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Abstract

In this paper, we present both integral and infinite series expressions of µp
q ≡

E[(x′Ax)p/(x′Bx)q] when x ∼ N(µ, In), where p, q are nonnegative real
numbers, A is a symmetric matrix, and B is a positive semi-definite matrix.
We also present efficient numerical methods for computing µp

q under each
approach.
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1. Introduction

Let x = [x1, . . . , xn]
′ ∼ N(µ, In) be a normal random vector, A be a

symmetric nonzero matrix, and B be a positive semi-definite matrix. For
nonnegative real numbers p and q, we are interested in obtaining computa-
tionally efficient expressions of

µp
q ≡ E

[
(x′Ax)p

(x′Bx)q

]
.
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When p is not an integer, we assume that A is also a positive semi-definite
matrix in order for (x′Ax)p to be well defined.1

Since many statistical estimators can be written as ratios of quadratic forms,
the computation of µp

q has been of great interest to statisticians and econo-
metricians, especially for p = q. Broadly speaking, there are two different
approaches for evaluating µp

q . The first approach is an integration approach
that starts with Sawa [12], who provides an integral formula that allows us
to compute µp

q when p is an integer. This method is by far the most popular
one in the literature. Magnus [7] provides a nice discussion, in particular the
numerical aspect, of this method, and Meng [9] provides an excellent review
of this literature. When p is not an integer, the integral formula for µp

q is
also available (see, for example, Mathai and Provost [8] (Section 4.5d) and
Meng [9] (Lemma 2)), but this would typically involve a double integral. In
addition, the integrand is often difficult to evaluate, so this formula has seen
little use in practice.

The second approach is to rely on some infinite series expansion of µp
q . Smith

[13] is the first one to provide a triple infinite series (or double infinite series
if p is an integer) expansion of µp

q in terms of top-order invariant polynomials.
Due to the difficulty of computing top-order invariant polynomials and the
complexity of this approach, his formula of µp

q appears to be only of academic
interest. Recently, Hillier, Kan, and Wang [4] provide an efficient method for
computing top-order invariant polynomials. Nevertheless, they are able to
implement this formula only for integral p and µ = 0n. Note that in deriving
the infinite series expansion of µp

q , Smith [13] needs to assume that both A
and B are positive definite. Therefore, it appears that his formula is not
applicable for the case when A or B is positive semi-definite.

The objective of this paper is to improve both approaches for evaluating
µp
q . For the integration approach, we provide an explicit expression of the

integrand when p is not an integer. In addition, we provide a numerically
efficient method for computing the integrand. This improvement is partic-
ularly important in light of the fact that this approach calls for a double
integral. With our numerical method, it becomes practical to use the double

1Our results can be easily adapted to deal with the case when x ∼ N(µ,Σ), where

Σ is a positive definite matrix. This is because we can write x′Ax = x̃′(Σ
1
2AΣ

1
2 )x̃ and

x′Bx = x̃′(Σ
1
2BΣ

1
2 )x̃, where x̃ = Σ− 1

2x ∼ N(Σ− 1
2µ, In). In addition, we can also deal

with the case that B is a negative semi-definite matrix if q is an integer.

2



integral formula for evaluating µp
q . For the infinite series approach, we show

that Smith’s triple infinite series formula actually holds even when A or B is
positive semi-definite, but a different and more elaborate proof is required.
In view of the numerical difficulty of using Smith’s formula to compute µp

q ,
we provide a different infinite series expansion of µp

q . This alternative infinite
series expansion of µp

q has already been introduced by Hillier, Kan, and Wang
[5] for the case when p is an integer, but we extend it to allow for non-integral
p. With our new infinite series expansion, we are able to reduce the triple
infinite series expansion of µp

q to a double infinite series expansion. More
importantly, we introduce a fast recurrence algorithm to compute the coef-
ficients in our double infinite series expansion, which makes our new infinite
series approach very competitive against the integration approach.

The rest of the paper is organized as follows. Section 2 presents the nec-
essary and sufficient conditions for the existence of µp

q . Section 3 presents
an integral expression of µp

q and discusses a numerically efficient approach
of evaluating the integrand. Section 4 shows that Smith’s triple infinite se-
ries expression of µp

q in terms of top-order invariant polynomials continues
to hold even when A or B is positive semi-definite. In Section 5, we develop
a new double infinite series expression of µp

q and provide a numerically ef-
ficient approach for evaluating the coefficients in the double infinite series.
Section 6 concludes the paper. Proofs of all the propositions are collected in
the Appendix.

2. Necessary and sufficient conditions for the existence of µp
q

Before we present different expressions of µp
q , we need to first understand

the conditions for the existence of µp
q . Suppose the rank of B is m ≤ n. Let

P1D1bP
′
1 = B, where D1b = Diag(b1, . . . , bm) with b1 ≥ · · · ≥ bm > 0 are

the positive eigenvalues of B, and P1 is an n×m matrix of the eigenvectors
associated with the positive eigenvalues of B. Denoting P = [P1, P2], where
P2 is an n × (n − m) matrix of the eigenvectors associated with the zero
eigenvalues of B, we can write

(x′Ax)p

(x′Bx)q
=

(x′PP ′APP ′x)p

(x′P1D1bP ′
1x)

q
=

(z′Ãz)p

(z′1D1bz1)q
,

where

z =

[
z1
z2

]
=

[
P ′
1x

P ′
2x

]
∼ N(P ′µ, In),

3



and

Ã = P ′AP =

[
Ã11 Ã12

Ã21 Ã22

]
,

with Ãij = P ′
iAPj. The following proposition presents the necessary and

sufficient conditions for the existence of µp
q .

Proposition 1. (1) Suppose B is a positive definite matrix. µp
q exists if and

only if n
2
+ p > q.

(2) Suppose B is a positive semi-definite matrix with rank m < n. We have
three cases to consider. (i) When Ã12 = 0m×(n−m) and Ã22 = 0(n−m)×(n−m),

µp
q exists if and only if m

2
+ p > q. (ii) When Ã12 ̸= 0m×(n−m) and Ã22 =

0(n−m)×(n−m), µ
p
q exists if and only if

m+p
2

> q. (iii) When Ã22 ̸= 0(n−m)×(n−m),
µp
q exists if and only if m

2
> q.

Roberts [10] (Sections 3.1 and 7.2.2) has already shown that the conditions
in Proposition 1 are sufficient for the existence of µp

q . He also shows that
when p is an integer, the conditions in Proposition 1 are both necessary
and sufficient. However, our Proposition 1 provides a stronger result by
showing that the conditions are necessary and sufficient even when p is not
an integer. Note that when p is not an integer, we need to assume A is
positive semi-definite. It can be easily shown that when A is positive semi-
definite, Ã22 = 0(n−m)×(n−m) implies Ã12 = 0m×(n−m),

2 so we can eliminate
case (ii) from consideration when A is positive semi-definite.

3. Integral expression of µp
q

When p is an integer, the most popular method for numerical evaluation
of µp

q is to use the results of Sawa [12] and Cressie, Davis, Folks, and Policello
[3] to write

µp
q =

1

Γ(q)

∫ ∞

0

tq−1 ∂p

∂tp1
ϕ(t1, t2)

∣∣∣∣
t1=0,t2=−t

dt, (1)

2Since A is positive semi-definite, Ã is also positive semi-definite. For a positive semi-
definite matrix Ã = (ãij), we have ãiiãjj ≥ ã2ij for j ̸= i. Therefore, ãii = 0 implies ãij = 0
for j ̸= i. This suggests that if a diagonal element of a positive semi-definite matrix is
zero, then the entire row and column to which it belongs must also be zero.
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where

ϕ(t1, t2) = |In − 2t1A− 2t2B|−
1
2 exp

(
µ′(In − 2t1A− 2t2B)−1µ

2
− µ′µ

2

)
is the joint moment generating function of x′Ax and x′Bx. Meng [9] provides
an excellent review of this literature.

When p is not an integer, Mathai and Provost [8] (Eq.4.5d.8) show that an
integration formula is also available for µp

q (see also Lemma 2 of Meng [9]),
and it is given by the following double integral expression:

µp
q =

1

Γ(⟨p⟩)Γ(q)

∫ ∞

0

∫ ∞

0

s⟨p⟩−1tq−1 ∂⌈p⌉

∂t
⌈p⌉
1

ϕ(t1, t2)

∣∣∣∣∣
t1=−s,t2=−t

dsdt, (2)

where ⌈p⌉ is the smallest integer that is greater than or equal to p, and
⟨p⟩ = ⌈p⌉ − p.

In order for us to use (1) or (2) to evaluate µp
q , we need an explicit expression

for the partial derivatives of ϕ(t1, t2). Magnus [7] presents a simple expression
of this for the case when p is an integer. In the following proposition, we
present a slightly different expression of his result as well as a corresponding
expression for the case when p is not an integer.

Proposition 2. Suppose µp
q exists. When p is an integer, we have

µp
q =

1

Γ(q)

∫ ∞

0

tq−1ϕ(0,−t)E[(w′Rw)p]dt, (3)

where R = L′AL, w ∼ N(µ̃, In) with µ̃ = L′µ, and L is an n×n matrix such
that LL′ = (In + 2tB)−1. When p is not an integer, we have

µp
q =

1

Γ(⟨p⟩)Γ(q)

∫ ∞

0

∫ ∞

0

s⟨p⟩−1tq−1ϕ(−s,−t)E[(w′Rw)⌈p⌉]dsdt, (4)

but L is now defined as an n×n matrix such that LL′ = (In+2sA+2tB)−1.

There are two computational issues for us to tackle when using (4) to compute
µp
q . The first issue is the computation of E[(w′Rw)k]. When k is small, a

simple explicit formula of E[(w′Rw)k] is available. For example, when k = 1,
we have E[w′Rw] = tr(R)+µ̃′Rµ̃. However, when k is large, it is very tedious
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and computationally expensive to use the explicit formula (see Magnus [7]
for an explicit formula of E[(w′Rw)k]). In the following, we provide a fast
recurrence algorithm for computing E[(w′Rw)k].

Let

D̃(t) = |In − tR|−
1
2 exp

(
µ̃′(In − tR)−1µ̃− µ̃′µ̃

2

)
=

∞∑
k=0

d̃kt
k.

It can be readily shown that d̃k = E[(w′Rw)k]/(2kk!) and we have the follow-
ing recurrence relation (see, for example, Ruben [11] and Mathai and Provost
[8] (Eq.3.2b.8))

d̃k =
1

2k

k∑
j=1

pj d̃k−j, (5)

where
pj = tr(Rj) + jµ̃′Rjµ̃.

Let QΛQ′ = R, where Λ = Diag(λ1, . . . , λn) is a diagonal matrix of the
eigenvalues of R, and Q = [q1, . . . , qn] is a matrix of the corresponding eigen-
vectors. We can then write

pj =
n∑

i=1

(λj
i + jδiλ

j
i ), (6)

where δi = (q′iµ̃)
2. Using the initial condition d̃0 = 1, we can use (5) succes-

sively to obtain d̃k. While (5) is far more efficient than the explicit formula for
computing d̃k, it has a shortcoming in that the length of recursion increases
with k, so it can be inefficient when k is large.

Using a method suggested by Brown [1], it is possible to update d̃k from d̃k−1

without the need of using all the d̃i for 0 ≤ i ≤ k− 1. In order to obtain this
short recurrence relation, we substitute (6) into (5) and exchange the order
of summation to obtain the following expression

d̃k =
1

2k

n∑
i=1

k∑
j=1

(λj
i d̃k−j + jδiλ

j
i d̃k−j) =

1

2k

n∑
i=1

(ui,k + vi,k), (7)
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where3

ui,k =
k∑

j=1

λj
i d̃k−j, vi,k = δi

k∑
j=1

jλj
i d̃k−j. (8)

It can be easily verified that ui,k and vi,k can be updated using the following
recurrence relation:

ui,k = λi(ui,k−1 + d̃k−1), vi,k = δiui,k + λivi,k−1, (9)

with the initial conditions ui,0 = 0 and vi,0 = 0. This method is extremely
efficient because we update ui,k and vi,k using just ui,k−1, vi,k−1 and d̃k−1. As
a result, the memory requirement for this recurrence relation is only 2n + 1
elements (n elements for ui,k, n elements for vi,k and one element for d̃k)
regardless of k, and the computation time for updating d̃k does not increase
with k.

The second issue is the computational efficiency of the integrand. In general,
R depends on both s and t, and since we need to obtain the eigenvalues
and eigenvectors of R in order to compute the moments of w′Rw, this can
be extremely time consuming. In order to speed up the computation of the
integrand, we propose a method that frees us from performing eigenvalue
decomposition of R. Under this method, eigenvalue decomposition is only
performed at the outer integral, and there is no need to perform eigenvalue
decomposition of R as we change the value of s in the inner integral.

Our method hinges on choosing an appropriate L such that R = L′AL is a
diagonal matrix. Let PDbP

′ = B, where Db = Diag(b1, . . . , bn) is a diagonal
matrix of the eigenvalues of B (some of the bi’s can be zero), and P is an
n × n matrix of the corresponding eigenvectors. Denoting Ã = P ′AP , we
can then write

In + 2sA+ 2tB = P (In + 2sÃ+ 2tDb)P
′ = P∆−1(In + 2sĂ)∆−1P ′,

where ∆ = (In + 2tDb)
− 1

2 and Ă = ∆Ã∆. Let HDăH
′ = Ă, where Dă =

Diag(ă1, . . . , ăn) is a diagonal matrix of the eigenvalues of Ă, and H is an
n×n matrix of the corresponding eigenvectors. With these transformations,
we can write

(In + 2sA+ 2tB)−1 = P∆H(In + 2sDă)
−1H ′∆P ′,

3When µ = 0n, we can drop the vi,k terms because they are equal to zero.
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and choose L = P∆H(In + 2sDă)
− 1

2 . Under this choice of L, we have

R = L′AL

= (In + 2sDă)
− 1

2H ′∆P ′AP∆H(In + 2sDă)
− 1

2

= (In + 2sDă)
− 1

2H ′ĂH(In + 2sDă)
− 1

2

= (In + 2sDă)
− 1

2Dă(In + 2sDă)
− 1

2 ,

which is a diagonal matrix with diagonal elements λi = ăi/(1 + 2săi). In
addition, we have δi = µ̃2

i , where

µ̃ = L′µ = (In + 2sDă)
− 1

2H ′∆P ′µ.

The important point to note here is that we can obtain λi and δi by using
H and Dă, both of which depend on t but not on s, so we no longer need to
perform eigenvalue decomposition of R in the inner integral. In addition, we
have

|In + 2sA+ 2tB|−
1
2 = |∆||In + 2sDă|−

1
2 =

n∏
i=1

1

(1 + 2tbi)
1
2

n∏
i=1

1

(1 + 2săi)
1
2

.

With all these expressions, we can rewrite (4) as

µp
q =

e−
µ′µ
2 2⌈p⌉⌈p⌉!

Γ(⟨p⟩)Γ(q)

∫ ∞

0

tq−1∏n
i=1(1 + 2tbi)

1
2

[∫ ∞

0

s⟨p⟩−1e
µ̃′µ̃
2 d̃⌈p⌉∏n

i=1(1 + 2săi)
1
2

ds

]
dt,

and this is our preferred integral expression for evaluating µp
q when p is not

an integer.4

4. Infinite series expression of µp
q in terms of top-order invariant

polynomials

Besides the integral expression of µp
q , there is an infinite series expression

of µp
q given by Smith [13]. Before we present his expression, we first introduce

the normalized top-order invariant polynomials. For the rest of the paper,

4A set of Matlab programs for computing µp
q using this integration

method and other methods discussed later in the paper is available at
http://www.rotman.utoronto.ca/∼kan/research.htm.
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we shall adopt the following notation: t = (t1, . . . , tr), κ = (k1, . . . , kr), the
ki being nonnegative integers, |κ| will denote the sum of the parts of κ, i.e.,
|κ| =

∑r
i=1 ki, and tκ =

∏r
i=1t

ki
i .

Throughout the paper, we use the notation in Wilf [14] for coefficients in a
generating function: the expression [tκ]D(t) denotes the coefficient of tκ in
the power series expansion of the function

D(t) =
∞∑
k=0

∑
|κ|=k

dκt
κ.

Using Wilf’s notation, we can write dκ as

dκ = [tκ]D(t).

For n × n symmetric matrices A1 to Ar, we define the following generating
function

D(t) = |In − t1A1 − · · · − trAr|−
1
2 =

∞∑
k=0

∑
|κ|=k

dκ(A1, · · · , Ar),

where dκ(A1, . . . , Ar) is the normalized top-order invariant polynomial (see
Chikuse [2] and Hillier, Kan, and Wang [4]). Assuming both A and B are
positive definite and n

2
+ p > q, Smith [13] provides a triple infinite series

expansion of µp
q in terms of the top-order invariant polynomials. In terms of

our notation, his expression is

µp
q =

2p−qβqe−
µ′µ
2

αp

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−p)i(q)jΓ
(
n
2
+ p− q + k

)
2k
(
1
2

)
k
Γ
(
n
2
+ i+ j + k

) di,j,k(Â, B̂, µµ′),

(10)
where Â = In − αA, B̂ = In − βB with 0 < α < 2/amax, 0 < β < 2/bmax,
amax and bmax are the maximum eigenvalues of A and B, respectively, and
(a)k = a(a+ 1) · · · (a+ k − 1) is the usual Pochhammer symbol.

When p is an integer, (10) can be simplified to a double infinite series:

µp
q = 2p−qβqe−

µ′µ
2 p!

∞∑
j=0

∞∑
k=0

(q)jΓ
(
n
2
+ p− q + k

)
2k
(
1
2

)
k
Γ
(
n
2
+ p+ j + k

)dp,j,k(A, B̂, µµ′). (11)

In addition, (11) also holds when A is a general symmetric matrix.
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Since top-order invariant polynomials are in general difficult to evaluate,
these infinite series expressions of µp

q are rarely used by researchers in prac-
tice. Recently, Hillier, Kan, and Wang [4] have made some progress in the
numerical computation of top-order invariant polynomials. For the special
case when p is an integer and µ = 0n, (11) simplifies to a single infinite series,
and Hillier, Kan, and Wang [4] provide an algorithm for numerical evaluation
of µp

q . However, for the more general case, these infinite series expressions
remain only of academic interest.

When proving (10), Smith relies on the assumption that both A and B are
positive definite matrices and his proof does not go through when A or B is
positive semi-definite. He attempts to deal with some special cases when B
is positive semi-definite, but leaves the general case as an open question. To
the best of our knowledge, general infinite series expression of µp

q is currently
unavailable when A or B is positive semi-definite. Surprisingly, our next
proposition shows that as long as µp

q exists, Smith’s formula continues to
hold even when A or B is positive semi-definite. Therefore, with the moment
existence conditions in Proposition 1 satisfied, we can safely use (10) and (11).

Proposition 3. Suppose µp
q exists. µp

q is given by (10) when p is not an
integer, and by (11) when p is an integer.

Our proof of Proposition 3 relies on the integral formula of µp
q given

in Section 3 because that formula works also for the case when A or B is
positive semi-definite. In addition, our proof provides a unified framework
that allows us to reconcile the two different approaches (integral vs. infinite
series) of evaluating µp

q .

5. New infinite series expression of µp
q

While we establish in the last section that Smith’s expression of µp
q holds

even when A or B is positive semi-definite, his expression is not computation-
ally friendly because it involves a triple infinite series. In order to overcome
this problem, we present in this section a new infinite series expansion of µp

q

in terms of a double infinite series. For the special case when p is an integer,
µp
q reduces to a single infinite series. It should be noted that for the case that

p is an integer, this new infinite series expansion has already been proposed
by Hillier, Kan, and Wang [5]. However, their proof assumes B is positive
definite, which somewhat restricts the generality of their result.
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In order to present our results, we first define two generating functions

H(t1, t2) = |In − t1A1 − t2A2|−
1
2 exp

(
(1− t1 − t2)µ

′(In − t1A1 − t2A2)
−1µ

2
− µ′µ

2

)
=

∞∑
i=0

∞∑
j=0

hi,j(A1, A2)t
i
1t

j
2,

H̃(t1, t2) = |In − t1A1 − t2A2|−
1
2 exp

(
(1− t2)µ

′(In − t1A1 − t2A2)
−1µ

2
− µ′µ

2

)
=

∞∑
i=0

∞∑
j=0

h̃i,j(A1, A2)t
i
1t

j
2,

where A1 and A2 are two symmetric matrices. With hi,j and h̃i,j defined, the
following proposition presents our new infinite series expression of µp

q .

Proposition 4. Suppose µp
q exists. When p is not an integer, we have

µp
q =

2p−qβqΓ
(
n
2
+ p− q

)
αp

∞∑
i=0

∞∑
j=0

(−p)i(q)j

Γ
(
n
2
+ i+ j

)hi,j(Â, B̂)

=
2p−qβqΓ

(
n
2
+ p− q

)
αp

∞∑
k=0

wk

Γ
(
n
2
+ k
) , (12)

where wk =
∑k

i=0(−p)i(q)k−ihi,k−i(Â, B̂), Â = In − αA, B̂ = In − βB with
0 < α < 2/amax, 0 < β < 2/bmax, and amax and bmax are the maximum
eigenvalues of A and B, respectively. When p is an integer, we have

µp
q =

2p−qβqp!Γ
(
n
2
+ p− q

)
Γ
(
n
2
+ p
) ∞∑

j=0

(q)j(
n
2
+ p
)
j

h̃p,j(A, B̂). (13)

Note that when µ = 0n, hi,j(Â, B̂) = di,j(Â, B̂) and h̃i,j(A, B̂) = di,j(A, B̂).
In order to use (12) and (13), we need to have an algorithm to compute
hi,j and h̃i,j. The following proposition shows that both hi,j and h̃i,j can be
obtained recursively, with the initial conditions h0,0 = 1 and h̃0,0 = 1.

Proposition 5. Defining τi,j = [ti1t
j
2]tr((t1A1+t2A2)

i+j) and ηi,j = [ti1t
j
2]µ

′(t1A1+
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t2A2)
i+jµ, we have

hi,j =
1

2(i+ j)

i∑
ν1=0

j∑
ν2=0

ν1+ν2>0

pν1,ν2hi−ν1,j−ν2 ,

h̃i,j =
1

2(i+ j)

i∑
ν1=0

j∑
ν2=0

ν1+ν2>0

p̃ν1,ν2h̃i−ν1,j−ν2

where

pν1,ν2 = τν1,ν2 + (ν1 + ν2)(ην1,ν2 − ην1−1,ν2 − ην1,ν2−1),

p̃ν1,ν2 = τν1,ν2 + (ν1 + ν2)(ην1,ν2 − ην1,ν2−1),

with the convention that ηi,j = 0 when i or j is negative.

There are two major problems with using the recursions in Proposition 5.
First, it is computationally expensive. For instance, hi,j is expressed as a
linear combination of all the hν1,ν2 ’s with ν1 ≤ i and ν2 ≤ j, so this requires a
lot of storage space, and is computationally expensive when i and j are large.
Second, τi,j and ηi,j are not easy to compute because a binomial expansion
on (t1A1 + t2A2)

i+j can lead to many terms when i+ j is large.

In order to overcome these two problems, we present an efficient algorithm
for computing hi,j and h̃i,j, which can be regarded as a multivariate general-
ization of Brown’s [1] algorithm, and is introduced in Hillier, Kan, and Wang
[5]. To present this algorithm, we let A(t) = t1A1 + t2A2 and define matrix
Gi,k−i and vector gi,k−i as follows:

Gi,k−i =
i∑

ν1=0

k−i∑
ν2=0

ν1+ν2>0

[tν11 tν22 ]A(t)ν1+ν2hi−ν1,k−i−ν2 ,

gi,k−i =
i∑

ν1=0

k−i∑
ν2=0

ν1+ν2>0

(ν1 + ν2)
(
[tν11 tν22 ]A(t)ν1+ν2 − [tν11 tν2−1

2 ]A(t)ν1+ν2−1

− [tν1−1
1 tν22 ]A(t)ν1+ν2−1

)
µhi−ν1,k−i−ν2 .

With Gi,k−i and gi,k−i available, we can then obtain hi,k−i using

hi,k−i =
1

2k

i∑
ν1=0

k−i∑
ν2=0

ν1+ν2>0

pν1,ν2hi−ν1,k−i−ν2 =
tr(Gi,k−i) + µ′gi,k−i

2k
.
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As it turns out, both Gi,k−i and gi,k−i can be obtained by short recursions,
which are given by

Gi,k−i = A1(hi−1,k−iIn +Gi−1,k−i) + A2(hi,k−1−iIn +Gi,k−1−i),

gi,k−i = (Gi,k−i −Gi,k−1−i −Gi−1,k−i)µ− (hi,k−1−i + hi−1,k−i)µ

+ A1gi−1,k−i + A2gi,k−1−i.

Here, we adopt the convention that Gi,j = 0n×n, gi,j = 0n, hi,j = 0 when
either i or j is negative.

Together with the initial conditions h0,0 = 1, g0,0 = 0n, and G0,0 = 0n×n, the
above two recursions allow us to efficiently compute hi,k−i for i = 0, . . . , k
using only hi,k−1−i, Gi,k−1−i and gi,k−1−i for i = 0, . . . , k − 1. This stands
in contrast to the long recursion in Proposition 5. More importantly, the
updating time of hi,k−i is the same regardless of k, and this is particularly
desirable for the computation of µq

p that may require summing up hi,k−i for
very large values of k.

With our new infinite series representation of µp
q and the corresponding fast

updating algorithm for hi,k−i, the infinite series approach becomes very com-
petitive against the integration approach for numerical evaluation of µp

q . For
example, with n = 120, we find that numerical calculation of µp

q based on
the new infinite series representation with the fast algorithm is on average
ten times faster than using the integration formula in Section 3.

An important advantage of (12) over the integration approach is that hi,j(Â, B̂)
in (12) does not depend on p and q. Therefore, if one needs to compute a
table of µp

q for different values of p and q, then one only needs to compute
hi,j’s once and they can be used to update the series approximation of µp

q for
all values of p and q. In contrast, the integration approach needs to perform
a separate integration for each single p and q, and it can be much more time
consuming.

For the sake of completeness, we also present the fast updating algorithm for
h̃i,k−i. Defining matrix G̃i,k−i and vector g̃i,k−i as follows:

G̃i,k−i =
i∑

ν1=0

k−i∑
ν2=0

ν1+ν2>0

[tν11 tν22 ]A(t)ν1+ν2h̃i−ν1,k−i−ν2 ,

g̃i,k−i =
i∑

ν1=0

k−i∑
ν2=0

ν1+ν2>0

(ν1 + ν2)
(
[tν11 tν22 ]A(t)ν1+ν2 − [tν11 tν2−1

2 ]A(t)ν1+ν2−1
)
µh̃i−ν1,k−i−ν2 ,

13



then we have

h̃i,k−i =
tr(G̃i,k−i) + µ′g̃i,k−i

2k
.

It can be easily verified that G̃i,k−i and g̃i,k−i have the following recurrence
relations:

G̃i,k−i = A1(h̃i−1,k−iIn + G̃i−1,k−i) + A2(h̃i,k−1−iIn + G̃i,k−1−i),

g̃i,k−i = (G̃i,k−i − G̃i,k−1−i)µ− h̃i,k−1−iµ+ A1g̃i−1,k−i + A2g̃i,k−1−i,

with the initial conditions h̃0,0 = 1, g̃0,0 = 0n, and G̃0,0 = 0n×n.

6. Conclusion

In this paper, we present new results related to the mixed moments of
ratios of quadratic forms in normal random variables. We first provide the
necessary and sufficient conditions for the existence of mixed moments. We
then present the integration and infinite series approaches for evaluating the
mixed moments. In addition, we introduce a new and more efficient infinite
series expansion of the mixed moments. For both the integration and infinite
series approaches, we develop efficient numerical algorithms that are vastly
superior than the existing ones in the literature.

Our results can be extended to deal with other problems. For example, it is
rather straightforward to extend our results when the numerator is defined
as (x′Ax + b′x + c)p. For future research, it is of interest to generalize the
integration and infinite series approaches to deal with ratios of quadratic
forms in non-normal random variables.
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Appendix

Proof of Proposition 1: Since the proposition is known to be true for
integer p, we only need to prove it for the case when p is not an integer, and
we assume A is positive semi-definite in our proof. In addition, we only need
to prove the necessary conditions for the existence of µp

q since the sufficient
conditions in Proposition 1 have already been established by Roberts [10].

14



When B is positive definite, we let λ1 > 0 be the largest eigenvalue of
B− 1

2AB− 1
2 and we have

x′Ax

x′Bx
≤ λ1 ⇒

x′Bx

x′Ax
≥ 1

λ1

.

Let ⌈p⌉ be the smallest integer that is larger than p. Since

(x′Ax)p

(x′Bx)q
=

(
x′Bx

x′Ax

)⌈p⌉−p
(x′Ax)⌈p⌉

(x′Bx)q+⌈p⌉−p
≥ 1

λ
⌈p⌉−p
1

(x′Ax)⌈p⌉

(x′Bx)q+⌈p⌉−p
,

we have

µp
q ≥

1

λ
⌈p⌉−p
1

µ
⌈p⌉
q+⌈p⌉−p.

As ⌈p⌉ is an integer, µ
⌈p⌉
q+⌈p⌉−p exists if and only n

2
+ ⌈p⌉ > q + ⌈p⌉ − p, or

equivalently n
2
+ p > q. Therefore, when n

2
+ p ≤ q, µp

q does not exist.

We now consider the case when B is positive semi-definite. For case (i) with
Ã12 = 0m×(n−m) and Ã22 = 0(n−m)×(n−m), we have

(x′Ax)p

(x′Bx)q
=

(z′Ãz)p

(z′1D1bz1)q
=

(z′1Ã11z1)
p

(z′1D1bz1)q
.

Since D1b is a positive definite matrix, we can use the result from the positive
definite B case to show that m

2
+ p > q is both necessary and sufficient for

µp
q to exist.

For case (iii) with Ã22 ̸= 0(n−m)×(n−m), we let QDaQ
′ = Ã, where Da =

Diag(a1, . . . , ar) with a1 ≥ a2 ≥ · · · ≥ ar > 0 being the r ≤ n nonzero
eigenvalues of Ã, and Q is an n× r matrix of the corresponding eigenvectors.
Let z̃ = Q′z; then we have

z′Ãz = z̃′Daz̃ =
r∑

i=1

aiz̃
2
i .

Note that z̃i = q′iz = qi,1
′z1 + qi,2

′z2, where qi = [q′i,1, q
′
i,2]

′ is the i-th column

of Q. Since Ã22 is a nonzero matrix, at least one of the qi,2’s is not a zero
vector. Suppose qj,2 is not a zero vector. Conditional on z1, z̃

2
j ∼ σ2χ2

1(λ),
where λ = (q′j,1z1 + qj,2

′µ2)
2/σ2 and σ2 = q′j,2qj,2.
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For a noncentral chi-squared random variable with ν degrees of freedom and
a noncentrality parameter of λ, its p-th moment exists if and only if p > −ν/2
and it is given by (see, for example, Krishnan [6]),

E[χ2
ν(λ)

p] =
2pe−

λ
2Γ
(
ν
2
+ p
)

Γ
(
ν
2

) 1F1

(
2p+ ν

2
;
1

2
;
λ

2

)
,

where 1F1(·; ·; ·) is the confluent hypergeometric function. Using this result
and the fact that z̃′Daz̃ ≥ aj z̃

2
j , we have

E

[
(z̃′Daz̃)

p

(z′1D1bz1)q

]
≥ apjE

[
z̃2pj

(z′1D1bz1)q

]

=
(2ajσ

2)pΓ
(
1
2
+ p
)

Γ
(
1
2

) E

[
e−

λ
2

(z′1D1bz1)q
1F1

(
2p+ 1

2
;
1

2
;
λ

2

)]

>
(2ajσ

2)pΓ
(
1
2
+ p
)

Γ
(
1
2

) E

[
e−

λ
2

(z′1D1bz1)q
1F1

(
1

2
;
1

2
;
λ

2

)]

=
(2ajσ

2)pΓ
(
1
2
+ p
)

Γ
(
1
2

) E

[
1

(z′1D1bz1)q

]
.

As bm(z
′
1z1) ≤ z′1D1bz1 ≤ b1(z

′
1z1) and z′1z1 ∼ χ2

m(µ
′P1P

′
1µ), the expectation

on the right hand side exists if and only if m/2 > q. It follows that µp
q does

not exist when m/2 ≤ q. □

Proof of Proposition 2: Note that

∂kϕ(t1, t2)

∂tk1

=
1

(2π)
n
2

∫
Rn

(x′Ax)k exp(t1x
′Ax+ t2x

′Bx) exp

(
−(x− µ)′(x− µ)

2

)
(dx)

= exp

(
−µ′µ

2

)
1

(2π)
n
2

∫
Rn

(x′Ax)k exp

(
−x′(In − 2t1A− 2t2B)x

2
+ x′µ

)
(dx).

Making a transformation of w = L−1x, where L is an n×n matrix such that
(In − 2t1A − 2t2B)−1 = LL′, we have x′Ax = w′(L′AL)w = w′Rw. Then
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denoting µ̃ = L′µ, we obtain

∂kϕ(t1, t2)

∂tk1
= |L| exp

(
µ̃′µ̃

2
− µ′µ

2

)
× 1

(2π)
n
2

∫
Rn

(w′Rw)k exp

(
−(w − µ̃)′(w − µ̃)

2

)
(dw)

= ϕ(t1, t2)E[(w′Rw)k], (14)

where we make use of the identities x′µ = w′µ̃ and |L| = |In−2t1A−2t2B|− 1
2 ,

and w ∼ N(µ̃, In) in the second equality. Setting t1 = 0 and t2 = −t in (14)
yields (3) and setting t1 = −s and t2 = −t yields (4). □

Proof of Proposition 3: We provide only the derivation of (10) here (the
derivation of (11) is similar). When µp

q exists, we use (2) to obtain

µp
q =

βq

αp
E

[
(x′(αA)x)p

(x′(βB)x)q

]
=

(−1)⌈p⌉βqe−
µ′µ
2

αpΓ(⟨p⟩)Γ(q)

∫ ∞

0

∫ ∞

0

s⟨p⟩−1tq−1 ∂⌈p⌉

∂s⌈p⌉
|In + 2sαA+ 2tβB|−

1
2

× exp

(
µ′(In + 2sαA+ 2tβB)−1µ

2

)
dsdt,

where the extra (−1)⌈p⌉ term is introduced because we write the integrand
as derivatives of ϕ(−s,−t). Using the fact

In + 2sαA+ 2tβB = (1 + 2s+ 2t)

(
In −

2s

1 + 2s+ 2t
Â− 2t

1 + 2s+ 2t
B̂

)
,

where Â = In − αA and B̂ = In − βB, we can write

µp
q =

(−1)⌈p⌉βqe−
µ′µ
2

αpΓ(⟨p⟩)Γ(q)

∫ ∞

0

∫ ∞

0

s⟨p⟩−1tq−1 ∂⌈p⌉

∂s⌈p⌉
(1 + 2s+ 2t)−

n
2

× |In − t1Â− t2B̂|−
1
2 exp

(
µ′(In − t1Â− t2B̂)−1µ

2(1 + 2s+ 2t)

)
dsdt, (15)

where t1 = 2s/(1 + 2s+ 2t) and t2 = 2t/(1 + 2s+ 2t).
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Let c = 2(1 + 2s+ 2t) and note that

∞∑
k=0

di,j,k(Â, B̂, µµ′)

ck
(
1
2

)
k

=
∞∑
k=0

1

ck
(
1
2

)
k

[ti1t
j
2t

k
3]|In − t1Â− t2B̂ − t3µµ

′|−
1
2

=
∞∑
k=0

1

ck
(
1
2

)
k

[ti1t
j
2t

k
3]|In − t1Â− t2B̂|−

1
2 [1− t3µ

′(In − t1Â− t2B̂)−1µ]−
1
2

=
∞∑
k=0

1

ck
(
1
2

)
k

[ti1t
j
2]|In − t1Â− t2B̂|−

1
2

(
1
2

)
k
[µ′(In − t1Â− t2B̂)−1µ]k

k!

= [ti1t
j
2]|In − t1Â− t2B̂|−

1
2 exp

(
µ′(In − t1Â− t2B̂)−1µ

c

)
, (16)

so we can now write (15) as

µp
q =

(−1)⌈p⌉βqe−
µ′µ
2

αpΓ(⟨p⟩)Γ(q)

∫ ∞

0

∫ ∞

0

s⟨p⟩−1tq−1 ∂⌈p⌉

∂s⌈p⌉
(1 + 2s+ 2t)−

n
2

×
∞∑
i=0

∞∑
j=0

∞∑
k=0

di,j,k(Â, B̂, µµ′)ti1t
j
2

2k(1 + 2s+ 2t)k
(
1
2

)
k

dsdt

=
(−1)⌈p⌉βqe−

µ′µ
2

αpΓ(⟨p⟩)Γ(q)

∞∑
i=0

∞∑
j=0

∞∑
k=0

di,j,k(Â, B̂, µµ′)

2k
(
1
2

)
k

∫ ∞

0

tq−1(2t)j

×
∫ ∞

0

s⟨p⟩−1 ∂⌈p⌉

∂s⌈p⌉
(2s)i(1 + 2s+ 2t)−

n
2
−i−j−kdsdt.

In order to prove (10), we need the following lemma.

Lemma 1. Suppose n
2
+p > q and i, j, k are nonnegative integers. We have

(−1)⌈p⌉

Γ(⟨p⟩)Γ(q)

∫ ∞

0

tq−1(2t)j
∫ ∞

0

s⟨p⟩−1 ∂⌈p⌉

∂s⌈p⌉
(2s)i(1 + 2s+ 2t)−

n
2
−i−j−kdsdt

=
2p−q(−p)i(q)jΓ

(
n
2
+ p− q + k

)
Γ
(
n
2
+ i+ j + k

) .
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Proof: Using the Leibniz rule, we have

∂⌈p⌉

∂s⌈p⌉
(2s)i(1 + 2s+ 2t)−

n
2
−i−j−k

=

min[i,⌈p⌉]∑
l=0

(
⌈p⌉
l

)
(−1)l(−i)l2

l(2s)i−l

× (−1)⌈p⌉−l
(n
2
+ i+ j + k

)
⌈p⌉−l

2⌈p⌉−l(1 + 2s+ 2t)−
n
2
−i−j−k−⌈p⌉+l

=
2⌈p⌉(−1)⌈p⌉

Γ
(
n
2
+ i+ j + k

) min[i,⌈p⌉]∑
l=0

(
⌈p⌉
l

)
(−i)lΓ

(n
2
+ i+ j + k + ⌈p⌉ − l

)
× (2s)i−l(1 + 2s+ 2t)−

n
2
−i−j−k−⌈p⌉+l.

When i+ ⟨p⟩ > l (which is satisfied here because l ≤ min[i, ⌈p⌉]), we have∫ ∞

0

s⟨p⟩−1(2s)i−l(1 + 2s+ 2t)−
n
2
−i−j−k−⌈p⌉+lds

=
2−⟨p⟩(1 + 2t)−

n
2
−p−j−kΓ

(
n
2
+ p+ j + k

)
Γ(i− l + ⟨p⟩)

Γ
(
n
2
+ i+ j + k + ⌈p⌉ − l

) .

It follows that∫ ∞

0

s⟨p⟩−1 ∂⌈p⌉

∂s⌈p⌉
(2s)i(1 + 2s+ 2t)−

n
2
−i−j−kds

=
2p(−1)⌈p⌉Γ(i− p)(1 + 2t)−

n
2
−p−j−kΓ

(
n
2
+ p+ j + k

)
Γ
(
n
2
+ i+ j + k

) min[⌈p⌉,i]∑
l=0

(
⌈p⌉
l

)
(−i)l(i− p)⌈p⌉−l

=
2p(−1)⌈p⌉Γ(i− p)(1 + 2t)−

n
2
−p−j−kΓ

(
n
2
+ p+ j + k

)
Γ
(
n
2
+ i+ j + k

) ⌈p⌉∑
l=0

(
⌈p⌉
l

)
(−i)l(i− p)⌈p⌉−l

=
2p(−1)⌈p⌉Γ(i− p)(−p)⌈p⌉Γ

(
n
2
+ p+ j + k

)
Γ
(
n
2
+ i+ j + k

) (1 + 2t)−
n
2
−p−j−k,

where the last equality follows from the Chu-Vandermonde identity. When
n
2
+ p > q, we have∫ ∞

0

tq−1(2t)j(1 + 2t)−
n
2
−p−j−kdt =

2−qΓ
(
n
2
+ p− q + k

)
Γ(q + j)

Γ
(
n
2
+ p+ j + k

) .
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Using this result, we obtain

(−1)⌈p⌉

Γ(⟨p⟩)Γ(q)

∫ ∞

0

tq−1(2t)j
∫ ∞

0

s⟨p⟩−1 ∂⌈p⌉

∂s⌈p⌉
(2s)i(1 + 2s+ 2t)−

n
2
−i−j−kdsdt

=
(−1)⌈p⌉

Γ(⟨p⟩)Γ(q)
2p(−1)⌈p⌉Γ(i− p)(−p)⌈p⌉

Γ
(
n
2
+ i+ j + k

) 2−qΓ
(n
2
+ p− q + k

)
Γ(q + j)

=
2p−q(−p)i(q)jΓ

(
n
2
+ p− q + k

)
Γ
(
n
2
+ i+ j + k

) .

This completes the proof of Lemma 1. □

Note that since µp
q exists, the condition n

2
+ p > q must be satisfied, and we

can apply Lemma 1 in (16) to obtain (10). However, in the above derivation,
we perform integration term by term, so we need to justify this operation
by showing that when µp

q exists, the infinite series is uniformly absolute
convergent under the assumptions of 0 < α < 2/amax and 0 < β < 2/bmax.

We first show that when B is positive definite, then the triple infinite series
in (10) is uniformly absolute convergent when n

2
+ p > q (i.e., µp

q exists) even
under the weaker assumption that A is positive semi-definite. Let â be the
smallest absolute eigenvalue of Â and b̂ be the largest absolute eigenvalue
of B̂. Under the assumption 0 < α < 2/amax, all the eigenvalues of Â have
absolute values less than or equal to one. Since A is not a zero matrix, we
must have 0 ≤ â < 1. In addition, under the assumption 0 < β < 2/bmax

and the fact that B is positive definite, we have 0 ≤ b̂ < 1.

Let u = [u1, u′
2]

′ ∼ N(0n, In), where u1 is the first element of u; then it is
easy to show that

|u′Âu| ≤ âq1 + q2,

|u′B̂u| ≤ b̂(q1 + q2),

|u′µµ′u| ≤ (µ′µ)(u′u) = δ(q1 + q2),

where q1 = u′
1u1 ∼ χ2

1, q2 = u′
2u2 ∼ χ2

n−1, independent of each other, and δ =

µ′µ. With these inequalities, we derive an upper bound on |dp,j,k(Â, B̂, µµ′)|
for this case. Using the relation between top-order invariant polynomials and
product moments of ratios of quadratic forms (see, for example, Eq.(48) of
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Hillier, Kan, and Wang [4]), we have

|di,j,k(Â, B̂, µµ′)|

=

∣∣∣∣∣E[(u′Âu)i(u′B̂u)j(u′µµ′u)k]

2i+j+ki!j!k!

∣∣∣∣∣
≤ b̂jδkE[(âq1 + q2)

i(q1 + q2)
j+k]

2i+j+ki!j!k!

=
b̂jδk

2i+j+ki!j!k!

i∑
s=0

j+k∑
t=0

(
i

s

)(
j + k

t

)
E[qs+t

1 ]E[qi+j+k−s−t
2 ]âs

=
b̂jδk

i!j!k!

i∑
s=0

(
i

s

)
âs

j+k∑
t=0

(
j + k

t

)(
1

2

)
s+t

(
n− 1

2

)
i+j+k−s−t

=
b̂jδk

i!j!k!

i∑
s=0

(
i

s

)(
1

2

)
s

(
n− 1

2

)
i−s

âs
j+k∑
t=0

(
1

2
+ s

)
t

(
n− 1

2
+ i− s

)
j+k−t

=
(n
2
+ i
)
j+k

b̂jδk

j!k!

i∑
s=0

(
1
2

)
s

(
n−1
2

)
i−s

âs

s!(i− s)!
,

where the third equality is obtained by making use of the fact that E[Qr] =
2r(ν/2)r forQ ∼ χ2

ν , and the last equality follows from the Chu-Vandermonde
identity. Let

gi = i!
∞∑
j=0

∞∑
k=0

(q)jΓ
(
n
2
+ p− q + k

)
2k
(
1
2

)
k
Γ
(
n
2
+ i+ j + k

)di,j,k(Â, B̂, µµ′), (17)

then we can write (10) as

µp
q =

2p−qβqe−
δ
2

αp

∞∑
i=0

(−p)i
i!

gi =
2p−qβqe−

δ
2

αp

⌈p⌉−1∑
i=0

(−p)i
i!

gi +
∞∑

i=⌈p⌉

(−p)i
i!

gi

 .

(18)
With the bound on |di,j,k(Â, B̂, µ̂µ′)| and under the assumption that n

2
+p > q,
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we can obtain a bound on |gi| as follows:

|gi| ≤ i!
∞∑
j=0

∞∑
k=0

(q)jΓ
(
n
2
+ p− q + k

)
2k
(
1
2

)
k
Γ
(
n
2
+ i+ j + k

) (n
2
+ i
)
j+k

b̂jδk

j!k!

i∑
s=0

(
1
2

)
s

(
n−1
2

)
i−s

âs

s!(i− s)!

=
i!Γ
(
n
2
+ p− q

)
Γ
(
n
2
+ i
) 1F1

(
n

2
+ p− q;

1

2
;
δ

2

)
(1− b̂)−q

i∑
s=0

(
1
2

)
s

(
n−1
2

)
i−s

âs

s!(i− s)!

=
i!c

Γ
(
n
2
+ i
) i∑

s=0

(
1
2

)
s

(
n−1
2

)
i−s

âs

s!(i− s)!
,

where c = Γ
(
n
2
+ p− q

)
1F1

(
n
2
+ p− q; 1

2
; δ
2

)
(1− b̂)−q is finite because b̂ < 1.

Note that the first sum in (18) is finite because it has only finite number of
terms, and each term is uniformly absolute convergent. For the second sum
in (18), we know (−p)i’s have the same sign when i ≥ ⌈p⌉, so we have

∞∑
i=⌈p⌉

∣∣∣∣(−p)i
i!

gi

∣∣∣∣ ≤
∣∣∣∣∣∣

∞∑
i=⌈p⌉

(−p)i
i!

|gi|

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞∑
i=0

(−p)i
i!

|gi| −
⌈p⌉−1∑
i=0

(−p)i
i!

|gi|

∣∣∣∣∣∣ ,
and it suffices to show that the first infinite sum on the right hand side is
uniformly absolute convergent. Letting r = i − s and exchanging the order
of summation, we obtain

∞∑
i=0

(−p)i
i!

|gi| ≤ c
∞∑
i=0

(−p)i

Γ
(
n
2
+ i
) i∑

s=0

(
1
2

)
s

(
n−1
2

)
i−s

âs

s!(i− s)!

= c
∞∑
s=0

∞∑
r=0

(−p)r+sâ
s

Γ
(
n
2
+ r + s

) (12)s (n−1
2

)
r

r!s!

= c

∞∑
s=0

(−p)s
(
1
2

)
s
âs

Γ
(
n
2
+ s
)
s!

∞∑
r=0

(−p+ s)r
(
n−1
2

)
r(

n
2
+ s
)
r
r!

= c

∞∑
s=0

(−p)s
(
1
2

)
s
âs

Γ
(
n
2
+ s
)
s!

Γ
(
n
2
+ s
)
Γ
(
1
2
+ p
)

Γ
(
1
2
+ s
)
Γ
(
n
2
+ p
)

=
cΓ
(
1
2
+ p
)

Γ
(
1
2

)
Γ
(
n
2
+ p
) ∞∑

s=0

(−p)sâ
s

s!

=
cΓ
(
1
2
+ p
)
(1− â)p

Γ
(
1
2

)
Γ
(
n
2
+ p
) ,
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where the third equality follows from the Gauss hypergeometric theorem,
which states that

∞∑
i=0

(a)i(b)i
(c)ii!

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

when c > a+ b. Therefore, we establish the uniform absolute convergence of
(10) when B is positive definite.

We now turn our attention to the cases that B is positive semi-definite.
Suppose the rank of B is 0 < m < n. Without loss of generality (see
the proof of Proposition 1), we assume B = Diag(b1, . . . , bm, 0

′
n−m), where

b1 ≥ b2 ≥ · · · ≥ bm > 0. There are two cases to consider. The first case is
A22 ̸= 0(n−m)×(n−m). For this case, we show that when m

2
> q (i.e., µp

q exists),
(10) is uniformly absolute convergent.

Let â be the largest absolute eigenvalue of Â and b̂ = maxmi=1 |1−βbi|. Under
the assumptions 0 < α < 2/amax and 0 < β < 2/bmax, we have 0 < â ≤ 1
and 0 < b̂ < 1. Defining u = [u′

1, u′
2]

′ ∼ N(0n, In), where u1 is the first m
elements of u, we have q1 = u′

1u1 ∼ χ2
m, q2 = u′

2u2 ∼ χ2
n−m, and they are

independent of each other. It is easy to show that

|u′Âu| ≤ â(u′u) ≤ q1 + q2,

|u′B̂u| ≤ b̂q1 + q2,

|u′µµ′u| ≤ δ(q1 + q2).

With these inequalities, we can derive an upper bound of |di,j,k(Â, B̂, µµ′)|
as follows:

|di,j,k(Â, B̂, µµ′)| ≤ δkE[(q1 + q2)
i(b̂q1 + q2)

j(q1 + q2)
k]

2i+j+ki!j!k!

=
2i+j+kδk

i!j!k!

i+k∑
r=0

j∑
s=0

(
i+ k

r

)(
j

s

)
b̂sE[qr+s

1 ]E[qi+k−r+j−s
2 ]

=
δk
(
n
2
+ j
)
i+k

i!k!

j∑
s=0

(
m
2

)
s

(
n−m
2

)
j−s

b̂s

s!(j − s)!
.
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It follows that an upper bound for |gi| in (17) is:

|gi| ≤
∞∑
j=0

(q)j

Γ
(
n
2
+ j
) ∞∑

k=0

(
δ
2

)k
Γ
(
n
2
+ p− q + k

)
k!
(
1
2

)
k

j∑
s=0

(
m
2

)
s

(
n−m
2

)
j−s

b̂s

s!(j − s)!

= Γ
(n
2
+ p− q

)
1F1

(
n

2
+ p− q;

1

2
;
δ

2

) ∞∑
j=0

(q)j

Γ
(
n
2
+ j
) j∑

s=0

(
m
2

)
s

(
n−m
2

)
j−s

b̂s

s!(j − s)!

= Γ
(n
2
+ p− q

)
1F1

(
n

2
+ p− q;

1

2
;
δ

2

) ∞∑
s=0

∞∑
r=0

(q)r+s

Γ
(
n
2
+ r + s

) (m2 )s (n−m
2

)
r
b̂s

s!r!

= Γ
(n
2
+ p− q

)
1F1

(
n

2
+ p− q;

1

2
;
δ

2

) ∞∑
s=0

(q)sb̂
s

Γ
(
n
2
+ s
) (

m
2

)
s
s!

∞∑
r=0

(q + s)r(
n
2
+ s
)
r

(
n−m
2

)
r

r!

= Γ
(n
2
+ p− q

)
1F1

(
n

2
+ p− q;

1

2
;
δ

2

) ∞∑
s=0

(q)sb̂
s

Γ
(
n
2
+ s
) (

m
2

)
s
s!

Γ
(
n
2
+ s
)
Γ
(
m
2
− q
)

Γ
(
m
2
+ s
)
Γ
(
n
2
− q
)

=
Γ
(
n
2
+ p− q

)
Γ
(
m
2
− q
)

Γ
(
m
2

)
Γ
(
n
2
− q
) 1F1

(
n

2
+ p− q;

1

2
;
δ

2

)
(1− b̂)−q ≡ d,

where the second last equality is obtained by using the Gauss hypergeomet-
ric theorem when m

2
> q. Since the confluent hypergeometric function 1F1

converges uniformly for all values of its arguments, gi is uniformly absolute
convergent when m/2 > q.

As before, it suffices to prove that the second sum in (18) is uniformly abso-
lute convergent. The second sum is finite because it can be written as

∞∑
i=⌈p⌉

(−p)i
i!

=
∞∑
j=0

(−p)⌈p⌉+j

Γ(⌈p⌉+ j + 1)

=
(−p)⌈p⌉

Γ(⌈p⌉+ 1)

∞∑
j=0

(⟨p⟩)j
(⌈p⌉+ 1)j

=
(−p)⌈p⌉

Γ(⌈p⌉+ 1)

⌈p⌉
p

=
(−p)⌈p⌉
pΓ(⌈p⌉)

,

where the third equality follows from the Gauss hypergeometric theorem.
Therefore, the second infinite sum is uniformly absolute convergent when
m/2 > q.
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The last case that we need to consider is A12 = 0m×(n−m) and A22 =
0(n−m)×(n−m). For this case, we need to prove the following identity. Sup-
pose A12 = 0m×(n−m), A22 = 0(n−m)×(n−m), B12 = 0m×(n−m), and B22 =
0(n−m)×(n−m). Let δ1 = µ′

1µ1 and δ2 = µ′
2µ2, where µ1 is the first m elements

of µ and µ2 is the last n−m elements of µ. We have

2p−qβqe−
δ
2

αp

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−p)i(q)jΓ
(
n
2
+ p− q + k

)
2k
(
1
2

)
k
Γ
(
n
2
+ i+ j + k

) di,j,k(Â, B̂, µµ′)

=
2p−qβqe−

δ1
2

αp

∞∑
r=0

∞∑
s=0

∞∑
t=0

(−p)i(q)jΓ
(
m
2
+ p− q + t

)
2t
(
1
2

)
t
Γ
(
m
2
+ r + s+ t

) di,j,k(Â11, B̂11, µ1µ
′
1).

Since B11 is positive definite, once we prove this identity, we can then apply
the earlier result for positive definite B to show that the infinite series is
uniformly absolute convergent when m

2
+ p > q.

We need two identities in our proof. The first identity is given in the following
lemma.

Lemma 2. Suppose d > a+ b+ c. We have

∞∑
i=0

∞∑
j=0

(a)i(b)j(c)i+j

(d)i+ji!j!
=

Γ(d)Γ(d− a− b− c)

Γ(d− a− b)Γ(d− c)
. (19)

Proof: Letting k = i+ j, we have

∞∑
i=0

∞∑
j=0

(a)i(b)j(c)i+j

(d)i+ji!j!
=

∞∑
k=0

(c)k
(d)kk!

k∑
i=0

(
k

i

)
(a)i(b)k−i

=
∞∑
k=0

(c)k(a+ b)k
(d)kk!

=
Γ(d)Γ(d− a− b− c)

Γ(d− c)Γ(d− a− b)
,

where the second equality follows from the Chu-Vandermonde identity, and
the last equality follows from the Gauss hypergeometric theorem when d >
a+ b+ c. This completes the proof of Lemma 2. □

The second identity relates di,j,k(Â, B̂, µµ′) to di,j,k(Â11, B̂11, µ1µ
′
1) and it is

given in the following lemma.
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Lemma 3. Suppose A12 = 0m×(n−m), A22 = 0(n−m)×(n−m), B12 = 0m×(n−m),
and B22 = 0(n−m)×(n−m). We have

di,j,k(Â, B̂, µµ′) =
i∑

r=0

j∑
s=0

k∑
t=0

dr,s,t(Â11, B̂11, µ1µ
′
1)

(i− r)!(j − s)!(k − t)!

×
(
1
2

)
k
δk−t
2(

1
2

)
t

(
n−m

2
+ k − t

)
i−r+j−s

. (20)

Proof: In order to prove this identity, we first note that when A12 =
0m×(n−m), A22 = 0(n−m)×(n−m), B12 = 0m×(n−m), and B22 = 0(n−m)×(n−m),
we have

Â =

[
Â11 0m×(n−m)

0(n−m)×m In−m

]
, B̂ =

[
B̂11 0m×(n−m)

0(n−m)×m In−m

]
,

where Â11 = Im −αA11 and B̂11 = Im − βB11. Let u = [u′
1, u

′
2]

′ ∼ N(0n, In),
where u1 is the first m elements of u. We have q2 = u′

2u2 ∼ χ2
n−m and it is

independent of u1. Applying binomial expansions to (u′Âu)i = (u′
1Â11u1 +

q2)
i, (u′B̂u)j = (u′

1B̂11u1+q2)
j, (u′µµ′u)k = (µ′

1u1+µ′
2u2)

2k, and noting that
E[(u′

1Â11u1)
r(u′

1B̂11u1)
s(u′

1µ1)
t] = 0 when t is odd, we have

E[(u′Âu)i(u′B̂u)j(u′µµ′u)k]

=
i∑

r=0

j∑
s=0

k∑
t=0

(
i

r

)(
j

s

)(
2k

2t

)
E[(u′

1Â11u1)
r(u′

1B̂11u1)
s(u′

1µ1)
2t]E[qi−r+j−s

2 (µ′
2u2)

2k−2t].

Using the fact that (2k)! = 22kk!
(
1
2

)
k
, we can write(

2k

2t

)
=

(
k

t

) (
1
2

)
k(

1
2

)
t

(
1
2

)
k−t

.

For the second expectation, we note that

X =
(µ′

2u2)
2

(µ′
2µ2)(u′

2u2)
∼ Beta

(
1

2
,
n−m

2

)
is independent of q2 = u′

2u2 and its (k − t)-th moment is given by

E[Xk−t] =

(
1
2

)
k−t(

n−m
2

)
k−t

.
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It follows that

E[qi−r+j−s
2 (µ′

2u2)
2k−2t] = (µ′

2µ2)
k−tE[qi−r+j−s+k−t

2 Xk−t]

= δk−t
2 2i−r+j−s+k−t

(
n−m

2

)
i−r+j−s+k−t

(
1
2

)
k−t(

n−m
2

)
k−t

= δk−t
2 2i−r+j−s+k−t

(
1

2

)
k−t

(
n−m

2
+ k − t

)
i−r+j−s

.

With these results and the fact that

di,j,k(Â, B̂, µµ′) =
E[(u′Âu)i(u′B̂u)j(u′µµ′u)k]

2i+j+ki!j!k!
,

dr,s,t(Â11, B̂11, µ1µ
′
1) =

E[(u′
1Â11u)

r(u′
1B̂11u1)

s(u′
1µ1µ

′
1u1)

t]

2r+s+tr!s!t!
,

we can easily prove (20). This completes the proof of Lemma 3. □

With these two identities, we now prove our main result. Substituting (20)
into (10), we obtain

µp
q =

2p−qβqe−
δ
2

αp

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−p)i(q)jΓ
(
n
2
+ p− q + k

)
2k
(
1
2

)
k
Γ
(
n
2
+ i+ j + k

)
×

i∑
r=0

j∑
s=0

k∑
t=0

dr,s,t(Â11, B̂11, µ1µ
′
1)

(i− r)!(j − s)!(k − t)!

(
1
2

)
k
δk−t
2

(
n−m
2

+ k − t
)
i−r+j−v(

1
2

)
t

.

Letting u = i−r, v = j−s, w = k−t and exchanging the order of summation,
we obtain

µp
q =

2p−qβqe−
δ
2

αp

∞∑
r=0

∞∑
s=0

∞∑
t=0

(−p)r(q)s

2t
(
1
2

)
t

dr,s,t(Â11, B̂11, µ1µ
′
1)

×
∞∑

w=0

(
δ2
2

)w
Γ
(
n
2
+ p− q + t+ w

)
w!Γ

(
n
2
+ r + s+ t+ w

) ∞∑
u=0

∞∑
v=0

(−p+ r)u(q + s)v
(
n−m
2

+ w
)
u+v(

n
2
+ r + s+ t+ w

)
u+v

u!v!

=
2p−qβqe−

δ
2

αp

∞∑
r=0

∞∑
s=0

∞∑
t=0

(−p)r(q)s

2t
(
1
2

)
t

dr,s,t(Â11, B̂11, µ1µ
′
1)

×
∞∑

w=0

(
δ2
2

)w
Γ
(
n
2
+ p− q + t+ w

)
w!Γ

(
n
2
+ r + s+ t+ w

) Γ
(
n
2
+ r + s+ t+ w

)
Γ
(
m
2
+ p− q + t

)
Γ
(
n
2
+ p− q + t+ w

)
Γ
(
m
2
+ r + s+ t

)
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=
2p−qβqe−

δ
2

αp

∞∑
r=0

∞∑
s=0

∞∑
t=0

(−p)r(q)sΓ
(
m
2
+ p− q + t

)
2t
(
1
2

)
t
Γ
(
m
2
+ r + s+ t

) dr,s,t(Â11, B̂11, µ1µ
′
1)

∞∑
w=0

(
δ2
2

)w
w!

=
2p−qβqe−

δ1
2

αp

∞∑
r=0

∞∑
s=0

∞∑
t=0

(−p)r(q)sΓ
(
m
2
+ p− q + t

)
2t
(
1
2

)
t
Γ
(
m
2
+ r + s+ t

) dr,s,t(Â11, B̂11, µ1µ
′
1),

where the second equality is obtained by using (19). □

Proof of Proposition 4: We can provide a direct proof of (12), but we
choose to present a transformation to obtain (12) from (10). By doing so, we
no longer need to prove the uniform absolute convergence for (12) because
this new infinite series expansion is just a rearrangement of Smith’s infinite
series expansion, and its convergence was established in Proposition 3.

We first build a connection between hi,j(Â, B̂) and di,j,k(Â, B̂, µµ′). Writing
H(t1, t2) as

H(t1, t2) = e−
µ′µ
2 |In − t1Â− t2B̂|−

1
2

∞∑
m=0

(1− t1 − t2)
m

2mm!
(µ′(In − t1A1 − t2A2)

−1µ)m

= e−
µ′µ
2 |In − t1Â− t2B̂|−

1
2

∞∑
m=0

∞∑
l=0

(−1)l(t1 + t2)
l

2m+ll!m!
(µ′(In − t1Â− t2B̂)−1µ)m+l,

we have

hi,j = [ti1t
j
2]H(t1, t2)

= e−
µ′µ
2

∞∑
m=0

1

2mm!

× [ti1t
j
2]

i+j∑
l=0

(−1)l(t1 + t2)
l

2ll!
|In − t1Â− t2B̂|−

1
2 (µ′(In − t1Â− t2B̂)−1µ)m+l

= e−
µ′µ
2

∞∑
m=0

1

2mm!

i∑
u=0

j∑
v=0

(−1)u+v

2u+vu!v!

× [ti−u
1 tj−v

2 ]|In − t1Â− t2B̂|−
1
2 (µ′(In − t1Â− t2B̂)−1µ)m+u+v

= e−
µ′µ
2

∞∑
m=0

i∑
u=0

j∑
v=0

(−1)u+v

2m+u+vm!u!v!

(m+ u+ v)!(
1
2

)
m+u+v

di−u,j−v,m+u+v(Â, B̂, µµ′),
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where the third equality is obtained by writing l = u+v, and the last equality
follows from (16). Using this expression of hi,j, we can obtain (12) from (10)
as follows

µp
q =

2p−qβqe−
µ′µ
2

αp

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−p)i(q)jΓ
(
n
2
+ p− q + k

)
2k
(
1
2

)
k
Γ
(
n
2
+ i+ j + k

) di,j,k(Â, B̂, µµ′)

=
2p−qβqe−

µ′µ
2

αp

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−p)i(q)jΓ
(
n
2
+ p− q

)
2k
(
1
2

)
k
Γ
(
n
2
+ i+ j

) di,j,k(Â, B̂, µµ′)

×
k∑

u=0

k−u∑
v=0

(−k)u+v(−p+ i)u(q + j)v(
n
2
+ i+ j

)
u+v

u!v!

=
2p−qβqe−

µ′µ
2

αp

∞∑
i=0

∞∑
j=0

∞∑
k=0

k∑
u=0

k−u∑
v=0

(−p)i+u(q)j+vΓ
(
n
2
+ p− q

)
2k
(
1
2

)
k
Γ
(
n
2
+ i+ u+ j + v

)
× k!(−1)u+v(−p+ i)u(q + j)v

(k − u− v)!u!v!
di,j,k(Â, B̂, µµ′)

=
2p−qβqΓ

(
n
2
+ p− q

)
e−

µ′µ
2

αp

∞∑
r=0

∞∑
s=0

(−p)r(q)s

Γ
(
n
2
+ r + s

)
×

∞∑
m=0

r∑
u=0

s∑
v=0

(−1)u+v(m+ u+ v)!

2m+u+vm!u!v!
(
1
2

)
m+u+v

dr−u,s−v,m+u+v(Â, B̂, µµ′)

=
2p−qβqΓ

(
n
2
+ p− q

)
αp

∞∑
r=0

∞∑
s=0

(−p)r(q)s

Γ
(
n
2
+ r + s

)hr,s(Â, B̂),

where the second last equality follows by setting r = i + u, s = j + v,
m = k − u − v, and the first equality is obtained by using Lemma 2 with
a = −p+ i, b = q + j, c = −k, and d = n

2
+ i+ j,

k∑
u=0

k−u∑
v=0

(−p+ i)u(q + j)v(−k)u+v(
n
2
+ i+ j

)
u+v

u!v!
=

∞∑
u=0

∞∑
v=0

(−p+ i)u(q + j)v(−k)u+v(
n
2
+ i+ j

)
u+v

u!v!

=

(
n
2
+ p− q

)
k(

n
2
+ i+ j

)
k

.

□

Proof of Proposition 5: We only prove the recurrence relation for hi,j
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because the proof of the recurrence relation for h̃i,j is almost identical. Let

P (t1, t2) = 2t1
∂ lnH(t1, t2)

∂t1
+ 2t2

∂ lnH(t1, t2)

∂t2
= tr(A(t)(In − A(t))−1) + (1− t1 − t2)µ

′(In − A(t))−2µ

− µ′(In − A(t))−1µ

=
∞∑
k=1

tr(A(t)k) + (1− t1 − t2)
∞∑
k=0

(k + 1)µ′A(t)kµ−
∞∑
k=1

µ′A(t)kµ

=
∞∑
k=1

tr(A(t)k) +
∞∑
k=1

kµ′A(t)kµ− (t1 + t2)
∞∑
k=0

(k + 1)µ′A(t)kµ;

then it is easy to see that

pi,j = [ti1t
j
2]P (t1, t2) = τi,j + (i+ j)(ηi,j − ηi−1,j − ηi,j−1).

Since

P (t1, t2)H(t1, t2) = 2

[
t1
∂H(t1, t2)

∂t1
+ t2

∂H(t1, t2)

∂t2

]
,

we can compare the coefficients of ti1t
j
2 on both sides to obtain the recurrence

relation:
i∑

ν1=0

j∑
ν2=0

ν1+ν2>0

pν1,ν2hi−ν1,j−ν2 = 2(i+ j)hi,j.

□
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