and C, we compare different

conditional models when they are scaled by Lag IP and JAN, respectively. In each panel, we

report the differences between the squared sample HJ-distances of different pairs of models and the

18Results obtained using Lemma 2 (not reported in the paper) are largely consistent with the ones shown in the
tables.
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associated p-values (in parentheses).19

Table 4 about here

When comparing unconditional models, we observe that the CAPM is outperformed by the

FF3 and FF5. However, we find no evidence that intertemporal CAPM-type specifications such as

the Campbell (1996) or the Jagannathan and Wang (1996) models outperform the unconditional

CAPM. When considering conditional models with scaled factors, we find it equally hard to dis-

tinguish the performances of different models. Only the conditional JW model outperforms the

conditional CAPM when the factors are scaled by Lag IP (see Panel B). All the other models are

indistinguishable from each other in terms of HJ-distance.

Next, we investigate whether conditional models perform substantially better than uncondi-

tional models. The reason behind this type of exercise is that the HJ-distances of the conditional

models are always lower than the HJ-distances of their unconditional counterparts, as shown in

Table 1. However, it may be premature to conclude that the instruments actually help to reduce

the pricing errors without performing a formal comparison of the unconditional models versus the

conditional models. In addition, we also investigate whether conditional models scaled by one in-

strument are better than conditional models scaled by another instrument. This exercise is also of

interest because different conditional models might capture different characteristics of the economy,

and the type of scaling might affect their absolute and relative performances.

In Table 5, we report the results from testing the equality of HJ-distances between conditional

and unconditional models. Panels A and B compare the unconditional models with conditional

models that are scaled by Lag IP and JAN, respectively. Panel C compares two sets of conditional

models, with one set scaled by Lag IP and the other set scaled by JAN. The first noticeable pattern

is that the p-values along the main diagonal of each panel are not significant at the 5% level. This

suggests that for a given model, overall we cannot find statistically significant differences in HJ-

distances between the different conditional versions and the unconditional version of the model.

These findings indicate that the instruments add noise to the data, making it hard to detect

significant differences between the different conditional versions and the unconditional version of a

given model.

19Note that in the case of non-nested models, the reported p-values are two-tailed p-values.
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Table 5 about here

Across different model specifications, we find that the unconditional CAPM is outperformed

by the conditional JW model when scaling by Lag IP. When scaling by JAN, we find that the

unconditional CAPM is outperformed by the conditional JW and CAMP models. The uncondi-

tional C-CAPM is always outperformed by the conditional FF5 model. When scaling by JAN,

we also find the unconditional C-CAPM to be outperformed by the CAMP and FF3 models. In

addition, we find that there are a few cases in which some unconditional models perform better

than some conditional models. For example, the unconditional FF3 and FF5 models in Panel A

perform better than the conditional CAPM. Finally, Panel C shows that there are a few cases in

which the equality of HJ-distances is rejected at the 5% level. We find that the conditional CAPM

scaled by Lag IP is dominated by the conditional JW, CAMP, FF3, and FF5 models scaled by

JAN. Overall, our econometric analysis suggests that once instruments are used, there is too much

noise in the data for us to conclude that one conditional model clearly outperforms the others.

In synthesis, out of 153 pairwise model comparisons in Tables 4 and 5, we find only 16 cases

in which the differences in sample HJ-distances between models are statistically significant at the

5% level. Note that all the p-values in Tables 4 and 5 are computed assuming no serial correlation.

When we consider a 12-lag Newey-West (1987) adjustment (results are available upon request), we

find that most of the p-values of the test statistics become larger and that the differences between

models are even harder to detect. Out of 153 pairwise model comparisons in Tables 4 and 5, there

are now only five cases where the differences in sample HJ-distances between models are statistically

significant at the 5% level. These low rejection rates suggest that the data are generally too noisy

for us to conclude that one model clearly outperforms the others.

3.3 Robustness Analysis

Lewellen, Nagel, and Shanken (2006) note that since the returns on the Fama-French size and

book-to-market ranked portfolios exhibit a strong factor structure, it is relatively easy for a factor

model to produce a mechanically good fit of the expected returns on these portfolios. Following

their suggestion, we perform an analysis by adding 30 industry portfolios to our test assets to help

us differentiate competing asset pricing models. For this larger set of test assets, it is also difficult
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to find statistically significant difference in the HJ-distances of different models. Out of the 153

pairwise model comparisons, we find only 22 cases in which the differences in sample HJ-distances

between models are statistically significant at the 5% level.20 Therefore, even with a much larger

set of test assets, the data are still too noisy for us to conclude that one model clearly outperforms

the others.

4. Conclusion

In this paper, we propose a methodology to test whether or not two competing linear asset pricing

models have the same HJ-distance. Under general distributional assumptions, we present the

asymptotic distribution of the difference between the sample squared HJ-distances of two models.

We show that the asymptotic distribution of this difference depends on whether the competing

models are correctly specified or misspecified, and on whether the competing models are nested or

non-nested.

In addition, we contribute to the existing literature by proposing a simple methodology for

computing the standard errors of the estimated SDF parameters that are robust to model mis-

specification. For the case in which returns and factors are multivariate elliptically distributed, we

are able to show analytically that the standard errors under misspecified models are always bigger

than the standard errors that assume the model is correctly specified. Moreover, we show that the

misspecification adjustment depends on, among other things, the correlation between the factor

and the returns on the test assets. This adjustment can be very large when the underlying factor

is poorly mimicked by asset returns. A nice feature of our misspecification robust standard errors

is that they can be used whether the model is correctly specified or misspecified.

We conduct our empirical analysis on a variety of asset pricing models that have been proposed

in the literature. We find that many of the non-traded factors in several intertemporal CAPM-type

specifications are no longer priced when potential model misspecification is taken into account.

On the contrary, the statistical significance of the traded factors is not greatly affected when we

use our misspecification robust standard errors. In addition, we find that the commonly used re-

turns and factors are, for the most part, too noisy for us to conclude that one model outperforms

20To conserve space, we do not report the estimation results using this larger set of test assets, but the results are
available upon request.
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the others in terms of HJ-distance. Specifically, there is little evidence that conditional and in-

tertemporal CAPM-type specifications outperform even the simple unconditional CAPM in terms

of HJ-distance.

While we do not find many statistically significant differences between the HJ-distances of

the scaled factor models and the unscaled factor models, this does not necessarily mean that the

conditional models do not perform better than the unconditional models. The sample HJ-distances

of competing models may be very noisy and have little power in differentiating good models from

bad models. However, explicitly accounting for the uncertainty associated with the difference

between the sample HJ-distances of two competing models is still better than simply relying on

the point estimates of the HJ-distances. Moreover, it is not clear that other measures of model

misspecification (such as the ordinary least squares (OLS) R2 or other aggregate measures of pricing

errors) would allow us to overcome this problem. As aggregates of sample pricing errors, these other

measures can be just as noisy as the sample HJ-distance, and more important, they may not be

economically as meaningful as the HJ-distance.

Our analysis could be extended in a number of ways. For instance, our methodology could be

modified to accommodate nonlinear stochastic discount factors. In addition, testing the equality of

HJ-distances of more than two models is, in principle, feasible. Future research should also address

the small sample properties of the test statistics proposed in this paper. Finally, our analysis can

also be used to develop tests of equality of other measures of model misspecification.
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Appendix

Proof of Proposition 1: Note that λ̂ is a smooth function of µ̂ and V̂ . Therefore, once we have

the asymptotic distribution of µ̂ and V̂ , we can use the delta method to obtain the asymptotic

distribution of λ̂. Let

φ =

[
µ

vec(V )

]
, φ̂ =

[
µ̂

vec(V̂ )

]
. (A1)

Under some standard regularity conditions, we can assume21

√
T (φ̂− φ)

A∼ N(0(N+K)×(N+K+1), S0). (A2)

We first note that µ̂ and V̂ can be written as the GMM estimator that uses the moment conditions

E[rt(φ)] = 0(N+K)(N+K+1), where

rt(φ) =

[
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

]
. (A3)

Since this is an exactly identified system of moment conditions, it is straightforward to verify that

the asymptotic variance of
√
T (φ̂− φ) is given by

S0 =
∞∑

j=−∞
E[rt(φ)rt+j(φ)′]. (A4)

Using the delta method, the asymptotic distribution of λ̂ under the misspecified model is given by

√
T (λ̂− λ)

A∼ N

(
0K+1,

[
∂λ

∂φ′

]′
S0

[
∂λ

∂φ′

])
. (A5)

The expression of ∂λ/∂φ′ is presented next.

Claim: Let e = Dλ− 1N . We have

∂λ

∂µ′1
= −

[
1, 0′K

]′
λ′1, (A6)

∂λ

∂µ′2
= −H

[
1, µ′1

]′
e′V −122 −HD

′V −122 µy, (A7)

∂λ

∂vec(V )′
=

[
H[0K , IK ]′, 0(K+1)×N

]
⊗
[
0′K , −e′V −122

]
+
[
−λ′1, e′V −122

]
⊗
[
0(K+1)×K , HD

′V −122

]
. (A8)

21Note that S0 is a singular matrix as V̂ is symmetric, so there are redundant elements in φ̂. We could have written
φ̂ as [µ̂′, vech(V̂ )′]′, but the results are the same under both specifications.
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Proof: Let d = vec(D). It is straightforward to show that

∂d

∂µ′1
=

[
0N×K

IK ⊗ µ2

]
=

[
0′K

IK

]
⊗ µ2, (A9)

∂d

∂µ′2
=

[
IN

µ1 ⊗ IN

]
=

[
1
µ1

]
⊗ IN , (A10)

∂d

∂vec(V )′
= [[0K , IK ]′, 0(K+1)×N ]⊗ [0N×K , IN ]. (A11)

DefineKm,n as a commutation matrix (see, e.g., Magnus and Neudecker (1999)) such thatKm,nvec(A) =

vec(A′) where A is an m× n matrix. In addition, we denote Kn,n by Kn. Note that

∂vec(D′)

∂d′
=

∂KN,K+1d

∂d′
= KN,K+1, (A12)

∂vec(D′V −122 D)

∂d′
= (D′V −122 ⊗ IK+1)

∂vec(D′)

∂d′
+ (IK+1 ⊗D′V −122 )

∂d

∂d′

= (D′V −122 ⊗ IK+1)KN,K+1 + (IK+1 ⊗D′V −122 )

= (I(K+1)2 +KK+1)(IK+1 ⊗D′V −122 ), (A13)

∂vec((D′V −122 D)−1)

∂vec(D′V −122 D)′
= −(D′V −122 D)−1 ⊗ (D′V −122 D)−1, (A14)

∂vec((D′V −122 D)−1)

∂d′
= −(I(K+1)2 +KK+1)[(D

′V −122 D)−1 ⊗ (D′V −122 D)−1D′V −122 ], (A15)

∂vec((D′V −122 D)−1D′)

∂d′
= [IN ⊗ (D′V −122 D)−1]

∂vec(D′)

∂d′
+ (D ⊗ IK+1)

∂vec((D′V −122 D)−1)

∂d′

= [IN ⊗ (D′V −122 D)−1]KN,K+1

− (D ⊗ IK+1)(I(K+1)2 +KK+1)[(D
′V −122 D)−1 ⊗ (D′V −122 D)−1D′V −122 ]

= KN,K+1[(D
′V −122 D)−1 ⊗ IN ]−D(D′V −122 D)−1 ⊗ (D′V −122 D)−1D′V −122

−KN,K+1[(D
′V −122 D)−1 ⊗D(D′V −122 D)−1D′V −122 ]

= KN,K+1[(D
′V −122 D)−1 ⊗ [IN −D(D′V −122 D)−1D′V −122 ]]

−D(D′V −122 D)−1 ⊗ (D′V −122 D)−1D′V −122 . (A16)

Therefore
∂λ

∂d′
= (1′NV

−1
22 ⊗ IK+1)

∂vec(HD′)

∂d′
= −H ⊗ e′V −122 − λ

′ ⊗HD′V −122 . (A17)

It follows that

∂λ

∂µ′1
=

∂λ

∂d′
∂d

∂µ′1
= −λ′1 ⊗HD′V −122 µ2 = −[1, 0′K ]′λ′1, (A18)

∂λ

∂µ′2
=

∂λ

∂d′
∂d

∂µ′2
= −H[1, µ′1]

′e′V −122 −HD
′V −122 µy, (A19)
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where the last equality in Equation (A18) follows from the fact thatHD′V −122 µ2 = HD′V −122 D[1, 0′K ]′ =

[1, 0′K ]′.

For the derivative of λ with respect to vec(V ), we use the product rule to obtain

∂λ

∂vec(V )′
= (1′NV

−1
22 D⊗IK+1)

∂vec(H)

∂vec(V )′
+(1′NV

−1
22 ⊗H)

∂vec(D′)

∂vec(V )′
+(1′N ⊗HD′)

∂vec(V −122 )

∂vec(V )′
. (A20)

The last two terms are given by

(1′NV
−1
22 ⊗H)

∂vec(D′)

∂vec(V )′
= [H [0K , IK ]′ , 0(K+1)×N ]⊗ [0′K , 1′NV

−1
22 ], (A21)

(1′N ⊗HD′)
∂vec(V −122 )

∂vec(V )′
= −[0′K , 1′NV

−1
22 ]⊗ [0(K+1)×K , HD

′V −122 ]. (A22)

For the first term, we use the chain rule to obtain

(1′NV
−1
22 D ⊗ IK+1)

∂vec(H)

∂vec(V )′

= (1′NV
−1
22 D ⊗ IK+1)

∂vec((D′V −122 D)−1)

∂vec(D′V −122 D)′
∂vec(D′V −122 D)

∂vec(V )′

= −(1′NV
−1
22 D ⊗ IK+1)(H ⊗H)

[
(D′V −122 ⊗ IK+1)

∂vec(D′)

∂vec(V )′

+ (D′ ⊗D′)∂vec(V −122 )

∂vec(V )′
+ (IK+1 ⊗D′V −122 )

∂vec(D)

∂vec(V )′

]
= −(λ′ ⊗H)

{[
[0(K+1)×K , D

′V −122 ]⊗ [[0K , IK ]′, 0(K+1)×N ]
]
KN+K

− [0(K+1)×K , D
′V −122 ]⊗ [0(K+1)×K , D

′V −122 ]

+ [[0K , IK ]′ , 0(K+1)×N ]⊗ [0(K+1)×K , D
′V −122 ]

}
= [H [0K , IK ]′ , 0(K+1)×N ]⊗ [0′K , −λ′D′V −122 ] + [0′K , λ

′D′V −122 ]⊗ [0(K+1)×K , HD
′V −122 ]

−[λ′1, 0′N ]⊗ [0(K+1)×K , HD
′V −122 ]. (A23)

Combining the three terms and using the identity e = Dλ− 1N , we have

∂λ

∂vec(V )′
=

[
H[0K , IK ]′, 0(K+1)×N

]
⊗
[
0′K , −e′V −122

]
+
[
−λ′1, e′V −122

]
⊗
[
0(K+1)×K , HD

′V −122

]
. (A24)

This completes the proof of the claim.

Using the expression of ∂λ/∂φ′, we can simplify the asymptotic variance of
√
T (λ̂− λ) to

V (λ̂) =

∞∑
j=−∞

E[ht(φ)ht+j(φ)′], (A25)
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where

ht(φ) =
∂λ

∂φ′
rt(φ)

= −
[
1, 0′K

]′
λ′1(ft − µ1)− (H

[
1, µ′1

]′
e′V −122 + µyHD

′V −122 )(Rt − µ2)

+ vec

(
[0′K , −e′V −122 ][(Yt − µ)(Yt − µ)′ − V ]

[
[0K , IK ]H

0N×(K+1)

])

+ vec

(
[0(K+1)×K , HD

′V −122 ][(Yt − µ)(Yt − µ)′ − V ]

[
−λ1
V −122 e

])

=

[
−λ′1(ft − µ1)

0K

]
−H

[
1

µ1

]
ut −HD′V −122 (Rt − µ2)µy

−H[0K , IK ]′(ft − µ1)ut −HD′V −122 (Rt − µ2)(ft − µ1)′λ1 +HD′V −122 (Rt − µ2)ut

+H[0K , IK ]′V12V
−1
22 e+HD′V −122 V21λ1 −HD

′V −122 e

= −HD′V −122 (Rt − µ2)(yt − ut)−Hxtut −

[
yt

0K

]
+ λ

= −HD′V −122 Rtyt +H[D′V −122 (Rt − µ2)− xt]ut + λ. (A26)

Equation (A26) follows from the fact that HD′V −122 V21λ1 = [−µ′1λ1, λ′1]′ and HD′V −122 µ2 = [1, 0′K ]′.

In addition, the first-order condition of D′V −122 e = 0K+1 implies that µ′2V
−1
22 e = 0 and V12V

−1
22 e =

0K . Note that when the model is correctly specified, we have e = 0N and ut = 0. In this case, we

have

ht(φ) = −HD′V −122 Rtyt + λ. (A27)

This completes the proof.

Proof of Lemma 1: Let qt = HD′V −122 (Rt − µ2), wt = D′V −122 (Rt − µ2)− xt and zt = [λ′1ft, −λ′1]′.

Since qt, wt, and zt are linear functions of Rt and ft, they are also jointly elliptically distributed.

Using the identity

HD′V −122 µ2yt = HD′V −122 D

[
1

0K

]
yt =

[
yt

0K

]
, (A28)

we can write

ht = −qtyt +Hwtut − zt. (A29)

It is straightforward to obtain E[qt] = 0K+1, E[wt] = −[1, µ′1]
′, E[zt] = [λ′1µ1, −λ′1]′, Var[qt] = H,

and

Var[wt] = (µ′2V
−1
22 µ2)

[
1

µ1

][
1

µ1

]′
+

[
0 0′K

0K V11 − V12V −122 V21

]
, (A30)
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Var[zt] =

[
σ2y 0′K

0K 0K×K

]
. (A31)

In addition, using the identity D′V −122 e = 0K+1, we can obtain the following joint moments E[qtut] =

0K+1, E[qtyt] = [−µ′1λ1, λ′1]′, E[wtut] = 0K+1, E[ztut] = 0K+1, E[utyt] = 0. Using these moments

and applying Lemma 2 of Maruyama and Seo (2003), we obtain

E[qtw
′
tytut] = 0(K+1)×(K+1), (A32)

E[wtz
′
tut] = 0(K+1)×(K+1), (A33)

E[wtw
′
tu

2
t ] = δ2(E[wt]E[wt]

′ + (1 + κ)Var[wt]), (A34)

E[qtq
′
ty

2
t ] = [µ2y + (1 + κ)σ2y ]H + 2(1 + κ)

[
−µ′1λ1
λ1

][
−µ′1λ1
λ1

]′
, (A35)

E[qtz
′
tyt] =

[
−µ′1λ1
λ1

][
µy + µ′1λ1

−λ1

]′
. (A36)

Using Equations (A32) and (A33), we can write

V (λ̂) = E[hth
′
t] = E[qtq

′
ty

2
t ] + E[qtz

′
tyt] + E[ztq

′
tyt] + E[ztz

′
t] +HE[wtw

′
tu

2
t ]H. (A37)

Substituting Equations (A34)–(A36) in Equation (A37) and after simplification, we obtain our

expression of V (λ̂). This completes the proof.

Proof of Lemmas 2 and 3: For nested models, δ21 = δ22 holds if and only y1 = y2. Since we can view

Lemma 2 as a special case of Lemma 3 when K2 = 0, we provide the proof of Lemma 3 here. Given

that y1 = y2 if and only if η1 = λ1, η2 = 0K2 , and λ2 = 0K3 , it suffices to show that η2 = 0K2 and

λ2 = 0K3 imply η1 = λ1. Premultiplying both sides of Equation (32) by D′1V
−1
22 D1, we obtain[

D′1aV
−1
22 D1a D′1aV

−1
22 D1b

D′1bV
−1
22 D1a D′1bV

−1
22 D1b

][
η1

η2

]
=

[
D′1aV

−1
22 1N

D′1bV
−1
22 1N

]
, (A38)

where D1a is the first K1 + 1 columns of D1 and D1b is the last K2 columns of D1. The first block

of this equation gives us

D′1aV
−1
22 D1aη1 +D′1aV

−1
22 D1bη2 = D′1aV

−1
22 1N . (A39)

When η2 = 0K2 , we have

η1 = (D′1aV
−1
22 D1a)

−1D′1aV
−1
22 1N . (A40)
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Similarly, premultiplying both sides of Equation (33) by D′2V
−1
22 D2, when λ2 = 0K3 we have

λ1 = (D′2aV
−1
22 D2a)

−1D′2aV
−1
22 1N , (A41)

where D2a is the first K1 + 1 columns of D2. Since D1a and D2a are both equal to E[Rt[1, f
′
1t]],

we have η1 = λ1. This completes the proof.

Proof of Propositions 2 and 3: Since Proposition 2 is a special case of Proposition 3 when K2 = 0,

we prove only Proposition 3 here. We first provide a simplified expression for δ21 − δ22 . Consider a

model 0 that is linear in x0 = [1, f ′1]
′. Let D1a and D1b be the first K1 +1 and the last K2 columns

of D1, respectively. The difference between the squared HJ-distances of models 0 and 1 is given by

δ20 − δ21 = 1′NV
−1
22 D1H1D

′
1V
−1
22 1N − 1′NV

−1
22 D1

[
(D′1aV

−1
22 D1a)

−1 0(K1+1)×K2

0K2×(K1+1) 0K2×K2

]
D′1V

−1
22 1N

= η′(D′1V
−1
22 D1)η − η′(D′1V −122 D1)

[
(D′1aV

−1
22 D1a)

−1 0(K1+1)×K2

0K2×(K1+1) 0K2×K2

]
(D′1V

−1
22 D1)η

= η′(D′1V
−1
22 D1)η − η′

[
D′1aV

−1
22 D1a D′1aV

−1
22 D1b

D′1bV
−1
22 D1a (D′1bV

−1
22 D1a)(D

′
1aV

−1
22 D1a)

−1(D′1aV
−1
22 D1b)

]
η

= η′2[D
′
1bV

−1
22 D1b − (D′1bV

−1
22 D1a)(D

′
1aV

−1
22 D1a)

−1(D′1aV
−1
22 D1b)]η2

= η′2H
−1
1,22η2. (A42)

Similarly, we have

δ20 − δ22 = λ′2H
−1
2,22λ2. (A43)

Subtracting Equation (A42) from Equation (A43), we obtain the following simple expression of

δ21 − δ22 :

δ21 − δ22 = −η′2H−11,22η2 + λ′2H
−1
2,22λ2 = ψ′

[
−H−11,22 0K2×K3

0K3×K2 H−12,22

]
ψ. (A44)

Since this equation also holds for its sample counterpart, we can write

δ̂21 − δ̂22 = ψ̂′

[
−Ĥ−11,22 0K2×K3

0K3×K2 Ĥ−12,22

]
ψ̂. (A45)

Under the null hypothesis H0 : ψ = 0K2+K3 , we have z =
√
TV (ψ̂)−

1
2 ψ̂

A∼ N(0K2+K3 , IK2+K3) and

V (ψ̂)
1
2

[
−Ĥ−11,22 0K2×K3

0K3×K2 Ĥ−12,22

]
V (ψ̂)

1
2

a.s.−→ V (ψ̂)
1
2

[
−H−11,22 0K2×K3

0K3×K2 H−12,22

]
V (ψ̂)

1
2 . (A46)
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It follows that

T (δ̂21 − δ̂22)
d→ z′V (ψ̂)

1
2

[
−H−11,22 0K2×K3

0K3×K2 H−12,22

]
V (ψ̂)

1
2 z. (A47)

Let QΞQ′ be the eigenvalue decomposition of the matrix in the middle, where Ξ = Diag(ξ1, . . . ,

ξK2+K3) is a diagonal matrix of the eigenvalues of the matrix in the middle, or equivalently the

eigenvalues of Equation (45), and Q is a matrix of the corresponding eigenvectors. Writing z̃ =

Q′z
A∼ N(0K2+K3 , IK2+K3), we have

T (δ̂21 − δ̂22)
d→ z̃′Ξz̃ =

K2+K3∑
i=1

ξiz̃
2
i , (A48)

where z̃2i
A∼ χ2

1, i = 1, . . . ,K2 + K3, and they are independent of each other. This completes the

proof.

Proof of Propositions 4 and 5: In order to obtain the asymptotic distribution of δ̂21− δ̂22 for correctly

specified models, we employ the Generalized Method of Moments (GMM) of Hansen (1982). When

both models are correctly specified, we have E[gt(θ)] = 02N . The sample moment conditions are

then given by

ḡT (θ) =

[
ḡ1T (η)

ḡ2T (λ)

]
=

[
1
T

∑T
t=1Rtx

′
1tη − 1N

1
T

∑T
t=1Rtx

′
2tλ− 1N

]
=

[
D̂1η − 1N

D̂2λ− 1N

]
. (A49)

The sample estimator of θ can be written as the solution to the following conditions:

AT ḡT (θ) = 02K1+K2+K3+2, (A50)

where

AT =

[
D̂′1V̂

−1
22 0(K1+K2+1)×N

0(K1+K3+1)×N D̂′2V̂
−1
22

]
a.s.−→

[
D′1V

−1
22 0(K1+K2+1)×N

0(K1+K3+1)×N D′2V
−1
22

]
≡ A. (A51)

We define the derivative of the sample moment conditions with respect to the parameters as

GT (θ) =

[
D̂1 0N×(K1+K3+1)

0N×(K1+K2+1) D̂2

]
a.s.−→

[
D1 0N×(K1+K3+1)

0N×(K1+K2+1) D2

]
≡ G. (A52)

Under joint stationarity and ergodicity assumptions on factors and returns and assuming that their

fourth moments exist, the asymptotic distribution of ḡT (θ̂) is given by

√
T ḡT (θ̂)

A∼ N(02N , [I2N −G(AG)−1A]S[I2N −G(AG)−1A]′). (A53)
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After simplification, we can write

√
T

[
ê1

ê2

]
=
√
T

[
ḡ1T (η̂)

ḡ2T (λ̂)

]
A∼ N

(
02N ,

[
Q1S11Q

′
1 Q1S12Q

′
2

Q2S21Q
′
1 Q2S22Q

′
2

])
, (A54)

where

Q1 = IN −D1(D
′
1V
−1
22 D1)

−1D′1V
−1
22

= V
1
2
22[IN − V

− 1
2

22 D1(D
′
1V
−1
22 D1)

−1D′1V
− 1

2
22 ]V

− 1
2

22

= V
1
2
22P1P

′
1V
− 1

2
22 , (A55)

Q2 = V
1
2
22P2P

′
2V
− 1

2
22 . (A56)

Let

z =
√
T

 P̂ ′1V̂
− 1

2
22 ê1

P̂ ′2V̂
− 1

2
22 ê2

 A∼ N(0n1+n2 , Vz), (A57)

where

Vz =

 P ′1V
− 1

2
22 S11V

− 1
2

22 P1 P ′1V
− 1

2
22 S12V

− 1
2

22 P2

P ′2V
− 1

2
22 S21V

− 1
2

22 P1 P ′2V
− 1

2
22 S22V

− 1
2

22 P2

 , (A58)

we can then write the test statistic in Equation (48) as z′V̂ −1z z. Since V̂z
a.s.−→ Vz, we have z′V̂ −1z z

A∼

χ2
n1+n2

.

Using the fact that D̂′1V̂
−1
22 ê1 = 0K1+K2+1, we can write

T δ̂21 = T ê′1V̂
− 1

2
22 [P̂1P̂

′
1 + V̂

− 1
2

22 D̂1(D̂
′
1V̂
−1
22 D̂1)

−1D̂′1V̂
− 1

2
22 ]V̂

− 1
2

22 ê1

= T ê′1V̂
− 1

2
22 P̂1P̂

′
1V̂
− 1

2
22 ê1 = z′1z1, (A59)

where z1 is the first n1 elements of z. Similarly, T δ̂22 = z′2z2, where z2 is the last n2 elements of z.

Using these expressions and letting QΞQ′ be the eigenvalue decomposition of

V
1
2
z

[
In1 0n1×n2

0n2×n1 −In2

]
V

1
2
z , (A60)

where Ξ = Diag(ξ1, . . . , ξn1+n2) is a diagonal matrix of the eigenvalues of Equation (A60), or

equivalently the eigenvalues of Equation (50), and Q is a matrix of the corresponding eigenvectors.

Writing z̃ = Q′V
− 1

2
z z

A∼ N(0n1+n2 , In1+n2), we have

T (δ̂21 − δ̂22) = z′

[
In1 0n1×n2

0n2×n1 −In2

]
z = z′V

− 1
2

z QΞQ′V
− 1

2
z z =

n1+n2∑
i=1

ξiz̃
2
i , (A61)
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where z̃2i
A∼ χ2

1, i = 1, . . . , n1 + n2, and they are asymptotically independent of each other. This

completes the proof.

Proof of Proposition 6: We first present the expression of ∂δ2/∂φ for a general linear SDF model.

Claim: Let λ = (D′V −122 D)−1D′V −122 1N and e = Dλ− 1N . We have

∂δ2

∂φ
=

 2µy

2λ1

−V −122 e

⊗ [ 0K

V −122 e

]
. (A62)

Proof: Note that D′V −122 e = 0K+1 implies µ′2V
−1
22 e = 0. Then, it is easy to show that

∂δ2

∂µ1
= 2λ1µ

′
2V
−1
22 e = 0K , (A63)

∂δ2

∂µ2
= 2µyV

−1
22 e. (A64)

For the derivative of δ2 with respect to vec(V ), we write δ2 = e′V −122 e and use the product rule to

obtain
∂δ2

∂vec(V )′
=
∂e′V −122 e

∂vec(V )′
= 2e′V −122

∂e

∂vec(V )′
+ (e′ ⊗ e′)∂vec(V −122 )

∂vec(V )′
. (A65)

For the first term, we use the product rule and the fact that D′V −122 e = 0K+1 to obtain

2e′V −122

∂e

∂vec(V )′
= 2e′V −122

∂Dλ

∂vec(V )′

= 2e′V −122

[
(λ′ ⊗ IN )

∂vec(D)

∂vec(V )′
+D

∂λ

∂vec(V )′

]
= 2e′V −122

[
(λ′ ⊗ IN )

∂vec(D)

∂vec(V )′

]
. (A66)

Writing D = [µ2, [0N×K , IN ]V [IK , 0K×N ]′ + µ2µ
′
1], we can simplify the first term to

2e′V −122

∂e

∂vec(V )′
= 2e′V −122 (λ′ ⊗ IN )

([
0′K 0′N

IK 0K×N

]
⊗ [0N×K , IN ]

)
= [2λ′1, 0′N ]⊗ [0′K , e

′V −122 ]. (A67)

For the second term, we use the fact that for a nonsingular matrix A, we have ∂vec(A−1)/∂vec(A)′ =

−(A−1 ⊗A−1′). Using this identity and the chain rule, we have

(e′ ⊗ e′)∂vec(V −122 )

∂vec(V )′
= (e′ ⊗ e′)∂vec(V −122 )

∂vec(V22)′
∂vec(V22)

∂vec(V )′

= −(e′ ⊗ e′)(V −122 ⊗ V
−1
22 )([0N×K , IN ]⊗ [0N×K , IN ])

= −[0′K , e
′V −122 ]⊗ [0′K , e

′V −122 ]. (A68)
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Combining these two terms, we have

∂δ2

∂vec(V )
=

[
2λ1

−V −122 e

]
⊗

[
0K

V −122 e

]
. (A69)

This completes the proof of the claim.

With the analytical expression of ∂δ2/∂φ available, we can show that

qt(φ) =

[
∂δ2

∂φ

]′
rt(φ)

= 2µye
′V −122 (Rt − µ2) +([

2λ1

−V −122 e

]′
⊗

[
0K

V −122 e

]′)
vec((Yt − µ)(Yt − µ)′ − V )

= 2µye
′V −122 (Rt − µ2) + vec

([
0K

V −122 e

]′
((Yt − µ)(Yt − µ)′ − V )

[
2λ1

−V −122 e

])
= 2µye

′V −122 (Rt − µ2) +

e′V −122 (Rt − µ2)
[
2λ′1(ft − µ1)− e′V −122 (Rt − µ2)

]
+ e′V −122 e− 2e′V −122 V21λ1

= 2utyt − u2t + δ2 − 2e′V −122 V21λ1, (A70)

by denoting ut = e′V −122 Rt and yt = λ0 + λ′1ft. Using the identity e′V −122 D = 0′K+1, which implies

that e′V −122 V21 = −e′V −122 µ2µ
′
1 = 0′K , we can further simplify qt(φ) to

qt(φ) = 2utyt − u2t + δ2. (A71)

Applying a similar derivation for models 1 and 2, we get

q1t(φ) =

[
∂δ21
∂φ

]′
rt(φ) = 2u1ty1t − u21t + δ21 , (A72)

q2t(φ) =

[
∂δ22
∂φ

]′
rt(φ) = 2u2ty2t − u22t + δ22 . (A73)

Now, using the delta method and Equations (A1)–(A4), the asymptotic distribution of δ̂21− δ̂22 when

both models are misspecified is given by

√
T (δ̂21 − δ̂22 − (δ21 − δ22))

A∼ N

(
0,

[
∂(δ21 − δ22)

∂φ

]′
S0

[
∂(δ21 − δ22)

∂φ

])
. (A74)

With the analytical expressions of q1t(φ) and q2t(φ), the asymptotic variance of
√
T (δ̂21 − δ̂22) can

be written as

vd =

∞∑
j=−∞

E[dt(φ)dt+j(φ)], (A75)
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where

dt(φ) =

(
∂δ21
∂φ
− ∂δ22
∂φ

)′
rt(φ) = q1t(φ)− q2t(φ). (A76)

This completes the proof.
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Table 1
Summary of the Models

Panel A: Unscaled Factors

Model CAPM C-CAPM JW CAMP FF3 FF5

δ̂ 0.423 0.435 0.395 0.331 0.360 0.356
p(δ = 0) 0.000 0.000 0.000 0.030 0.000 0.000

se(δ̂) 0.039 0.050 0.049 0.055 0.041 0.041
2.5% CI(δ) 0.353 0.349 0.311 0.241 0.289 0.285
97.5% CI(δ) 0.509 0.548 0.505 0.459 0.452 0.448
No. of par. 2 2 4 6 4 6

Panel B: Factors Scaled by Lag IP

Model CAPM C-CAPM JW CAMP FF3 FF5

δ̂ 0.420 0.400 0.280 0.308 0.358 0.277
p(δ = 0) 0.000 0.009 0.567 0.075 0.000 0.589

se(δ̂) 0.041 0.056 0.066 0.068 0.042 0.080
2.5% CI(δ) 0.348 0.306 0.180 0.204 0.285 0.161
97.5% CI(δ) 0.509 0.528 0.441 0.472 0.453 0.477
No. of par. 4 4 8 12 8 12

Panel C: Factors Scaled by JAN

Model CAPM C-CAPM JW CAMP FF3 FF5

δ̂ 0.397 0.387 0.305 0.234 0.346 0.337
p(δ = 0) 0.000 0.012 0.241 0.487 0.000 0.000

se(δ̂) 0.047 0.059 0.074 0.063 0.046 0.044
2.5% CI(δ) 0.316 0.290 0.194 0.141 0.268 0.262
97.5% CI(δ) 0.504 0.522 0.486 0.393 0.448 0.437
No. of par. 4 4 8 12 8 12

The table presents a summary of six asset pricing models. The models include the market CAPM
(CAPM), the consumption CAPM (C-CAPM), the conditional CAPM of Jagannathan and Wang (1996,
JW), the Campbell (1996) five-factor model (CAMP), the Fama-French (1993) three-factor model (FF3)
and the Fama-French (1993) five-factor model (FF5). The models are estimated using the monthly
returns on the 25 Fama-French size and book-to-market ranked portfolios in excess of the one-month
T-bill rate and the gross one-month T-bill return. Most of the data are from January 1952 to December
2006, but the data for the C-CAPM model start in February 1959, and the data for the CAMP model
cover only the period February 1952 to December 1990. The scaling variables are Lag IP and JAN,
where IP is the cyclical element in the industrial production index and JAN is a dummy variable with
a value of one for January and zero otherwise. δ̂ is the sample HJ-distance. p(δ = 0) is the p-value

for the test of H0 : δ = 0. se(δ̂) is the standard error of the sample HJ-distance under the alternative.
CI(δ) is the 95% confidence interval for δ based on the statistical method. No. of par. is the number of
parameters.
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Table 2
Estimates and t-ratios of Parameters in Various SDF Models under Correctly
Specified and Misspecified Models: Unscaled Factors

CAPM C-CAPM

λ̂0 λ̂vw λ̂0 λ̂cg

Estimate 1.02 −3.38 1.16 −72.90
t-ratiocs 89.68 −3.32 17.90 −2.97
t-ratiom 89.67 −3.32 12.65 −1.91

JW CAMP

λ̂0 λ̂jvw λ̂prem λ̂lab λ̂0 λ̂rvw λ̂clab λ̂div λ̂rtb λ̂trm

Estimate 0.92 −1.79 −71.44 162.63 1.01 0.15 −1.04 42.97 23.17 19.60
t-ratiocs 1.51 −1.46 −1.33 2.90 27.74 0.89 −2.28 0.86 2.40 1.70
t-ratiom 0.70 −1.27 −0.65 1.40 26.57 0.55 −1.44 0.54 1.79 1.20

FF3 FF5

λ̂0 λ̂vw λ̂smb λ̂hml λ̂0 λ̂vw λ̂smb λ̂hml λ̂term λ̂def

Estimate 1.07 −4.97 −2.46 −8.88 1.07 −2.58 −2.74 −7.36 −11.19 −20.92
t-ratiocs 52.11 −4.37 −1.68 −5.60 46.91 −1.24 −1.41 −3.61 −1.43 −0.85
t-ratiom 52.20 −4.37 −1.68 −5.61 46.25 −0.64 −0.91 −2.06 −0.73 −0.35

The table presents the estimation results of six asset pricing models with unscaled factors. The models are
estimated using the monthly returns on the 25 Fama-French size and book-to-market ranked portfolios in
excess of the one-month T-bill rate and the gross one-month T-bill return. Most of the data are from January
1952 to December 2006, but the data for the C-CAPM model start in February 1959, and the data for the
CAMP model cover only the period February 1952 to December 1990. We report parameter estimates λ̂,
t-ratios under correctly specified models (t-ratiocs), and model misspecification robust t-ratios (t-ratiom).
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Table 3
Wald Tests of SDF Parameters of Conditional Models under Correct Specifica-
tion and Potential Misspecification

Panel A: Factors Scaled by Lag IP

Model CAPM C-CAPM JW CAMP FF3 FF5

Wald(cs) 1.33 7.47 14.96 3.69 1.04 7.65
p-value (0.513) (0.024) (0.005) (0.718) (0.904) (0.265)
Wald(m) 0.27 3.88 10.72 1.69 0.21 4.24
p-value (0.874) (0.144) (0.030) (0.946) (0.995) (0.644)

Panel B: Factors Scaled by JAN

Model CAPM C-CAPM JW CAMP FF3 FF5

Wald(cs) 7.64 6.51 14.22 9.43 3.47 4.13
p-value (0.022) (0.039) (0.007) (0.151) (0.483) (0.659)
Wald(m) 7.04 4.62 12.91 6.50 1.64 1.75
p-value (0.030) (0.099) (0.012) (0.370) (0.802) (0.941)

The table presents Wald tests that the SDF parameters of the scaled factors are jointly equal to zero. The
models are estimated using the monthly returns on the 25 Fama-French size and book-to-market ranked
portfolios in excess of the one-month T-bill rate and the gross one-month T-bill return. Most of the data
are from January 1952 to December 2006, but the data for the C-CAPM model start in February 1959,
and the data for the CAMP model cover only the period February 1952 to December 1990. The scaling
variables are Lag IP and JAN, where IP is the cyclical element in the industrial production index and JAN
is a dummy variable with a value of one for January and zero otherwise. We report the Wald-test statistic
under correctly specified (cs) and potentially misspecified (m) models. The p-values of the Wald tests are
shown in parentheses.
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Table 4
Tests of Equality of Squared HJ-Distances

Panel A: Unscaled Factors

Unscaled

Unscaled C-CAPM JW CAMP FF3 FF5

CAPM 0.008 0.023 0.039 0.049 0.052
(0.700) (0.349) (0.124) (0.000) (0.047)

C-CAPM 0.012 0.028 0.044 0.046
(0.710) (0.449) (0.087) (0.087)

JW 0.015 0.026 0.029
(0.632) (0.393) (0.313)

CAMP −0.001 0.009
(0.970) (0.717)

FF3 0.003
(0.797)

Panel B: Factors Scaled by Lag IP

Lag IP

Lag IP C-CAPM JW CAMP FF3 FF5

CAPM 0.032 0.098 0.044 0.048 0.100
(0.270) (0.013) (0.207) (0.072) (0.419)

C-CAPM 0.041 0.024 0.028 0.073
(0.378) (0.603) (0.419) (0.100)

JW −0.017 −0.050 0.002
(0.690) (0.190) (0.969)

CAMP −0.013 0.025
(0.678) (0.618)

FF3 0.051
(0.503)
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Table 4 (Continued)
Tests of Equality of Squared HJ-Distances

Panel C: Factors Scaled by JAN

JAN

JAN C-CAPM JW CAMP FF3 FF5

CAPM 0.018 0.065 0.069 0.038 0.044
(0.601) (0.095) (0.105) (0.177) (0.680)

C-CAPM 0.030 0.029 0.023 0.033
(0.598) (0.460) (0.446) (0.373)

JW 0.025 −0.027 −0.020
(0.571) (0.535) (0.625)

CAMP −0.027 −0.021
(0.402) (0.515)

FF3 0.006
(0.961)

The table presents pairwise tests of equality of the squared HJ-distances of six different asset pricing models
with unscaled and scaled factors. The models are estimated using the monthly returns on the 25 Fama-French
size and book-to-market ranked portfolios in excess of the one-month T-bill rate and the gross one-month
T-bill return. Most of the data are from January 1952 to December 2006, but the data for the C-CAPM
model start in February 1959, and the data for the CAMP model cover only the period February 1952 to
December 1990. The scaling variables are Lag IP and JAN, where IP is the cyclical element in the industrial
production index and JAN is a dummy variable with a value of one for January and zero otherwise. We
report the difference between the sample squared HJ-distances of the models in row i and column j, δ̂2i − δ̂2j ,

and the associated p-value (in parentheses) for the test of H0 : δ2i = δ2j . The p-values are computed under
the assumption that the models are potentially misspecified.
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Table 5
Tests of Equality of Squared HJ-Distances: Unconditional vs. Conditional Mod-
els

Panel A: Unscaled Factors vs. Factors Scaled by Lag IP

Lag IP

Unscaled CAPM C-CAPM JW CAMP FF3 FF5

CAPM 0.002 0.038 0.100 0.053 0.050 0.102
(0.906) (0.246) (0.010) (0.136) (0.197) (0.535)

C-CAPM −0.002 0.029 0.070 0.056 0.058 0.102
(0.930) (0.234) (0.099) (0.201) (0.076) (0.014)

JW −0.020 0.018 0.077 0.030 0.028 0.079
(0.461) (0.676) (0.090) (0.500) (0.384) (0.110)

CAMP −0.029 0.005 0.031 0.014 0.001 0.039
(0.310) (0.913) (0.384) (0.966) (0.954) (0.417)

FF3 −0.046 −0.015 0.051 0.015 0.002 0.053
(0.015) (0.675) (0.176) (0.644) (0.993) (0.814)

FF5 −0.050 −0.017 0.048 0.005 −0.002 0.050
(0.017) (0.645) (0.201) (0.873) (0.901) (0.707)

Panel B: Unscaled Factors vs. Factors Scaled by JAN

JAN

Unscaled CAPM C-CAPM JW CAMP FF3 FF5

CAPM 0.021 0.048 0.086 0.094 0.059 0.065
(0.235) (0.172) (0.033) (0.006) (0.157) (0.567)

C-CAPM 0.022 0.040 0.070 0.086 0.063 0.073
(0.480) (0.176) (0.174) (0.042) (0.035) (0.038)

JW −0.002 0.028 0.063 0.070 0.036 0.042
(0.953) (0.523) (0.339) (0.083) (0.281) (0.205)

CAMP −0.015 0.029 0.029 0.054 0.028 0.033
(0.707) (0.515) (0.494) (0.432) (0.363) (0.293)

FF3 −0.028 −0.004 0.037 0.055 0.010 0.016
(0.222) (0.892) (0.351) (0.085) (0.843) (0.981)

FF5 −0.031 −0.006 0.034 0.046 0.007 0.013
(0.201) (0.851) (0.382) (0.157) (0.713) (0.961)
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Table 5 (Continued)
Tests of Equality of Squared HJ-Distances: Unconditional vs. Conditional Mod-
els

Panel C: Factors Scaled by Lag IP vs. Factors Scaled by JAN

JAN

Lag IP CAPM C-CAPM JW CAMP FF3 FF5

CAPM 0.018 0.042 0.083 0.084 0.057 0.063
(0.442) (0.262) (0.043) (0.033) (0.018) (0.011)

C-CAPM −0.007 0.010 0.041 0.054 0.034 0.043
(0.861) (0.792) (0.466) (0.231) (0.366) (0.300)

JW −0.079 −0.030 −0.014 0.024 −0.041 −0.035
(0.069) (0.521) (0.777) (0.531) (0.274) (0.357)

CAMP −0.029 0.001 0.015 0.040 0.013 0.019
(0.509) (0.990) (0.765) (0.326) (0.719) (0.624)

FF3 −0.030 −0.018 0.035 0.053 0.008 0.015
(0.236) (0.648) (0.378) (0.101) (0.658) (0.446)

FF5 −0.081 −0.063 −0.016 0.015 −0.043 −0.037
(0.089) (0.158) (0.768) (0.752) (0.313) (0.399)

The table compares the performance of six asset pricing models with unscaled factors with the performance
of the corresponding models with scaled factors. The models are estimated using the monthly returns on
the 25 Fama-French size and book-to-market ranked portfolios in excess of the one-month T-bill rate and
the gross one-month T-bill return. Most of the data are from January 1952 to December 2006, but the data
for the C-CAPM model start in February 1959, and the data for the CAMP model cover only the period
February 1952 to December 1990. The scaling variables are Lag IP and JAN, where IP is the cyclical element
in the industrial production index and JAN is a dummy variable with a value of one for January and zero
otherwise. We report the difference between the sample squared HJ-distances of the models in row i and
column j, δ̂2i − δ̂2j , and the associated p-value (in parentheses) for the test of H0 : δ2i = δ2j . The p-values are
computed under the assumption that the models are potentially misspecified.
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