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This online appendix is structured as follows. In Section 1, we provide theorems and additional
simulation results for the gross returns case studied in the paper. In Section 2, we present theoretical
and simulation results for the excess returns case. Finally, Section 3 is for the optimal generalized

method of moments (GMM) case.

1. Theorems and Additional Simulation Results

First, we derive the limiting distributions of the parameter estimates and their corresponding t¢-
statistics as well as the HJ-distance test for correct model specification when a useless factor is
present in the model. Next, we report additional simulation evidence to substantiate some of the

claims made in the paper.
1.1 Theorems
Consider a candidate SDF that is given by
e = Jivi + 9072, (1)

where f; = [1, fI]', f; is a (K — 1)-vector of useful risk factors and g; denotes a useless factor that
is independent of z; and f; for all time periods. For ease of exposition, we assume that E[g/] = 0

and Var[g;] = 1." Let B = E[x;f!], and note that the independence between g; and z; implies
d= E[xtgt] = ON (2)

and

Blziaig7] = E[Elziat]geg7] = UE[g] = U. (3)

Now let D = [B, d], v = [v}, 73l’, e(y) = Dy —q, d = %Zthl TGt B = %Z::F:l a:tft’, and

D= [B , cf] Note that since d = Oy, the vector of pricing errors

e(y) =By, +dyy —q=Bvy; —¢q (4)

is independent of the choice of 5. The pseudo-true value of the SDF parameter associated with

the useless factor (v5) cannot be identified. In the following, we set v = 0, which is a natural

IThis assumption does not affect our asymptotic results on statistical inference for the slope parameters of the
linear SDF. It does, however, affect the limiting distribution of the estimated SDF’s intercept and the statistical
inference on it. The limiting results derived under a generic mean and variance of the useless factor are available
from the authors upon request.



choice because in Theorem 1 we will show that 4, is symmetrically distributed around zero. While
the pseudo-true value v3 is not identified, the sample estimates of the SDF parameters are always

identified and they are given by
4= (D'U'D)'D'U . (5)

Note that the estimator in Equation (5) can be obtained equivalently by running an ordinary
least squares (OLS) regression of U 7%q on U"2B and U"2d. In order to construct Yo, We can
project Uféq and U"2d on U3 B , and then regress the residuals from the first projection on the
residuals from the second projection. It follows that

I i o

U~

Similarly, the parameter vector 4, is obtained by projecting U 7%q and U~2B on U~ 2d and then

Ut
-1

w\»—- m\»—‘
Qi> Q>

w\»—t [o\»—t

(6)
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regressing the residuals from the first projection on the residuals from the second projection, which

yields

We make the following assumptions.

Assumption 1. Assume that (i) N > K + 1; (ii) [z}, f{, ¢:]' are jointly stationary and ergodic
processes with finite fourth moments; (iii) e:(v}) — e(y}) forms a martingale difference sequence;

and (iv) the matrices B (N x K) and D (N x(K + 1)) have a column rank K.

Assumption 2. Let ¢ = xz; — B(E[f.f!]) " f, and assume that Ele;e}|f;] = = (conditional ho-

moscedasticity).

Our first results are concerned with the limiting behavior of 4; and 45 under correctly specified
and misspecified models. We adopt the following notation. Let B=U _%B, q=U _%q, and
P be an N x (N — K) orthonormal matrix whose columns are orthogonal to B so that PP’ =
In — B(B'B)™'B’. Also, let z ~ N(Ox, Iy) and y ~ N(O, UféSUfé), and they are independent
of each other. Finally, we define w = P’z ~ N(On_xk,In-k), s = ({ Pw)/({ PP’ )2 ~ N(0,1),



w = Py ~ NOy_g,V,) with V, = PU"2SU 2P, and r = (B'B)~
V, = (B'B):B'U :SU :B(B'B) :.

N[

B'y ~ N(0k,V,) with

VI
NI

Theorem 1. Assume that the conditions in Assumption 1 are satisfied.

(a) If 6 =0, that is, the model is correctly specified, we have

/

VTG = i) S (B'B) 2 |r = o (B'B) 2Bz, ®)
and
/
L. d wu
72 — w/w' (9)
(b) If § > 0, that is, the model is misspecified, we have
~ x d ds n! H\—1 D/
G171 S-S (BB B (10)
and
1 4 s

Proof. See the Appendix.

The results in Theorem 1 subsume the results in Proposition 1 in the paper and can be sum-
marized as follows. First, for correctly specified models, Theorem 1 shows that 4, converges to a
bounded random variable rather than the constant zero.? While the parameter estimates for the
useful factors are consistently estimable, they are asymptotically nonnormally distributed. Sec-
ond, the presence of a useless factor further exacerbates the inference problems when the model is
misspecified. In this case, the estimator 4, is inconsistent, while the estimator 4, diverges at rate
T3,

We next derive the limiting distributions of two types of t-statistics (as defined in the paper):
(i) te(4q;) of Ho : vy = ~3; for i = 1,..., K, and t.(§,) of Hy : 75, = 0 that use standard
errors obtained under the assumption that the model is correctly specified, and (ii) t,(5;;) of

Hy : vy = 7;; for i = 1,..., K, and t,,(§,) of Hy : 79 = 0 that use standard errors under

2The limiting random variable has mean zero and variance tr(V,)/[(N — K)(N — K — 2)], where tr(-) is the trace
operator.



potentially misspecified models. The two types of t-statistics are based on the estimated covariance

matrices Eg = LT h9hY and 34 = z ST, hehl, where

T Zat=1
R = (D'U'D)y'D'U e, (12)
he = RO+ (DUDY N, g) — DU a)eU tay, (13)

~ IS ~ ~ T ~
€t = xt(ft/71 + 9t72) —q and é = %Zt:l €t.

The results presented below are driven, to a large extent, by the limiting behavior of the matrix
S = %Zthl é:6;. In the presence of a useless factor, the results in Theorem 1 imply that for

misspecified models

& = (T724)(T724g,) + Op(1) (14)

and

= (T774)°U + 0,(1), (15)

S| v

so S diverges at rate T'. In contrast, for correctly specified models, we have
S =8+ 43U + 0y(1), (16)

so that S converges to a random matrix.

In addition to the random variables and matrices defined before Theorem 1, we introduce
the following notation. Let @ ~ N(0,1), 7; ~ N(0,1), Z ~ N(0,1), v ~ X% __;, and they
are independent of each other and w. Theorem 2 and Corollary 1 (Proposition 2 in the paper)
below provide the limiting distributions of the t-statistics under correctly specified and misspecified

models.

Theorem 2.

(a) Suppose that the conditions in Assumptions 1 and 2 hold.? If § = 0, that is, the model is

3The limiting distribution of ¢.(¥,) does not depend on the conditional homoscedasticity assumption. The expres-
sions for the limiting distributions of the other ¢-statistics under conditional heteroscedasticity are more involved,
and the results are available upon request.



correctly specified, we have

. d wz; + VAV w'wry
te(Y) — : : l~2 T (17)
Nww+ 22+ a2 (1+ 5]
. d uz; + vV vw'wr;
) i+ VAVt N a8)
[wro + 22+ a2 (14 25) + 2]
1 7 w'w w'w
. d U
te(Y2) = ——, (19)
=2 2
(1 + u’ﬁiw)
. d U
tm(2) — : (20)

w’w

1
(1 + ﬁ2+’u) 2
where \; is a positive constant and its explicit expression is given in the Appendix.

(b) Suppose that the conditions in Assumption 1 hold and denote the sign operator by sgn (-). If

6 > 0, that is, the model is misspecified, we have

~ d Zq

te(Y1) — LD (21)
. d 1

tmn(31) — N (0.7 ), (22)

te(s) % sgn(s)Vu'w, (23)
N d

tm(¥2) — N(0,1) (24)

Proof. See the Appendix.
Corollary 1.

(a) Suppose that the conditions in Assumptions 1 and 2 hold. Then, for correctly specified
models, the limiting distributions of t2(%y;), t2,(31:), t2(%5), and t2,(¥5) are stochastically
dominated by x?.

(b) Suppose that the conditions in Assumption 1 hold. Then, for misspecified models, the limiting

distributions of t2(%,;) and t2,(%,;) are stochastically dominated by x?.

Proof. See the Appendix.



Finally, it is instructive to investigate whether the presence of a useless factor affects the limiting

behavior of the specification test based on the sample squared HJ-distance

5 = U te. (25)

In the absence of a useless factor, it is well known that under a correctly specified model (Jagan-
nathan and Wang 1996)
, , NoK
75 4 3 ¢x;, (26)
i=1
where the X;’s are independent chi-squared random variables with one degree of freedom and the
&;’s are the N — K nonzero eigenvalues of
S2U7LS: — S2U'B(B'U'B)"'B'US5. (27)

A2
In practice, the specification test based on the HJ-distance is performed by comparing 79 with

the critical values of Zf\:lK gz-Xi, where the gi’s are the nonzero eigenvalues of

U\BBUB) BT 8s. (28)

N
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N
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When the model is misspecified, Hansen, Heaton, and Luttmer (1995) show that the sample squared
HJ-distance has a limiting normal distribution. However, in the presence of a useless factor, the
above results do not hold. In the next theorem, we add to the existing literature (Kan and Zhang
1999) by characterizing the limiting behavior of the sample squared HJ-distance in the presence of

a useless factor.

Theorem 3. Let Q1 ~ Beta (NEK, %) with density fg,(:), @2 ~ Beta (Nfg(*l, %) with density

fo.(+), and ¢, be the 100(1 — «)-th percentile of X%, ;-

(a) Suppose that the assumptions in part (a) of Theorem 2 hold. If § = 0, we have

75" % Bl(fiv) k1 (29)

and the limiting probability of rejecting Hy : 6% = 0 by the HJ-distance test of size « is

1
/0 P [X?V—K—l > C(ﬂ fa.(g)dg < a. (30)



(b) Suppose that the assumptions in Theorem 1 hold. If § > 0, we have

2

54 520, (31)

and the limiting probability of rejecting Hy : 6% = 0 by the HJ-distance test of size « is
! 2 Caq
; Pixn_-k> T—q fa.(g)dg < 1. (32)

Proof. See the Appendix.

An immediate consequence of the result in Theorem 3 is that the presence of a useless factor
tends to distort the inference on the specification test as well. More specifically, part (b) of The-
orem 3 reveals that the HJ-distance test of correct model specification is inconsistent under the

alternative.

Note that the limiting probabilities of rejection in Equations (30) and (32) are only functions of
the significance level a and the degree of over-identification N — K. Figure 1 plots these probabilities

for different significance levels (o = 0.01, 0.05, and 0.1) and N — K ranging from 2 to 20.

’Figure 1 about here‘

The top panel of Figure 1 reveals that under a correctly specified model, the limiting probability
of rejection of the HJ-distance test is below its nominal level when a useless factor is present. When
the model is misspecified, the bottom panel of Figure 1 shows that the probability of rejection of
the HJ-distance test will not approach one even in large samples. In fact, there is a nonzero
probability that the HJ-distance test will favor the null of correct specification, and this probability
is particularly high when N — K is small. As a result, the presence of a useless factors makes it

more difficult for the HJ-distance test to detect a misspecified model.
1.2 Additional simulation results

In the following, we report some additional simulation results that, in the interest of brevity, were
omitted from the paper. First, we consider a scenario in which a linear combination of two useful
factors is useless. Although our theoretical setup in Section 2 of the paper is not specifically

designed to deal with this type of situation, it is still interesting to examine how our sequential



model selection procedure fares in this framework. Each factor is created by adding a normally
distributed error to the excess market return. The error term in each factor has a mean of zero and
a variance of 4% of the variance of the excess market return. The two error terms are independent
of each other as well as of the returns on the test assets and the market portfolio. As in Table 4 of
the paper, the returns and the factors are drawn from a multivariate normal distribution. We are
interested in determining the probability that (i) both factors survive, (ii) only one factor survives,
and (iii) no factor survives using the sequential procedure (with the Bonferroni adjustment) based on
misspecification-robust ¢-tests. For comparison, we also report results of the sequential procedure
based on t-tests under correct model specification. The nominal level of the sequential testing
procedures is set equal to 5%. Ideally, in this framework, only one factor should survive the testing

procedures described above.

’Table 1 about here

Panel A of Table 1 shows that when the model is correctly specified, the procedures based on ¢,
and t,,, do a similarly good job in retaining only one factor in the model. For example, for T' = 1000,
the probability that only one factor survives is either 89% or 90% depending on whether we use .
or t,,. For this sample size, the probabilities that both factors survive and no factor survives are
very low and similar across procedures. However, when the model is misspecified (see Panel B), the
procedures based on t. and t,, deliver very different results for the “Both factors survive” and “One
factor survives” cases. For T' = 1000, the probability that both factors survive the model selection
procedure based on t. is 37.5%, while the probability that both factors survive the model selection
procedure based on t,, is 1.7%. This difference in probabilities becomes larger as the sample size is
allowed to grow. Importantly, the probabilities that only one factor survives are markedly different
across procedures. For example, when T = 1000, the probability that only one factor survives is
about 89% when using t-tests under misspecified models, while it is only 56.6% when using t-tests
under correctly specified models.* In summary, our selection procedure based on t-tests that are
robust to misspecification continues to perform reasonably well even when no single factor is useless

but a linear combination of them is.

“In an unreported empirical example of the liquidity-augmented CAPM of Liu (2006), the market factor and
the liquidity factor of Pastor and Stambaugh (2003) appear to be individually useful but jointly cause a model
identification failure. Our proposed model selection procedure proves to be effective in retaining only one useful
factor (the market factor in this case) and restoring the full rank condition necessary for identification.



Next, we investigate the robustness of the results in Table 3 of the paper to the inclusion of an
unpriced factor with nonzero correlation with the returns on the test assets. Specifically, we consider
a model with a constant, a priced useful factor, and an unpriced factor, where the unpriced factor
is calibrated to three observed factors with a different correlation (weak, moderate, and strong)
with the returns on the test assets. In Tables 2 to 4, the priced useful factor is always calibrated
to the properties of vw, while the unpriced factor is calibrated to the properties of c¢,q - cay, cpd,

and smb, respectively.

Tables 2 to 4 about here

The simulation results clearly indicate that the misspecification-robust t-test for the priced
useful factor exhibits smaller underrejections (and improved power) compared with those in Table 3

of the paper, while the rejection rates for the unpriced factor remain largely unchanged.

2. Theoretical and Simulation Results for Excess Returns

In the following analysis, we provide theoretical and simulation results for the excess returns case.
The proofs are similar to the gross returns case and are omitted, but they are available from the

authors upon request.
2.1 Theoretical results

Let z; be the excess returns on N test assets at time ¢ with mean p and covariance matrix V. It is
well known that when only excess returns are used as test assets, it is not possible to identify the
mean of the candidate SDF and some normalization of the SDF becomes necessary. As a result,

we follow Kan and Robotti (2008) and define the candidate SDF as

ye =1 —(fr — 1p)' v — (96 — 11g) 72 (33)

where f; is a vector of K systematic factors with mean p; and covariance matrix Sy, and g; is a

2

5> such that it is independent of f; and z; for all time

useless factor with mean p, and variance o

periods.®

5Note that here the number of useful factors is set equal to K. This differs from the analysis in the previous section
where the number of useful factors is set equal to K — 1.



The pseudo-true value of v; under the modified HJ-distance measure is given by
vi=(B'VB)T'BV 1y, (34)

where B = Cov[zy, f{]. We set the pseudo-true value of 75, 75, equal to 0 even though it is not

identified (see Section 2 of the paper for a discussion of this issue). Let d = Cov[zy, g = On,

~ T % T ~ N
= > m, V=S (v — ) (2 — 1), and

Zw‘t fe—iny) th g — Iy | = [B, d. (35)

The sample estimator of v = [v}, 75) is given by

= | =@V D) DV (36)
Y2
It is straightforward to show that
o= BV Iy - Vordd V)TV VB
x BV 2 [Iy — V2d(dV1d) 'd V2|V 24 (37)

and

_ dVTEIy - VBBV IB) BV RV (38)
dV2[Iy -V 2 B(BV-1B)- 1BV 2]V "2

Finally, Kan and Robotti (2008) suggest that a modification of the traditional HJ-distance is
needed when using the de-meaned factors. Their proposed measure, the modified HJ-distance,

employs the inverse of the covariance matrix (instead of the second moment matrix) of the excess

returns as the weighting matrix, and is given by

b = \Je(vD) VLe(7)), (39)

where e(v]) = u— B~v;. The sample version of the model misspecification measure in Equation (39)

is given by

om = VeV-le, (40)

where € = i — ﬁ‘y

In deriving the limiting behavior of 4, and %5 under correctly specified and misspecified models,

we adopt the following notation. Let B = VféB, = Vfé,u, et(V1) = 2yt yi = 1 — (fe — 1yg)' 77,

10



S = Ele:(v))et(v7)'], and P be an N x (N — K) orthonormal matrix whose columns are orthogonal
to B so that PP' = Iy — B(B'B)~'B'. Also, let z ~ N(Oy,Iy) and y ~ N(Oy,V 25V "2),
and they are independent of each other. Finally, we define w = P’z ~ N(Ony_k,IN_K), s =
(i’ Pw)/(i' PP'j)2 ~ N(0,1), u = P'y ~ N(Oy_g,V,) with V, = P'V"2SV 2P, and r =

(B'B)~ By ~ N0k, V;) with V, = (B'B) "2 B'V-1SV-$ B(B'B) 4.

Theorem 4. Assume that the conditions in Assumption 1 are satisfied.

(a) If 0,, = 0, that is, the model is correctly specified, we have

/

. Y Rt wu =~ 1~
VT(1 =~7) = (B'B) 2 |r - w’w(B/B) 2Bz, (41)
and
/
L d  wu
— . 42
2 7 qw'w (42)
b) If §,, > 0, that is, the model is misspecified, we have
(b) ) ) p ,
=yt OmS 1 (43)
71 71 w'w )
and
1 d  Oms
—="y — : 44
\/T’YQ ng’w ( )
As in the case of gross returns, we define two types of t-statistics: (i) tc(9y;), fori=1,..., K,

and t.(9,) that use standard errors obtained under the assumption that the model is correctly
specified, and (ii) ¢, (9y;), for i = 1,..., K, and ¢,,(%5) that use standard errors under potentially
misspecified models. The two types of {-statistics are based on the estimated covariance matrices

20 = 4 3y h{hY and 5 = £ 30 hyh), where

R = (D'VTID)yTID'V e, (45)

he = B+ DVD)Y (10— i) e — gl = DV e = 1)), (46)

~

& = (xe — W)Ge + f1, G = 1 — (fe — fup)' 31 — (9t — fg)Y2, and Gy = &V~ (z — fi).
In addition to the random variables and matrices defined before Theorem 4, we introduce

the following notation. Let @ ~ N(0,1), 7 ~ N(0,1), Z ~ N(0,1), v ~ X% _;_;, and they

11



are independent of each other and w. Let ¢; and ¢ be the i-th diagonal elements of C' and C,

respectively, where

C = S;Cov[(fe — pp)(fe — mp) u 1S5 + NE(fe — pp)y ) S5

+STE((fe — np)yr I+ Bl iny

and
C =S 'Cov[(fr — ) (fi — ng) w2157 = At
Define
&
i = 14+ 5,
E[yt Q]bi
R G
Aio= 1+ 5,
E[yt2]bi

(47)

(48)

(49)

(50)

where b; is the i-th diagonal element of (B'B)~!. Theorem 5 below provides the limiting distri-

butions of the t-statistics under correctly specified and misspecified models. Let the following

assumption replace Assumption 2.

Assumption 2’. Let ¢ = (xy — p) — BSj?l(ft — py) and assume that Elef;] = Oy and

Covlesel, yi?] = Onxn-

Theorem 5.

(a) Suppose that the conditions in Assumptions 1 and 2’ hold. If §,, = 0, that is, the model is

correctly specified, we have

d az; + VAivVw'wr;

te(Y14) =2 1
X .op! 52 4 72 Z 2
[)\iw w+Z; +u <1 + w,wﬂ
R d UZ; + VAV wwr
tm(F1:) = — : . Z L a1
[)\iw’w + 324 a2 (1 + ww) + jj,fu} :
. d i
tc(’YQ) - 10
(1+3%)°
w’'w
. d U
tm(’h) -

(51)

(52)

(53)

(54)



(b) Suppose that the conditions in Assumption 1 hold and denote the sign operator by sgn (-). If

Om > 0, that is, the model is misspecified, we have

) 5 (55)
1+jiw>2

tm (Y1) 4 N Oajl>, (56)

te(H) S sgn(s)vVw'w, (57)

tm(32) 5 N(0,1). (58)

In the next theorem, we characterize the limiting behavior of the sample squared modified

HJ-distance in the presence of a useless factor for the excess returns case.

Theorem 6. Let Q1 ~ Beta ("5, 3) with density fg, (), Q2 ~ Beta (=5

. 2 ,%) with density

fo,(+), and ¢, be the 100(1 — «)-th percentile of X%, ;-

(a) Suppose that the assumptions in part (a) of Theorem 5 hold. If §,, = 0, we have
2
T5,, % Bl k1 (59)

and the limiting probability of rejecting Hy : (5$n = 0 by the modified HJ-distance test of size

« is
1
[ 7[> ] faaao <o (60)
0
(b) Suppose that the assumptions in Theorem 4 hold. If §,, > 0, we have
~2 4
o 5 62Q (61)

and the limiting probability of rejecting Hy : 57271 = 0 by the modified HJ-distance test of size
« is

/Olp[XN K~ 7 ]f@?( )dg < 1. (62)

Overall, the results for excess returns are very similar to the results for gross returns in the
paper. The only noticeable differences are for the ¢-tests on 4, in part (a) of Theorem 5. This
implies that the nature of the problem (and the solution) is essentially the same regardless of

whether one uses gross returns or excess returns in the analysis.

13



2.2 Simulation results

In this section, we undertake Monte Carlo experiments to assess the small-sample properties
of the test statistics based on the modified HJ-distance in models with useful and useless factors.
The simulation designs, data, and models are the same as the ones considered in Tables 1-4 of the

paper and in Table 1 of Section 1 of this online appendix.

The results in Panel A of Table 5 show that for models that are correctly specified and contain
only useful factors, the standard asymptotics provides an accurate approximation of the finite-

sample behavior of the t-tests.

Table 5 about here

Since the useful factor, calibrated to the properties of the value-weighted market excess return, is
closely replicated by the returns on the test assets, the differences between the t-tests under correctly
specified models (t.) and the t-tests under potentially misspecified models (¢,,) are negligibly small

even when the model fails to hold exactly.

Panel B of Table 5 and Table 6 present the empirical size of the t-tests in the presence of a

useless factor.

Table 6 about here

The simulation results for the ¢-tests on the parameters of the useful factor confirm our theoreti-
cal findings that the null hypothesis is underrejected when N (0, 1) is used as a reference distribution.

This is the case for correctly specified and misspecified models.

Similarly, the inference on the useless factor proves to be conservative when the model is cor-
rectly specified. However, when the model is misspecified, there are substantial differences between
t. and t,, for the useless factor. Since the t. test for significance of the useless factor is asymp-
totically distributed (up to a sign) as 1/)(?\[_ K+ it tends to overreject severely when the critical
values from N(0,1) are used and the degree of overrejection increases with the sample size. In
contrast, the t,, test on the useless factor has good size properties although, for small sample sizes,

it slightly underrejects. As the sample size increases, the empirical rejection rates approach the

14



limiting rejection probabilities (as shown in the rows for ' = 0o) computed from the corresponding

asymptotic distributions in Theorem 5.

Table 7 reports the survival rates of different factors when using the sequential procedure

described in Section 3 of the paper.

Table 7 about here

Panel A shows that when the model is correctly specified, the procedures based on t. and t,,
do a similarly good job in retaining the useful factors with nonzero SDF parameters in the model
(the survival probabilities are 85-96% for T' = 600) and eliminating the irrelevant factors. This
indicates that using the t. test in the presence of a useless factor is not problematic when the
underlying model holds exactly. However, as shown in Panel B, the situation drastically changes
when the model is misspecified. In this case, the procedures based on t. and t,, still retain the
useful factors with nonzero SDF parameters with similarly high probability (75-93% for T = 600),
but they produce very different results when it comes to the useless factor. For example, despite
its conservative nature (due to the Bonferroni adjustment), the procedure based on t. will retain
the useless factor 26-30% of the time for T' = 1000. In contrast, the procedure based on t,, will
retain the useless factor only about 0.6-0.8% of the time for 7" = 1000. Similarly, the probability
of at least one irrelevant factor being selected in the final specification of the model is 30-48%

(1.3-1.5%) for T'= 1000 when the t. (¢,,) test is used and the model is misspecified.

Finally, we consider a scenario in which a linear combination of two useful factors is useless.

Table 8 about here

Panel A of Table 8 shows that when the model is correctly specified, the procedures based on
t. and t,, are both effective in retaining only one factor in the model. However, when the model
is misspecified (see Panel B), the procedures based on t. and t,, deliver very different results. For
T = 1000, the probability that both factors survive the model selection procedure based on t. is
about 38%, while the probability that both factors survive the model selection procedure based
on t,, is about 2%. Importantly, the probabilities that only one factor survives are very different

across procedures. For example, when 7" = 1000, the probability than only one factor survives is

15



about 89% when using ¢-tests under misspecified models, while it is only about 56% when using

t-tests under correctly specified models.

3. Simulation Results for Optimal GMM Using Gross Returns

We use the same notation as in the paper and set the number of useful factors equal to K — 1. The

optimal s-step (s > 2) GMM estimator of the SDF parameters is defined as

A A AN\ —1 . 4
40) = <D’S(’51_1)D> DSt e (63)
where
R A |
D= Tzwtftly Tzﬂftgt] (64)
t=1 t=1
and

with e (57) = a0 [F5070 + 088 ™) ma = wan (300) 0, e (3070 = TV EL e (3670)
DAY — g,

/AN N
Let 4 = e ('Ay(s)) 5’(_5171):1% and % = e (’y(s)> S(_Sil) (et ('Ay(sfl)) —e (’?(3*1)>) . A consistent
estimator of the asymptotic variance of the SDF parameters under misspecified models is given by
N Tr ..
(a proof of this result is available upon request) % NORS %t; hihy, where
he = (D,§@£1)ﬁ)_l {ﬁlg(;l_n <55tyt (’7(8)) —e (@(S_l)> ft) + £, gt],at} — 4. (66)
When the model is correctly specified, the hy expression simplifies to

W= (D'8.1,D) " DS e (). (67)

In addition, the GMM test of correct model specification is given by
.
Te (W)) Shye (W)) : (68)

In the absence of a useless factor, it is well known that under a correctly specified model this test

is asymptotically chi-squared distributed with N — K degrees of freedom.

Tables 9 to 13 about here

16



In our simulations, we use the identity matrix to compute the first-step GMM estimator and
analyze the finite-sample properties of the optimal 3-step GMM estimator and specification test
in models with useful and useless factors. Our Monte Carlo simulations (see Tables 9-13) show
that the results for optimal GMM are broadly consistent with the ones for the estimators and test
statistics based on the HJ-distance. In addition, the rejection rates for the limiting case (7' = co) are
equivalent to those based on the asymptotic distributions given in Theorem 2 in the first section of
this online appendix. This implies that our robust model selection procedure is also applicable to

the class of optimal GMM estimators.
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Appendix: Preliminary Lemma and Proofs of Main Results

Al Preliminary Lemma
Lemma A.1. Let
= BSleft + e, (A1)

where B = El[zf]], S§ = E[f:f]], and Elel|f;] = On. Suppose Covlese,, (fiv1)?] = Onxn (a
sufficient condition for this to hold is E[ee}| fi] = %, that is, conditional homoscedasticity). When

the model is correctly specified, we have
S = El(eef{ri — )(@efiri — a)'l = El(f71)*]U + BCB', (A.2)
where U = E[z;x}] and C is a symmetric K x K matrix.
Proof of Lemma A.1. Under a correctly specified model, we have ¢ = B~vj}. It follows that
S = Blzy(fin1)*] — ad' = Elwei(fi77)?) — BriviB' (A.3)

For the first term, we have

Elmzy(fiv))?] = Bz B(fi71)?] + Covlzezl, (fivi)?]
= Bl(fi)’|U + CovBSF /i f;S7'B' + erei, (fin1)’]
= E[(fi7}) ]UJrBSJ?lCOV[ﬁfZ, (firD)?)s 13/ (A4)

where the last equality follows from the assumption that Cov[ese;, (f/7%)?] = Onxn. Therefore, we
have

= E[(fi»1)*)U + BCB, (A.5)
where

C =87 Covlfuft. (Fin1)*)S7 — i (A.6)

This completes the proof.

A.2 Proofs of Theorems and Corollary 1

Proof of Theorem 1.
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part (a): We start with the limiting distribution of vT'(%; — ~}). Under the assumptions in

Theorem 1, we have

ﬁU*%disz(ON,IN) (A7)

and

—VTU 2(Bv; —q) % y ~ N(On, V), (A.8)

where V,, = E[mym;}] is the covariance matrix of y, and
_1 Y 1 *
me = U2 (zef{v] —q) = U 2e(77). (A.9)

Therefore, we have V,, = U ~35U~3 for correctly specified models. In addition, y and z are
independent of each other. Using y and z, we can write Equation (7) as

VT(3 =) = (BU 3[Iy -0 2d(d0'd)"'d 0202 B)"!
x BU 2 [Iy — U~ 2d(d'U'd) *d U |WTU 2 (q — By})
- (B'[IN — z(z’z)_lz’]B)_lé’[IN — z(z’z)_lz’]y

= (B'[In —2(z'2)7Y|B) '\ B'[Iy — 2(2'2)"'][PP' + B(B'B)"'B'ly

B B B/ 'pp! o B
= —(BlIy - z(z'z)_lz']B)_l% +(B'B)"'Bly. (A.10)

Let w = Pz ~ N(ON_K,IN_K), u = P’y ~ N(ON_K,VU) with V, = P/U_%SU_%P, r =

(B'B)"2B'y ~ N(0g,V,) with V, = (B'B) 2 B'U 2SU 2 B(B'B)"2. Making use of the iden-

tity

(A.11)

(BB 2Bz+7|. (A.12)

For the derivation of the limiting distribution of 45, we define M = IN—U_%B(B’U_lB)_lB’U_%

and M = Iy — U_%B(B’U 13)_13’17_%. Using that MU 2B = Onx k, Wwe obtain
\/T]\;HA]_%q: \/TMU_%((]—B’YD iMy, (A.13)

and we can rewrite 9, as

. (VTU 2dy(VTMU %(B - B)y})
Y2 = ~ 1~ = ~ 1~ . (A14)
(VTU 2d) M (vVTU 2d)



Then, from Equations (A.7), (A.8), and M 5 M = PP’, we get

/ !\ / /
.4 ZMy (P'2)(Py) wu
— = = . A15
T2 M (P'z)(P'z) ww ( )

This completes the proof of part (a) of Theorem 1.
part (b): Using the fact that U 2B 2% B and VTU 2d A z, we can obtain the limiting
distribution of 4, in Equation (7) as

A1 4 (B'[In — 2(2'7*2/1B) ' B'[In — 2(2'71¢]3. (A.16)

Using Equation (A.11) and the fact that v} = (B'B)~'B'q, we obtain

Y r 3'B)~! o/ ~ Blzzld P! P\—1 P ~
e ( o w'w < 2z ) ( )
= —(B'B)_lB’zﬁ + (B’B)_lé’zzlé(élé)_lgld _ (B/B)—lé/zﬁ 2/B(B'B)"'B'z
2z w'w P W
= (B/B)le/ Z'q —}—(B/B)flé/ ZB(B'B)"'B'§
w'w
MG, ~, ~ .
_ _Z : q(B,B)_lB,z
w'w
05 71 ;y 1 fy
- _w’w(B B)" Bz (A.17)

and the last equality follows because §° = § PP'G and s = ¢ PP'z/(§ PP’ cj)%

For the limiting distribution of 4,, we have

o (\/TCZ’[A]_%)]\;H]_%q i)z’M(j: ds (A18)

This completes the proof of part (b) of Theorem 1.

(ST

T

Proof of Theorem 2.
part (a): Using Lemma A.1, we have

S = E[(fiv)YU + BCB' (A.19)
under the conditional homoscedasticity assumption. It follows that

1 ~

V, = PU2SU 2P =E[(flv))In_k. (A.20)
1
2

Covlu,r'] = PU2SU2B(B'B)™2 = O(n_x)xk- (A.22)



Let u = w’u/(w'Vuw)% = E[(ﬂ’yf)Q]_%w’u/(w'w)%. It is easy to show that @ ~ N(0,1) and it is
independent of w, z, and r. Using @, we can simplify the limiting distribution of vT'(§; — ~%) in
Equation (A.12) to

v?wl—ﬁ>$—Ekﬁﬁﬁﬁ@jbgéi%*éw+<ﬁérén (A.23)

The estimated covariance matrix of 4 for a potentially misspecified model is given by

T
N 1 A
Vin(3) = 75 D _ bt (A.24)
t=1
where
hy = (D'UDY ' D'U e, + (D'U'DYN(f], g) — DU )iy, (A.25)

and 4; = € U ~lg;. In order to derive the limiting distribution of iLt, we need to obtain the limiting

representations of (D'U~'D)~!, (D'U~'D)~'D'U~", and .

It is straightforward to show that

1

. B'U 2 +0,(T 2)
DUt = | . : (A.26)
i ﬁZ/U_E + Op(Til)
o [ B'B+0,(T"3) -LB2+0,(T "
DD = B o) \/TLZ o) . (A.27)
| VT P T P
Then, using the partitioned matrix inverse formula, we have
1 (B'B)"'1Bz
(D'UD)~t = H+0,(I72) VT 4 0 (A.28)
_JTZBBBITL 5 (1) T4 0,(T%) ’
w'w p w/w p
where
- i o (BB)\BB(BB)
H=(B'Iy —2(22)7'Y|B)™' = (B'B)™' + (B'B) ;’ju (B'B) . (A.29)
After simplification, we obtain
~ o~ ~ 1
o o B'B 713/_% . (B’B)_IB/,zw’P’U’? 10 T_%
(D'U'D)' DU = (BB) who o(172) : (A.30)

1
Tw'P'U” 2
fww’w : +OP(1)

With the above expressions, we now derive the limiting distribution of @;. Note that the vector

of sample pricing errors is given by
é=Dy—q=DD'U'D)'DU¢—q. (A.31)
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Using Equations (A.13), (A.15), and the identity

In—U2DD'U D) 'D'U~2 = N — MU 2d(d U2 MU 2d)"'dU 2 ], (A.32)
we can obtain the limiting distribution of —T U 7%6 as
/ /
NTU 26 =VTMU 2q— VTNU 2d4, % My — MZZUU/Z —p <1NK - ZZ’U) u, (A.33)
and we have
/
VTiy %~ (IN_ K — Z&) PU 3z, (A.34)
Using Equations (A.28), (A.30), (A.34), and the fact that
!/
O g+ 0,(T %) (A.35)

~ ¢~ ~ £l %
€= + —q=z —q+
t t(ft1 + Y29t) — ¢ tfivi — 4 w'w
under a correctly specified model, we can write the limiting distribution of hy = [illlt, ﬁgt]’ , Where

ﬁlt denotes the first K elements of ﬁt, as

~ ~ ~ _1

(BB gyt - BB B PUT
w/w

~ w'u
(%&ft’ﬁ —atrge g

hlt —

(A.36)

B'B)"'B'z ww'
+ (w)/wU/ <INK - w/w> P/U_%xtgt,

hot a1 I plyr—i 1 w'u L ww' ryr—1
ﬁ—> /waU 2 ﬂstft'yl—q—i—:ctgtw,w - IN*K_w’w PU 229,  (A.37)

Under the conditional homoscedasticity assumption, we have

T
1 F % % a.s, ol %
T Z(xtft/’h —)(@fini —q) — S = E[(f[’Yl)Q]U + BCB'. (A.38)
t=1
Together with the fact that
(A.39)

T
1 2 a.s. 2 2
=" wialg? 2% Bluwlg?) = Blua)]Flgf) = U,
t=1
we can show that the estimated misspecification-robust covariance matrix of 4; has a limiting

distribution of

T
. 1o -
TVn(H1) = Tzhlth/lt
t=1
~2 R/ \—1 0!, ! R/ \—1
d 5 a2 ~,~_1 (B'B)""'B'22/B(B'B)
Bl (1 ) [EB = e
/ B/B —IB/ /B B/B -1
+u IN_K—ww u( ) i ( ) . (A.40)
w'w (w'w)?



Let b; be the i-th diagonal element of (B’B)~!. Then, we can readily show that

_LQ(B’B)*lé’z
Vbi

WInN—g — w(ww) wu

v = Y UCADRUACIN S (A.42)

E[(fiv1)?]

and v is independent of %, z and w. Using Z; and v, we can express the limiting distribution of

2

~ N(0,1), (A.41)

s (F1:) as

2 (2 I (A d 7%\ 2 w? 212 21'27}
Ty, (F10) = T4iVin(Y1)e = E[(fiv1)7]bi || 1+ ' 1+ ww) " (w'w)? + Cis (A.43)
where ¢; is the i-th diagonal element of C. In addition, by letting
7 = (E[(fly})?bs + i) "244(B'B)"2r ~ N(0, 1), (A.44)

we can write the i-th element in Equation (A.23) as

uz;

. wy d 5 % 1 % 1
VT (31 = 7ii) = (E[(ft'71)2]bi)2( ')z + (BI(fin1)*]bi + ci) 2 7. (A.45)
w'w)?2
Finally, by letting®
c.
A= 14 —er > 0, (A.46)
E[(f{1)?]bs
we can write the limiting distribution of ¢,,(%;) as
5 Y1 — 0 d azi + VAV w'wr
(1) = S ST (A.47)
m [Ai(wfw) + 72 + @2 (1 + ww) + f;,fu}

The estimated covariance matrix of 4; that assumes a correctly specified model is obtained by

dropping the second term in Equation (A.40). Then, it can be shown that

Ts2(31;) % E[(flvD2b: |1+ o 1+ &1 +¢ (A.48)
Se\M1i t71)"10i ' o' i .
and hence
. Vi — Vi d Uz + VA ivVw'wi
te(§1) = ——1 5 - (A.49)
(Y1) 2 \12

iwrw) + 22 + @ (1+ 25 )|

SFrom Equation (A.44), we can see that E[(f/y7)?]bi + ci is the variance of «/(B'B)~2r. Therefore, we have
A > 0.
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We now turn our attention to the limiting distributions of ¢.(%5) and ¢, (%5). From part (a) of

Theorem 1, we have

/ ’ 1
5, 4 Wu _ (Whuw)z (A.50)

w'w (w'w)

where @ = w’u/(w’Vuw)% ~ N(0,1), and it is independent of w. Using Equation (A.37), we obtain

1
smie) = oD M
t=1
d 1 , (w'u)? W[ In_ i — w(w'w) ' |u
Va
- (w'w)? [w W w'w (w'w)?
w'Vyw + v'u
= —. A5l
(w'w)? ( )

Y2 4 u

tm(%9) = = — T (A.52)
sm(¥2) (1 1 w/u‘/;:w) p)
For s2(44) which assumes a correctly specified model, we drop the second term in fzgt, and we
obtain
9, v d 1 , (w'u)?]  w'Vyw a?
sz (%2) — (ww)? [w Vaw + ww | T w2 1+ ) (A.53)
It follows that
. Yo 4 0
tC(fYQ) = S (; ) — } 1 (A54)
c\72 (1 i J/Z)Q
Under the conditional homoscedasticity assumption, Vi, = E[(f/75)?|In_K, 5o we can write
.y d u
tm('72) - ) (A55)

- 1
"2+ 5
(1+55)

where v is defined in Equation (A.42). This completes the proof of part (a) of Theorem 2.

part (b): We first derive the limiting distribution of h; in Equation (A.25). When a model is
misspecified, we can see from part (b) of Theorem 1 that 4, = O,(T %) and 4, = Op(1), so 44 is

the dominant term. Therefore, using Equation (11), we have

R 57 R R VTés
ér = z(fii1 + 9Y2) — 4 = T191Y2 + Op(1) = ww Tt + Op(1). (A.56)
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In addition, using Equations (A.31), (A.32), and (A.18), we have

. A NS Mzz' Mg
U 2e=MU"3q— MU 3d%, S Mg — % = PlIy_x — www) "W|P§.  (A57)
2’ Mz
It follows that under a misspecified model,
(A.58)

= U S —§ PlIn_x — ww'w) W|PU 2z

Then, using Equations (A.28) and (A.30), we can express the limiting distribution of hy = [h,, ha)’

as
hit a4 {§Pw PRIy 2w’ )\ 1
\/T — o' (B B) B IN — w/wp U 2T+gt
B'B)"Y(B'z) . _ 1
( z)u’w( )q/P[IN,K — w(w'w) M| P U224, (A.59)
h 4 (¢ Pw _1 1 _ _1
% (30’w)2w’P’U 2Tgt — w/wq/P[INfK — w(w'w) W P'U 22, (A.60)
Using the fact that P'B = Ov—r)xx and [IN_g —w(w'w) 'w'lw = On_f, we have
(A.61)

/
B <IN s P’) PlIn_x — w(w'w) 'w|P'§ = O,
ww

and we can show that the two terms in the limiting distribution of izu/ VT are asymptotically

uncorrelated. It follows that

o 1 N
V() = 73 Zhlth/lt
t=1
7 Pw)? | =, - B'B)"'B'22B(B'B)~!
(w'w) w'w
1 ~/ / ~ (qlpw)Q R \—11n/ ./ P! \—1
+ (ww)? [q PP§— - (B'B)""B'zz'B(B'B)
52 2/ n'py—1 R!'\—1D/_ /R n\—1
= oy [s BB+ (B'B)"\B'2/B(B'B) ] (A.62)
Using Z; as defined in Equation (A.41), we can express the limiting distribution of s2,(,;) as
2 (2 s a d 52bi 2, =2
0n) = GG b s (50 4 2, (A.63)
In addition, we can also use Z; to express the i-th element in Equation (10) as
. . d 05V
Y1i — V1 Tuiz (A.64)
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It follows that when the model is misspecified, ¢,,(9;) has the following limiting distribution:
Vi =Y 4 S

- — ——.
sm(Y14) /52+5z‘2

To show that t,,(%1;) LA N(0,1/4), consider the polar transformation s = w cos(#) and z; = wsin(h),
where w = 1/s% + z2. The joint density of (w,6) is given by

tm(F11) = (A.65)

w2

we 2

flw,0) = Ito>0ylj0<g<2r)- (A.66)

™

Therefore, w and 6 are independent. Using the polar transformation, we obtain
SZ;

\/ 82+ Z2

Since 6 is uniformly distributed over (0,27), sin(f) and sin(26) have the same distribution. It

follows that w sin(26) 2w sin(#) ~ N(0,1). Therefore,

= wcos() sin(h) = WSH;(ZG) (A.67)

tm(31) % N (0, i) : (A.68)

The estimated covariance matrix of 4; that assumes a correctly specified model is obtained by

dropping the second term in the line before Equation (A.62). We can then show that

“ d 5282b7; 23
2(i) = (/)2 <1+ , ) (A.69)

ww

te(91:) = QAU — Vi d “i - (A.70)
se(Y14) (1+ 2 )E
w'w

Turning our attention to the limiting distributions of t.(%5) and ¢,,(%5), we use Equation (A.60)
and the fact that 62 = ¢ PP'§ to obtain

Szn(%) 1 o 72
T ﬁzh%
t=1
d (lez / ~/ . ww' / ~
— (w/w)4 w + (w/w)zqP In_g o P
52
= . ATl
(w'w)? ( )
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Therefore, using Equation (11), the t¢-statistic of 45 under the misspecification-robust standard

error is given by

~

tm(3) = —2 4 s N(0,1). (A.72)

A~

sm(¥2)

For s2(45) which assumes a correctly specified model, we drop the second term of hoy in Equa-

tion (A.60), and we obtain
s2(§2) a4 ((Pw)*  §°5°

c = . A.
T - (w'w)3 (w'w)3 (A.73)
It follows that
~ ’3/2 d
te(§5) = —=— — sgn(s)vVw'w. A.74
(52) = 72 % sen(o) (A7)

Note that since s ~ N(0,1), sgn(s) has probabilities of 1/2 of taking the values of —1 or 1, and it
is independent of s2. As a result, sgn(s) is also independent of w'w ~ X?v_ K.7 This completes the

proof of part (b) of Theorem 2.

Proof of Corollary 1 (Proposition 2 in the paper).

We only provide the proof of part (a) since the proof of part (b) is similar for ¢2(%,;) and obvious
for t2,(4;). First, comparing the limiting distribution of t2(4;;) with the limiting distribution of
t2,(41;) in part (a) of Theorem 2, we see that there is an extra positive term Z2v/(w'w) in the
denominator. Therefore, the limiting distribution of ¢2,(4;;) is stochastically dominated by the
limiting distribution of #2(4,). It remains to be shown that the latter is stochastically dominated
by x3. From part (a) of Theorem 2, we have

9 d (@Z; + vV ivVw'wi;)?

tC (’le) — - - 32 °

Ni(w'w) + 22 + u? (1 + o )

ww

(A.76)

Let t = %;/Vw'w. It is easy to see that the limit of ¢2(%,;) is stochastically dominated by (# +
VAT (A +12) ~ i

Next, since 1 + @2/(w'w) > 1 and 1 + (%2 + v)/(w'w) > 1 almost surely, both the limiting distri-
butions of #2(4,) and t2,(%,) are stochastically dominated by @? ~ x?. This completes the proof of

Corollary 1.

"It is straightforward to show that the limiting probability density function of t.(%,) is

NoK—1_ -t
_ 1t e 2

f#) (A.75)
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Proof of Theorem 3.

part (a): Using Equation (A.33) in the proof of Theorem 2, we can easily obtain

~2 ~

T6 =TeU e % o/ [Iy_x — w(w'w) 'wu = u'PyPlu, (A.77)

where P, is an (N — K) x (N — K — 1) orthonormal matrix such that P, P, = In_x —w(w'w) 1w’
Let v = (P;)Vqu)_%P{Uu ~ N(On_g—1,IN—FK—1), which is independent of w. Then, we have

76" % (P V, Py)o. (A.78)

2
For testing Hy : 6 = 0, T 5 s compared with ZN K= 1§Z~X¢, where the X;’s are independent
chi-squared random variables with one degree of freedom and the é’i’s are the N — K — 1 nonzero

eigenvalues of

S8 S p(DTLD) TG (A79)
Using Equation (A.32), we can write the above matrix as
$E0-3 1y — U5 D(D'O—1 D) DIO-H0—5 5}
— S0 IMU 387 - S0 s MU 3d(d U2 MU~ 2d) "' dU 2 MU 257, (A.80)

Let P be an N x (N —K) orthonormal matrix such that PP’ = M and P,, be an (N—K)x(N—K—1)
orthonormal matrix such that PP/ = In_g — P~ 2d(d’U_§MU_5d) Ld'T~2P. We can easily

show that fi’s are the nonzero eigenvalues of

S:U 2 PP, P P'U 257, (A.81)
or equivalently the eigenvalues of
P PU 280U 2 PP,. (A.82)
Using Equation (A.35), we can show that
PU 26, % PU 2e,(7}) + w,/“ PU 21, (A.83)
It follows that
PO-tst-1p 4 pr-tsu-ip . (WY In k= Vi+ MIN . (A.84)
(w'w)? (w'w)?
where @ = w'u/( ’Vuw)% (0,1) and it is independent of w
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Under the conditional homoscedasticity assumption, we have V,, = E[(f{v)?|In_x and hence

22 d £l % ~f ~ Fl ok

To" = E[(f{y1)X0'0 ~ E[(fiv}) X N—k -1, (A.85)
~ ~2
T’UP’U_%SU_%PPIU — E[(f{ﬁ)2] <1 + utt’w> InN_K_1. (A.86)
It follows that
~2 £ o%\2
- d 5w U E

& = El(fin)?) <1 + w,w> = [(‘g?l) ], (A.87)

where @ = w'w/(@? + w'w) ~ Beta (85X, 1) and it is independent of &'5. Therefore, the limiting

probability of rejection of the HJ-distance test of size « is

1
/0 P [X?V—K—l > c;] fo.(9)dg, (A.88)

where ¢, is the 100(1 — «) percentile of % _j;_;. Since 0 < Q1 < 1, the limiting probability of

rejection is less than «. This completes the proof of part (a) of Theorem 3.

part (b): Using Equation (A.57), the limiting distribution of the squared sample HJ-distance

~2

5" = &'U~1é can be obtained as
22 d -~ 1 N—=1 1o~
0 = §PlIn-g —www) w|Pgq
II _ _P/~ ~/PP/~—1~/P
w'w
where
"INn_x — P'§g(@ PP §) ‘¢ P N-K-11
Qy = Win-x Z PUGPPO "GP g (NZK 11 (A.90)
w'w 2 2

and it is independent of w.

From the proof of part (a), we know that the é’i’s are the eigenvalues of

b PU~:SU2 PP, (A.91)
From Equations (15) and (11), we have
S a4 0%s?
= A.92
T ~ (w’w)QU’ (A.92)

which implies

2 IN_Kk-1 (A.93)



Ps? _01-Q) (A.94)

and X
§i d s
2 .
T  (ww)? w'w
When we compare T52 with the distribution of Zi]i_lK_l giXi, we are effectively comparing Qo
with (1 — Q2)/(w'w)x%_x_,, and we will reject Hy : 6 = 0 when
CaQ2 (A.95)

/
1-Q2

Note that w'w ~ x3% _, and it is independent of Q2, so the limiting probability of rejection for a
test with size a is
1
Cad
/0 p [X?V_K > Jiq] fa,(9)dg. (A.96)

This completes the proof of part (b) of Theorem 3.
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Table 1
Survival rates when a linear combination of the factors is useless

Panel A: Correctly specified model

Both factors survive One factor survives No factor survives

T tc tm tC tm tc tm
200 0.025 0.002 0.250 0.251 0.726 0.746
600 0.015 0.001 0.680 0.688 0.305 0.311
1000 0.014 0.001 0.889 0.900 0.098 0.100

Panel B: Misspecified model

Both factors survive One factor survives No factor survives

T te tm te tm te Im
200 0.138 0.013 0.229 0.255 0.633 0.732
600 0.277 0.015 0.505 0.685 0.217 0.300
1000 0.375 0.017 0.566 0.888 0.059 0.095

The table presents the probability that both factors survive, only one factor survives, and no factor
survives in a model in which a linear combination of two useful factors is useless. The sequential proce-
dure is implemented by using the misspecification-robust ¢-test (¢,, column) as well as the t-test under
correctly specified models (t. column). The false discovery rate of the multiple testing procedure is
controlled using the Bonferroni method. The nominal level of the sequential testing procedure is set
equal to 5%. Panels A and B are for correctly specified and misspecified models, respectively. We
report results for different values of the number of time-series observations (7') using 100,000 simula-
tions, assuming that the returns are generated from a multivariate normal distribution with means and
covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns, the 17
Fama-French industry portfolio returns, and the one-month T-bill rate for the period 1959:2-2012:12.
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Table 2
Empirical size of the t-tests in a model with a useful and an unpriced (possibly
weak) factor

Panel A: Correctly specified model

1= 71 =0 Y2 =0
t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%
te 200 0.096 0.047 0.008 0.605 0.475 0.235 0.124 0.063 0.012
600 0.099 0.048 0.009 0.956 0.918 0.776 0.099 0.048 0.008

1000 0.100 0.049 0.010 0.996 0.992 0.960 0.099 0.047 0.008
3600 0.100 0.051 0.010 1.000 1.000 1.000 0.098 0.048 0.009

tm 200 0.093 0.045 0.008 0.600 0.468 0.227 0.043 0.015 0.001
600 0.097 0.047 0.009 0.955 0.916 0.772 0.041 0.015 0.001
1000 0.099 0.049 0.010 0.996 0.991 0.959 0.048 0.018 0.002
3600 0.099 0.051 0.010 1.000 1.000 1.000 0.073 0.033 0.005

Panel B: Misspecified model

*

Y1=M 71 =0 Y2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%
te 200 0.096 0.047 0.008 0.597 0.466 0.228 0.288 0.199 0.078
600 0.099 0.049 0.010 0.950 0.908 0.758 0.368 0.279 0.145

1000 0.101 0.050 0.010 0.995 0.988 0.952 0.405 0.318 0.183
3600 0.104 0.053 0.011 1.000 1.000 1.000 0.472 0.390 0.255

Il
o

tm 200 0.090 0.042 0.007 0.583 0.450 0.212 0.080 0.036 0.005
600 0.090 0.044 0.008 0.945 0.898 0.736 0.084 0.039 0.006
1000 0.093 0.045 0.009 0.994 0.986 0.943 0.088 0.042 0.007
3600 0.096 0.048 0.009 1.000 1.000 1.000 0.097 0.047 0.009

The table presents the empirical rejection rates of the t-tests of Hy: v; =75, Ho:y; =0, and Hyp: v, =0
in a model with a constant, a useful, and an unpriced factor. The useful and unpriced factors are calibrated
to the properties of vw and c,q - cay, respectively. v, is the coefficient on the useful factor, and =, is the
coefficient on the unpriced factor. . denotes the t-test constructed under the assumption of correct model
specification, and t,, denotes the misspecification-robust ¢-test. For the misspecified model case, the implied
HJ-distance is 0.522. We report results for different levels of significance (10%, 5%, and 1%) and for different
values of the number of time-series observations (T') using 100,000 simulations, assuming that the returns
are generated from a multivariate normal distribution with means and covariance matrix calibrated to the
25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns,
and the one-month T-bill rate for the period 1959:2-2012:12. The various t-tests are compared with the
critical values from a standard normal distribution.
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Table 3
Empirical size of the t-tests in a model with a useful and an unpriced (possibly
weak) factor

Panel A: Correctly specified model

1= 71 =0 Y2 =0
t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%
te 200 0.099 0.048 0.009 0.584 0.452 0.220 0.121 0.062 0.012
600 0.096 0.048 0.009 0.935 0.885 0.715 0.102 0.049 0.009

1000 0.098 0.049 0.010 0.991 0.980 0.926 0.100 0.049 0.009
3600 0.100 0.049 0.010 1.000 1.000 1.000 0.102 0.050 0.010

tm 200 0.091 0.043 0.007 0.565 0.430 0.199 0.047 0.018 0.002
600 0.088 0.043 0.008 0.929 0.874 0.691 0.052 0.020 0.002
1000 0.091 0.045 0.008 0.990 0.978 0.918 0.062 0.026 0.003
3600 0.097 0.048 0.009 1.000 1.000 1.000 0.086 0.040 0.007

Panel B: Misspecified model

*

Y1="1 71 =0 Y2
t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

te 200 0.108 0.054 0.011 0.576 0.450 0.222 0.262 0.177 0.066
600 0.124 0.067 0.016 0.913 0.857 0.692 0.310 0.223 0.103
1000 0.137 0.077 0.019 0.980 0.963 0.897 0.333 0.247 0.123
3600 0.160 0.095 0.028 1.000 1.000 1.000 0.371  0.285 0.160

Il
o

tm 200 0.089 0.042 0.007 0.539 0.407 0.183 0.080 0.035 0.005
600 0.088 0.042 0.007 0.878 0.802 0.590 0.084 0.039 0.006
1000 0.092 0.044 0.008 0.966 0.936 0.822 0.088 0.042 0.008
3600 0.097 0.048 0.009 1.000 1.000 1.000 0.098 0.049 0.009

The table presents the empirical rejection rates of the t-tests of Hy : v; =77, Ho: vy =0, and Hp : v, =0 in
a model with a constant, a useful, and an unpriced factor. The useful and unpriced factors are calibrated to
the properties of vw and ¢4, respectively. 7, is the coeflicient on the useful factor, and 7, is the coefficient
on the unpriced factor. t. denotes the t-test constructed under the assumption of correct model specification,
and t,, denotes the misspecification-robust ¢-test. For the misspecified model case, the implied HJ-distance
is 0.510. We report results for different levels of significance (10%, 5%, and 1%) and for different values of the
number of time-series observations (T') using 100,000 simulations, assuming that the returns are generated
from a multivariate normal distribution with means and covariance matrix calibrated to the 25 size and
book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns, and the one-
month T-bill rate for the period 1959:2-2012:12. The various t-tests are compared with the critical values
from a standard normal distribution.
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Table 4
Empirical size of the t-tests in a model with a useful and an unpriced (possibly
weak) factor

Panel A: Correctly specified model

1= 71 =0 Y2 =0
t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

te 200 0.100 0.049 0.009 0.580 0.449 0.216 0.100 0.049 0.009
600 0.098 0.049 0.010 0.941 0.894 0.731 0.099 0.049 0.010
1000 0.099 0.050 0.010 0.994 0.986 0.941 0.099 0.049 0.009
3600 0.099 0.050 0.010 1.000 1.000 1.000 0.099 0.050 0.010

tm 200 0.098 0.049 0.009 0.577 0.445 0.212 0.090 0.042 0.007
600 0.098 0.048 0.010 0.941 0.894 0.730 0.095 0.047 0.009
1000 0.098 0.050 0.010 0.994 0.986 0.940 0.098 0.050 0.009
3600 0.099 0.050 0.010 1.000 1.000 1.000 0.100 0.049 0.010

Panel B: Misspecified model

1= 71 =0 Y2 =0
t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

te 200 0.100 0.049 0.009 0.577 0.448 0.217 0.101  0.050 0.009
600 0.101 0.050 0.010 0.940 0.893 0.727 0.099 0.050 0.010
1000 0.101 0.052 0.010 0.993 0.985 0.939 0.101 0.051 0.010
3600 0.102 0.051 0.010 1.000 1.000 1.000 0.101 0.050 0.011

tm 200 0.098 0.048 0.009 0.574 0.444 0.213 0.090 0.042 0.007
600 0.100 0.050 0.010 0.940 0.892 0.725 0.095 0.047 0.009
1000 0.101 0.051 0.010 0.993 0.984 0.939 0.098 0.050 0.009
3600 0.102 0.051 0.010 1.000 1.000 1.000 0.100 0.049 0.010

The table presents the empirical rejection rates of the t-tests of Hy: v; =75, Ho:y; =0, and Hyp: v, =0
in a model with a constant, a useful, and an unpriced factor. The useful and unpriced factors are calibrated
to the properties of vw and smb, respectively. 7, is the coefficient on the useful factor, and v, is the
coefficient on the unpriced factor. t. denotes the t-test constructed under the assumption of correct model
specification, and t,, denotes the misspecification-robust ¢-test. For the misspecified model case, the implied
HJ-distance is 0.522. We report results for different levels of significance (10%, 5%, and 1%) and for different
values of the number of time-series observations (T') using 100,000 simulations, assuming that the returns
are generated from a multivariate normal distribution with means and covariance matrix calibrated to the
25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns,
and the one-month T-bill rate for the period 1959:2-2012:12. The various t-tests are compared with the
critical values from a standard normal distribution.
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Table 5
Empirical size of the t-tests (modified HJ-distance case)

Panel A: Model with a useful factor

Correctly specified model Misspecified model
t-test T 10% 5% 1% 10% 5% 1%

te 200 0.098 0.049 0.009 0.098 0.049 0.009
600 0.100 0.050 0.009 0.099 0.048 0.009

1000 0.097 0.048 0.010 0.099 0.049 0.009

00 0.100 0.050 0.010 0.100 0.050 0.010

tm, 200 0.098 0.049 0.009 0.098 0.048 0.009
600 0.100 0.050 0.009 0.098 0.048 0.009

1000 0.097 0.048 0.010 0.099 0.049 0.009

00 0.100 0.050 0.010 0.100 0.050 0.010

Panel B: Model with a useless factor

Correctly specified model Misspecified model
t-test T 10% 5% 1% 10% 5% 1%

te 200 0.129 0.067 0.013 0.327 0.235 0.101
600 0.101 0.046 0.007 0.472 0.384 0.231

1000 0.095 0.044 0.006 0.556 0.477 0.328

00 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.037 0.012 0.001 0.080 0.036 0.005
600 0.022 0.006 0.000 0.082 0.038 0.006

1000 0.021 0.006 0.000 0.088 0.041 0.007

o0 0.018 0.004 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of Hy : y; = 77 in a model with a useful factor (Panel A)
and in a model with a useless factor (Panel B). Each panel considers the case in which the model is correctly
specified and the case in which the model is misspecified. t. denotes the t-test constructed under the
assumption of correct model specification, and ¢, denotes the misspecification-robust t-test. We report
results for different levels of significance (10%, 5%, and 1%) and for different values of the number of
time-series observations (T') using 100,000 simulations, assuming that the returns are generated from a
multivariate normal distribution with means and covariance matrix calibrated to the excess returns on
the 25 Fama-French size and book-to-market portfolios and the 17 Fama-French industry portfolios for
the period 1959:2-2012:12. The various t-statistics are compared with the critical values from a standard
normal distribution. In Panel B, the rejection rates for the limiting case (T' = co) are based on the asymptotic
distributions given in Theorem 5.
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Table 6

Empirical size of the t-tests (modified HJ-distance case)

Panel A: Correctly specified model

~

88! Y2
t-test T 10% 5% 1% 10% 5% 1%

te 200 0.094 0.045 0.008 0.130 0.066 0.012
600 0.095 0.047 0.009 0.100 0.047 0.007

1000 0.097 0.048 0.009 0.095 0.043 0.006

00 0.092 0.045 0.008 0.088 0.039 0.005

tm 200 0.090 0.042 0.008 0.036 0.012 0.001
600 0.091 0.044 0.008 0.023 0.006 0.000

1000 0.093 0.046 0.008 0.020 0.005 0.000

00 0.088 0.042 0.008 0.018 0.004 0.000

Panel B: Misspecified model
Y1 Y2
t-test T 10% 5% 1% 10% 5% 1%

te 200 0.094 0.046 0.008 0.321 0.230 0.098
600 0.095 0.047 0.008 0.464 0.374 0.223

1000 0.094 0.046 0.008 0.553 0.471 0.321

00 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.086 0.041 0.007 0.080 0.036 0.005
600 0.079 0.036 0.006 0.081 0.038 0.006

1000 0.072 0.032 0.005 0.088 0.041 0.007

00 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of Hy : v, = vF (¢ = 1,2) in a model with a useful and
a useless factor. v, is the coefficient on the useful factor, and v, is the coefficient on the useless factor.
t. denotes the t-test constructed under the assumption of correct model specification, and t,, denotes the
misspecification-robust t-test. We report results for different levels of significance (10%, 5%, and 1%) and for
different values of the number of time-series observations (7') using 100,000 simulations, assuming that the
returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the excess returns on the 25 Fama-French size and book-to-market portfolios and the 17 Fama-French
industry portfolios for the period 1959:2-2012:12. The various t-tests are compared with the critical values
from a standard normal distribution. The rejection rates for the limiting case (T' = co) are based on the

asymptotic distributions given in Theorem 5.
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Table 7
Survival rates of risk factors: Two useful and two irrelevant factors (modified
HJ-distance case)

Panel A: Correctly specified model

Useful (v§ # 0) Useful (v5 # 0) Useful (75 = 0) Useless Prob.

T te(91)  tm(91) te(§2)  tm(92) te(¥3)  tm(¥3) te(§a)  tm(9a) MS. MSm
200 0.253  0.239 0.380  0.355 0.010  0.008 0.013  0.001 0.023 0.008
600 0.862  0.852 0.962  0.958 0.010  0.009 0.008  0.000 0.018 0.009
1000 0.986  0.984 0.999  0.999 0.010  0.009 0.006  0.000 0.016  0.009

Useful (v§ #0) Useful (75 # 0) Useless Useless Prob.

T te(11)  tm(91) te(§2)  tm(92) te(§3)  tm(93) te(4)  tm(94) MS.  MSm
200 0.272  0.254 0.375  0.344 0.012  0.001 0.012  0.001 0.024 0.001
600 0.891  0.877 0.959 0.951 0.007  0.000 0.007  0.000 0.014 0.001

1000 0.991  0.989 0.999  0.998 0.006  0.000 0.006  0.000 0.012 0.000

Panel B: Misspecified model

Useful (v§ # 0) Useful (75 # 0) Useful (v3 = 0) Useless Prob.
T te(§1)  tm(91) te(¥2)  tm(92) te(3)  tm(93) te(Ya)  tm(f4) MS.  MSp
200 0.242  0.213 0.368  0.320 0.013  0.007 0.084  0.005 0.096 0.012
600 0.818  0.776 0.930  0.908 0.013  0.007 0.201  0.006 0.211 0.013

1000 0.958  0.934 0.989  0.983 0.013  0.007 0.295 0.008 0.304 0.015

Useful (77 # 0) Useful (73 # 0) Useless Useless Prob.
T te(y1)  tm(91) te(¥2)  tm(92) te(¥3)  tm(93) te(Ya)  tm(f4) MS.  MSy
200 0.252  0.218 0.352  0.294 0.075  0.004 0.075  0.004 0.147 0.008

600 0.812 0.751 0.900 0.857 0.178  0.005 0.179  0.005 0.340 0.010
1000 0.947  0.908 0.976  0.957 0.263  0.006 0.261  0.006 0.482 0.013

The table presents the survival rates of the factors in a model with two useful factors (with ] # 0 and 73 # 0)
and two irrelevant factors. The first irrelevant factor is either a useful factor that does not contribute to pricing
(with v% = 0) or a useless factor (with % unidentified), and the second irrelevant factor is a useless factor (with ~}
unidentified). The sequential procedure is implemented by using the misspecification-robust t-tests (¢, (%;) column)
as well as the ¢-tests under correctly specified models (¢.(¥;) column). The false discovery rate of the multiple testing
procedure is controlled using the Bonferroni method. The last two columns of the table report the probability that
at least one useless or unpriced useful factor survives using the t-tests under correctly specified models (M S,.) and
misspecification-robust t-tests (M.S,,). The nominal level of the sequential testing procedure is set equal to 5%. We
report results for different values of the number of time-series observations (7) using 100,000 simulations, assuming
that the returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the excess returns on the 25 Fama-French size and book-to-market portfolios and the 17 Fama-French industry
portfolios for the period 1959:2-2012:12.
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Table 8
Survival rates when a linear combination of the factors is useless (modified HJ-
distance case)

Panel A: Correctly specified model

Both factors survive One factor survives No factor survives

T te tm te tm te tm
200 0.026 0.003 0.247 0.250 0.727 0.747
600 0.015 0.001 0.677 0.685 0.308 0.313
1000 0.013 0.001 0.889 0.900 0.097 0.099

Panel B: Misspecified model

Both factors survive One factor survives No factor survives

T tC tm tc tm tC tm
200 0.140 0.013 0.228 0.255 0.631 0.733
600 0.275 0.015 0.505 0.684 0.219 0.301
1000 0.377 0.016 0.563 0.890 0.060 0.094

The table presents the probability that both factors survive, only one factor survives, and no factor
survives in a model in which a linear combination of two useful factors is useless. The sequential proce-
dure is implemented by using the misspecification-robust ¢-test (¢,, column) as well as the ¢-test under
correctly specified models (t. column). The false discovery rate of the multiple testing procedure is
controlled using the Bonferroni method. The nominal level of the sequential testing procedure is set
equal to 5%. Panels A and B are for correctly specified and misspecified models, respectively. We
report results for different values of the number of time-series observations (7') using 100,000 simu-
lations, assuming that the returns are generated from a multivariate normal distribution with means
and covariance matrix calibrated to the excess returns on the 25 Fama-French size and book-to-market
portfolios and the 17 Fama-French industry portfolios for the period 1959:2-2012:12.
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Table 9
Empirical size of the t-tests in a model with a useful factor (optimal GMM case)

Panel A: Correctly specified model

~

Yo Y1
t-test T 10% 5% 1% 10% 5% 1%

te 200 0.176 0.142 0.108 0.114 0.061 0.015
600 0.140 0.100 0.063 0.103 0.052 0.011

1000 0.125 0.082 0.043 0.102 0.051 0.010

o0 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.173 0.141 0.108 0.107 0.055 0.012
600 0.139 0.100 0.063 0.102 0.051 0.010

1000 0.125 0.081 0.043 0.101 0.050 0.010

o0 0.100 0.050 0.010 0.100 0.050 0.010

Panel B: Misspecified model
Yo Y1
t-test T 10% 5% 1% 10% 5% 1%

te 200 0.182 0.147 0.110 0.122 0.067 0.018
600 0.143 0.103 0.065 0.110 0.057 0.013

1000 0.128 0.085 0.044 0.107 0.055 0.012

o0 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.175 0.144 0.110 0.109 0.056 0.012
600 0.140 0.101 0.064 0.103 0.052 0.011

1000 0.125 0.083 0.044 0.101 0.051 0.010

o0 0.100 0.050 0.010 0.100 0.050 0.010

The table presents the empirical size of the ¢-tests of Hy : v, = vF (i = 0,1) in a model with a constant
and a useful factor estimated by optimal (3-step) GMM. +, is the coefficient on the constant term, and
v, is the coefficient on the useful factor. ¢. denotes the ¢-test constructed under the assumption of correct
model specification, and ¢,, denotes the misspecification-robust ¢-test. We report results for different levels
of significance (10%, 5%, and 1%) and for different values of the number of time-series observations (T) using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns,
the 17 Fama-French industry portfolio returns, and the one-month T-bill rate for the period 1959:2-2012:12.
The various t-statistics are compared with the critical values from a standard normal distribution.
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Table 10
Empirical size of the t-tests in a model with a useless factor (optimal GMM
case)

Panel A: Correctly specified model

Yo 71
t-test T 10% 5% 1% 10% 5% 1%

te 200 0.012 0.004 0.000 0.150 0.088 0.026
600 0.003 0.000 0.000 0.107 0.053 0.009

1000 0.002 0.000 0.000 0.100 0.047 0.007

00 0.001 0.000 0.000 0.088 0.039 0.005

tm 200 0.002 0.000 0.000 0.038 0.015 0.002
600 0.000 0.000 0.000 0.024 0.007 0.000

1000 0.000 0.000 0.000 0.018 0.004 0.000

00 0.000 0.000 0.000 0.016 0.004 0.000

Panel B: Misspecified model
Yo Y1
t-test T 10% 5% 1% 10% 5% 1%

te 200 0.043 0.020 0.004 0.350 0.267 0.146
600 0.035 0.013 0.002 0.475 0.391 0.248

1000 0.040 0.015 0.002 0.559 0.481 0.336

00 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.007 0.002 0.000 0.079 0.039 0.009
600 0.003 0.001 0.000 0.083 0.040 0.007

1000 0.003 0.000 0.000 0.088 0.043 0.008

00 0.001 0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the ¢-tests of Hy : v, = vf (i = 0,1) in a model with a constant
and a useless factor estimated by optimal (3-step) GMM. 7, is the coefficient on the constant term, and
v, is the coefficient on the useless factor. ¢, denotes the t-test constructed under the assumption of correct
model specification, and t,, denotes the misspecification-robust t-test. We report results for different levels
of significance (10%, 5%, and 1%) and for different values of the number of time-series observations (7') using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns,
the 17 Fama-French industry portfolio returns, and the one-month T-bill rate for the period 1959:2-2012:12.
The various t-statistics are compared with the critical values from a standard normal distribution. The
rejection rates for the limiting case (T = oo) are equivalent to those based on the asymptotic distributions
given in Theorem 2.
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Table 11
Empirical size of the t-tests in a model with a useful and a useless factor (optimal
GMM case)

Panel A: Correctly specified model

Yo Y1 V2
t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

te 200 0.064 0.029 0.008 0.118 0.064 0.015 0.153 0.091 0.028
600 0.061 0.029 0.008 0.101 0.051 0.010 0.108 0.054 0.009

1000 0.058 0.025 0.006 0.097 0.049 0.009 0.099 0.048 0.007

00 0.052 0.020 0.002 0.096 0.047 0.009 0.088 0.039 0.005

tm 200 0.031 0.013 0.004 0.103 0.052 0.011 0.040 0.016 0.002
600 0.038 0.017 0.006 0.095 0.047 0.009 0.024 0.006 0.000

1000 0.037 0.016 0.004 0.092 0.045 0.008 0.021 0.006 0.000

00 0.037 0.014 0.002 0.092 0.045 0.008 0.018 0.004 0.000

Panel B: Misspecified model
Yo Y1 Yo
t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

te 200 0.086 0.041 0.010 0.144 0.084 0.026 0.350 0.266 0.144
600 0.077 0.034 0.007 0.124 0.067 0.016 0.471 0.385 0.241

1000 0.076 0.032 0.006 0.120 0.065 0.015 0.552 0.473 0.330

00 0.088 0.039 0.005 0.088 0.039 0.005 1.000 1.000 1.000

tm 200 0.026 0.010 0.003 0.106 0.056 0.012 0.081 0.040 0.008
600 0.018 0.006 0.002 0.089 0.042 0.008 0.082 0.040 0.008

1000 0.013 0.005 0.001 0.080 0.037 0.006 0.089 0.042 0.008

00 0.001  0.000 0.000 0.001  0.000 0.000 0.100 0.050 0.010

The table presents the empirical size of the t-tests of Hy : vy, = v} (¢ =0, 1,2) in a model with a constant, a
useful, and a useless factor estimated by optimal (3-step) GMM. 7, is the coefficient on the constant term,
v, is the coefficient on the useful factor, and v, is the coefficient on the useless factor. t. denotes the ¢-test
constructed under the assumption of correct model specification, and t,, denotes the misspecification-
robust t-test. We report results for different levels of significance (10%, 5%, and 1%) and for different
values of the number of time-series observations (T) using 100,000 simulations, assuming that the returns
are generated from a multivariate normal distribution with means and covariance matrix calibrated to the
25 size and book-to-market Fama-French portfolio returns, the 17 Fama-French industry portfolio returns,
and the one-month T-bill rate for the period 1959:2-2012:12. The various t-tests are compared with the
critical values from a standard normal distribution. The rejection rates for the limiting case (T = co) are
equivalent to those based on the asymptotic distributions given in Theorem 2.
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Table 12
Survival rates of risk factors: Two useful and two irrelevant factors (optimal
GMM case)

Panel A: Correctly specified model

Useful (v§ # 0) Useful (v5 # 0) Useful (75 = 0) Useless Prob.

T te(¥1)  tm(1) te(§2)  tm(92) te(¥3)  tm(¥3) te(§a)  tm(9a) MS. MSm
200 0.744  0.708 0.812  0.770 0.042  0.030 0.048  0.004 0.087 0.034
600 0.999  0.999 1.000  1.000 0.016 0.014 0.014  0.001 0.029 0.014
1000 1.000  1.000 1.000  1.000 0.015 0.014 0.011  0.000 0.026 0.014

Useful (v§ #0) Useful (75 # 0) Useless Useless Prob.

T te(1)  tm(51) te(§2)  tm(92) te(§3)  tm(93) te(4)  tm(94) MS.  MSm
200 0.749  0.715 0.807  0.768 0.048  0.005 0.047  0.005 0.092  0.009
600 0.999  0.999 1.000  1.000 0.014  0.001 0.014  0.001 0.028 0.001
1000 1.000  1.000 1.000  1.000 0.011  0.000 0.010  0.000 0.021  0.001

Panel B: Misspecified model

Useful (v§ # 0) Useful (75 # 0) Useful (v3 = 0) Useless Prob.

T te(y1)  tm(91) te(F2)  tm(92) te(¥3)  tm(3) te(¥a)  tm(94) MS. M5y
200 0.713  0.639 0.785  0.697 0.062  0.033 0.157  0.013 0.207 0.045
600 0.994  0.995 0.997  0.998 0.026  0.014 0.219  0.009 0.237 0.023
1000 0.999  0.999 1.000  1.000 0.023  0.013 0.299  0.009 0.314 0.022

Useful (77 # 0) Useful (73 # 0) Useless Useless Prob.

T te(y1)  tm(91) te(¥2)  tm(42) te(¥3)  tm(93) te(Ya)  tm(f4) MS.  MSy
200 0.356  0.283 0.453  0.359 0.153  0.012 0.152  0.011 0.284 0.023
600 0.843  0.873 0.915 0.935 0.224  0.011 0.222  0.011 0.415 0.022
1000 0.951 0.973 0.977  0.987 0.295  0.012 0.292 0.011 0.533 0.023

The table presents the survival rates of the factors in a model with a constant, two useful factors (with 77 # 0 and
~v45 #0), and two irrelevant factors estimated by optimal (3-step) GMM. The first irrelevant factor is either a useful
factor that does not contribute to pricing (with 7% = 0) or a useless factor (with % unidentified), and the second
irrelevant factor is a useless factor (with +; unidentified). The sequential procedure is implemented by using the
misspecification-robust t-tests (¢,,(,) column) as well as the t-tests under correctly specified models (¢.(%;) column).
The false discovery rate of the multiple testing procedure is controlled using the Bonferroni method. The last two
columns of the table report the probability that at least one useless or unpriced useful factor survives using the
t-tests under correctly specified models (M S,) and misspecification-robust t-tests (M.S,,). The nominal level of the
sequential testing procedure is set equal to 5%. We report results for different values of the number of time-series
observations (T") using 100,000 simulations, assuming that the returns are generated from a multivariate normal
distribution with means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio
returns, the 17 Fama-French industry portfolio returns, and the one-month T-bill rate for the period 1959:2-2012:12.
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Table 13
Survival rates when a linear combination of the factors is useless (optimal GMM
case)

Panel A: Correctly specified model

Both factors survive One factor survives No factor survives

T te tm te tm te tm
200 0.046 0.006 0.259 0.253 0.695 0.741
600 0.020 0.002 0.673 0.683 0.306 0.315
1000 0.016 0.001 0.887 0.899 0.097 0.099

Panel B: Misspecified model

Both factors survive One factor survives No factor survives

T tC tm tc tm tc tm
200 0.186 0.017 0.228 0.240 0.586 0.743
600 0.295 0.017 0.489 0.670 0.216 0.313
1000 0.389 0.019 0.552 0.882 0.059 0.099

The table presents the probability that both factors survive, only one factor survives, and no factor
survives in a model estimated by optimal (3-step) GMM in which a linear combination of two useful
factors is useless. The sequential procedure is implemented by using the misspecification-robust ¢-test
(tm column) as well as the t-test under correctly specified models (¢, column). The false discovery
rate of the multiple testing procedure is controlled using the Bonferroni method. The nominal level
of the sequential testing procedure is set equal to 5%. Panels A and B are for correctly specified and
misspecified models, respectively. We report results for different values of the number of time-series
observations (7') using 100,000 simulations, assuming that the returns are generated from a multivariate
normal distribution with means and covariance matrix calibrated to the 25 size and book-to-market
Fama-French portfolio returns, the 17 Fama-French industry portfolio returns, and the one-month T-bill
rate for the period 1959:2-2012:12.
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Figure 1

Limiting probabilities of rejection of the HJ-distance test

The figure presents the limiting probabilities of rejection of the HJ-distance test under correctly
specified and misspecified models when one of the factors is useless.
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