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ABSTRACT

In a simple standardized factor model, Kan and Zhou (1999) show that the estimate of the

parameter in the stochastic discount factor (SDF) method is much less efficient than the risk

premium estimate in the beta method, when both are estimated using the generalized method of

moments (GMM). Jagannathan and Wang (2001) and Cochrane (2000a,b) debate this conclusion

in a nonstandardized factor model where the factor mean and variance have to be estimated, but

their analysis relies on joint normality assumption for both the asset returns and the factors in

an unconditional model. We make four contributions in this paper. First, we show that once

the restrictive normality assumption is relaxed, the variance of the GMM estimate of the SDF

parameter is highly sensitive to factor skewness and kurtosis whereas the variance of the GMM

estimate of the risk premium is not. Second, we show that provide results for the general case and

show that inference about the SDF parameter is highly sensitive to factor skewness and kurtosis,

whereas inference about the factor premium is not. Therefore, even when the mean and the

variance of the factor are unknown, inference based on the SDF parameter can still be less reliable

than inference based on the risk premium parameter in realistic situations where the factors are

leptokurtic. We also show that even for the case of independent and identically distributed returns

and factors with conditional homoskedasticity, the GMM methodology can still be less efficient than

the maximum likelihood method in estimating the parameters. In addition, we provide a theoretical

power analysis of the GMM specification tests under both the SDF and the beta methods. Unlike

the finding of Jagannathan and Wang (2001), we show that the two GMM specification tests have

the same asymptotic local power. In addition, we show that the likelihood ratio test can be strictly

more powerful than the GMM specification tests when the residuals are not normally distributed.



Traditional asset pricing theories, such as those of Sharpe (1964), Lintner (1965), Black (1972),

Merton (1973), Ross (1976) and Breeden (1979), show that the expected return on a security is a lin-

ear function of betas with respect to some common factors. This implication has been conveniently

tested extensively in the finance literature by the so-called regression based “traditional method”

or beta method, in which a regression model is proposed for the stock returns, and the theoretical

implications are tested as hypotheses on the parameters of the regression model. However, it is now

well known that linear asset pricing models and many nonlinear ones can be unified in a stochastic

discount factor (SDF) framework. Different specifications of the SDF correspond to different asset

pricing models. This framework has stimulated a different set of empirical tests based solely on the

SDF formulation. This approach, the SDF method, has become extremely popular in the recent

finance literature.

Although both the beta and the SDF methods are used by many researchers in many different

contexts, usually only one of them is used in a given application. It is therefore important to know

which of the two methods is better. In addition, as suggested by Jagannathan and Wang (2001,

JW hereafter), the comparison can be so important that it might change the course of our empirical

research on asset pricing models. If the traditional method performs better in linear models, it is

natural to speculate that it can also perform better in situations that involve nonlinear models.

This is because, in many cases, nonlinear SDF models are often linearized (see for example, Bansal,

Hsieh, and Viswanathan (1993), Campbell (1993, 1996), and Cochrane (1996)), and we can study

them also using the beta method too.

Comparison of the two methods is not an easy matter even for linear factor models, since the

parameters of interest are different under the two setups. The beta method is formulated to analyze

the factor risk premium, δ, and this is the primary parameter of interest. In contrast, the SDF is

formulated to analyze the linear coefficient associated with the factor, λ, in the pricing kernel. In

general, δ and λ are different parameters, so a direct comparison between them is difficult. The

parameters do coincide for a standardized factor model, i.e., one in which the factor mean and

variance are known in advance and the factor can be normalized to have mean zero and variance

one. Using this fact, Kan and Zhou (1999, KZ hereafter) provide the first formal comparison

between the two methods, assuming Generalized Method of Moments (GMM) estimation in both

cases. The main findings are that the estimate of λ under the SDF method is far less efficient than
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the estimate of δ under the beta method and that the power of the GMM specification test in the

SDF method is also much lower than it is in the beta method when the factor does not explain a

lot of the returns.

The weakness of a standardized factor model is that it requires a known factor mean and

variance. What happens if the mean and the variance of the factor are unknown constants?1 As

pointed out earlier, δ and λ will in general be different parameters, and a comparison between their

estimation efficiency becomes more difficult. JW suggest augmenting the SDF and beta methods

with two moments in their GMM estimation, one for the mean and one for the variance of the factor.

Once these two moments are incorporated in the two methods, one can make an inference regarding

both the SDF and the risk premium parameter using either method. As a result, one can compare

the asymptotic variance of estimates of these two parameters in the two methods. For the case of

independent and identically distributed (i.i.d.) jointly normal factors and residuals, JW show that

the asymptotic variance of the estimates of λ and δ are identical in the GMM estimation of the

two methods. In addition, they also show that there is no efficiency gain in using the maximum

likelihood estimation of the beta model. Therefore, they conclude that, for parameter estimation,

there is no advantage in using the beta method, whether it is estimated by GMM or maximum

likelihood. Similar points are also made by Cochrane (2000b).

Known properties of stock returns make it clear that i.i.d. joint normality assumption is not

a good description of the data. The first contribution of this paper is to provide a thorough

analysis of the efficiency of GMM estimation without making strong distributional assumptions.

We show that, for the GMM estimation, the results in JW are indeed general. If one augments the

beta and SDF methods with the two additional moments conditions on estimating the mean and

the variance of the factor, then the asymptotic variances of the estimates of δ and λ are always

identical in both methods. This is because once these two additional moments are incorporated,

the moment conditions used by the SDF method are just a subset of the moment conditions used

1When a macroeconomic variable is used as the factor, pre-processing is often performed to create a factor that
is an innovation. One can obviously question whether such pre-processing actually creates a factor that has mean
zero, or if it still leaves a nonzero mean in the prespecified factor. By the same token, one can also question the
assumption that the prespecified factor has a constant conditional mean. One can even question the assumption that
the prespecified factor is the correct factor. In this paper, we prefer not to debate the correctness of an assumption
but instead focus our analysis on the more general case in which the conditional mean and the variance of the factor
are unknown constants. Nevertheless, it is important to point out that inferences from the two-pass cross-sectional
regression methodology used by, for example, Chen, Roll, and Ross (1986), are correct whether the factor has a zero
or nonzero mean.
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by the beta method. Therefore, estimation of δ or λ under the SDF method can never be more

efficient than estimation under the beta method. On the other hand, while the beta method

contains some additional moment conditions that are not in the SDF method, the beta method

also requires estimation of the same number of additional parameters. As a result, no improvement

on estimation efficiency of the parameters in the SDF method can be offered by the beta method.

JW’s conclusion that there is no efficiency gain in using the maximum likelihood estimation of the

beta method, however, is specific to the joint normality assumption of the residuals and the factor.

We show that, even for i.i.d. normal residuals, the maximum likelihood approach of the beta model

can still offer important improvements over the GMM estimation of both the SDF and the beta

model when the factor is not normally distributed.

While these results are interesting, they do not offer us a relevant comparison between the

two methods. This is because, to our knowledge, no one in the finance literature uses the SDF

method to make inferences on the factor premium parameter δ, and no one uses the beta method to

make inferences on the SDF parameter λ. In fact, a crucial distinguishing feature between the two

methods is that we make inferences on λ using the SDF method, and we make inferences on δ using

the beta method. The relevant question to ask is whether it is better to make inferences on δ or

on λ, when the mean and the variance of the factor need to be estimated. Since the most popular

inference in the SDF method is to test H0 : λ = 0, and the most popular inference in the beta

method is to test H0 : δ = 0, we can compare the performance of these two estimates by comparing

their coefficients of variation. Namely, we compare how many standard deviations that the mean

of these estimates are away from zero. To facilitate this comparison, the second contribution of

the paper is to provide explicit expressions of the asymptotic variance of GMM estimates of δ

and λ, allowing for nonnormal factors and residuals, as well as for conditional heteroskedasticity.

These explicit expressions allow us to show that the asymptotic variance of the GMM estimate of λ

depends on both the third and the fourth moments of the factor, whereas the asymptotic variance

of the GMM estimate of δ does not. In many empirical asset pricing studies, returns and factors

exhibit significant positive kurtosis and this positive kurtosis renders the estimate of λ less reliable

than the estimate of δ. It is in this sense that we believe the beta method is superior to the SDF

method. The intuition of these results is simple. The risk premium δ is basically related to the first

moment of the returns, whereas the SDF parameter can be viewed as approximately equal to the
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risk premium divided by the variance of the factor. This implies the variability of the estimate of λ

depends also on how volatile the sample variance of the factor is. In general, the more leptokurtic

is the factor, the more volatile is the sample variance of the factor.2 As a result, inference using λ

becomes less reliable in the presence of a leptokurtic factor.

Besides estimation accuracy, the size and power of specification tests are of importance in

comparing the two methods. Unlike the case of estimation of risk premium, the specification tests

in KZ are valid regardless of whether the mean and the variance of the factor are known or not.

However, JW show that the size of the specification test under the beta method is highly distorted

in finite samples. This finding is probably due to the fact that they use the specification test from

the second stage GMM with the identity matrix as the initial weighting matrix. We show that,

when the third stage GMM is used, or when a more appropriate initial weighting matrix is chosen,

the size distortion problem of the specification test under the beta method disappears.

When the beta pricing model is misspecified, one would like the specification test to have power

to detect such misspecifications. The third contribution of our paper is to provide a theoretical

analysis of the power of the GMM specification tests under sequences of local alternatives. We

find that the two methods offer exactly the same asymptotic local power. For the case of fixed

alternatives, JW provide a theoretical analysis of the pricing errors under the two methods. We

point out the problems in their theoretical analysis of pricing errors and provide simulation evidence

showing that the GMM specification tests under the two methods are of similar power even under

the fixed alternatives, provided that one uses an apporpriate weighting matrix. Simulation evidence

also shows that the likelihood ratio test can dominate the GMM specification tests when the

residuals are not normally distributed.

In a nutshell, the imprecision of the GMM estimate of the SDF parameter relative to the risk

premium estimate, as pointed out by KZ, still exists even when the mean and the variance of the

factor are unknown. However, if the factor explains a lot of the returns on the test assets, then

there is no obvious advantage or disadvantage in using the GMM specification test under the beta

method.

The rest of the paper is organized as follows. Section I presents the augmented SDF model

2It can be shown that under the i.i.d. setting, the asymptotic variance of the sample variance of the factor, σ̂2, is
(2 + γ2)σ

4, where γ2 is the kurtosis coefficient and σ2 is the variance of the factor.
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and the beta model, and discusses the parameter estimation and specification test under the GMM

framework. Section II compares the asymptotic variance of the estimates of the risk premium and

the SDF parameter under both methods. Section II also provides analytical expressions for the

asymptotic variance of these two parameters under nonnormal factors and returns with possible

conditional heteroskedasticity. These expressions allow us to compare the relative merits of inference

using these two parameters. Maximum likelihood estimation is also discussed in this section.

Section III presents the local power analysis of the specification tests under the two methods.

This section also points out the problems in JW’s analysis of pricing errors. Section IV presents

simulation results. The final section concludes, and the Appendix contains proofs of all propositions.

I. The SDF and the Beta Models

In this section, we introduce the SDF and the beta models together with the GMM estimation of

parameters and specification tests under these two models. Although the results hold for general

multi-factor models, we limit our discussion to the case of a one-factor model in order to bring

out the main points with the least technical burden on the readers.3 Denote the excess returns (in

excess of the risk-free rate) on N assets at time t as rt. Under the one-factor beta pricing model,

consistent with the CAPM or one-factor APT, the conditional expected excess return on each of

N assets is a linear function of its conditional beta with respect to a common factor ft:

E[rt|It−1] = βtδt, (1)

where βt = Cov[rt, ft|It−1]/Var[ft|It−1] is the vector of conditional betas of the N assets at time t,

δt is the conditional risk premium at time t, and It−1 is the information variable available to the

investors at time t− 1.

Under the law of one price, there exists a random variable mt, called the stochastic discount

factor, the state-price density, or the pricing kernel, such that

E[rtmt|It−1] = 0N , (2)

where 0N is an N -vector of zero. A beta pricing model can be cast in the SDF framework by

3A technical appendix of the results for general multi-factor models is available upon request.
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specifying the stochastic discount factor as a linear function of ft, and then we have

E[rt(1− ftλt)|It−1] = 0N . (3)

Note that both δt and λt are in general functions of It−1. Without ancillary assumptions, (1) and

(3) are too general to be tested.

In many empirical applications, βt and δt are assumed to be constant in the beta model, and λt

is assumed to be constant in the SDF model. It deserves emphasis that, although the beta model

is equivalent to the SDF model on a theoretical basis, the two are not equivalent empirical models

once ancillary assumptions are made. For example, assuming β is constant does not imply that

the conditional covariance and conditional variance are constant over time.4 Therefore, constant δ

in the beta model does not imply constant λ in the SDF model, and vice versa. In order for both

δ and λ to be constant, we need to make additional assumptions that the conditional mean and

variance of the factor are also constant. Under these assumptions, it is easy to show that there is

a one-to-one mapping between δ and λ

δ =
σ2λ

1− µλ
, (4)

λ =
δ

σ2 + µδ
, (5)

for given values of µ and σ2, where µ and σ2 are the mean and the variance of the common factor.5

However, for δ to be finite, we need to assume λ 6= 1/µ, and similarly we need to assume δ 6= −σ2/µ

in order for λ to be finite.

When the factor is a general macroeconomic factor, there is no relation between δ and µ. For

the case where the factor is the excess return on a portfolio, however, the risk premium δ is not

a free parameter, but instead it is given by δ = µ. Similarly, the SDF parameter λ is also not

a free parameter, and it is given by λ = µ/(σ2 + µ2). In many empirical studies using the beta

pricing models, the restriction on δ is not imposed even when excess portfolio return is used as

the factor. This problem is even more pervasive for empirical work using the SDF models because

4For example, suppose (rt, ft, It−1) are jointly elliptically distributed, then βt is constant over time, but conditional
variance of (rt, ft) is a function of It−1.

5Another popular formulation of the stochastic discount factor is to define mt = 1 − (ft − µ)λ (e.g., Cochrane
(1996)). This alternative formulation has the advantage that we can interpret λ as the reward-to-covariance parameter.
Analysis of this SDF formulation is similar to the one that we present here, and therefore we do not provide a separate
analysis for it.
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the restriction on λ is almost never imposed. In the following discussion, we follow the common

practice and do not place any restrictions on δ and λ. One could view our analysis as dealing

with macroeconomic factors exclusively, or, alternatively, view the empirical asset pricing model as

intended to price just the test assets, but not the factor portfolio in the case where the factor is

the excess return on a portfolio.6

For statistical inference, we assume the excess returns follow a linear factor model,

rt = α + β(ft − µ) + εt, (6)

where εt is the residual, with E[εt] = 0N and E[εt|ft] = 0N . The exact beta pricing model implies

α = E[rt] = βδ, so we can write the return generating model as

rt = β(δ − µ + ft) + εt. (7)

In our analysis, we assume δ 6= 0 to exclude the uninteresting case. To estimate the SDF model

using GMM, researchers typically rely on the following moment conditions:

E[ut(λ)] ≡ E[rt(1− ftλ)] = 0N , (8)

and inference can only be made on its parameter λ, but not on δ. This has been a distinguishing

feature of the SDF method.

JW (2001) suggest that one can also make inference on δ if one augments the SDF method with

two additional moment conditions. They suggest using the following set of moment conditions:

E[gt(λ, µ, σ2)] ≡


E[rt(1− ftλ)]

E[ft − µ]

E[(ft − µ)2 − σ2]

 = 0N+2. (9)

Under this set of moment conditions, one can estimate δ using the relation in (4). We shall denote

the GMM estimate of δ and λ under this method as δ̂g and λ̂g in order to highlight the fact that

they are obtained from using the moments gt.

Suppose we have T observations of rt and ft, then the GMM estimate of the parameters θ =

(λ, µ, σ2)′ is obtained by minimizing a quadratic form of the sample moment conditions as

θ̂g = argminθḡ(θ)′Wg ḡ(θ), (10)
6This implicitly assumes that the factor portfolio is not a linear combination of the test assets. Such an assumption

is often required in empirical tests of asset pricing models to ensure that the covariance matrix of the residuals is
nonsingular.
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where ḡ(θ) = 1
T

∑T
t=1 gt(θ) is the vector of sample moments, and Wg is a consistent estimate of

the inverse of Sg =
∑∞

j=−∞E[gt(θ0)gt+j(θ0)′], where θ0 is the true parameter. Note that the aug-

mented SDF moments are nonlinear functions of the parameters, so typically one uses a numerical

optimization method to find the GMM estimates. In the Appendix, we show that an analytical

solution to this particular minimization problem can be obtained. This analytical solution allows

us to speed up our simulation but, more importantly, it allows us to obtain the global minimum

solution.7 As we show in the Appendix, there can be up to three sets of solutions to the first order

condition of this minimization problem, so numerical methods cannot in general guarantee conver-

gence to the global minimum. While the analytical solution of the GMM minimization problem is

important for our simulations, it is not essential for our theoretical analysis. Therefore, we relegate

its in-depth discussion to the Appendix.

For the GMM estimation of the beta pricing model, one typically relies on the moment conditions

E[rt − β(δ − µ + ft)] = 0N , (11)

E[(rt − β(δ − µ + ft))ft] = 0N , (12)

E[ft − µ] = 0. (13)

Note that this set of moment conditions can allow us only to make inference on δ, but not on λ.

In order for us to also estimate λ using the beta method, JW suggest adding a moment condition

to estimate the variance of the factor. Therefore, the moment conditions for the augmented beta

method are

E[ht(λ, µ, σ2, β)] ≡


E[rt − β(δ − µ + ft)]

E[(rt − β(δ − µ + ft))ft]

E[ft − µ]

E[(ft − µ)2 − σ2]

 = 02N+2, (14)

where δ in the moment conditions is given by (4). We shall denote the GMM estimate of δ and λ

under this method as δ̂h and λ̂h, in order to highlight the fact that they are obtained from using

the moments ht. Note that, although in practice one estimates δ only using the beta method, we

write ht here as a function of λ just for easy comparison with the SDF method.

The GMM estimate of the parameters θ and β are obtained by minimizing a quadratic form of

7The analytical solution allows us to perform all our simulation with 10,000 repetitions. In contrast, a similar
simulation study provided by JW is based on a simulation size of only 1,000.
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the sample moment conditions,[
θ̂h

β̂

]
= argminθ,βh̄(θ, β)′Whh̄(θ, β), (15)

where h̄(θ, β) = 1
T

∑T
t=1 ht(θ, β) is the vector of sample moments, and Wh is a consistent estimate

of the inverse of Sh =
∑∞

j=−∞E[ht(θ0, β0)ht+j(θ0, β0)′], where θ0 and β0 are the true parameters.

Note that the augmented SDF moments are nonlinear in the parameters. Although an analytical

solution to this minimization problem is not available, we show in the Appendix that we can reduce

the multi-dimensional minimization problem to a one-dimensional one, so that a simple line search

will allow us to obtain the GMM estimates.

In both the SDF and the beta methods, one can test if the asset pricing model is correctly

specified by performing a specification test. Under the SDF method, the GMM over-identification

restriction test statistic is

Jg = T ḡ(θ̂g)′Wg ḡ(θ̂g). (16)

The corresponding test statistic under the beta method is

Jh = T h̄(θ̂h, β̂)′Whh̄(θ̂h, β̂). (17)

When the model is correctly specified, both Jg and Jh have an asymptotic distribution of χ2
N−1. One

can also test the beta pricing model by dropping the augmented moment conditions for the mean

and the variance of the factor in both methods. Although µ appears in the first 2N moments under

the beta method, we can still drop the augmented moment for the factor mean by simply defining a

new parameter φ = δ−µ in (11) and (12). The over-identification test is then numerically identical

to the one that is presented in KZ. This makes it clear that the over-identification test presented

in KZ is valid, regardless of whether the mean and the variance of the factor are known or not. By

dropping the two augmented moments, we have two fewer parameters, and the over-identification

tests in the two methods still have an asymptotic distribution of χ2
N−1.

II. A Comparison of SDF and Beta Methods

A. Asymptotic Variance of Parameter Estimates

Is the SDF method better, or is the beta method better? Under the assumption that (εt, ft) are

i.i.d. and jointly normally distributed, JW suggest that the two methods are the same when we
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compare the asymptotic variance of the estimates of λ (or δ) in both methods. We should at the

outset emphasize that this is not a proper comparison of the two methods. This is because, to the

best of our knowledge, no researchers actually use the SDF method to make inferences on δ, and

no researchers use the beta method to make inferences on λ. Therefore, the proper comparison of

the two methods should be focused on the question of whether or not inference based on δ is better

than inference based on λ. We shall defer this question to the next subsection. In this subsection,

we provide a proof of the JW’s GMM estimation results, but in a general setting that does not

require i.i.d. and joint normality assumption. We also provide an intuitive explanation.

To prepare for our key results, we start off our discussion with a linear transformation of the

moment conditions used by the beta method ht. Consider

mt(θ, β) = Aht(θ, β) (18)

where

A =


IN −λIN [1− (µ + δ)λ]β −λβ
0′N 0′N 1 0
0′N 0′N 0 1

−µIN IN δβ 0

 (19)

is a (2N + 2) × (2N + 2) nonsingular matrix. Asymptotically, there is no difference whether we

conduct the GMM estimation and testing using ht or using mt, because the two sets of moments

contain the same information. But what does mt represent? Denote εt = rt − β(δ − µ + ft), the

first N elements of mt are

εt − λεtft + [1− (µ + δ)λ]β(ft − µ)− λβ[(ft − µ)2 − σ2]

= [rt − β(δ − µ + ft)](1− ftλ) + [1− (µ + δ)λ]β(ft − µ)− λβ[(ft − µ)2 − σ2]

= rt(1− ftλ)− β
[
δ(1− µλ)− λσ2

]
= rt(1− ftλ). (20)

Therefore, the first N + 2 elements of mt are simply gt, the moment conditions used by the SDF

method. This linear transformation makes it clear that the SDF moment conditions are just a subset

of the moment conditions used by the beta method, so the SDF method can never attain better

asymptotic efficiency in parameter estimation than the beta method. The linear transformation

also suggests that one cannot add the SDF moment conditions to the beta method, since they are

redundant.
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Consider now the last N elements of mt. They can be written as

−µεt + εtft + δβ(ft − µ) = (ft − µ)[rt − β(δ− µ + ft)] + βδ(ft − µ) = rt(ft − µ)− β(ft − µ)2. (21)

Therefore, comparing with the SDF method, one can think of the beta method as having N

additional moment conditions to estimate the β. In general, adding more moment conditions

should improve the asymptotic efficiency of parameter estimation. In this particular case, however,

the additional N moment conditions used by the beta method also bring in N additional parameters

β, so one can no longer improve the estimation of θ using the beta method. The following lemma

formalizes this result.

Lemma 1 Denote φ = (φ′1, φ
′
2)
′ as a vector of p = p1 + p2 parameters where φ1 is p1 × 1, and φ2

is p2 × 1. Suppose we have m = m1 + m2 moment conditions

E[gt(φ)] ≡ E

[
g1t(φ1)

g2t(φ1, φ2)

]
= 0m, (22)

where g1t is m1 × 1, and g2t is m2 × 1, with m1 ≥ p1 and m2 ≥ p2. Denote the GMM estimator of

φ1 using just the moment conditions E[g1t(φ1)] = 0m1 as φ̂1 and the GMM estimator of φ1, using

all the moment conditions E[gt(φ)] = 0m as φ̂∗1. Under the usual regularity conditions for GMM as

in Hansen (1982), we have Avar[φ̂1] ≥ Avar[φ̂∗1].
8 If p2 = m2, we have Avar[φ̂1] = Avar[φ̂∗1].

A direct application of Lemma 1 yields our first proposition.

Proposition 1: Under the usual regularity conditions for GMM as in Hansen (1982), we have

Avar[δ̂g] = Avar[δ̂h], (23)

Avar[λ̂g] = Avar[λ̂h]. (24)

Therefore, the GMM estimation of δ and λ has the same asymptotic efficiency under both the SDF

and the beta methods. JW prove this result for the case that (εt, ft) is i.i.d. multivariate normal.

Our Proposition 1 is significantly more general in that it allows for nonnormal residuals and factors.

It also allows for non i.i.d. distribution as well as autocorrelated errors.9

8For two matrices A and B, we write A ≥ B when A−B is a nonnegative definite matrix.
9It should be emphasized that unless overlapping returns are used for empirical tests, autocorrelation in gt and

ht is hard to justify because it implies that the model is not correctly specified.
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Lemma 1 also suggests that, for the estimation of λ under the SDF method, one can drop the

last two moments in gt without affecting the asymptotic efficiency. Similarly, for the estimation

of δ under the beta method, one can drop the last moment in ht without affecting the asymptotic

efficiency. However, under the assumption that the mean of the factor is known as in KZ, the

standard SDF moment conditions are no longer a subset of the moment conditions in the standard

beta method, so Lemma 1 does not apply, and the parameter estimates under the beta method can

be far superior to those under the SDF method.10

B. Comparison of Inference Using Risk Premium and SDF Parameter

The distinguishing feature of the SDF method is that it estimates the SDF parameter λ, and

the distinguishing feature of the beta method is that it estimates the risk premium parameter δ.

In fact, the current practice does not incorporate the augmented moment conditions in the SDF

and the beta methods, so one cannot even make inferences on parameters that are specific to the

other method. Therefore, to answer the question as to whether the beta method is better than

the SDF method, one ought to focus on whether inference on δ is better than inference on λ. To

address this question, we need explicit analytical expressions on Avar[δ̂] and Avar[λ̂]. For this

purpose, we assume (εt, ft) are i.i.d. Our distributional assumption is still more general than the

i.i.d. multivariate normality assumption used by JW. Besides nonnormal residuals and factors,

our distributional assumption also allows for conditional heteroskedasticity, so Var[εt|ft] does not

have to be constant. The following proposition summarizes the asymptotic variance under the i.i.d.

assumption. Due to Proposition 1, we simply denote the GMM estimators of δ and λ as δ̂ and λ̂,

without being explicit about whether we use gt or ht to estimate them.

Proposition 2: When (εt, ft) are independent and identically distributed over time, we have

Avar[δ̂] =
(σ2 + µδ)2

σ4
(β′U−1β)−1 + σ2, (25)

Avar[λ̂] =
(β′U−1β)−1

(σ2 + µδ)2
+

σ2(σ4 + δ4) + 2δ(δ2 − σ2)µ3 + δ2(µ4 − 3σ4)
(σ2 + µδ)4

, (26)

where U = E[(1− ftλ)2εtε
′
t], µ3 = E[(ft − µ)3], and µ4 = E[(ft − µ)4].

10When the mean and the variance of the factor are known, JW suggest one can improve parameter estimates under
the SDF method by adding two somewhat unusual moment conditions that do not involve any parameters. Basically,
by combining these two new moment conditions, one can transform the highly volatile SDF moment conditions into
the more reliable beta moment conditions.

12



A couple of special cases deserve our attention. In the first case, we assume (εt, ft) has a multivariate

elliptical distribution. In this case, the two expressions can be simplified to

Avar[δ̂] =

[
1 +

(1 + γ2

3 )δ2

σ2

]
(β′Σ−1β)−1 + σ2, (27)

Avar[λ̂] =
σ4

(σ2 + µδ)4

[
1 +

(1 + γ2

3 )δ2

σ2

]
(β′Σ−1β)−1 +

σ2(σ4 + δ4) + γ2δ
2σ4

(σ2 + µδ)4
, (28)

where γ2 = µ4/σ4 − 3 is the kurtosis of ft and Σ = Var[εt] is the unconditional variance of εt.

In the second case, we assume Var[εt|ft] = Σ (i.e., conditional homoskedasticity). In this case,

the two expressions are given by

Avar[δ̂] =

(
1 +

δ2

σ2

)
(β′Σ−1β)−1 + σ2, (29)

Avar[λ̂] =
σ2(σ2 + δ2)
(σ2 + µδ)4

(β′Σ−1β)−1 +
σ2(σ4 + δ4) + 2δ(δ2 − σ2)µ3 + δ2(µ4 − 3σ4)

(σ2 + µδ)4
. (30)

In the last case, we consider (εt, ft) has a multivariate normal distribution and we have

Avar[δ̂] =

(
1 +

δ2

σ2

)
(β′Σ−1β)−1 + σ2, (31)

Avar[λ̂] =
σ2(σ2 + δ2)
(σ2 + µδ)4

(β′Σ−1β)−1 +
σ2(σ4 + δ4)
(σ2 + µδ)4

, (32)

which are the same as those given by JW. The expressions for the multivariate normality case can

be obtained as a special case for the multivariate elliptical distribution by setting γ2 = 0, or they

can be obtained by setting µ3 = 0 and µ4 = 3σ4 in the conditional homoskedasticity case.

In comparing the expressions for Avar[δ̂] with those for Avar[λ̂], we note that the third and

the fourth moments of the factor play an important role in determining Avar[λ̂], but this is not

the case for Avar[δ̂]. The reason is that δ̂, as the estimated risk premium, is only related to the

first moment of the return, so the third and the fourth moments of the factor do not contribute

much to its asymptotic variance.11 However, λ = δ/(σ2 + µδ), so when µ and σ2 need to be

estimated, the asymptotic variance of λ̂ will be heavily influenced by the third and the fourth

moments of the factor. In an extreme case, where the third or the fourth moment of the factor does

11Strictly speaking, this is only true for the conditional homoskedasticity case. When β needs to be estimated,
asymptotic variance of β̂ (and hence Avar[δ̂]) can also be affected by the third and the fourth moments of the factor
if there is conditional heteroskedasticity.

13



not exist, Avar[λ̂] is infinite, but Avar[δ̂] can still be finite under the conditional homoskedasticity

assumption.12

How do we compare Avar[δ̂] with Avar[λ̂]? The easiest way is to look at the case where the

factor is standardized, i.e., µ = 0 and σ2 = 1. In this case, we have δ = λ, and we can directly

compare Avar[δ̂] with Avar[λ̂] to determine whether or not inference using δ̂ is better than using λ̂.

It is important to note that unlike in KZ, we do not assume the econometrician has the knowledge

that µ = 0 and σ2 = 1 here. These two moments still have to be estimated so the asymptotic

variances of both δ̂ and λ̂ fully take into account of the estimation errors of µ̂ and σ̂2. From

Proposition 2, we have

Avar[δ̂] = (β′U−1β)−1 + 1, (33)

Avar[λ̂] = (β′U−1β)−1 + 1 + δ4 + 2δ(δ2 − 1)µ3 + δ2(µ4 − 3), (34)

when µ = 0 and σ2 = 1. Comparing (33) and (34), we can see that which estimator is more

efficient depends in general on the third and the fourth moments of the factor. For the case where

the standardized factor ft is normal, we have µ3 = 0 and µ4 = 3 and hence

Avar[λ̂] = (β′U−1β)−1 + 1 + δ4 > Avar[δ̂]. (35)

Therefore, under the case of a normal standardized factor, we can definitely conclude that using

δ̂ to make inferences is asymptotically better than using λ̂.13 One must wonder why there is a

difference in the asymptotic variance of δ̂ and λ̂ when they both converge to the same limit. To

understand this, we observe that λ̂ = δ̂/(σ̂2 + µ̂δ̂). Even though the denominator converges to one

when µ = 0 and σ2 = 1, its sample fluctuations can make λ̂ more volatile than δ̂. The efficiency

gain from using δ̂ instead of λ̂, however, depends on the magnitude of δ. For a standardized factor,

the magnitude of δ depends on to what degrees the returns are correlated with the factor.14 If the
12Note that the assumption of existence of fourth moment is only sufficient, but not necessary, for the asymptotic

variance of δ̂ to exist.
13When the econometrician has the knowledge that µ = 0, KZ show that Avar[δ̂] = (β′U−1β)−1 < Avar[λ̂].

Under the i.i.d. joint normality assumption on the returns and factor, Cochrane (2000a) points out KZ’s expression
understates the volatility of δ̂ if the econometrician does not know the mean of the factor. As we show here, the
inequality of Avar[δ̂] < Avar[λ̂] still holds for the case of normal factor, even when the econometrician has to estimate
the mean of the factor.

14To see this, we observe that the risk premium is given by δ = E[ri]/βi, where E[ri] and βi are the expected
return and beta of the ith asset, respectively. For a standardized factor, we have βi = ρifσi, where σi is the standard
deviation of the ith asset and ρif is the correlation coefficient between the excess return on the ith asset and the
common factor. Therefore, the less correlated is the factor with the returns, the lower is the beta and the higher is
the risk premium.
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factor explains a lot of the returns (for example, when the test assets and the factor are both returns

from well diversified portfolios), then δ is small and the efficiency gain from using δ̂ is not much. If

the factor does not explain a lot of the returns (for example, when the factor is a macroeconomic

factor), then δ can be fairly large, and the efficiency gain from using δ̂ instead of λ̂ is substantial.

For the general case, it depends on the sign of µ3 and the magnitude of µ4. For symmetric

factors (i.e., µ3 = 0), Avar[δ̂] is smaller than Avar[λ̂] if the factor is leptokurtic (i.e., µ4 > 3), but

Avar[δ̂] can be greater than Avar[λ̂] if µ4 < 3. Intuitively, this result follows because, under the

i.i.d. assumption, the asymptotic variance of σ̂2 is µ4 − σ4. Therefore, the more leptokurtic the

factor is, the more volatile is σ̂2 and hence the more volatile is λ̂.

In practice, commonly used factors and returns often exhibit very high kurtosis. This salient

feature of the data suggests that the asymptotic variance of λ̂ can be a lot higher than the asymptotic

variance of δ̂ (after standardizing the factor). As an example, we report in Panel A of Table 1 the

sample average, sample standard deviation, sample skewness and kurtosis of the excess return on the

value-weighted market portfolio and the ten size-ranked portfolios of the combined NYSE-AMEX-

NASDAQ; these were estimated using monthly data over the period January 1926 to December

1999. This is the same data set used by JW. Sample estimates of these ten size-ranked portfolios will

also be used to determine the values of the parameters for our simulation experiment in Section IV.

Table I about here

As we can observe in Table I, there are significant positive skewness and kurtosis for the excess

returns on the value-weighted market and the ten size-ranked portfolios.15 The sample kurtosis of

the data is particularly severe, and, in general, it is much higher than the sample skewness. To

the extent that the common factor also exhibits this behavior, then we would expect Avar[λ̂] to be

much higher than Avar[δ̂], if the factor is standardized.

In general, factors are not standardized to have zero mean and unit variance, so we cannot

directly compare Avar[δ̂] with Avar[λ̂]. Nevertheless, we can compare the performance of δ̂ and λ̂

15Under the normality assumption, the standard deviation of the sample skewness in our data is roughly
√

6/888 =

0.0822 and the standard deviation of the sample kurtosis is roughly
√

24/888 = 0.1644.
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by computing the asymptotic relative efficiency of δ̂ relative to λ̂, which is defined as follows:16

ARE = lim
T→∞

Var[λ̂]/E[λ̂]2

Var[δ̂]/E[δ̂]2
=

δ2Avar[λ̂]
λ2Avar[δ̂]

= (σ2 + µδ)2
Avar[λ̂]
Avar[δ̂]

. (36)

An ARE greater than one suggests that using δ̂ to make inference is asymptotically better than

using λ̂. The fact that ARE can be used as a measure of relative efficiency is because it is the

limit of the ratio of squared coefficients of variation of λ̂ to δ̂. A higher absolute value of coefficient

of variation gives us a lower probability of rejecting the hypothesis that the parameter is equal to

zero. To the extent that one is often interested in testing H0 : δ = 0 under the beta method and

testing H0 : λ = 0 under the SDF method, the ARE measure gives us a good indication of whether

inference is better performed using δ̂ or λ̂.

In general, one needs to know all the parameters, as well as µ3 and µ4 to determine whether

ARE is greater than one or not. For values of µ3 and µ4 that are comparable with what we report

in Table I and for a reasonable choice of other parameters, however, we generally find that ARE is

greater than one. For the case of µ3 = 0 and µ4 = 3σ4 (e.g., normal factor), expression (36) can

be simplified to

ARE =
σ4

(σ2 + µδ)2

(β′U−1β)−1 + σ2(σ4+δ4)
(σ2+µδ)2

(β′U−1β)−1 + σ6

(σ2+µδ)2

 . (37)

The first term can be greater than or less than one, depending on whether µδ is less than or greater

than zero. The second term is always greater than one. For the special case that µ = 0, the first

term is one and the ARE is always greater than one, so inference using δ̂ is asymptotically better

than inference using λ̂.17

In summary, inference using the risk premium parameter δ can be either superior or inferior to

inference using the SDF parameter λ. The comparison depends heavily on the third and the fourth

moment of the factor as well as the magnitude of δ. However, for a factor that exhibits significant

kurtosis, as is commonly the case, we find inference on the risk premium parameter to be superior

to inference on the SDF parameter. In the current finance literature, researchers make inference

only on δ when using the beta method, and only on λ when using the SDF method. Therefore, to

the extent that there is positive kurtosis in the common factor, one should consider inference based

on the beta method to be more reliable than inference based on the SDF method.
16See Huber (1981) for a textbook treatment of comparing performance of alternative estimators using ARE.
17If we use the SDF formulation that assumes mt = 1 − (ft − µ)λ as in Cochrane (1996), then we have λ = δ/σ2

and it can be shown that ARE > 1 for any µ when µ3 = 0 and µ4 ≥ 3σ4.
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C. Maximum Likelihood Estimation

Under the i.i.d. setting, it is well known that maximum likelihood estimation of parameters attains

the Cramér-Rao lower bound, and it is asymptotically the most efficient. When (εt, ft) has a

multivariate normal distribution, JW show that the GMM estimators of δ and λ from either the

beta method or the SDF method have the same asymptotic efficiency as the maximum likelihood

estimators.18 However, this conclusion is specific to the multivariate normality assumption. In

general, even when εt is i.i.d. normal conditional on ft, maximum likelihood estimators can still

offer substantial efficiency gain over the GMM estimators when ft is not normally distributed. In

this subsection, we illustrate this with two examples. The first one is when ft has a Student-t

distribution, and the second one is when ft has a normal mixture distribution. These two examples

are interesting in their own right because both distributions of ft are robust in the sense that

they contain the normal distribution as a special case. More importantly, both distributions can

give positive kurtosis that is more consistent with the data than the normal distribution. In

the first example where ft has a Student-t distribution with ν degrees of freedom, its kurtosis is

γ2 = 6/(ν − 4). Although we can get positive kurtosis, the magnitude of the kurtosis cannot be

very large for a t-distribution with a finite fourth moment. Even for ν as low as five, we only

have γ2 = 6, which is still smaller than the sample kurtosis of 7.989 of the value-weighted market

portfolio, as we report in Table I.19 In order to better capture the high kurtosis in the data, our

second example assumes the density function of ft is a mixture of two normal distributions with

the same mean but different variances,

f(ft) = wφ1(ft) + (1− w)φ2(ft) (38)

where φi(·) is the density function of a normal distribution with mean µ and variance σ2
i , i = 1, 2.

We assume 0 < w < 0.5 and σ2
1 6= σ2

2 so that the parameters µ, w, σ2
1 and σ2

2 can be uniquely

identified. This normal mixture distribution has a kurtosis of

γ2 = 3

[
wσ4

1 + (1− w)σ4
2

(wσ2
1 + (1− w)σ2

2)2
− 1

]
, (39)

18Under the i.i.d. setting, the maximum likelihood estimation can be considered as a special case of the GMM
when the score function is used as the moment, so strictly speaking, one can call maximum likelihood GMM too.
However, we follow the common practice, which is to label GMM in the case for which we do not explicitly model the
distribution of (εt, ft), and to label maximum likelihood in the case for which we explicitly model the distribution of
(εt, ft).

19If we do not restrict ν to be an integer, then we can also have high kurtosis in the t-distribution for ν that is
close to four.
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and it can allow for much higher kurtosis than the Student-t distribution. It also has the advantage

that all of its moments exist, which is not the case for the Student-t distribution.

In the Appendix, we discuss the maximum likelihood estimation problem when εt is multivariate

normal, but ft is nonnormal. We also present the analytical solution to the likelihood ratio test of

the beta pricing model and show that the likelihood ratio test in KZ is indeed valid, even when the

factor is not normal and its mean and variance are unknown. The following proposition provides

the asymptotic variance of the maximum likelihood estimator of the risk premium, δ̂ML, under the

two examples of a nonnormal factor.

Proposition 3: Suppose, conditional on ft, εt is independent and identically distributed as N(0N ,Σ).

(1) When ft has a Student-t distribution with ν degrees of freedom, we have

Avar[δ̂ML] =

(
1 +

δ2

σ2

)
(β′Σ−1β)−1 +

(
1− 6

ν2 + ν

)
σ2 <

(
1 +

δ2

σ2

)
(β′Σ−1β)−1 + σ2 = Avar[δ̂].

(40)

(2) When ft has a normal mixture distribution with parameters w, µ, σ2
1 and σ2

2, we have

Avar[δ̂ML] =

(
1 +

δ2

σ2

)
(β′Σ−1β)−1 +

1
c

<

(
1 +

δ2

σ2

)
(β′Σ−1β)−1 + σ2 = Avar[δ̂], (41)

where

c =
w

σ2
1

+
1− w

σ2
2

− 2w(1− w)
(

1
σ2

1

− 1
σ2

2

)2∫ ∞

0

φ1(z)φ2(z)z2

wφ1(z) + (1− w)φ2(z)
dz >

1
σ2

. (42)

One can also estimate λ under the maximum likelihood method. Although we do not present

the asymptotic variance of λ̂ML here because its expression is more complex, the strict inequality

Avar[λ̂ML] < Avar[λ̂] also holds for these two cases. Details of these results are available upon

request.

Proposition 3 shows that even when only ft is not normally distributed, there can be significant

efficiency gain in using the maximum likelihood estimator. When both εt and ft are not normally

distributed, the efficiency gain in using maximum likelihood estimation can be even more signif-

icant.20 Therefore, incorporating information on the distribution of (εt, ft) can result in better

estimation of the risk premium and the SDF parameter than of the GMM. The disadvantage of
20See Kan and Zhou (2001a) for an analysis of maximum likelihood estimation under the multivariate elliptical

distribution assumption on (εt, ft).
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using the maximum likelihood estimation is that one can make a wrong distributional assumption

that may lead to an erroneous inference. This trade-off is particularly important when there is high

kurtosis in the residuals and the factors because, in those situations, the GMM estimators can be

very volatile relative to the maximum likelihood estimators. One may wish to make some robust

distributional assumptions in order to extract more information from the data.

III. Specification Tests

A. Choice of Weighting Matrix

Under both the SDF and the beta methods, the GMM over-identification test can serve as a specifi-

cation test of the asset pricing model. Although both Jg and Jh in (16) and (17) have an asymptotic

χ2
N−1 distribution when the model is correctly specified, the distributions of these two test statistics

do not conform exactly to their asymptotic distribution in finite samples. If one relies solely on the

asymptotic distribution to make inferences, then it is desirable that the finite sample distribution

of the test statistic used be well approximated by its asymptotic distribution. The analysis of the

finite sample performance of the GMM specification test requires us to specify how the weighting

matrix is estimated, however. In general, one needs to choose an initial weighting matrix to come

up with a consistent estimate of the parameters in a first stage GMM, and then uses the parameter

estimate to obtain a consistent estimate of the optimal weighting matrix to be used for the second

stage GMM. Such a procedure can also be iterated.21 In addition, there are issues related to the

estimation of the spectral density matrix about whether we should use sample covariance or sam-

ple second moments, and also about whether we should account for autocorrelations. Therefore,

a discussion of the finite sample distribution of the GMM specification test cannot be complete

without specifying how the weighting matrix is estimated.

Using simulation evidence, JW report that the GMM specification test in the beta method, Jh,

grossly under-rejects in finite samples, whereas the GMM specification test in the SDF method, Jg,

has roughly the correct size in finite samples. Therefore, they conclude that the GMM specification

test under the SDF method is more reliable. However, JW do not describe how the weighting

matrix is estimated in their GMM specification tests. According to our analysis, it seems very

21Alternatively, one can avoid specifying the initial weighting matrix by using the continuous-updating GMM
method suggested by Hansen, Heaton, and Yaron (1996).
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likely that they use the identity matrix as the initial weighting matrix and report the test statistics

from the second stage GMM.

The choice of the initial weighting matrix is crucial in determining the finite sample performance

of the GMM specification test. Ideally, one would like the initial weighting matrix to be close to

proportional to the optimal weighting matrix. In that case, the first stage GMM estimate will be

more accurate, and the resulting estimate of the weighting matrix for the second stage GMM will

also be more reliable. If the initial weighting matrix is not close to the optimal weighting matrix,

however, then the first stage GMM estimate is volatile, and the result is that the estimate of the

spectral density matrix in the first stage is also volatile. Since the weighting matrix in the second

stage is the inverse of the spectral density matrix obtained in the first stage, a volatile estimate

of the spectral density matrix often leads to a small weighting matrix for the second stage. As a

result, the specification test statistic in the second stage GMM will tend to be small and this gives

rise to the under-rejection problem.

Then why is the identity matrix a poor choice for the beta method, but not for the SDF

method? To understand this, we consider the conditional homoskedasticity case. In this case, the

asymptotic variance of the first N elements of the sample moments in the beta method, h̄, is Σ, but

the asymptotic variance of the second N elements of h̄ is (µ2 + σ2)Σ. When the factor has a mean

and a variance that are similar to those of the excess return on a portfolio (as in the case of JW),

µ2 + σ2 is a very small number relative to one.22 This implies that the second N elements of h̄

are substantially less volatile than its first N elements. Therefore, a good initial weighting matrix

should place significantly more weight on the second N elements than on the first N elements of

h̄. The identity matrix does not have this property and hence leads to a poor weighting matrix for

the second stage GMM specification test.23 On the other hand, while the identity matrix is not

the same as the inverse of the asymptotic variance of the sample moments of the SDF method, ḡ,

we do not have as serious differences in the scales of its elements as in the beta method, especially

when the factor explains a lot of the variations of the returns. Therefore, using the identity matrix

as the initial weighting matrix for the SDF method does not cause as serious a problem as it does

22Note that if the factor is standardized as in KZ, then we do not have this scaling problem in the moments because
µ2 + σ2 = 1. This explains why KZ do not find the under-rejection problem in the second stage GMM specification
test of the beta method, even though they use the identity matrix as the initial weighting matrix.

23Another problem with using the identity matrix as the initial weighting matrix is that the test statistics are not
invariant to rescaling of the factors.
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for the beta method.24

We have two suggestions to take care of this under-rejection problem in the GMM specification

test for the beta method. The first one is to use the third stage GMM specification test if the identity

matrix is used as the initial weighting matrix. This is because the parameter estimates from the

second stage GMM are more reliable than those from the first stage. As a result, the weighting

matrix used in the third stage GMM will be less volatile than the weighting matrix used in the

second stage GMM.25 The second suggestion is to use a sample estimate of the optimal weighting

matrix under the conditional homoskedasticity assumption as the initial weighting matrix. While

such an initial weighting matrix is only optimal under the conditional homoskedasticity assumption,

its use as the initial weighting matrix can still help to remove the under-rejection problem in the

second stage GMM, even when there is conditional heteroskedasticity. Our simulation evidence in

Section IV shows that both of our suggestions are quite effective in restoring the correct size for

the GMM specification test under the beta method.

B. Local Power Analysis of Specification Tests

GMM specification tests are designed to detect model misspecifications. If the exact beta pricing

model does not hold, one would prefer the GMM specification test that rejects the model with higher

probability. In order to compare the relative performance of the GMM specification tests under

the beta and the SDF methods, we need to examine the asymptotic power of the two tests when

the model does not hold. To this end, we introduce the following sequences of local alternatives to

the beta pricing model:

H1 : E[rt] = βδ + T−
1
2 η, (43)

where η is an N × 1 nonzero vector. Under this sequence of local alternatives, the mispricing

disappears as T increases. However, the limiting distribution of the GMM specification test is no

longer a central χ2
N−1 distribution, but instead a noncentral χ2

N−1(ω) distribution where ω is the

24Cochrane (2000b) shows by simulation that when the identify matrix is used as the initial weighting matrix,
the first and the second stage GMM estimates of the parameter in the SDF method have about the same variance.
This conclusion, however, does not hold true if the factor does not explain a lot of the variations in the returns on
the test assets. In those situations, KZ demonstrates by simulation that the performance of the second stage GMM
specification test in the SDF method can also be very poor.

25Ferson and Foerster (1994) find that, for the specification test, the one from the iterative GMM is better behaved
than the one from the second stage GMM. Kan and Zhang (1999) show that the third stage GMM has better power
than the second stage GMM in rejecting a misspecified model that contains a useless factor.
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noncentrality parameter. The noncentrality parameter here is a natural measure of the asymptotic

local power of the GMM specification test. The use of local alternatives for asymptotic power

analysis is common in the statistics and econometrics literature. It has the advantage that the

parameters remain well defined under the alternative. In addition, the limits of the weighting

matrix and the derivative matrix remain the same across the null and the alternative.26

The following Proposition demonstrates that there is no difference in the asymptotic local power

of the two GMM specification tests.

Proposition 4: Under the sequences of local alternatives H1 : E[rt] = βδ + T−
1
2 η, where η is

an N × 1 nonzero vector, the GMM specification tests Jg and Jh both have a limiting noncentral

χ2
N−1(ω) distribution with noncentrality parameter

ω =
σ4(η′S−1

u η)
(σ2 + µδ)2

[
1− (η′S−1

u β)2

(η′S−1
u η)(β′S−1

u β)

]
, (44)

where Su is the spectral density matrix of ut(λ) = rt(1− ftλ) under the true parameter.

Based on the proof of Proposition 4, we can also show that, by dropping the augmented moments

in the SDF and the beta methods as in KZ, the limiting distribution of the GMM specification

tests has the same noncentrality parameter under the local alternatives. Therefore, the GMM

specification tests presented in KZ also have the same asymptotic local power as Jg and Jh, and

this does not depend on whether the mean and the variance of the factor are known.

To gain more insights into what determines the asymptotic local power of the GMM specification

test, we consider the case where (εt, ft) is i.i.d. and conditional homoskedastic. In this case, the

noncentrality parameter can be simplified to

ω =
σ2(η′Σ−1η)

σ2 + δ2

[
1− (η′Σ−1β)2

(β′Σ−1β)(η′Σ−1η)

]
=

σ2(η′Σ−1η)
σ2 + δ2

[
1−R2

GLS(η, β)
]
, (45)

where R2
GLS(η, β) is the noncentral generalized least squares (GLS) coefficient of determination

between η and β. From this expression, we can see that there are two determinants of the asymptotic

local power: (1) the magnitude of Σ−
1
2 η as measured by its norm, (2) how close is Σ−

1
2 η to Σ−

1
2 β.

Keeping η′Σ−1η constant, the GMM specification test has little power in rejecting the beta pricing

model if η is almost proportional to β. On the other hand, if Σ−
1
2 η is orthogonal to Σ−

1
2 β, then

26See Newey (1985) and Hall (1999) for a discussion of local power analysis in the GMM setting.
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the GMM specification test will have very good power to reject the asset pricing model. However,

it is extremely important to emphasize that the distance between η and β here must be measured

by the R2
GLS and not by the usual correlation.27

Note that although the third and the fourth moments of the factor are important in determining

the asymptotic variance of λ̂, they do not play an important role here in determining the asymptotic

local power of the GMM specification tests. This is because the alternatives that we study here

have misspecifications on only the beta pricing model but not on the constant mean and variance

assumption of the factor.

C. Specification Tests Under Fixed Alternatives

Although the analysis of local alternatives is important, one may consider this kind of alternatives

quite limited in their applications, and choose to perform a power analysis under a fixed alternative.

The fixed alternative that we are most interested in is H2 : α ≡ E[rt] 6= βδ for any δ, where α

is a fixed vector. This is also the fixed alternative studied by JW. Asymptotically, both Jg and

Jh diverge to infinity under H2 instead of having a noncentral χ2
N−1 distribution as in the case

of local alternatives. This is because, for any choice of parameters θ and β, we have E[gt(θ)] 6=

0N+2 and E[ht(θ, β)] 6= 02N+2, and they are equal to some nonzero constant vectors. Therefore,

for any weighting matrix Wg that is Op(1), we have ḡ(θ)′Wg ḡ(θ) = Op(1) for any θ and hence

Jg = T ḡ(θ)′Wg ḡ(θ) = Op(T ). Similarly, we have Jh = Op(T ) under H2. Therefore, both GMM

specification tests will reject the asset pricing model with probability one asymptotically.

In order to have a meaningful comparison of the power of the two GMM specification tests under

fixed alternatives, one needs to compare their performance in finite samples. In contrast to our

analytical analysis of the local alternatives, simulation appears to be the only tractable approach

for fixed alternatives. While simulation evidence on the relative power of Jg and Jh will be provided

in Section IV, we point out some general issues regarding the power comparison here. In a manner

similar to the analysis of the size of the two tests, the choice of initial weighting matrix is crucial

in determining the power of the tests in finite samples. When the second stage GMM specification

test is used with the identity matrix as the initial weighting matrix, we often find that Jg > Jh in

27Chen, Kan, and Zhang (1999) provide a more complete analysis on this difference and its impact on model
selection in multivariate regressions.
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finite samples. However, we have to emphasize that this inequality by no means implies the GMM

specification test in the SDF method is more powerful than the one in the beta method. This is

because the inequality holds even under the null hypothesis. Hence, the inequality only implies

that the two tests have different sizes when we use the asymptotic χ2
N−1 distribution. In evaluating

the power of Jg and Jh, it is important to ensure that both of them have the correct size under

the null hypothesis. Therefore, instead of reporting the unadjusted power function based on the

asymptotic distribution, we report the size-adjusted power function of Jg and Jh in our simulations

so we can have a fair comparison of their power in finite samples.

Under fixed alternatives, JW suggest another way to detect model misspecifications is to look at

the pricing errors of the test assets. Their theoretical analysis suggests that the pricing errors from

the beta method are less volatile than the ones from the SDF method. Their simulation results do

not provide support for their analytical results, however. It turns out that pricing error is not a well

defined concept under the setup of their empirical asset pricing model. This is because, unlike the

calculation of Jensen’s alpha, that the risk premium is defined as the excess return on the market

portfolio, the risk premium and the SDF parameter in their model are not specified on an ex ante

basis. Under fixed alternatives, there is no choice of parameter λ that will make the SDF moment

conditions correct, so it is not entirely clear how we define λ under the alternative. Similarly, there

is no δ that will satisfy the moment conditions in the beta method. Therefore, defining population

pricing errors under both methods is problematic without first defining these two parameters under

the fixed alternatives.

Under a fixed alternative, one could define δ and λ as the limit of their sample estimates.

Such a limit will depend on the choice of the weighting matrix, however. To make our discussion

more concrete, we consider the case of estimating λ using the standard SDF moment conditions

E[rt(1− ftλ)] = 0N . For a weighting matrix WT with nonstochastic limit W , the sample estimate

of λ̂ is simply

λ̂ = (rf ′WT rf)−1(rf ′WT r̄), (46)

where rf = 1
T

∑T
t=1 rtft and r̄ = 1

T

∑T
t=1 rt. Under the alternative H2 : E[rt] = α, it is easy to

verify that

lim
T→∞

1
T

T∑
t=1

rtft = E[rtft] = E[(α + β(ft − µ) + εt)ft] = µα + σ2β, (47)

24



and hence

lim
T→∞

λ̂ =
(µα + σ2β)′Wα

(µα + σ2β)′W (µα + σ2β)
≡ λW . (48)

When α = βδ, then we have λW = λ, and it is independent of the choice of W . However, when

α 6= βδ for any δ, then the limit of λ̂ depends on the choice of the weighting matrix. Therefore,

the limit of λ̂ in the first stage GMM is in general not the same as its limit in the second and the

subsequent stages of GMM. Similarly, the optimal weighting matrix is also not well defined under

the fixed alternatives. Using λ̂ from different stages of GMM will get us different weighting matrices

that converge to different limits. In general, under a fixed alternative, (4) and (5) will not hold for

the limit of the estimated parameters. Therefore, JW’s theoretical analysis of pricing errors, which

crucially depends on the validity of (4) and (5), is problematic.28 Under the multivariate normality

assumption on (εt, ft), we have worked out the limiting values of the pricing errors for different

stages of GMM under both methods. However, in view of the difficulty of justifying pricing errors

analysis under our framework, we do not present the results here. They are available upon request.

IV. Simulation Results

A. Choice of Parameters

In this section, we perform a simulation experiment to study the finite sample performance of the

SDF and the beta methods. In our simulation, we generate excess returns on ten test assets using

a one-factor model

rt = α + β(ft − µ) + εt. (49)

The parameters of the ten test assets and the common factor are chosen to match the corresponding

sample moments of the ten size-ranked portfolios and the value-weighted market portfolio of the

combined NYSE-AMEX-NASDAQ estimated over the period January 1926 to December 1999.

Panel B of Table I summarizes our choice of parameters. Under the alternative hypothesis, we

generate excess returns on the ten assets by setting α = r̄, where r̄ is the average excess return on

the ten size-ranked portfolios, reported in Panel A of Table I. Under the null hypothesis, we set

28It should be noted that JW’s comparison is still problematic under the correct model. This is because the pricing
errors under the beta and the SDF methods are not the same object, so simply comparing the asymptotic variance
of pricing errors under the two methods does not tell us which method is better, just as one cannot simply compare
Avar[δ̂] with Avar[λ̂] to determine whether inference on δ is better than inference on λ.
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α = βδ, where δ = 0.7712 is chosen as

δ = argminδ(r̄ − βδ)′(r̄ − βδ), (50)

and the SDF parameter λ is determined by (5). Our simulation experiment is almost identical to

the one performed by JW, except for our choices of δ and λ. JW choose δ0 and δ to minimize

(r̄ − δ0 − βδ)′(r̄ − δ0 − βδ). (51)

Their choice of δ is 1.3740, which is almost twice as big as ours. However, with their choice of δ,

the expected excess returns on their test assets (which are set to βδ, but not δ0 + βδ) are much

higher than the average excess returns on the ten size-ranked portfolios.

B. Parameter Estimation

In this subsection, we present the parameter estimation results under the correctly specified model.

We present the maximum likelihood and GMM estimation results under the beta method, as well

as the GMM estimation results under the SDF method. In all our GMM estimations, we compute

the estimated spectral density matrix as the sample covariance matrix of the moments, and we do

not make any adjustment for autocorrelations. For example, we compute the weighting matrix Wg

under the SDF method as

Wg =

[
1
T

T∑
t=1

(gt(θ̂g)− ḡ(θ̂g))(gt(θ̂g)− ḡ(θ̂g))′
]−1

(52)

where ḡ(θ̂g) = 1
T

∑T
t=1 gt(θ̂g). Although we consider this estimation method quite reasonable in

our context, it is entirely possible that other variations of estimating the weighting matrix could

give totally different results from what we report here. Therefore, when interpreting our simulation

results, one should bear in mind that they could be specific to our particular choice of estimating

the weighting matrix.

In Table II, we provide the parameter estimation results for the case that (εt, ft) are simulated

from a multivariate normal distribution. We report the variance of estimates of δ and λ under the

beta and the SDF methods for different lengths of time series observations in 10,000 simulations.

For the GMM estimations, we report the variance of three estimators. The first two estimators

are from the second and the third stage GMM, and use the identity matrix as the initial weighting
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matrix. The third estimator is from the second stage GMM, and uses the sample estimates of the

optimal weighting matrix as the initial weighting matrix, where the optimal weighting matrix is

derived under the assumption that (εt, ft) is i.i.d. and conditional homoskedastic. The details on

how to compute the sample estimates of the optimal weighting matrix are given in the Appendix.

Table II about here

Although under the joint normality assumption on the residuals and the factor, the asymptotic

variance of various estimators of δ and λ are the same, their finite sample performance could dif-

fer significantly from each other. Table II shows that, in finite samples, the maximum likelihood

estimator dominates all the GMM estimators, especially when T is small. As for the GMM esti-

mators, we find that, when T is small, the second stage GMM estimator under the beta method

is particularly volatile if the identity matrix is used as the initial weighting matrix. Therefore, one

should be cautious in using this GMM estimator. Once we use the third stage GMM or change the

initial weighting matrix to a sample estimate of the optimal weighting matrix, however, then there

is very little difference between the performance of the GMM estimates from the beta and from

the SDF methods.

Table II also reports the asymptotic relative efficiency of the GMM estimates of δ to λ. It shows

that, under our choice of parameters and the assumption of joint normality on residuals and factor,

inference using δ̂ is 3.45% less efficient than inference using λ̂ when T is large. This is because, for

a normal factor, it is possible that λ̂ is more efficient than δ̂, if δ and µ have the same sign. If µ is

chosen to be a smaller number or negative, then we will find inference using δ̂ to be more efficient

than inference using λ̂.

Table III reports a set of results similar to Table II, except that we replace the normal factor

in Table II with a factor that has a Student-t distribution with five degrees of freedom. Under this

assumption, the maximum likelihood estimators of δ and λ are asymptotically more efficient than

their GMM estimators. This is also true in finite samples; we typically find that the maximum

likelihood estimators are about 20% less volatile than the corresponding GMM estimators. As in

Table II, we find that when T is small, the second stage GMM estimators of δ and λ under the

beta method are more volatile if the identity matrix is used as the initial weighting matrix. Except

in this case, there is no important difference between the performance of various GMM estimators.
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Table III about here

By comparing the variance of the GMM estimates of λ in Table III with those in Table II,

we observe that the kurtosis of the t-distributed factor makes the estimate of λ less reliable. By

comparing the variance of GMM estimates of δ in Tables II and III, however, we find that the

kurtosis of the factor does not have much impact on the GMM estimates of δ. Asymptotically,

when the factor has a t-distribution with five degrees of freedom, we find that inference using δ̂ is

about 7.92% more efficient than inference using λ̂.

It should be noted that a t-distribution with five degrees of freedom has a kurtosis of six, but

such kurtosis is still smaller than the sample kurtosis of 7.989 for the excess return on the value-

weighted market portfolio as reported in Table I. To increase the kurtosis, one could reduce the

degrees of freedom of the t-distribution. However, when the degrees of freedom are less than or

equal to four, the kurtosis of the Student-t distribution is infinity. In this case, the asymptotic

variance of δ̂ remains the same as in the normal factor case, but the asymptotic variance of λ̂

becomes infinity. Simulation results (not reported) show that δ̂ has roughly the same distribution

as in Table II, but λ̂ is totally unreliable in finite samples. This case illustrates that, although the

beta model and the linear SDF model are theoretically equivalent, their empirical setup can make

a big difference when it comes to inference on the parameters.

To allow for a higher kurtosis in the common factor, we choose to model the factor as a mixture

of two normal distributions with a common mean and different variances. The parameters of w,

σ1 and σ2 are chosen to match exactly the sample absolute moment, the sample variance, and the

sample kurtosis of the excess return on the value-weighted market portfolio of the NYSE-AMEX-

NASDAQ. The parameter values we choose are w = 0.0782, σ1 = 0.1413, and σ2 = 0.0399. One

could think that the monthly excess returns on the market portfolio are drawn from two different

populations, with 7.82% of the time that the market has a high volatility month, and 92.18% of

the time that the market has a low volatility month. Table IV reports the estimation results when

the residuals have a multivariate normal distribution and the factor has the chosen normal mixture

distribution.

Table IV about here
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The higher kurtosis of the estimation results of the normal mixture factor has two effects on

the estimation results. The first effect is that it allows for more efficient maximum likelihood

estimation. In both asymptotic and finite samples, we find the maximum likelihood estimators of

δ and λ to be at least 30% less volatile than their GMM estimators. The second effect is that the

GMM estimators of λ become more volatile than the normal factor case. When T is large, inference

using δ̂ is 11.64% more efficient than inference using λ̂. Similar to the results in Tables II and III,

we find that when T is small, the second stage GMM estimates under the beta methods are more

volatile if the identity matrix is used as the initial weighting matrix. All the other GMM estimators

have a similar performance.

To gain a better understanding of how kurtosis determines the asymptotic relative efficiency of

δ̂ to λ̂, we plot the asymptotic relative efficiency of the two GMM estimators as a function of the

kurtosis of the factor, assuming conditional homoskedasticity and a symmetric factor (i.e., µ3 = 0),

with the parameters µ, σ2, β and Σ given in Table I. We plot the function for two different values

of δ. One value of δ is 0.7712, which is what we use in our simulations. The other value of δ is

1.3740, which is what JW use in their simulations.

Figure 1 about here

As we can see from Figure 1, the asymptotic relative efficiency of δ̂ to λ̂ is a linear and increasing

function of the kurtosis of the factor. For a factor with similar kurtosis as the value-weighted market

portfolio, we have an ARE of 1.116 for δ = 0.7712 but an ARE of 1.294 for δ = 1.4140. However,

if the factor we use has the same kurtosis as the excess return of the smallest size decile, then the

ARE is 1.373 for δ = 0.7712, and 2.203 for δ = 1.3740.

In summary, our simulation results suggest that, for parameter estimation, the maximum like-

lihood estimators of δ and λ are superior to the GMM estimators. For the estimation of the same

parameter, the GMM estimation of the beta and the SDF methods have similar properties, except

for the second stage GMM under the beta method, when the identity matrix is used as the initial

weighting matrix. As for the relative efficiency of making inference on δ to inference on λ, we

find that inference based on λ is slightly superior under our choice of parameters, if the factor is

normally distributed. However, when the factor has a kurtosis similar to what we find in real data,

making inference on δ is more reliable than making inference on λ.
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C. Size and Power of Specification Tests

In this subsection, we present simulation results related to the size and the power of the likelihood

ratio and the GMM specification tests. Since the simulation results for the nonnormal factor cases

are very similar to the results for the normal factor, we do not report those results here but they are

available upon request. Table V presents the actual sizes of the tests under the correctly specified

model when the asymptotic sizes of the test are 5% and 10% respectively. The results are based

on 10,000 simulations, with (εt, ft) drawn from a multivariate normal distribution. As we can see

in Table V, the likelihood ratio test has a size that is closest to the level of significances of the

test in small samples. All the GMM specification tests have similar size properties except for the

second stage GMM under the beta method, when the identity matrix is used as the initial weighting

matrix. In that case, the GMM specification test grossly under-rejects, and this problem does not

disappear even when T is as high as 720. As discussed earlier in the text, the identity matrix

is a poor choice of the initial weighting matrix for the beta method, and the second stage GMM

specification test, which uses the weighting matrix obtained after the first stage, is not very reliable.

Therefore, one should avoid using the second stage GMM under the beta method if the identity

matrix is used as the initial weighting matrix. As suggested earlier and shown here by simulations,

using the third stage GMM or using the sample estimate of the optimal weighting matrix as the

initial weighting matrix will take care of this under-rejection problem.

Table V about here

Table VI reports the power of the likelihood ratio and the GMM specification tests under

the i.i.d. multivariate normality assumption of (εt, ft) in 10,000 simulations. The returns are now

generated from a one-factor model, but the expected returns are not set to βδ. Instead, the expected

returns are set to the average returns on the ten size-ranked portfolios. In presenting the power

of the tests, we use the empirical distribution of the test statistics obtained from the simulation in

Table V to make the acceptance/rejection decision. Using the empirical distribution instead of the

asymptotic χ2
N−1 distribution has the advantage that the tests have the correct size under the null

hypothesis. From Table VI, we can see that, for the fixed alternative that we choose, the power of

different tests is remarkably similar, with the exception of the second stage GMM under the beta

method, when the identity matrix is used as the initial weighting matrix.
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Table VI about here

In Table VI, we find that under the multivariate normality assumption of (εt, ft), the likelihood

ratio test is not any more powerful than the GMM specification tests in rejecting a misspecified

model. A similar pattern is also observed for cases with nonnormal factors, as long as εt is still

multivariate normally distributed. However, for situations where εt is not normally distributed, the

likelihood ratio test starts to show its dominance over the GMM specification tests. To illustrate

this, we report in Table VII the power of the likelihood ratio and the GMM specification tests

when (εt, ft) are sampled from a multivariate Student-t distribution with five degrees of freedom,

using the same fixed alternative as in Table VI.29 As we can observe from Table VII, the likelihood

ratio test clearly dominates the GMM specification tests when (εt, ft) are multivariate Student-t

distributed. Therefore, besides parameter estimation, there can also be advantages in using the

maximum likelihood method to detect model misspecifications.

Table VII about here

In summary, our simulation results suggest one should stay away from the second stage GMM

specification test under the beta method if the identity matrix is used as the initial weighting

matrix and the factor is not standardized. This test has the wrong size and the lowest power.

However, if we use the third stage GMM or a more appropriate initial weighting matrix, then

we find that there is no obvious disadvantage in using the GMM specification test in the beta

method as compared with the GMM specification test in the SDF method. In addition, under the

conditional homoskedasticity assumption, nonnormality of factors have very little influence on the

size and power of GMM specification tests in the two methods. When the residuals are multivariate

normally distributed, likelihood ratio test has similar power to the GMM specification tests, but

as long as the residuals are not multivariate normally distributed, the likelihood ratio test can be

more powerful than the GMM specification tests.

29Details of the computation of the likelihood ratio test for multivariate Student-t distribution are discussed in Kan
and Zhou (2001a).
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V. Conclusions

As a theoretical model, there is no doubt that the SDF framework is elegant and general. As

empirical models, however, the SDF and the beta models both require ancillary assumptions to be

tested, and one is not any more general than the other. In many situations, they make different

assumptions and it is not possible to compare inferences under the two methods directly. Under

the mainstream constant beta pricing model, with a constant mean and variance for the common

factor, the two methods can be compared, and we show that inference based on the risk premium

parameter in the beta method can be superior to inference based on the SDF parameter in the

SDF method, especially when the factor is leptokurtic. While it is true that, when the mean of

the factor is unknown, we no longer have the same overwhelming advantage in the beta method as

demonstrated in KZ, the advantage of using the beta method for inference can still be substantial.

In addition, we show that the maximum likelihood estimation of the beta model can still strictly

dominate the GMM estimation of the beta and the SDF models even when the residuals are i.i.d.

multivariate normally distributed. When it comes to detecting misspecifications in the linear beta

pricing model, the GMM specification test in the beta method has a similar power to the one in

the SDF method but the likelihood ratio test can still dominate the GMM specification tests when

the residuals are not normally distributed.

In general, we do not see the SDF and the beta methods as competing but complementary. We

see the SDF method as just an alternative empirical model but not as the Holy Grail. While the

SDF method can incorporate information and deal with nonlinear models, we note that the beta

method can incorporate information just as easily, and can also take care of nonlinear models after

linearization (as is frequently done under the SDF framework).30 It is important for future research

to compare the performance of these two methods in dealing with conditional and nonlinear asset

pricing models. In any event, it appears safe to say that the traditional methodologies are here to

stay.

30Examples of incorporating information in the beta method include Shanken (1990), Ferson and Harvey (1991,
1993), and Ferson and Korajczyk (1995).
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Appendix

Analytical solution to the GMM estimator under the SDF method

The GMM estimator of θ = (λ, µ, σ2)′ is the solution to the minimization problem

min
θ

Q(θ) = min
θ

ḡ(θ)′Wg ḡ(θ), (A1)

where Wg is a positive definite matrix and ḡ(θ) is given by

ḡ(θ) =


1
T

∑T
t=1(rt − rtftλ)

1
T

∑T
t=1(ft − µ)

1
T

∑T
t=1(f

2
t − 2ftµ + µ2 − σ2)

 . (A2)

Conditional on a given value of µ, ḡ is a linear function of θ1 = (λ, σ2)′, so we can obtain an

analytical solution for them. Denote

X =

 1
T

∑T
t=1 rtft 0N

0 0
0 1

 , Y =

 r̄
f̄ − µ

1
T

∑T
t=1 f2

t − 2f̄µ + µ2

 , (A3)

where r̄ = 1
T

∑T
t=1 rt and f̄ = 1

T

∑T
t=1 ft, we can write ḡ(θ1|µ) = Y −Xθ1. Conditional on a given

value of µ, the optimal solution of θ1 is given by

θ̂1(µ) = (X ′WgX)−1(X ′WgY ), (A4)

and the objective function can then be written as a function of µ alone as

Q(µ) = Y ′HY, (A5)

where H = Wg −WgX(X ′WgX)−1X ′Wg. Writing Y = Y0 + Y1µ + Y2µ
2, where

Y0 =

 r̄
f̄

1
T

∑T
t=1 f2

t

 , Y1 =

 0N

−1
−2f̄

 , Y2 =

[
0N+1

1

]
, (A6)

the objective function can now be written as a quartic polynomial of µ

Q(µ) = Y ′
0HY0 + 2Y ′

0HY1µ + (Y ′
1HY1 + 2Y ′

0HY2)µ2 + 2Y ′
1HY2µ

3 + Y ′
2HY2µ

4. (A7)

Taking derivative, we have µ̂ as one of the solutions to the equation

Q′(µ) = 2Y ′
0HY1 + 2(Y ′

1HY1 + 2Y ′
0HY2)µ + 6Y ′

1HY2µ
2 + 4Y ′

2HY2µ
3 = 0 (A8)
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Note that this is a cubic equation in µ and there can be as many as three real roots, so one has to

find out all the real roots and check which one is the global minimum.

Near analytical solution to the GMM estimator under the beta method

Although numerically identical, we reparameterize the parameters to ϑ = (φ, β′, µ, σ2)′ where φ =

δ − µ for convenience. The GMM estimator of ϑ is the solution to the minimization problem

min
ϑ

Q(ϑ) = min
ϑ

h̄(ϑ)′Whh̄(ϑ), (A9)

where Wh is a positive definite matrix and h̄(ϑ) is given by

h̄(ϑ) =


1
T

∑T
t=1(rt − (φ + ft)β)

1
T

∑T
t=1(rt − (φ + ft)β)ft
1
T

∑T
t=1(ft − µ)

1
T

∑T
t=1(f

2
t − 2ftµ + µ2 − σ2)

 . (A10)

Conditional on a given value of φ and µ, h̄ is a linear function of ϑ1 = (β′, σ2)′, so we can obtain

an analytical solution for them. Denote

X =


(φ + f̄)IN 0N(

φf̄ + 1
T

∑T
t=1 f2

t

)
IN 0N

0′N 0
0′N 1

 , Y =


r̄

1
T

∑T
t=1 rtft

f̄ − µ
1
T

∑T
t=1 f2

t − 2f̄µ + µ2

 , (A11)

where r̄ = 1
T

∑T
t=1 rt, f̄ = 1

T

∑T
t=1 ft and IN is an N -dimensional identity matrix, we can write

h̄(ϑ1|φ, µ) = Y −Xϑ1. Conditional on a given value of (φ, µ), the optimal solution of ϑ1 is given

by

ϑ̂1(φ, µ) = (X ′WhX)−1(X ′WhY ), (A12)

and the objective function can then be written as a function of φ and µ alone as

Q(φ, µ) = Y ′HY, (A13)

where H = Wh − WhX(X ′WhX)−1X ′Wh. Note that H is only a function of φ and Y is only a

function of µ. Writing Y = Y0 + Y1µ + Y2µ
2, where

Y0 =


r̄

1
T

∑T
t=1 rtft

f̄
1
T

∑T
t=1 f2

t

 , Y1 =

 02N

−1
−2f̄

 , Y2 =

[
02N+1

1

]
, (A14)

the objective function can now be written as a quartic polynomial of µ when conditional on a given

value of φ. Similar to the case of the SDF method, there can be as many as three real roots of µ to
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the first order condition, so one has to find out all the real roots and check which one is the global

minimum. Nevertheless, conditional on a given value of φ, we can analytically minimize Q(ϑ1, µ|φ).

A line search on φ will then allow us to find the minimum of Q(ϑ).

Proof of Lemma 1: Denote

S =
∞∑

j=−∞
E[gt(φ)gt+j(φ)′] =

[
S11 S12

S21 S22

]
, (A15)

and its inverse as

S−1 =

[
S11 S12

S21 S22

]
, (A16)

where the partition corresponds to the two blocks of moments in gt. The derivative of the moment

conditions is

D = E

[
∂gt(φ)
∂φ′

]
=

[
D11 Om1×p2

D21 D22

]
, (A17)

and it is assumed to be of full column rank under the usual regularity condition. If we use just the

first m1 moments to estimate φ1, the asymptotic variance of the estimator φ̂1 is

Avar[φ̂1] = (D′
11S

−1
11 D11)−1. (A18)

To obtain the asymptotic variance of φ̂∗1, we write

D′S−1D =

[
A D′

11S
12D22 + D′

21S
22D22

D′
22S

21D11 + D′
22S

22D21 D′
22S

22D22

]
, (A19)

where

A = D′
11S

11D11 + D′
21S

21D11 + D′
11S

12D21 + D′
21S

22D21. (A20)

Defining H = D′
11S

12(S22)−
1
2 +D′

21(S
22)

1
2 and using the identity S−1

11 = S11−S12(S22)−1S21 from

the inverse of partitioned matrix formula, we can write

D′S−1D =

[
D′

11S
−1
11 D11 + HH ′ H(S22)

1
2 D22

D′
22(S

22)
1
2 H ′ D′

22S
22D22

]
. (A21)

Therefore,

Avar[φ̂∗1] =
[
D′

11S
−1
11 D11 + HH ′ −H(S22)

1
2 D22(D′

22S
22D22)−1D′

22(S
22)

1
2 H ′

]−1

=
(
D′

11S
−1
11 D11 + HMH ′

)−1
, (A22)

where

M = Im2 − (S22)
1
2 D22(D′

22S
22D22)−1D′

22(S
22)

1
2 (A23)
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is idempotent with rank m2 − p2. Since Avar[φ̂∗1]
−1 ≥ Avar[φ̂1]−1, we have Avar[φ̂∗1] ≤ Avar[φ̂1].

When p2 = m2, D22 is a square matrix and its inverse exists because D is assumed to have full

column rank. In this case, M is a zero matrix and hence Avar[φ̂∗1] = Avar[φ̂1]. This completes the

proof.

Proof of Proposition 1: We first show that the GMM estimator of φ = (θ′, β′)′ using mt and ht

have the same asymptotic variance. Since

Dm ≡ E

[
∂mt(φ)

∂φ′

]
= AE

[
∂ht(φ)

∂φ′

]
= ADh, (A24)

and

Sm ≡
∞∑

j=−∞
E[mt(φ)mt+j(φ)′] = A

 ∞∑
j=−∞

E[gt(φ)gt+j(φ)′]

A′ = AShA′, (A25)

we have

Avar[φ̂m] = (D′
mS−1

m Dm)−1 = (D′
hA′(AShA′)−1ADh)−1 = (D′

hS−1
h Dh)−1 = Avar[φ̂h], (A26)

where φ̂m and φ̂h are the GMM estimators of φ using mt and ht, respectively. The equality follows

because A is nonsingular and its inverse exists. Then, by writing φ1 = θ and φ2 = β, we have

Avar[θ̂m] = Avar[θ̂g] from Lemma 1, where θ̂m is the GMM estimator of θ using the moment

conditions mt. Therefore, we have Avar[θ̂h] = Avar[θ̂m] = Avar[θ̂g]. This implies Avar[λ̂h] =

Avar[λ̂g] and applying the delta method, we also have Avar[δ̂h] = Avar[δ̂g]. This completes the

proof.

Proof of Proposition 2: Due to Proposition 1, we need to provide only the derivation of Avar[θ̂g]

under the SDF method here. Direct derivation of Avar[θ̂h] under the beta method is available upon

request. Under the return generating model, we have

E[(1− ftλ)2rtr
′
t] = E[εtε

′
t(1− ftλ)2] + E[(δ − µ + ft)2(1− ftλ)2]ββ′ = U + cββ′, (A27)

where

c = E[(δ − µ + ft)2(1− ftλ)2] =
σ2(σ4 + δ4) + 2δ(δ2 − σ2)µ3 + δ2(µ4 − 3σ4)

(σ2 + µδ)2
(A28)

is obtained using the identities E[(ft − µ)2ft] = µ3 + µσ2, E[(ft − µ)f2
t ] = µ3 + 2µσ2, and E[(ft −

µ)2f2
t ] = µ4 + µ(2µ3 + µσ2). Using these results and the i.i.d. assumption, the spectral density

matrix of gt(θ) is given by

Sg = E[gt(θ)gt(θ)′] =

[
U + cββ′ βe′

eβ′ H

]
, (A29)
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where

e =

 σ2(σ2−δ2)−δµ3

σ2+µδ

(σ2−δ2)µ3−δ(µ4−σ4)
σ2+µδ

 , H =

[
σ2 µ3

µ3 µ4 − σ4

]
. (A30)

The expectation of ∂gt(θ)/∂θ′ is given by

Dg =

[
−bβ ON×2

02 −I2

]
, (A31)

where b = σ2 + µδ. With some matrix algebra, we can verify that

Avar[θ̂g] = (D′
gS
−1
g Dg)−1 =

 (β′U−1β)−1+c
b2

e′

b
e
b H

 . (A32)

Avar[λ̂g] is the (1, 1) element of Avar[θ̂g] and Avar[δ̂g] can be obtained using the delta method as

Avar[δ̂g] =

[
b2

σ2

δ2

σ2

δ

σ2

] (β′U−1β)−1+c
b2

e′

b
e
b H




b2

σ2

δ2

σ2

δ
σ2

 =
(σ2 + µδ)2

σ4
(β′U−1β)−1 + σ2. (A33)

This completes the proof.

Proof of (27) and (28): Under the multivariate elliptical distribution, we have µ3 = 0, and by

definition, we can write µ4 − 3σ4 = γ2σ
4. For the matrix U , we have

U = E[(1− 2λft + λ2f2
t )εtε

′
t]

= Σ− 2λE[ftεtε
′
t] + λ2E[f2

t εtε
′
t]

= Σ− 2λµΣ + λ2
[
µ2Σ +

(
1 +

γ2

3

)
σ2Σ

]
=

[
(1− λµ)2 +

(
1 +

γ2

3

)
λ2σ2

]
Σ

=
σ4

(σ2 + µδ)2

[
1 +

δ2
(
1 + γ2

3

)
σ2

]
Σ. (A34)

The third equality uses the identity E[(ft − µ)εtε
′
t] = ON×N , which follows from the symmetry

property of multivariate elliptical distribution. It also uses the identity

E[f2
t εtε

′
t] = µ2Σ +

(
1 +

γ2

3

)
σ2Σ, (A35)

that is derived in Kan and Zhou (2001b). This completes the proof.

Proof of (29) and (30): Under conditional homoskedasticity, we have

U = E[(1− ftλ)2εtε
′
t] = E[(1− ftλ)2]Σ = [1− 2µλ + (µ2 + σ2)λ2]Σ =

σ2(σ2 + δ2)
(σ2 + µδ)2

Σ. (A36)
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This completes the proof.

Maximum likelihood estimation under normal residuals and nonnormal factor

Denote the density function of ft as f(ft; θf ), where θf is a vector of parameters. Note that µ

and σ2 are not necessarily the parameters of the distribution, but they can always be written

as functions of the parameters θf . For convenience, we do a reparameterization of φ = δ − µ.

Let ϑ = (φ, β′, vech(Σ)′, θ′f )′ be the parameters; then we can write the log-likelihood function of

(r1, f1, . . . , rT , fT ) as

L(ϑ|r1, f1, . . . , rT , fT ) = −NT

2
log(2π)− T

2
ln |Σ| − 1

2

T∑
t=1

(rt − β(φ + ft))′Σ−1(rt − β(φ + ft))

+
T∑

t=1

ln(f(ft; θf )). (A37)

Note that the likelihood function has two parts, the first part is only a function of φ, β and Σ, and

the second part is only a function of θf . Therefore, we can maximize each of them individually. The

first maximization problem is exactly the same as in KZ. Define F = [f1, f2, . . . , fT ]′, X = [1T , F ],

Y = [r1, r2, . . . , rT ]′, where 1T is a T -vector of ones. Let ξ1 ≥ ξ2 > 0 be the two eigenvalues of

the 2 × 2 matrix A = (X ′X)−1(X ′Y )(Y ′Y )−1(Y ′X). Under the normality assumption on εt, the

maximum likelihood estimator of φ is given by

φ̂ML =
a12

ξ1 − a11
, (A38)

where aij is the (i, j)th element of A. The maximum likelihood estimator of δ is then given by

δ̂ML = φ̂ML + µ̂ML, where µ̂ML is determined by the maximum likelihood estimator of θf obtained

from maximizing the second part of the likelihood function. In general, maximization of the second

part requires numerical optimization, but fast algorithms are available for many distributions of

ft.31 For the likelihood ratio test of the model E[rt] ≡ α = βδ, we note that the estimates of θf

are the same under both the null and the alternative. The only difference between the null and the

alternative is in the first part of the likelihood function. Therefore, the same likelihood ratio test

in KZ applies, and it is given by

LRT = −T log(1− ξ2), (A39)

31For Student-t distribution with unknown degrees of freedom, we use the ECME algorithm in Liu and Rubin
(1995). For the normal mixture distribution, we use the EM algorithm by Dempster, Laird, and Rudin (1977).
Details are available upon request.
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which has an asymptotic χ2
N−1 distribution under the null hypothesis H0 : α = βδ. This also makes

it clear that the likelihood ratio test in KZ only depends on the normality assumption of εt but not

on ft, and it does not depend on whether the mean and the variance of the factor are known.

Proof of Proposition 3: As discussed above, the likelihood function has two parts, the first part

depends on only φ, β and Σ, and the second part depends on only θf . Therefore, φ̂ML and µ̂ML

are asymptotically independent, and we have Avar[δ̂ML] = Avar[φ̂ML] + Avar[µ̂ML]. Under the

normality assumption on εt, we have

Avar[φ̂ML] =

(
1 +

δ2

σ2

)
(β′Σ−1β)−1 (A40)

using the same proof as in KZ. For Student-t distribution, simple manipulation of the results in

Lange, Little, and Taylor (1989) gives

Avar[µ̂ML] =
(

1− 6
ν2 + ν

)
σ2. (A41)

For normal mixture distribution, it is easy to verify that ∂L/∂µ is an odd function of ft − µ, but

all the other partial derivatives are even functions of ft − µ. Therefore, µ̂ML is asymptotically

independent of ŵML, σ̂2
1,ML and σ̂2

2,ML, so the asymptotic variance of µ̂ML is simply given by the

inverse of −E[∂2L/∂µ2] = c. Some tedious algebra can then show that∫ ∞

0

φ1(z)φ2(z)z2

wφ1(z) + (1− w)φ2(z)
dz ≤ σ2

1σ
2
2

2σ2
, (A42)

where σ2 = wσ2
1 + (1 − w)σ2

2 is the variance of the factor, and equality holds if and only if w = 0

or 1, or σ2
1 = σ2

2.
32 With this result, it is easy to verify that c > 1/σ2 if 0 < w < 0.5 and σ2

1 6= σ2
2.

This completes the proof.

Proof of Proposition 4: We start off by proving the limiting distribution of the GMM specification

test under the standard SDF method, which uses the moment condition E[ut(λ)] = E[rt(1−ftλ)] =

0N . Under the sequences of local alternatives, we have

E[rt(1− ftλ)] = E[(β(δ− µ + ft) + T−
1
2 η + εt)(1− ftλ)] = (1− λµ)T−

1
2 η =

σ2

σ2 + µδ
T−

1
2 η. (A43)

Invoking the results in Newey (1985), the GMM specification test of the standard SDF method is

χ2
N−1(ω), where

ω =
σ4

(σ2 + µδ)2
η′
[
S−1

u − S−1
u Du(D′

uS−1
u Du)−1D′

uS−1
u

]
η, (A44)

32Proof of this inequality is available upon request.
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and Du is given by

Du = E

[
∂ut(λ)

∂λ

]
= −E[rtft] = −(σ2 + µδ)β. (A45)

Substituting Du into the expression for ω, we obtain (44).

To show that Jg and Jh also have a limiting distribution of χ2
N−1(ω), we need the following

extension to Lemma 1, which is due to Eichenbaum, Hansen and Singleton (1988, equation (C.2)).

Lemma 2 Under the same conditions as in Lemma 1, and defining Q = [Im1 , Om1×m2 ], we have

S−1 − S−1D(D′S−1D)−1D′S−1 = Q′[S−1
11 − S−1

11 D11(D′
11S

−1
11 D11)−1D′

11S
−1
11 ]Q (A46)

when p2 = m2.

Asymptotically, there is no difference using mt = Aht or using ht, so we need only to show

that the GMM specification test using mt has a limiting distribution of χ2
N−1(ω). As we show

in the main text, the first N elements of mt are just ut. Therefore, under the sequence of local

alternatives, we have

E[mt] =

[
σ2

σ2+µδ
T−

1
2 η

0N+2

]
. (A47)

Using results in Newey (1985), the GMM specification test has a noncentrality parameter

ω =
σ4

(µδ + σ2)2
[η′, 0′N+2]

[
S−1

m − S−1
m Dm(D′

mS−1
m Dm)−1D′

mS−1
m

]
[η′, 0′N+2]

′

=
σ4

(µδ + σ2)2
[η′, 0′N+2]Q

′
[
S−1

u − S−1
u Du(D′

uS−1
u Du)−1D′

uS−1
u

]
Q[η′, 0′N+2]

′

=
σ4

(µδ + σ2)2
η′
[
S−1

u − S−1
u Du(D′

uS−1
u Du)−1D′

uS−1
u

]
η, (A48)

where Q = [IN , ON×(N+2)]. The second equality follows from Lemma 2 because Dm is block

triangular, and mt has m2 = N + 2 more moment conditions than ut, but also p2 = N + 2 more

parameters. Proof for the case of Jg is identical. This completes the proof.

Proof of (45): Under the i.i.d. conditional heteroskedasticity assumption, we have Su = aΣ + cββ′

from (A27) and (A36), where a = σ2(σ2 + δ2)/(σ2 + µδ)2 and c is a constant scalar. Using

S−1
u =

1
a

(
Σ−1 − Σ−1ββ′Σ−1

β′Σ−1β + a
c

)
, (A49)
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it is easy to show that (β′S−1
u β)−1 = a(β′Σ−1β)−1 + c, and (β′S−1

u β)−1β′S−1
u = (β′Σ−1β)−1β′Σ−1.

Therefore, using (A45), we have

S−1
u − S−1

u Du(D′
uS−1

u Du)−1D′
uS−1

u = S−1
u

[
IN − β(β′S−1

u β)−1β′S−1
u

]
=

1
a

(
Σ−1 − Σ−1ββ′Σ−1

β′Σ−1β + a
c

)[
IN − β(β′Σ−1β)−1β′Σ−1

]
=

1
a

[
Σ−1 − Σ−1β(β′Σ−1β)−1β′Σ−1

]
. (A50)

This completes the proof.

Computation of Sample Estimates of Optimal Weighting Matrix: Under the i.i.d. conditional ho-

moskedasticity assumption, the spectral density weighting matrix under the beta method is given

by

Sh =

 Σ µΣ ON×2

µΣ (µ2 + σ2)Σ ON×2

O2×N O2×N H

 , (A51)

where H is defined in (A30). By replacing Σ, µ, σ2 and H by their sample estimates, we obtain a

consistent estimate of Sh, and hence its inverse can be used as a consistent estimate of the optimal

weighting matrix.

Under the i.i.d. conditional homoskedasticity assumption, the spectral density weighting matrix

under the SDF method is given by

Sg =

[
aΣ + cββ′ βe′

eβ′ H

]
, (A52)

where a = σ2(σ2 + δ2)/(σ2 + µδ)2, c is defined in (A28), and e and H are defined in (A30). This

presents a problem because a, c, and e all involve the parameter δ that cannot be directly estimated.

However, it turns out that, under the SDF method, the following weighting matrix is just as optimal

as S−1
g

Wg =

[
Σ−1 O2N×2

O2×2N H−1

]
. (A53)

It is because with some algebra, we can verify

(D′
gWgDg)−1(D′

gWgSgWgDg)(D′
gWgDg)−1 = (D′

gS
−1
g Dg)−1, (A54)

so the asymptotic variance of the estimator is the same whether we use S−1
g or Wg. Therefore, for

the SDF method, our sample estimates of the optimal weighting matrix can be obtained by simply

replacing Σ and H in (A53) with their sample estimates.
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Figure 1
Asymptotic Relative Efficiency as a Function of Factor Kurtosis
The figure plots the asymptotic relative efficiency of δ̂ to λ̂ as a function of kurtosis of the factor,
where δ̂ is the GMM estimator of the risk premium parameter, and λ̂ is the GMM estimator of the
SDF parameter. The asymptotic relative efficiency is computed under two different values of risk
premium parameter, δ, and it is based on the i.i.d. conditional homoskedasticity assumption with
symmetrically distributed factors. The parameters for µ, σ2, β and Σ are given in Table I.
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Table I
Sample Statistics of the Value-Weighted Market and the Ten Size-Ranked Portfolios

of the Combined NYSE-AMEX-NASDAQ
Panel A of the table presents the sample average, sample standard deviation, sample skewness (γ̂1 = µ̂3/σ̂3) and
kurtosis (γ̂2 = µ̂4/σ̂4−3) of the excess returns (in excess of one-month T-bill rate) on the value-weighted market and
ten size-ranked portfolios (from smallest to largest) of the combined NYSE-AMEX-NASDAQ. The sample statistics
are obtained using monthly data over the period January 1926 to December 1999 from the Center for Research in
Security Prices. Average excess return and sample standard deviation are reported in percentage per month. Panel B
of the table presents the values of the parameters µ, σ, δ, λ, β and Σ, which are used in our simulation experiment.
µ, σ and δ are reported as percentages. For the values of Σ, we present the standard deviation (σε, in percentage)
and the correlation matrix of the market model residuals from the 10 portfolios.

Panel A: Sample Statistics

Size-Ranked Portfolios

VW 1 2 3 4 5 6 7 8 9 10

Average 0.703 1.537 1.120 0.958 0.893 0.879 0.867 0.847 0.754 0.797 0.668
Std. Dev. 5.501 10.914 9.413 8.517 7.880 7.470 7.270 6.872 6.437 6.151 5.235
Skewness 0.230 2.852 2.079 1.930 1.196 0.922 0.777 0.655 0.393 0.428 0.137
Kurtosis 7.989 21.543 18.232 19.673 11.890 10.636 9.273 10.024 8.560 9.228 7.264

Panel B: Values of Parameters in Simulations

µ = 0.703 σ = 5.501 δ = 0.7712 λ = 2.5037

Portfolios

1 2 3 4 5 6 7 8 9 10

β 1.449 1.392 1.311 1.264 1.239 1.226 1.182 1.122 1.091 0.947
σε 7.457 5.482 4.535 3.714 3.069 2.726 2.234 1.830 1.366 0.557

Correlation Matrix of Market Model Residuals

1 1.000
2 0.910 1.000
3 0.848 0.910 1.000
4 0.807 0.887 0.902 1.000
5 0.764 0.839 0.853 0.899 1.000
6 0.715 0.805 0.835 0.887 0.904 1.000
7 0.608 0.681 0.714 0.807 0.832 0.851 1.000
8 0.468 0.556 0.598 0.715 0.755 0.789 0.824 1.000
9 0.382 0.436 0.457 0.536 0.596 0.651 0.664 0.748 1.000
10 −0.672 −0.735 −0.752 −0.816 −0.835 −0.860 −0.837 −0.832 −0.763 1.000
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Table II
Variance of Estimates of Risk Premium and SDF Parameters Under the Beta and

the SDF Methods when Residuals and Factors are Normally Distributed
The table presents the variance of estimates of risk premium (δ, in percentage) and SDF parameter (λ) under the beta
and the SDF methods. The returns and factors are generated under the null hypothesis by a one-factor model with
parameters given in Table I, and with the factors and the residuals sampled from a multivariate normal distribution.
For the GMM estimations, we present variance of three different GMM estimators for δ and λ. The first two estimators
are from the second and third stage GMM when the identity matrix is used as the initial weighting matrix. The third
estimator is from the second stage GMM when the sample estimate of the optimal weighting matrix is used as the
initial weighting matrix. Results for the variance of the estimators are presented for different lengths of time series
observations (T ), and they are based on 10,000 simulations.

Variance of δ̂ (δ = 0.7712)

Beta Method SDF Method

GMM Estimation GMM Estimation

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 0.2518 0.6652 0.3734 0.3471 0.3448 0.3503 0.3490
240 0.1261 0.2140 0.1492 0.1472 0.1469 0.1477 0.1474
360 0.0836 0.1082 0.0927 0.0925 0.0924 0.0927 0.0926
480 0.0630 0.0721 0.0679 0.0680 0.0679 0.0680 0.0680
600 0.0503 0.0542 0.0533 0.0534 0.0534 0.0535 0.0534
720 0.0420 0.0440 0.0441 0.0442 0.0442 0.0442 0.0442

Asymptotic 30.288 30.288 30.288 30.288 30.288 30.288 30.288

Variance of λ̂ (λ = 2.5037)

Beta Method SDF Method

GMM Estimation GMM Estimation

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 2.6026 6.4832 3.9251 3.4845 3.4602 3.5600 3.4993
240 1.2931 2.1061 1.5406 1.4976 1.4940 1.5066 1.4989
360 0.8530 1.0637 0.9491 0.9399 0.9388 0.9425 0.9403
480 0.6430 0.7135 0.6942 0.6918 0.6914 0.6929 0.6919
600 0.5135 0.5391 0.5448 0.5440 0.5438 0.5446 0.5441
720 0.4285 0.4392 0.4501 0.4497 0.4496 0.4500 0.4498

Asymptotic 308.20 308.20 308.20 308.20 308.20 308.20 308.20

Asymptotic Relative Efficiency of δ̂ to λ̂ = 0.9655
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Table III
Variance of Estimates of Risk Premium and SDF Parameters Under the Beta and

the SDF Methods when Residuals are Normally Distributed and Factors are
Student-t Distributed

The table presents the variance of estimates of risk premium (δ, in percentage) and SDF parameter (λ) under the beta
and the SDF methods. The returns and factors are generated under the null hypothesis by a one-factor model with
parameters given in Table I, with the factors sampled from a Student-t distribution with five degrees of freedom, and
with the residuals sampled from a multivariate normal distribution. For the GMM estimations, we present variance
of three different GMM estimators for δ and λ. The first two estimators are from the second and third stage GMM
when the identity matrix is used as the initial weighting matrix. The third estimator is from the second stage GMM
when the sample estimate of the optimal weighting matrix is used as the initial weighting matrix. Results for the
variance of the estimators are presented for different lengths of time series observations (T ), and they are based on
10,000 simulations.

Variance of δ̂ (δ = 0.7712)

Beta Method SDF Method

GMM Estimation GMM Estimation

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 0.2070 0.6461 0.3594 0.3408 0.3389 0.3440 0.3417
240 0.1018 0.2040 0.1471 0.1458 0.1455 0.1465 0.1459
360 0.0675 0.1040 0.0913 0.0921 0.0920 0.0923 0.0921
480 0.0501 0.0679 0.0658 0.0668 0.0667 0.0669 0.0668
600 0.0400 0.0514 0.0516 0.0524 0.0524 0.0525 0.0524
720 0.0332 0.0416 0.0427 0.0433 0.0433 0.0434 0.0433

Asymptotic 24.236 30.288 30.288 30.288 30.288 30.288 30.288

Variance of λ̂ (λ = 2.5037)

Beta Method SDF Method

GMM Estimation GMM Estimation

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 2.2730 9.4160 4.5588 3.8034 3.7593 3.8772 3.7954
240 1.1365 2.3654 1.6954 1.6362 1.6291 1.6461 1.6338
360 0.7577 1.3262 1.2764 1.0286 1.0266 1.0317 1.0281
480 0.5682 0.7989 0.8514 0.7462 0.7455 0.7475 0.7459
600 0.4546 0.6322 0.5737 0.5849 0.5847 0.5855 0.5849
720 0.3788 0.5460 0.4967 0.4845 0.4843 0.4848 0.4844

Asymptotic 272.75 344.50 344.50 344.50 344.50 344.50 344.50

Asymptotic Relative Efficiency of δ̂ to λ̂ = 1.0792
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Table IV
Variance of Estimates of Risk Premium and SDF Parameters Under the Beta and

the SDF Methods when Residuals are Normally Distributed and Factors are Normal
Mixture Distributed

The table presents the variance of estimates of risk premium (δ, in percentage) and SDF parameter (λ) under the
beta and the SDF methods. The returns and factors are generated under the null hypothesis by a one-factor model
with parameters given in Table I, with the factors sampled from a normal mixture distribution with parameters
w = 0.0782, σ1 = 0.1413, σ2 = 0.0399, and with the residuals sampled from a multivariate normal distribution. For
the GMM estimations, we present variance of three different GMM estimators for δ and λ. The first two estimators
are from the second and third stage GMM when the identity matrix is used as the initial weighting matrix. The third
estimator is from the second stage GMM when the sample estimate of the optimal weighting matrix is used as the
initial weighting matrix. Results for the variance of the estimators are presented for different lengths of time series
observations (T ), and they are based on 10,000 simulations.

Variance of δ̂ (δ = 0.7712)

Beta Method SDF Method

GMM Estimation GMM Estimation

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 0.1647 0.5933 0.3432 0.3241 0.3270 0.3321 0.3263
240 0.0817 0.1943 0.1445 0.1452 0.1454 0.1465 0.1452
360 0.0532 0.0982 0.0887 0.0915 0.0915 0.0919 0.0915
480 0.0393 0.0639 0.0644 0.0670 0.0670 0.0672 0.0670
600 0.0315 0.0495 0.0517 0.0536 0.0536 0.0537 0.0536
720 0.0263 0.0403 0.0423 0.0438 0.0438 0.0439 0.0438

Asymptotic 19.196 30.288 30.288 30.288 30.288 30.288 30.288

Variance of λ̂ (λ = 2.5037)

Beta Method SDF Method

GMM Estimation GMM Estimation

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 2.4292 7.8960 5.4024 4.0716 4.0626 4.2296 4.0521
240 1.1302 2.6804 1.9595 1.7727 1.7705 1.7945 1.7675
360 0.7179 1.3737 1.1229 1.0952 1.0931 1.1017 1.0931
480 0.5258 0.8978 0.7916 0.7979 0.7966 0.8007 0.7969
600 0.4194 0.6919 0.6276 0.6367 0.6360 0.6382 0.6361
720 0.3489 0.5607 0.5139 0.5247 0.5241 0.5256 0.5243

Asymptotic 247.95 356.39 356.39 356.39 356.39 356.39 356.39

Asymptotic Relative Efficiency of δ̂ to λ̂ = 1.1164
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Table V
Actual Size of Maximum Likelihood Ratio and GMM Specification Tests Under the
Beta and the SDF Methods when Residuals and Factors are Normally Distributed

The table presents the actual probabilities of rejection for maximum likelihood ratio and GMM specification tests
under the beta and the SDF methods, when the asymptotic level of significance of the tests is 5% and 10%, respectively.
The returns and factors are generated under the null hypothesis by a one-factor model with parameters given in
Table I, and with the factors and the residuals sampled from a multivariate normal distribution. For the GMM
estimations, we present three specification tests. The first two tests are from the second and third stage GMM when
the identity matrix is used as the initial weighting matrix. The third test is from the second stage GMM when the
sample estimate of the optimal weighting matrix is used as the initial weighting matrix. Results are presented for
different lengths of time series observations (T ), and they are based on 10,000 simulations.

Level of Significance = 5%

Beta Method SDF Method

GMM Specification Test GMM Specification Test

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 0.0667 0.0003 0.0891 0.0900 0.0903 0.0905 0.0913
240 0.0578 0.0003 0.0672 0.0686 0.0684 0.0688 0.0687
360 0.0539 0.0002 0.0596 0.0604 0.0604 0.0605 0.0606
480 0.0545 0.0002 0.0583 0.0591 0.0590 0.0591 0.0592
600 0.0526 0.0001 0.0567 0.0571 0.0570 0.0570 0.0571
720 0.0504 0.0001 0.0531 0.0534 0.0532 0.0533 0.0534

Level of Significance = 10%

Beta Method SDF Method

GMM Specification Test GMM Specification Test

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 0.1257 0.0008 0.1523 0.1548 0.1550 0.1557 0.1562
240 0.1126 0.0007 0.1242 0.1262 0.1258 0.1265 0.1266
360 0.1070 0.0005 0.1150 0.1166 0.1167 0.1165 0.1167
480 0.1046 0.0005 0.1107 0.1116 0.1113 0.1115 0.1116
600 0.1034 0.0005 0.1081 0.1087 0.1087 0.1087 0.1087
720 0.1032 0.0008 0.1069 0.1073 0.1071 0.1073 0.1073
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Table VI
Power of Maximum Likelihood Ratio and GMM Specification Tests Under the Beta

and the SDF Methods when Residuals and Factors are Normally Distributed
The table presents the probabilities of rejection for maximum likelihood ratio and GMM specification tests under
the beta and the SDF methods when the level of significance is 5% and 10%, and the acceptance/rejection decision
is based on the empirical distribution under the null hypothesis. The returns and factors are generated under the
alternative hypothesis by a one-factor model with parameters given in Table I, and with the factors and the residuals
sampled from a multivariate normal distribution. For the GMM estimations, we present three specification tests.
The first two tests are from the second and third stage GMM when the identity matrix is used as the initial weighting
matrix. The third test is from the second stage GMM when the sample estimate of the optimal weighting matrix is
used as the initial weighting matrix. Results are presented for different lengths of time series observations (T ), and
they are based on 10,000 simulations.

Level of Significance = 5%

Beta Method SDF Method

GMM Specification Test GMM Specification Test

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 0.1290 0.0756 0.1225 0.1292 0.1295 0.1289 0.1289
240 0.2416 0.1306 0.2401 0.2411 0.2408 0.2413 0.2411
360 0.3753 0.2102 0.3740 0.3742 0.3744 0.3738 0.3741
480 0.5020 0.3098 0.4999 0.4996 0.4996 0.4994 0.4995
600 0.6226 0.4217 0.6215 0.6215 0.6217 0.6214 0.6214
720 0.7238 0.5317 0.7229 0.7231 0.7236 0.7233 0.7233

Level of Significance = 10%

Beta Method SDF Method

GMM Specification Test GMM Specification Test

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 0.2186 0.1429 0.2104 0.2161 0.2159 0.2147 0.2144
240 0.3614 0.2184 0.3586 0.3587 0.3598 0.3589 0.3586
360 0.5048 0.3190 0.5035 0.5036 0.5032 0.5032 0.5033
480 0.6321 0.4373 0.6320 0.6316 0.6319 0.6318 0.6316
600 0.7405 0.5547 0.7392 0.7395 0.7397 0.7394 0.7392
720 0.8179 0.6628 0.8174 0.8174 0.8175 0.8174 0.8174
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Table VII
Power of Maximum Likelihood Ratio and GMM Specification Tests Under the Beta

and the SDF Methods when Residuals and Factors are Jointly t-Distributed
The table presents the probabilities of rejection for maximum likelihood ratio and GMM specification tests under
the beta and the SDF methods when the level of significance is 5% and 10%, and the acceptance/rejection decision
is based on the empirical distribution under the null hypothesis. The returns and factors are generated under the
alternative hypothesis by a one-factor model with parameters given in Table I, and with the factors and the residuals
sampled from a multivariate Student-t distribution with five degrees of freedom. For the GMM estimations, we
present three specification tests. The first two tests are from the second and third stage GMM when the identity
matrix is used as the initial weighting matrix. The third test is from the second stage GMM when the sample estimate
of the optimal weighting matrix is used as the initial weighting matrix. Results are presented for different lengths of
time series observations (T ), and they are based on 10,000 simulations.

Level of Significance = 5%

Beta Method SDF Method

GMM Specification Test GMM Specification Test

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 0.1789 0.0880 0.1476 0.1530 0.1468 0.1466 0.1508
240 0.3719 0.1415 0.2758 0.2764 0.2746 0.2779 0.2768
360 0.5471 0.2123 0.3938 0.3959 0.3924 0.3963 0.3957
480 0.7023 0.3148 0.5202 0.5154 0.5141 0.5176 0.5155
600 0.8222 0.4154 0.6355 0.6303 0.6265 0.6316 0.6305
720 0.9009 0.5348 0.7301 0.7269 0.7239 0.7291 0.7264

Level of Significance = 10%

Beta Method SDF Method

GMM Specification Test GMM Specification Test

Maximum Identity Identity Optimal Identity Identity Optimal
T Likelihood Stage 2 Stage 3 Stage 2 Stage 2 Stage 3 Stage 2

120 0.2874 0.1477 0.2477 0.2457 0.2444 0.2467 0.2442
240 0.4968 0.2317 0.3827 0.3856 0.3848 0.3874 0.3853
360 0.6718 0.3205 0.5258 0.5263 0.5237 0.5274 0.5260
480 0.8015 0.4391 0.6453 0.6409 0.6406 0.6414 0.6412
600 0.8898 0.5539 0.7493 0.7426 0.7424 0.7442 0.7424
720 0.9470 0.6782 0.8228 0.8203 0.8185 0.8200 0.8196
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