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Hansen-Jagannathan Distance: Geometry and Exact Distribution

ABSTRACT

This paper provides an in-depth analysis of the Hansen-Jagannathan (HJ) distance, a measure

that is widely used for the diagnosis of asset pricing models and model selection. We provide a

geometric interpretation of the HJ-distance in the mean and standard deviation space of portfolio

returns. In relation to the traditional regression approach of testing beta asset pricing models, we

show that the sample HJ-distance is a scaled version of Shanken’s (1985) cross-sectional regression

test (CSRT) statistic, with the major difference being the way the zero-beta rate is estimated.

Simulation evidence shows that for a typical length of time series, the asymptotic distribution for

the sample HJ-distance is grossly inappropriate when the number of factors or the number of test

assets is large. We provide an exact distribution of the sample HJ-distance under both the null

and the alternative hypotheses. In addition, we also suggest a simple numerical procedure for

computing its distribution function.



Asset pricing models are at best approximations. Therefore, although it is of interest to test

whether a particular asset pricing model is literally true or not, a more interesting task for empirical

researchers is to find out how wrong a model is and to compare the performance of different asset

pricing models. For the latter task, we need to establish a scalar measure of model misspecification.

While there are many reasonable measures that can be used, the one recently introduced by Hansen

and Jagannathan (1997) has gained tremendous popularity in the empirical asset pricing literature.

Their proposed measure, called the HJ-distance, has been used both as a model diagnostic and as

a tool for model selection by many researchers. Examples include Jagannathan and Wang (1996),

Jagannathan, Kubota, and Takehara (1998), Campbell and Cochrane (2000), Lettau and Ludvigson

(2001), Hodrick and Zhang (2001), Farnsworth, Ferson, Jackson, and Todd (2002), and Dittmar

(2002), among others.

In this paper, we attempt to provide an improved understanding of the HJ-distance by focusing

on the case of linear beta pricing models. In order to gain some intuition on what the HJ-distance

is attempting to measure, we provide a geometric interpretation of the HJ-distance in terms of

the minimum-variance frontiers of the test assets and the factor mimicking positions. We then

provide a comparison of the HJ-distance with the cross-sectional regression test (CSRT) statistic of

Shanken (1985) and the GMM over-identification test statistic of Hansen (1982). This comparison

allows us to better understand how the HJ-distance is different from the traditional test statistics.

While the HJ-distance has emerged as one of the most dominant measures of model misspec-

ification, the understanding of the statistical behavior of the sample HJ-distance appears to be

poor. In most cases, statistical inference on the HJ-distance is based on its asymptotic distribu-

tion. Little is known about the finite sample distribution of the sample HJ-distance. However,

asymptotic distribution can be grossly misleading. For example, using simulation evidence, Ahn

and Gadarowski (2004) find that the asymptotic distribution of the sample HJ-distance rejects the

correct model too often. Therefore, it is important for us to obtain the finite sample distribution

of the HJ-distance.

Under the normality assumption, we present an exact distribution of the sample HJ-distance

under both the null that the model is correctly specified and under the alternatives that the model is

misspecified. Our analysis on the exact distribution not only helps us understand what the param-

eters determining the distribution are, it also provides us a simple numerical method to compute

1



the distribution in practice. Moreover, this analysis allows us to understand how the asymptotic

distribution of sample HJ-distance differs from the exact distribution and the circumstances that

lead to under-rejection or over-rejection problems for the asymptotic test. As a by-product of this

analysis, we also provide an approximate F -test that has better finite sample properties than the

asymptotic test.

We present simulation evidence to verify our finite sample distribution and to determine the

size problem of the asymptotic test and the approximate F -test. We also perform a simulation

experiment to examine the ability of the sample HJ-distance to tell good models apart from bad

ones. We find that the HJ-distance has a tendency to prefer noisy factors and is not always reliable

in telling good models apart from bad ones in finite samples.

The rest of the paper is organized as follows. The next section discusses the population measure

of the HJ-distance and its justification as a measure of model misspecification as well as contrasts the

HJ-distance with the traditional measure of model misspecification, and illustrates why they could

generate very different rankings of competing models. Section II provides the sample HJ-distance

and its geometric interpretation, together with a comparison with traditional specification test

statistics. Section III provides the finite sample distribution of the sample HJ-distance. Section IV

presents simulation evidence. The final section concludes our findings and the Appendix contains

proofs of all propositions.

I. Population Measures of Model Misspecification

A. HJ-Distance and Traditional Measure of Model Misspecification

When an asset pricing model is misspecified, one is often interested in obtaining a measure of

how wrong the model is. Hansen and Jagannathan (1997) suggest that a natural measure of

misspecification is the minimum distance between the stochastic discount factor of an asset pricing

model and a set of correct stochastic discount factors. Define y as the stochastic discount factor

associated with an asset pricing model, and M as the set of stochastic discount factors that price
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all the assets correctly. The HJ-distance is defined as1

δ = min
m∈M

‖m− y‖, (1)

where ‖X‖ = E[X2]
1
2 is the standard L2 norm. The HJ-distance can also be interpreted as a

measure of the maximum pricing error of a portfolio that has a unit second moment. Define ξ as

the random payoff of a portfolio. Hansen and Jagannathan (1997) show that

δ = max
‖ξ‖=1

|π(ξ)− πy(ξ)|, (2)

where π(ξ) and πy(ξ) are the prices of ξ assigned by the true and the proposed asset pricing model,

respectively.

To provide analytical insights in this paper, we focus on the class of linear stochastic discount

factor models. Suppose the stochastic discount factor y is a linear function of K common factors

f , given by

y(λ) = λ0 + f ′λ1 = x′λ, (3)

where x = [1, f ′]′ and λ = [λ0, λ
′
1]′.2 If the stochastic discount factor y(λ) prices all the assets,

then the price of a vector of test assets, q, must obey

E[px′λ] = q, (4)

where p is the random payoff of the test assets at the end of the period. In particular, if pi is the

gross return on an asset, we have qi = 1, and if pi is the payoff of a zero cost portfolio, we have

qi = 0.

For a given value of λ, the vector of pricing errors of the test assets is given by

g(λ) = q − E[px′λ] = q −Dλ, (5)

where D = E[px′] and it is assumed to be of full column rank. It is well known that the squared

HJ-distance has an explicit expression

δ2 = min
λ
g(λ)′U−1g(λ) = q′[U−1 − U−1D(D′U−1D)−1D′U−1]q, (6)

1Hansen and Jagannathan (1997) also define another measure of distance by restricting the admissible set of
stochastic discount factors to be nonnegative. In this paper, we limit our attention to the HJ-distance as defined in
(1).

2The linearity assumption here may not be as restrictive as it appears because f can contain power terms of the
same common factor. For example, Bansal and Viswanathan (1993) and Dittmar (2002) write y as a polynomial of
the market return.
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where U = E[pp′] is assumed to be nonsingular. Note that while we can define the elements of p

as either gross returns or excess returns, they cannot all be excess returns. Otherwise, q is a zero

vector and δ will always be equal to zero.3

In many empirical studies, p is chosen to be the gross return on N test assets, denoted as R2.

Let Y = [f ′, R′2]′ and define its mean and variance as

µ = E[Y ] ≡

[
µ1

µ2

]
, (7)

V = Var[Y ] ≡

[
V11 V12

V21 V22

]
. (8)

Using these notations, we can write U = E[R2R
′
2] = V22+µ2µ

′
2 and D = E[R2x

′] = [µ2, V21+µ2µ
′
1].

Since the elements of R2 are gross returns, we have q = 1N and it is easy to show that the λ that

minimizes δ2 is given by

λHJ = (D′U−1D)−1(D′U−11N ), (9)

and hence the squared HJ-distance of (6) with q = 1N is

δ2 = 1′N [U−1 − U−1D(D′U−1D)−1D′U−1]1N . (10)

We will focus our analysis on this expression for the rest of the paper because it is the one most

widely used in literature. It may be noted that some researchers, for example, Hodrick and Zhang

(2001), combine gross returns of some assets with excess returns of other assets as the payoffs

vector p, but the results in this paper are equally applicable. The only modification is to replace

the vector 1N in our analysis by the vector q, where q is the cost of the N test assets. In fact,

HJ-distance is invariant to repackaging of the test assets, so if we use p∗ = Ap instead of p as the

payoffs of the test assets where A is a nonsingular square matrix, it can be easily shown that δ2

in (6) remains unchanged. Therefore, the results in Hodrick and Zhang (2001) would remain the

same if they were to use gross returns on all of their test assets as the payoffs vector p.

Before discussing the traditional measures of model misspecification, we first present an alterna-

tive expression for the HJ-distance. As it turns out, this alternative expression provides important

insights on the differences between the HJ-distance and the traditional measures of model misspec-

ification, which eventually leads to our geometrical interpretation of the HJ-distance.
3For the case where all the test assets are zero cost portfolios, we need to modify the definition of HJ-distance.

Details of this modification are available upon request.
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Lemma 1 Let β = V21V
−1

11 be the regression slope coefficient of regressing R2 on a constant term

and f , and Σ = V22 − V21V
−1

11 V12 be the covariance matrix of the residuals and it is assumed to be

nonsingular. Define the pricing errors as

eHJ(η) = 1N − µ2η0 − βη1 = 1N −Hη, (11)

where H = [µ2, β] and η = [η0, η
′
1]′, we have

δ2 = min
η
eHJ(η)′Σ−1eHJ(η) = 1′N [Σ−1 − Σ−1H(H ′Σ−1H)−1H ′Σ−1]1N . (12)

The lemma suggests that the squared HJ-distance can be expressed as an aggregate measure of the

pricing errors in the generalized least squares (GLS) cross-sectional regression (CSR) of regressing

1N on µ2 and β. While the main purpose of presenting (12) is to facilitate comparison with other

measures of model misspecification, this alternative expression also has practical value. In the

standard way of computing HJ-distance, one needs to take the inverse of U . Some researchers (for

example, Cochrane (1996)) find that taking the inverse of U is numerically unstable because all

the elements of R2 are close to one and the matrix U is close to singular. Our alternative way

of computing HJ-distance will overcome this numerical problem because only Σ is inverted here,

which is numerically more stable than inverting U .

One of the perceived advantages of HJ-distance over other specification tests is that it uses U−1

as the weighting matrix, which is model independent. Some readers may feel uncomfortable that

we use Σ−1 as the weighting matrix in (12), which is model dependent. From the proof of Lemma 1,

it is clear that when computing δ2 in (10), the results are mathematically identical whether we use

U−1, V −1
22 , or Σ−1 as the weighting matrix. We choose to present our results using Σ−1 because it

allows for easier comparisons with traditional asset pricing tests that often use Σ−1 as the weighting

matrix.

Instead of expressing an asset pricing model in the form of a stochastic discount factor, earlier

asset pricing theories, such as those of Sharpe (1964), Lintner (1965), Black (1972), Merton (1973),

Ross (1976) and Breeden (1979), relate the expected return on a financial asset to its covariances

(or betas) with some systematic risk factors. Under the K-factor beta pricing model, we have

µ2 = 1Nγ0 + βγ1 = Gγ, (13)
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where G = [1N , β] and γ = [γ0, γ
′
1]′. In the literature on beta pricing models, γ0 is called the

zero-beta rate and γ1 is called the risk premium associated with the K factors.

When a beta pricing model is misspecified, (13) will not hold regardless of what values of γ are

chosen. If we define the model errors on expected return as

eCS(γ) = µ2 −Gγ, (14)

then a classical measure of model misspecification for a beta pricing model is the aggregate expected

return errors

QC = min
γ
eCS(γ)′Σ−1eCS(γ). (15)

Assuming that G is of full column rank, it is easy to show that the γ that attains the minimum is

given by

γCS = (G′Σ−1G)−1(G′Σ−1µ2), (16)

and we have4

QC = µ′2[Σ−1 − Σ−1G(G′Σ−1G)−1G′Σ−1]µ2. (17)

Traditional specification tests of beta pricing models often rely on some transformation of the sample

version of QC . These include, for example, the CSRT statistic developed by Shanken (1985) and

the likelihood ratio test statistic of Shanken (1986). Comparing δ2 and QC , we see that δ2 is an

aggregate measure of model errors on prices whereas QC is an aggregate measure of model errors

on expected returns.

B. Geometrical Interpretation

While the interpretation of the HJ-distance as the maximum pricing error is intuitive, it is somewhat

difficult to visualize. For the case of linear models, we present an alternative interpretation of the

HJ-distance that is easy to visualize. We first define the payoffs of the K factor mimicking positions

as R1 = WR2, where W is a K×N matrix obtained by projecting f on a constant term and R2 as

f = w0 +WR2 + εf , (18)

4Following the proof of Lemma 1, we can replace Σ in the expression of QC by V22 without affecting the value of
QC . The equivalence between using Σ and V22 in QC was first observed by Shanken (1985).
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where R2 and εf are uncorrelated with each other. It is easy to verify that W = V12V
−1

22 and we

have R1 = V12V
−1

22 R2. Although unnecessary, we assume W1N = V12V
−1

22 1N 6= 0K in our analysis

for convenience, i.e., at least one of the mimicking positions is not a zero cost portfolio of the N

risky assets. This is equivalent to assuming that the global minimum-variance portfolio of the N

test assets has nonzero systematic risk.5

It is well known that the minimum-variance frontier of the N test assets is given by

σ2
p =

a2 − 2b2µp + c2µ
2
p

a2c2 − b22
, (19)

where a2 = µ′2V
−1

22 µ2, b2 = µ′2V
−1

22 1N , and c2 = 1′NV
−1

22 1N are the usual efficiency set constants.

The following lemma provides the minimum-variance frontier of the K mimicking positions.

Lemma 2 Suppose V12V
−1

22 1N 6= 0K . For K > 1, the minimum-variance frontier of unit cost

portfolios that are created using the K factor mimicking positions R1 = V12V
−1

22 R2 is given by

σ2
p =

a1 − 2b1µp + c1µ
2
p

a1c1 − b21
, (20)

where

a1 = µ′2V
−1

22 V21(V12V
−1

22 V21)−1V12V
−1

22 µ2 = µ′2V
−1

22 β(β′V −1
22 β)−1β′V −1

22 µ2, (21)

b1 = µ′2V
−1

22 V21(V12V
−1

22 V21)−1V12V
−1

22 1N = µ′2V
−1

22 β(β′V −1
22 β)−1β′V −1

22 1N , (22)

c1 = 1′NV
−1

22 V21(V12V
−1

22 V21)−1V12V
−1

22 1N = 1′NV
−1

22 β(β′V −1
22 β)−1β′V −1

22 1N . (23)

For K = 1, the unit cost factor mimicking portfolio has a mean of b1/c1 and a variance of 1/c1.

Our first Proposition expresses the two measures of model misspecification, δ2 and QC , in terms

of Sharpe ratios of the two frontiers and also provides a characterization of the implied zero-beta

rates chosen by these two measures.6

Proposition 1: Define ∆a = a2 − a1, ∆b = b2 − b1, and ∆c = c2 − c1, the squared HJ-distance

(δ2) and the aggregate expected return errors (QC) can be written as

δ2 = min
γ0

θ2
2(γ0)− θ2

1(γ0)
γ2

0

=
θ2

2(γHJ0 )− θ2
1(γHJ0 )

(γHJ0 )2
, (24)

5See Huberman, Kandel, and Stambaugh (1987) for a discussion of this assumption.
6Gibbons, Ross, and Shanken (1989) provide a similar geometrical interpretation for the specification test of the

CAPM but our results differ from theirs in two important ways. First, the frontier here is in terms of gross returns
but not excess returns and the value of the zero-beta rate is not explicitly specified by the model. Second, the factors
here are not necessarily portfolio returns.
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QC = min
γ0

θ2
2(γ0)− θ2

1(γ0) = θ2
2(γCS0 )− θ2

1(γCS0 ), (25)

where γHJ0 = ∆a/∆b, γCS0 = ∆b/∆c, and θ1(γ0) and θ2(γ0) are the Sharpe ratios of the tangency

portfolio of the K mimicking positions and of the N test assets, respectively, when γ0 is the y-

intercept of the tangent line. If ∆b ≥ 0, we have γHJ0 ≥ γCS0 , and if ∆b < 0, we have γHJ0 ≤ γCS0 .

Note that γ0 is defined as the expected gross return of the zero-beta asset, so when there is limited

liability, γCS0 and γHJ0 are unlikely to be negative. Since ∆a and ∆c are positive, the more relevant

case is ∆b > 0 and we should expect γHJ0 ≥ γCS0 > 0.

It is important to note that the HJ-distance does not choose a zero-beta rate to minimize the

difference in the squared Sharpe ratios of the two tangency portfolios; instead, the zero-beta rate is

chosen to minimize the difference in squared Sharpe ratios of the two tangency portfolios divided

by the squared zero-beta rate. One may wonder why δ2 and QC pick different zero-beta rates. It

turns out that this difference originates from the difference in the focus between the traditional

beta pricing models and the newer stochastic discount factor models. In the traditional beta pricing

models, our focus is to try to find a zero-beta rate γ0 and risk premium γ1 to minimize the model

errors of the expected returns on the N test assets, i.e., to minimize an aggregate of the following

expected return errors

eCS = µ2 − 1Nγ0 − βγ1. (26)

However, in the stochastic discount factor approach, our focus is to obtain a linear combination of

expected return and the betas of the N test assets to come up with a model price that is closest to

their actual cost of 1N , i.e., to minimize an aggregate of the following pricing errors (see Lemma 1

for this interpretation of the HJ-distance)

eHJ = 1N − µ2η0 − βη1, (27)

where µ2η0 + βη1 is the price of the N assets predicted by the model. Using a reparameterization

of γ0 = 1/η0 and γ1 = −η1/η0, we can rewrite the pricing errors as

eHJ = − 1
γ0

(µ2 − 1Nγ0 − βγ1). (28)

Comparing (26) with (28), we can see that the pricing errors differ from the expected return errors

by a scale factor of −1/γ0. Therefore, the γ0 that minimizes δ2 is in general different from the γ0

that minimizes QC .
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When the beta pricing model is correctly specified, the two frontiers touch each other at some

point, and we have a unique γ0 such that θ2(γ0) = θ1(γ0).7 In this case, we have γCS0 = γHJ0 .

However, when the asset pricing model does not hold, γCS0 and γHJ0 are different. From (28), we

can see that as γ0 appears in the denominator of eHJ , there is a tendency for the HJ-distance to

choose a higher absolute value of zero-beta rate as a large value of γ0 can deflate the pricing errors.

Clearly, which choice of the zero-beta rate is more appropriate depends on whether the focus is to

minimize errors on expected returns or errors on prices of the test assets.

C. Ranking Models

Although both δ and QC can be used to rank asset pricing models, these two measures can often

lead to different rankings of competing models. Under the stochastic discount factor framework

that the HJ-distance uses, one considers an asset pricing model to be a good one if it can explain

the prices of the test assets well. More specifically, if one can find a linear combination of µ2 and β

that is close to 1N (the actual price of the N assets), then the HJ-distance is small and the model

will be considered a good model. However, it is important to note that an asset pricing model

that explains prices well does not have to be a model that explains expected returns well. As an

extreme case, suppose one finds a factor such that the betas are constant across all the test assets

(i.e., β ∝ 1N ). In that case, regardless of the values of the expected returns µ2, β alone will fully

explain 1N and we will have zero pricing errors and zero HJ-distance.8 However, the betas of such

a factor are totally incapable of explaining expected returns µ2 and as a result QC will be nonzero.

Conversely, a beta pricing model that explains expected returns perfectly may still produce

pricing errors. Consider the case where the zero-beta rate is zero and we have a set of factors such

that

µ2 = βγ1. (29)

This model explains expected returns perfectly. However, there is not a linear combination of

µ2 and β such that it is equal to 1N and we will still have nonzero pricing errors and nonzero
7Here and in our following analysis, we assume that the two frontiers are not identical to each other when the

asset pricing model is correctly specified. If this is not the case, we have θ1(r) = θ2(r) for all r and γ0 is not uniquely
defined. See Cheung, Kwan, and Mountain (2000) for a further discussion of this point and its impact on statistical
tests of asset pricing models.

8For the general K factor cases, if there exists a K-vector c such that βc = 1N , then we will have zero HJ-distance
for the model regardless of µ2. Geometrically, this corresponds to the case that the two minimum-variance frontiers
touch each other at the global minimum-variance portfolio.
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HJ-distance for this model.

These two examples illustrate that when γ0 = 0 or γ0 = ±∞, the equivalence of a beta pricing

model and a linear stochastic discount factor model breaks down. While these two examples are

extreme cases, our point is that when one is concerned with minimizing HJ-distance across models

with different factors, one can end up locating a factor such that the betas with respect to this

factor are roughly constant across assets, without knowing that the betas of such a factor may do

a very poor job in explaining expected returns. On the other hand, when one is concerned with

minimizing QC across models, one may still end up with a model that produces relatively large

pricing errors. Therefore, ranking models using δ and QC can yield very different conclusions. To

make our point more concrete, we present a simple numerical example. Suppose we have four test

assets with their returns driven by the following process

R2 = µ2 + β1f1 + β2f2 + ε, (30)

where f1 ∼ N(0, 0.01), f2 ∼ N(0, 0.01), ε ∼ N(04,Σ), independent of each other and the parameters

are given by

µ2 =


1.04
1.08
1.12
1.16

 , β1 =


1.03
1.08
1.12
1.2

 , β2 =


1.05

1
1.05

1

 , Σ = 0.01


1 0.8 0.8 0.8

0.8 1 0.8 0.8
0.8 0.8 1 0.8
0.8 0.8 0.8 1

 . (31)

In Figure 1, we plot the minimum-variance frontier of the four test assets as well as the mimicking

portfolios for each of the two factors. When one calculates δ2, one will find that the model with

just the first factor has δ2 = 0.798, but a competing model with just the second factor has a smaller

δ2 = 0.500. Therefore, using the HJ-distance, one considers the model with the second factor to

be a superior model in explaining prices, despite the fact that its mimicking portfolio is further

away from the minimum-variance frontier than the one for the first factor. However, if one chooses

to rank the two models using QC , then one will find that the model with the first factor has a

QC = 0.090 and is far superior to the model with the second factor, which has a QC of 3.033. This

example goes to show that ranking models by QC and δ2 can give conflicting conclusions. When

that happens, researchers have to be careful in selecting which criterion to rely on. The bottom

line is if one is interested in explaining prices, one should use HJ-distance to rank models, but if

one is interested in explaining expected returns, then one is better off using QC for model selection.
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Figure 1 about here

The main reason why QC and δ2 do not provide the same ranking on models is because the

choice of zero-beta rate depends on the criterion that we use in selecting models, and it is also

model dependent. If one can ex ante fix the zero-beta rate to be the same across models, then we

would not have this problem. Some recent empirical studies attempt to address this problem by

including a short-term T-bill as a test asset (e.g., Hodrick and Zhang (2001) and Dittmar (2002)).

However, in these empirical studies, the T-bill is treated just like any other risky asset and its

returns have nonzero variance as well as nonzero covariances with other risky assets. Therefore,

the zero-beta rate is still not constant across different models, and the divergence between QC and

δ2 can still exist in these studies.

II. Sample Measures of Model Misspecification

A. Sample HJ-Distance and CSRT Statistic

The discussion on model misspecification so far has been conducted using population expectations.

In practice, we typically assume that the data is jointly stationary and ergodic; therefore, these

expectations can be approximated using sample averages. Suppose we have T observations of

Yt = [f ′t , R
′
2t]
′, where ft and R2t are the realizations of K common factors and gross returns on N

risky assets at time t. Define the sample mean and variance of Yt as

µ̂ =
1
T

T∑
t=1

Yt ≡

[
µ̂1

µ̂2

]
, (32)

V̂ =
1
T

T∑
t=1

(Yt − µ̂)(Yt − µ̂)′ ≡

[
V̂11 V̂12

V̂21 V̂22

]
, (33)

where V̂ is assumed to be nonsingular. The squared sample HJ-distance is given by

δ̂2 = 1′N [Û−1 − Û−1D̂(D̂′Û−1D̂)−1D̂′Û−1]1N , (34)

where D̂ = 1
T

∑T
t=1R2t[1, f ′t ] = [µ̂2, V̂21 + µ̂2µ̂

′
1] and Û = 1

T

∑T
t=1R2tR

′
2t = V̂22 + µ̂2µ̂

′
2.

In computing the sample HJ-distance (34), the standard practice is to estimate the linear

coefficients of the stochastic discount factor, λ, to minimize the sample HJ-distance. The resulting

11



estimate of λ is given by

λ̂HJ ≡

[
λ̂HJ0

λ̂HJ1

]
= argminλ(D̂λ− 1N )′Û−1(D̂λ− 1N ) = (D̂′Û−1D̂)−1(D̂′Û−11N ), (35)

where λ̂HJ0 is a scalar and λ̂HJ1 is a K-vector. However, to facilitate our later comparison with

traditional specification tests of beta pricing models, we introduce the estimated zero-beta rate and

risk premium implied by λ̂HJ as

γ̂HJ ≡

[
γ̂HJ0

γ̂HJ1

]
=

1

λ̂HJ0 + µ̂′1λ̂
HJ
1

[
1

−V̂11λ̂
HJ
1

]
. (36)

Since there is a one-to-one correspondence between λ̂HJ and γ̂HJ , we can interpret γ̂HJ0 and γ̂HJ1

as the estimated zero-beta rate and risk premium that minimize the sample HJ-distance.9

In the actual calculation of the sample HJ-distance, it is probably better to use the following

expression instead of (34)

δ̂2 = 1′N [Σ̂−1 − Σ̂−1Ĥ(Ĥ ′Σ̂−1Ĥ)−1Ĥ ′Σ̂−1]1N , (38)

where Ĥ = [µ̂2, β̂], Σ̂ = V̂22− V̂21V̂
−1

11 V̂12, and β̂ = V̂21V̂
−1

11 . From Lemma 1, we know (34) and (38)

are mathematically equivalent, but inverting Σ̂ in (38) is numerically more stable than inverting Û

in (34).

For the beta pricing models, Shanken (1985) suggests a GLS cross-sectional regression test

(CSRT) which is a sample counterpart of the aggregate pricing errors QC discussed in the previous

section. The CSRT statistic of Shanken (1985) is obtained from running a GLS CSR of µ̂2 on

Ĝ = [1N , β̂]. The estimated zero-beta rate γCS0 and risk premium γCS1 in this GLS CSR are given

by

γ̂CS ≡

[
γ̂CS0

γ̂CS1

]
= (Ĝ′Σ̂−1Ĝ)−1(Ĝ′Σ̂−1µ̂2). (39)

With this estimate of γ, the average return errors from this GLS CSR are given by

êCS = µ̂2 − 1N γ̂CS0 − β̂γ̂CS1 . (40)

9For a given value of γ̂HJ , it is easy to show that

λ̂HJ =
1

γ̂HJ
0

[
1 + µ̂′1V̂

−1
11 γ̂HJ

1

−V̂ −1
11 γ̂HJ

1

]
. (37)
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Shanken (1985) defines the CSRT statistic as an aggregate of these errors on average returns10

Q̂C = ê′CSΣ̂−1êCS . (41)

Shanken (1985) shows that under the null hypothesis that the model is correctly specified, we have

TQ̂C

1 + γ̂CS1
′V̂ −1

11 γ̂CS1

A∼ χ2
N−K−1. (42)

In addition, he also suggests the following approximate finite sample distribution under the null

hypothesis
Q̂C

1 + γ̂CS1
′V̂ −1

11 γ̂CS1

∼
(
N −K − 1
T −N + 1

)
FN−K−1,T−N+1. (43)

The term γ̂CS1
′V̂ −1

11 γ̂CS1 is called the errors-in-variables adjustment by Shanken (1985), which reflects

the fact that estimated betas instead of true betas are used in the CSR.

B. The Geometry of Sample HJ-Distance and CSRT Statistic

While it is important to have finite sample distributions of the sample HJ-distance, it is equally

important to develop a measure that allows one to examine the economic significance of depar-

tures from the true model. Fortunately, we can provide an appealing geometric interpretation of

both the sample HJ-distance and the CSRT statistic. To prepare for our presentation of the

geometry, we introduce three sample efficiency set constants â2 = µ̂′2V̂
−1

22 µ̂2, b̂2 = µ̂′2V̂
−1

22 1N ,

ĉ2 = 1′N V̂
−1

22 1N . Similarly, we define R1t = V̂12V̂
−1

22 R2t as the payoffs on K mimicking positions and

the corresponding three sample efficiency set constants as â1 = µ̂′2V̂
−1

22 V̂21(V̂12V̂
−1

22 V̂21)−1V̂12V̂
−1

22 µ̂2,

b̂1 = µ̂′2V̂
−1

22 V̂21(V̂12V̂
−1

22 V̂21)−1V̂12V̂
−1

22 1N , and ĉ1 = 1′N V̂
−1

22 V̂21(V̂12V̂
−1

22 V̂21)−1V̂12V̂
−1

22 1N . Let ∆â =

â2 − â1, ∆b̂ = b̂2 − b̂1, and ∆ĉ = ĉ2 − ĉ1. The following Proposition is the sample counterpart of

Proposition 1. It expresses the two test statistics in terms of sample Sharpe ratios of the two ex

post frontiers and also provides a characterization of the estimated zero-beta rates of the two test

statistics.

Proposition 2: The sample HJ-distance (δ̂2) and the CSRT statistic (Q̂C) of a K-factor beta

pricing model can be written as

δ̂2 = minγ0
θ̂2

2(γ0)− θ̂2
1(γ0)

γ2
0

=
θ̂2

2(γ̂HJ0 )− θ̂2
1(γ̂HJ0 )

(γ̂HJ0 )2
, (44)

10Shanken’s version of Q̂C actually multiplies the aggregate average return errors by T and uses the unbiased
estimate of Σ. We modify his definition here to allow for easier comparison with the sample HJ-distance.
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Q̂C = minγ0 θ̂
2
2(γ0)− θ̂2

1(γ0) = θ̂2
2(γ̂CS0 )− θ̂2

1(γ̂CS0 ), (45)

where γ̂HJ0 = ∆â/∆b̂, γ̂CS0 = ∆b̂/∆ĉ, and θ̂1(γ0) and θ̂2(γ0) are the sample Sharpe ratios of the ex

post tangency portfolio of the K mimicking positions and of the N test assets, respectively, when

γ0 is treated as the y-intercept of the tangent line. If ∆b̂ ≥ 0, we have γ̂HJ0 ≥ γ̂CS0 , and if ∆b̂ < 0,

we have γ̂HJ0 ≤ γ̂CS0 .

In Figure 2, we plot the ex post minimum-variance frontier of the K mimicking positions and

the minimum-variance frontier of the N test assets in the (σ̂, µ̂) space. The two lines HA and HB

are tangent to the ex post minimum-variance frontiers of the K mimicking positions and N test

assets, respectively. The x-intercepts of these two tangent lines are points A and B, respectively.

Let ψ be the angle ∠HAO, then we have tan(ψ) = |θ̂2(γ̂HJ0 )| and it is easy to see that the length

of OA is γ̂HJ0 /|θ̂2(γ̂HJ0 )|. Similarly, the length of OB is γ̂HJ0 /|θ̂1(γ̂HJ0 )|. Therefore, we can write

δ̂2 =
1

OA2
− 1
OB2

. (46)

There is yet another geometric interpretation of δ̂2. For each of the two tangent lines, we find a

point on it that is closest to the origin. For the tangent line HA, the point is C and for the tangent

line HB, the point is D. Since OC is perpendicular to HA, the angle ∠HOC is also the same as the

angle ∠HAO, which is ψ. Therefore, the length of OC is equal to γ̂HJ0 cos(ψ) = γ̂HJ0 /
√

1 + θ̂2
2(γ̂HJ0 ).

Similarly, the length of OD is γ̂HJ0 /
√

1 + θ̂2
1(γ̂HJ0 ). With these results, we can also write

δ̂2 =
1

OC2
− 1
OD2

. (47)

Heuristically, if we treat γ̂HJ0 as the risk-free rate, we can think of C as the ex post minimum second

moment portfolio (with unit cost) of the N assets plus the risk-free asset, and this portfolio has

a second moment of OC2. If we scale this portfolio so that its second moment is equal to one,

then its cost is 1/OC and we can interpret 1/OC as the maximum price one is willing to pay for

a unit second moment portfolio of the N test assets and the risk-free asset. Similarly, D can be

interpreted as the ex post minimum second moment portfolio (with unit cost) of the K mimicking

positions plus the risk-free asset, and it has a second moment of OD2. If we scale portfolio D so

that it has unit second moment, then its cost is 1/OD. Therefore, δ̂2 can be thought of as the

estimated squared price difference of the two portfolios C and D, when both are scaled to have unit

second moment. This is exactly what HJ-distance is trying to measure — the maximum pricing
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error of a model. From both of these geometrical interpretations of δ̂2, we can see that HJ-distance

is a measure of how close the two tangency portfolios are when the y-intercept of the tangent lines

is chosen to be γ̂HJ0 .

It is well known that the beta asset pricing model holds if and only if the two frontiers touch

each other, i.e., there exists a γ0 such that we have θ2(γ0) = θ1(γ0) for the two ex ante minimum-

variance frontiers.11 Therefore, if the beta asset pricing model is correctly specified, we should

expect the two ex post frontiers to be very close to each other at some point and hence the length

of OA should not be significantly different from the length of OB. If instead we observe a large

value of δ̂, then it is an indication that the two ex ante frontiers do not touch each other and we

reject the model as a result.

Figure 2 about here

In Figure 2, we also plot two tangent lines emanating from point G (which is the point (0, γ̂CS0 ))

to the two ex post frontiers. The slope of the line GE is equal to θ̂2(γ̂CS0 ) and since point E has

a standard deviation of one, the length of GE is given by
√

1 + θ̂2
2(γ̂CS0 ). Similarly, the length of

GF is given by
√

1 + θ̂2
1(γ̂CS0 ). Therefore, we can write the CSRT statistic as

Q̂C = (GE)2 − (GF )2. (48)

From this geometric interpretation of Q̂C , we can see that the CSRT statistic is also a measure of

how close the two tangency portfolios are except that the y-intercept of the tangent lines is chosen

to be γ̂CS0 .12

Under the null hypothesis that the asset pricing model is correctly specified, the two approaches

are asymptotically equivalent because both γ̂CS0 and γ̂HJ0 converge to the same limit as T → ∞.

However, when the asset pricing model does not hold, γ̂CS0 and γ̂HJ0 converge to different limits.

As discussed earlier, the sample HJ-distance tends to choose a higher absolute value of zero-beta

rate than the CSRT statistic because a large value of γ0 can deflate the pricing errors. The effect

of choosing a higher absolute value of γ0 by the sample HJ-distance is that one often finds that the

HJ-distance focuses on the difference of the two frontiers at the inefficient side.
11See, for example, Grinblatt and Titman (1987) and Huberman and Kandel (1987).
12For the special case of a one-factor model and the factor is the return on a portfolio, Roll (1985) provides a

geometric interpretation of the CSRT statistic, except that his is given in the (σ̂2, µ̂) space, not in the (σ̂, µ̂) space.
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C. A Comparison with GMM Over-identification Tests

Another popular specification test of linear stochastic discount factor models is the GMM over-

identification test of Hansen (1982). Denote gt(λ) = R2tx
′
tλ− 1N and

ḡ(λ) =
1
T

T∑
t=1

gt(λ) = D̂λ− 1N . (49)

Suppose Ŝ is a consistent estimator of S, where S is the asymptotic variance of ḡ(λ). The optimal

GMM estimator of λ is given by

λ̂GMM = (D̂′Ŝ−1D̂)−1(D̂′Ŝ−11N ), (50)

and the popular GMM over-identification test of the asset pricing model is given by

J = T1′N [Ŝ−1 − Ŝ−1D̂(D̂′Ŝ−1D̂)−1D̂′Ŝ−1]1N . (51)

When the model is correctly specified, we have J A∼ χ2
N−K−1.

The expression of S depends on the distribution of Yt = [f ′t , R
′
2t]
′. Assuming the returns on

the N test assets follow a K-factor model

R2t = α+ βft + εt, (52)

where E[εt] = 0N and E[εt|ft] = 0N , the following lemma gives the expression of S for two important

cases.

Lemma 3 Suppose Yt is a stationary ergodic sequence and gt(λ) is a martingale difference se-

quence. If Var[εt|ft] = Σ, where Σ is a positive definite matrix independent of ft (i.e., conditional

homoskedasticity), we have

S = E[(x′tλ)2]Σ +BCB′, (53)

where B = [α, β] and C is a (K + 1) × (K + 1) matrix. If Yt is i.i.d. and follows a multivariate

elliptical distribution with a kurtosis parameter κ,13 we have

S =
(
E[(x′tλ)2] + κλ′1V11λ1

)
Σ +BCB′. (55)

13The multivariate kurtosis parameter is defined as

κ =
E[((Yt − µ)′V −1(Yt − µ))2]

(N +K)(N +K + 2)
− 1. (54)

For elliptical distribution, this is the same as the univariate kurtosis parameter µ4/(3σ
4)− 1 for any of its marginal

distribution.
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Note that under both assumptions, S takes the form of aΣ +BCB′ for some positive scalar a and

a matrix C. It turns out that if we choose Ŝ also to be of this form, the optimal GMM estimate of

λ is numerically identical to the HJ-distance estimate of λ, and the GMM over-identification test

statistic is closely related to the squared sample HJ-distance.

Proposition 3: Suppose S = aΣ+BCB′, where a is a positive scalar and C is a (K+1)×(K+1)

matrix. Define B̂ = [α̂, β̂] as the usual OLS estimator of B and â is a consistent estimator of a.

If we use Ŝ−1 as the optimal GMM weighting matrix where Ŝ = âΣ̂ + B̂ĈB̂′ and Ĉ is an arbitrary

matrix, the GMM estimate of λ is numerically identical to the HJ-distance estimate of λ,

λ̂GMM = (D̂′Ŝ−1D̂)−1(D̂′Ŝ−11N ) = (D̂′Û−1D̂)−1(D̂′Û−11N ) = λ̂HJ , (56)

and the GMM over-identification test statistic under this choice of weighting matrix is equal to

J = T ḡ(λ̂GMM )′Ŝ−1ḡ(λ̂GMM ) = T1′N [Ŝ−1 − Ŝ−1D̂(D̂′Ŝ−1D̂)−1D̂′Ŝ−1]1N =
T δ̂2

â
, (57)

which implies T δ̂2 A∼ aχ2
N−K−1 when the model is correctly specified.

Proposition 3 suggests that under some popular assumptions on the distribution of Yt, the sample

squared HJ-distance is a rescaled version of the GMM over-identification test statistic. In addition,

the p-values that we obtain for both tests are identical.14 In practice, one often does not impose

these restrictions in computing Ŝ for GMM estimation and testing. In that case, even though S

is actually of the form aΣ + BCB′, λGMM and J will only be asymptotically equivalent, but not

numerically identical, to λHJ and T δ̂2/â, respectively.

How is the GMM over-identification test statistic related to the CSRT statistic? Under the

conditional homoskedasticity assumption, we have

a = E[(x′tλ)2] = λ′E[xtx′t]λ = λ′
[

1 µ1

µ1 V11 + µ1µ
′
1

]
λ =

1 + γ′1V
−1

11 γ1

γ2
0

, (58)

where the last equality follows from the reparameterization

γ ≡

[
γ0

γ1

]
=

1
λ0 + µ′1λ1

[
1

−V11λ1

]
. (59)

14The GMM over-identification test compares T δ̂2/â with χ2
N−K−1. The test of H0 : δ = 0 compares T δ̂2 with

âχ2
N−K−1. Therefore, the p-values for both tests are P [χ2

N−K−1 > T δ̂2/â].

17



When Ŝ = âΣ̂ + B̂ĈB̂′, we have λ̂GMM = λ̂HJ , so a consistent estimator of a is

â =
1 + γ̂HJ1

′V̂ −1
11 γ̂HJ1

(γ̂HJ0 )2
, (60)

and an asymptotically equivalent version of the optimal GMM over-identification test is

J =
T δ̂2

â
=
T [θ̂2

2(γ̂HJ0 )− θ̂2
1(γ̂HJ0 )]

1 + γ̂HJ1
′V̂ −1

11 γ̂HJ1

. (61)

Comparing with (42), one can think of the CSRT statistic as a GMM over-identification test

statistic, with the conditional homoskedasticity assumption imposed and with the use of a different

estimate of γ.

When the conditional homoskedasticity assumption is inappropriate, the CSRT statistic is no

longer equivalent to the GMM over-identification test. However, under the multivariate elliptical

distribution assumption on Yt, we can make a simple modification to restore the equivalence. Since

a = λ′E[xtx′t]λ+ κλ′1V11λ1 = λ′
[

1 µ′1
µ1 (1 + κ)V11 + µ1µ

′
1

]
λ =

1 + (1 + κ)γ′1V
−1

11 γ1

γ2
0

(62)

under the multivariate elliptical distribution assumption, a modified version of the CSRT statistic

is given by
TQ̂C

1 + (1 + κ)γ̂CS1
′V̂ −1

11 γ̂CS1

=
T [θ̂2

2(γ̂CS0 )− θ̂2
1(γ̂CS0 )]

1 + (1 + κ)γ̂CS1
′V̂ −1

11 γ̂CS1

A∼ χ2
N−K−1. (63)

In addition, an asymptotic equivalent version of the GMM over-identification test can also be

obtained by replacing γ̂CS with γ̂HJ . Comparing (63) with (42), we note that the only difference

here is that the errors-in-variables adjustment in the denominator of the CSRT statistic needs

to be modified to reflect the fact that there are more estimation errors in B̂ when the elliptical

distribution has fat-tails (κ > 0). This also suggests that the power of the sample HJ-distance,

the CSRT, and the GMM J-test to detect model misspecification is a decreasing function of the

kurtosis parameter κ.

III. Finite Sample Distribution of Sample HJ-Distance

A. Simplification of the Problem

After obtaining an understanding of the similarities and differences between the sample HJ-distance

and other specification tests, we now turn our attention to the exact distribution of the sample
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HJ-distance. Obtaining the exact distribution of the sample HJ-distance is a formidable task even

under the normality assumption. In our approach to this problem, we take three different steps to

simplify it.

For notational brevity, we use the matrix form of model (52) in what follows. Suppose we have

T observations of ft and R2t, we write

R2 = XB′ + E, (64)

where R2 is a T ×N matrix with its typical row equal to R′2t, X is a T × (K + 1) matrix with its

typical row as [1, f ′t ], B = [α, β ] is the matrix of regression coefficients, and E is a T ×N matrix

with ε′t as its typical row. As usual, we assume that T ≥ N +K + 1, X ′X is nonsingular, and β is

of full column rank. For the purpose of obtaining an exact distribution of the sample HJ-distance,

we assume that, conditional on ft, the disturbances εt are independent and identically distributed

as multivariate normal with mean zero and variance Σ.15

The maximum likelihood estimators of B and Σ are the usual ones:

B̂ ≡ [ α̂, β̂ ] = (R′2X)(X ′X)−1, (65)

Σ̂ =
1
T

(R2 −XB̂′)′(R2 −XB̂′). (66)

Under the normality assumption, we have B̂ and Σ̂ independent of each other and their distributions

are given by

vec(B̂) ∼ N(vec(B), (X ′X)−1 ⊗ Σ), (67)

T Σ̂ ∼ WN (T −K − 1,Σ), (68)

where WN (T −K−1,Σ) is the N -dimensional central Wishart distribution with T −K−1 degrees

of freedom and covariance matrix Σ.

One of the problems with obtaining the exact distribution of the sample HJ-distance is that

δ̂2 is usually written as a function of D̂ and Û , whose distributions are rather difficult to obtain.

Our first simplification is to write δ̂2 as a function of B̂ and Σ̂, so we can use the well established

distribution results (67) and (68) above. Using Lemma 1 and noting that

Ĥ = [µ̂2, β̂] = [α̂, β̂]

[
1 0′K
µ̂1 IK

]
, (69)

15Note that we do not require R2t to be multivariate normally distributed; the distribution of ft can be time-varying
and arbitrary. We only need to assume that conditional on ft, R2t is normally distributed.
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we can write

δ̂2 = 1′N [Σ̂−1 − Σ̂−1B̂(B̂′Σ̂−1B̂)−1B̂′Σ̂−1]1N . (70)

Still, it is a daunting task to get an exact distribution of (70). Our second simplification of the

problem relies on the following lemma which helps us to get rid of the influence of Σ̂.

Lemma 4 Defining

δ̃2 = 1′N [Σ−1 − Σ−1B̂(B̂′Σ−1B̂)−1B̂′Σ−1]1N , (71)

we have

V = T δ̃2/δ̂2 ∼ χ2
T−N+1 (72)

and it is independent of δ̃2.

Note that δ̃2 is similar to δ̂2 except that δ̃2 has the true Σ instead of the estimated Σ̂ in its

expression. Lemma 4 is extremely useful because it allows us to focus our efforts on obtaining just

the distribution of δ̃2. Once this is obtained, we can get the distribution of δ̂2 using the fact that

δ̂2 =
T δ̃2

V
, (73)

where δ̃2 and V ∼ χ2
T−N+1 are independent of each other.

Our third simplification is to normalize B̂ using a transformation

B̃n = Σ−
1
2 B̂(X ′X)

1
2 , (74)

so vec(B̃n) ∼ N(vec(Bn), IK+1 ⊗ IN ), where Bn = Σ−
1
2B(X ′X)

1
2 is the normalized version of B,

and all the elements of B̃n are independent normal random variables with unit variance. With this

normalization and defining ν = Σ−
1
2 1N , we can write

δ2 = ν ′[IN −Bn(B′nBn)−1B′n]ν, (75)

δ̃2 = ν ′[IN − B̃n(B̃′nB̃n)−1B̃′n]ν. (76)

B. Exact Distribution

With all these simplifications, we are now ready to present the distribution of δ̂2. Let QΛQ′ be the

eigenvalue decomposition of B′n[IN − ν(ν ′ν)−1ν ′]Bn where Λ is a diagonal matrix with its diagonal
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elements λ1 ≥ · · · ≥ λK+1 ≥ 0 equal to the eigenvalues, and Q is an orthonormal matrix of the

corresponding eigenvectors. The following proposition expresses the HJ-distance in terms of these

quantities.

Proposition 4: Defining ξ = Q′B′nν/(ν
′ν)

1
2 , we have

δ2 =
ν ′ν

1 + ξ′Λ−1ξ
, (77)

δ̃2 =
ν ′ν

1 + U ′1W
−1U1

, (78)

where U1 ∼ N(ξ, IK+1) is normal, W ∼WK+1(N − 1, IK+1,Λ) is a K + 1 dimensional noncentral

Wishart with N − 1 degrees of freedom, covariance matrix IK+1, and noncentrality parameter Λ,

with U1 and W independent of each other.

Although (78) does not admit an explicit expression of the cumulative density function, it allows

us to use a Monte Carlo integration approach to obtain the distribution of δ̂2, which can be easily

performed as follows:

1. Simulate U1 ∼ N(ξ, IK+1), W ∼WK+1(N − 1, IK+1,Λ), independent of each other.

2. Compute δ̃2 = 1′N Σ−11N

1+U ′1W
−1U1

.

3. Since δ̂2 = T δ̃2/V where V ∼ χ2
T−N+1 is independent of δ̃2, the cumulative distribution

function for δ̂2 can be approximated by

P [δ̂2 > c] = E[P [V < T δ̃2/c|δ̃2]] ≈ 1
n

n∑
i=1

Fχ2
T−N+1

(T δ̃2
i /c), (79)

where Fχ2
T−N+1

(x) = P [χ2
T−N+1 ≤ x], δ̃2

i is the value of δ̃2 in the ith simulation, and n is the

total number of simulations.

All that is required in this Monte Carlo integration approach is to simulate a (K + 1)-dimensional

normal and a (K+1)-dimensional noncentral Wishart random variables. In general, the number of

factors (K) is a small number, so this procedure is very efficient. Note that the exact distribution

of δ̂2 depends on 2K + 3 nuisance parameters: Λ, ξ, and ν ′ν = 1′NΣ−11N . Since the Monte Carlo

integration approach depends on only a few nuisance parameters of the model, the effect of varying

these nuisance parameters can be easily studied given the efficiency of this procedure.
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When the asset pricing model is correctly specified, 1N is in the span of the column space of

B, or ν is in the span of the column space of Bn, and the matrix B′n[IN − ν(ν ′ν)−1ν ′]Bn is only of

rank K, so the last diagonal element of Λ is zero, i.e., λK+1 = 0. Therefore, the distribution of δ̂2

under the null depends on only 2K+2 parameters. Since the only parameter that distinguishes the

exact distribution of δ̂2 under the null and under the alternative is the smallest eigenvalue λK+1,

the power of the test of H0 : δ = 0 is crucially determined by λK+1. If λK+1 is close to zero, then

the distribution of δ̂2 cannot be easily distinguished from that under the null hypothesis. If λK+1

is very different from zero, then we will be able to detect the departure from the rank restriction

with higher probability.

One may wonder why it is λK+1 but not δ2 that determines the power of the test. The reason

is under the alternative hypothesis that δ 6= 0, some sampling fluctuations in δ̂2 are still perfectly

consistent with the null hypothesis of H0 : δ = 0. This is so because when the model is correctly

specified, we still have δ̂2 6= 0 due to sampling fluctuations in B̂. As the risk premium of a K-factor

asset pricing model is unspecified, the test will attempt to find the best K linear combinations of

B such that they can provide the maximum explanatory power of the sampling fluctuations of δ̂2

under the null hypothesis. It is only the unexplained portion of the sampling fluctuations of δ̂2

that will allow us to determine whether δ is zero or not. However, the reliability of this inference

crucially depends on the the volatility of the remaining (K+1)-th linear combination of B̂ (i.e., the

pricing errors). If λK+1 is small, it implies either that the aggregate pricing errors are very small,

or that they are very volatile. As a result, a misspecified model with small λK+1 is very difficult

to detect.

When δ2 6= 0, we have λK+1 = Op(T ) and the null hypothesis of H0 : δ = 0 will be rejected

with probability of one when T → ∞. As a result, all wrong models will eventually be detected

if we have a long enough time series of data. However, in a finite sample, it is not true that a

worse model (in the sense that it has a higher δ2) will be rejected with a higher probability. As an

illustration, we return to our earlier example in (30). As we showed earlier, the model with just the

first factor has δ2 = 0.798 and the model with just the second factor has δ2 = 0.500. If we assume

in the sample, we have µ̂1 = µ1 = 0 and V̂11 = V11 = 0.01, then we can verify that λ2 = 0.0017T

for the first model and λ2 = 0.0100T for the second model. Note that although the first model

has a greater HJ-distance than the second model, the second model is rejected more often because
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its smallest eigenvalue is 5.8 times larger than that of the first model. In Figure 3, we plot the

probabilities of rejection of the null hypothesis H0 : δ = 0 as a function of T for these two different

models. The size of the test is 5% and the distribution of δ̂2 under the null and the alternatives

are computed using the exact distribution, assuming µ̂1 = µ1 = 0 and V̂11 = V11 = 0.01. As we can

see in Figure 3, when T is small, both models cannot be easily rejected. As T increases, the model

with just the first factor still cannot be easily rejected. Even with T = 1000, we get a probability

of rejection of only 27.3% for this model. However, the model with just the second factor, despite

having a smaller δ2 than the first model, can be rejected with very high probability when T is

large. When T = 1000, we can reject H0 : δ = 0 for the second model with probability 87.9%.

This example serves to illustrate that one should be extremely cautious in using the p-value of the

sample HJ-distance to rank models. Models with higher δ2 are not necessarily rejected with higher

probability than models with lower δ2.

Intuitively, the reason why we can reject the model with the second factor with relative ease is be-

cause the expected return of the mimicking portfolio of the second factor is close to that of the global

minimum-variance portfolio of the test assets. As the variance of the global minimum-variance port-

folio depends on only the variance-covariance matrix of the returns on the test assets, its location

can be estimated rather accurately from the data. Therefore, we can reject the null hypothesis even

when the mimicking portfolio has only a small departure from the global minimum-variance port-

folio. On the contrary, for a frontier portfolio that is far away from the global minimum-variance

portfolio, its variance depends on both the mean and the variance-covariance matrix of the returns

on the test assets. As estimation of expected return is relatively noisy, the location of such a frontier

portfolio is harder to determine. Therefore, when a mimicking portfolio has an expected return

that is very different from that of the global minimum-variance portfolio, it is difficult to reject the

null unless the mimicking portfolio is very far away from the frontier.

Figure 3 about here

C. Approximate Distribution

In using the finite sample distribution for specification test, one encounters a practical problem.

It is that the finite sample distribution depends on some nuisance parameters (Λ, ξ and ν ′ν) even
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under the null hypothesis.16 Therefore, one needs to estimate Λ, ξ and ν ′ν in order to compute

the finite sample distribution. For wide applications, we suggest the following procedure to easily

compute an approximate exact distribution which is accurate for most practical purposes.

Let ν̂ = Σ̂−
1
2 1N , B̂n = Σ̂−

1
2 B̂(X ′X)

1
2 be the sample estimates of ν and Bn. Let Q̂Λ̂Q̂′ be the

eigenvalue decomposition of B̂′n[IN − ν̂(ν̂ ′ν̂)−1ν̂ ′]B̂n and ξ̂ = Q̂′B̂′nν̂/(ν̂
′ν̂)

1
2 be the sample estimates

of ξ. Under the null hypothesis, we have λK+1 = 0 and in addition, as shown in the Appendix, we

must have

ξ2
K+1 =

ν ′ν

ν ′Bn(B′nBn)−2B′nν
. (80)

Therefore, for the purpose of testing H0 : δ = 0, we set the last diagonal element of Λ̂ to zero and

the last element of ξ̂ to17

ξ̂K+1 =
(ν̂ ′ν̂)

1
2

(ν̂ ′B̂n(B̂′nB̂n)−2B̂′nν̂)
1
2

. (81)

Using these sample estimates Λ̂, ξ̂, and ν̂ ′ν̂ to replace the true ones in (78), we can obtain a finite

sample distribution of δ̂2. Since the sample estimates of the nuisance parameters are used here,

the finite sample distribution is only approximate but not exact. However, our simulation evidence

shows that this procedure is quite effective in approximating the true finite sample distribution

when T is reasonably large.

If one is concerned with the effect of using estimated instead of true nuisance parameters, one

can perturb the estimated parameters (say increasing them or decreasing them by 20%) to find

out if the computed p-value is robust to the choice of nuisance parameters. Another way is to use

a first order approximation of the finite sample distribution. The following Proposition uses the

same argument as in Shanken (1985) and provides an approximate finite sample distribution for

the sample HJ-distance.

Proposition 5: Conditional on ft, the squared sample HJ-distance has the following approximate

finite sample distribution

δ̂2 ∼

(
1 + γ̂HJ1

′V̂ −1
11 γ̂HJ1(

γ̂HJ0

)2
)(

N −K − 1
T −N + 1

)
FN−K−1,T−N+1(d), (82)

16It is common that the finite sample distributions of test statistics of asset pricing models depend on some nuisance
parameters. See, for example, Zhou (1995) and Velu and Zhou (1999).

17While the unconstrained ξ̂K+1 is still a consistent estimate of ξK+1, we find that the constrained version of ξ̂K+1

is much less volatile than the unconstrained one.
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where FN−K−1,T−N+1(d) is a noncentral F -distribution with N −K − 1 and T −N + 1 degrees of

freedom and noncentrality parameter

d =
Tδ2

(1 + γ̄HJ1
′V̂ −1

11 γ̄HJ1 )/(γHJ0 )2
=
T [θ2

2(γHJ0 )− θ2
1(γHJ0 )]

1 + γ̄HJ1
′V̂ −1

11 γ̄HJ1

, (83)

and γ̄HJ1 = γHJ1 + µ̂1 − µ1 is the ex post risk premium of the K factors.

Under the null hypothesis, we have d = 0 and the noncentral F -distribution becomes a central

F -distribution, so an approximate F -test of H0 : δ = 0 is to compare

F1 =
(
T −N + 1
N −K − 1

)
δ̂2

(1 + γ̂HJ1
′V̂ −1

11 γ̂HJ1 )/(γ̂HJ0 )2
(84)

with a central F -distribution with N −K − 1 and T −N + 1 degrees of freedom.18

Under this approximate F -test, the power of the sample HJ-distance in rejecting the null hy-

pothesis is positively related to the magnitude of the noncentrality parameter d. From (83), we

can see that this noncentrality parameter depends on not just δ2 or how far apart the two frontiers

are, but also on the term γ̄HJ1
′V̂ −1

11 γ̄HJ1 . This term is similar to the errors-in-variables adjustment

in Shanken (1985), which is due to the fact that we need to use the estimated betas instead of the

true betas in the calculation of the sample HJ-distance. If the estimated betas are noisy, we cannot

reliably reject the null hypothesis even though the true δ is nonzero. This observation suggests that

besides preferring factors that generate high γHJ0 , sample HJ-distance also heavily favors models

with noisy factors. This is so because if we add pure measurement errors to a factor, it will not

change the true δ, but the term γ̄HJ1
′V̂ −1

11 γ̄HJ1 will most likely go up to reduce the power of the test.

To further illustrate this point, we return to our earlier example in Figure 3 where we found

that the model with just the second factor was rejected with fairly high probability. Our question

here is that whether we can add a noise to the factor and make the model acceptable. Suppose we

construct a noisy version of the second factor

f∗t = f2t + nt, (85)

where nt is a noise with mean zero and variance σ2
n, and it is independent of the factors and the

returns. What would happen to the power of the test if we use f∗t instead of f2t in the model?

18Unlike δ̂2, the exact distribution of F1 only depends on ξ and Λ but not ν′ν. Details on the exact distribution of
F1 are available upon request.
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One of the perceived advantages of the HJ-distance is that it does not favor noisy factors because

the population HJ-distance stays the same whether we use f2t or f∗t .19 However, it turns out that

if one uses the sample HJ-distance to test the null hypothesis H0 : δ = 0, the noisy factors will

still be favored. This is because with a noisy factor, there are more estimation errors in D̂. As a

result, even though the population HJ-distance stays the same with the noisy factor, one can be

less sure about whether an observed large sample HJ-distance is due to genuine nonzero population

HJ-distance or to sampling errors. In Figure 4, we plot the power function for five different models

using f∗t , differing in terms of their noise to signal ratio σn/σf , where σf is the standard deviation

of the second factor. Similar to Figure 3, the size of the test is 5% and the distribution of δ̂2 under

the null and the alternative are computed using the exact distribution, assuming the sample mean

and the variance of the factor are equal to their population counterparts. The case of σn/σf = 0 is

the same as the model with just the second factor in Figure 3, and we can see that it is rejected with

very high probability. As σn increases, the probability of rejection goes down. When σn/σf = 5,

we see that the model with this very noisy factor is hardly rejected, with a probability of rejection

of only 8.38% even for T = 1000. From an economics point of view, there is no reason to believe

the model with this very noisy factor is any better than the model with the original factor, but yet

statistically the sample HJ-distance suggests otherwise.

Figure 4 about here

D. Understanding the Biases in Asymptotic Distribution

Our small sample results are not only useful in providing insights on what determine the power of

the test of H0 : δ = 0, but also illuminating for understanding the biases of the asymptotic test

that is often used in the literature for testing the null hypothesis. Jagannathan and Wang (1996)

show that under the null hypothesis, we have

T δ̂2 A∼
N−K−1∑
i=1

aiχ
2
1, (86)

19For example, some model diagnostic tools like the HJ-bound suggested by Hansen and Jagannathan (1991) can
favor noisy factors. This is because for any arbitrary factor model, it is always possible to satisfy the HJ-bound by
adding irrelevant variance to the stochastic discount factor.
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which is a linear combination of N −K − 1 independent χ2
1 random variables, with the weights ai

equal to the nonzero eigenvalues of

S
1
2U−

1
2 [IN − U−

1
2D(D′U−1D)−1D′U−

1
2 ]U−

1
2S

1
2 , (87)

or equivalently the eigenvalues of

P ′U−
1
2SU−

1
2P, (88)

where P is an N×(N−K−1) orthonormal matrix with its columns orthogonal to U−
1
2D. Under the

conditional homoskedasticity assumption, we can use Lemma 3 to verify that ai = (1+γ′1V
−1

11 γ1)/γ2
0

for i = 1, . . . , N −K − 1, and the asymptotic distribution can be simplified to

T δ̂2 A∼
(

1 + γ′1V
−1

11 γ1

γ2
0

)
χ2
N−K−1, (89)

which is consistent with the results in Proposition 3. Similar to the exact finite sample distribution,

the asymptotic tests also involve nuisance parameters, so we need to obtain estimates of these

parameters in order to carry out the asymptotic tests. In practice, researchers replace D, U , and S

in (87) with their sample estimates to obtain the estimated eigenvalues âi. Similarly, we can replace

γ0, γ1 and V11 in (89) with their sample estimates γ̂HJ0 , γ̂HJ1 and V̂11. We refer to asymptotic tests

that are based on estimated parameters as the approximate asymptotic tests.

Recall from (73) and Proposition 4, the exact distribution of T δ̂2 is given by

T δ̂2 =
(
T

V

)(
Tν ′ν

1 + U ′1W
−1U1

)
, (90)

where U1 ∼ N(ξ, IK+1), W ∼ WK+1(N − 1, IK+1,Λ), V ∼ χ2
T−N+1, and they are independent of

each other. The first term T/V is due to the estimation error from using Σ̂, which the asymptotic

test ignores. The expectation of T/V is given by

E

[
T

V

]
=

T

T −N − 1
> 1, (91)

so the effect of ignoring this first term is that the finite sample distribution of T δ̂2 is larger than

the finite sample distribution of the second term, which is T δ̃2. As a result, ignoring the estimation

error of Σ̂ can lead to over-rejection problem for the asymptotic test and this problem is particularly

severe when N is large relative to T . When N is small relative to T , the first term is negligible and

the finite sample distribution of T δ̂2 is almost identical to the finite sample distribution of T δ̃2. By
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comparing the finite sample distribution of T δ̃2 with the asymptotic distribution, we can obtain an

understanding of why the asymptotic test can also under-reject the null hypothesis. To facilitate

this comparison, we present the following lemma.

Lemma 5 Let U1,K+1 be the last element of U1 and WK+1,K+1 be the last diagonal element of

W−1. Under the null hypothesis, we have 1/WK+1,K+1 ∼ χ2
N−K−1 and

1 + U ′1W
−1U1 = U2

1,K+1W
K+1,K+1 +Op(T

1
2 ), (92)

with the expected value of the Op(T
1
2 ) term positive. In addition, we have

E[U2
1,K+1] = 1 + ξ2

K+1 > ξ2
K+1 =

Tγ2
0(ν ′ν)

1 + γ̄′1V̂
−1

11 γ̄1

, (93)

where γ̄1 = γ1 + µ̂1 − µ1.

With this lemma, we can think of the asymptotic distribution of T δ̃2 is obtained by using the

following approximation

T δ̃2 =
Tν ′ν

1 + U ′1W
−1U1

≈ Tν ′ν

ξ2
K+1W

K+1,K+1
∼

(
1 + γ̄′1V̂

−1
11 γ̄1

γ2
0

)
χ2
N−K−1. (94)

Such an approximation involves dropping all but one of the (K+1)2 +1 terms in 1+U ′1W
−1U1, and

replacing U2
1,K+1 by ξ2

K+1. The terms that we drop in this approximation have positive expected

value, so ignoring them in the denominator of T δ̃2 leads to an under-rejection problem for the

asymptotic test. The greater the number of factors (K) is, the more terms are dropped in this

approximation and the more severe the under-rejection problem. This analysis suggests that, given

the number of test assets and length of time series, the asymptotic test tends to favor models with

a large number of factors.

IV. Simulation Evidence

A. Design of Experiment

We perform simulation experiments in this section to assess the performance of the asymptotic

test, the F -test, and the approximate finite sample test of sample HJ-distance. We study various

combinations of number of factors (K), number of test assets (N) and number of time series
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observations (T ). For the number of factors, we consider three cases: K = 1, 3, and 5. For the

number of test assets, we also consider three cases: N = 10, 25, and 100. For the length of time

series observations, we consider five cases: T = 120, 240, 360, 480, and 600. Altogether, there are

45 different combinations of K, N , and T in our simulation experiment.

For K = 1, the factor that we consider is the excess return of the value-weighted market index

from the Center for Research in Security Prices (CRSP). For K = 3, the factors are the three factors

of Jagannathan and Wang (1996): return on the value-weighted market, growth of per capita labor

income, and default premium which is the difference between the yields of Baa and Aaa corporate

bonds. For K = 5, the factors are the five factors of Fama and French (1993). They include excess

return on the value-weighted market index, return difference between portfolios of small and large

stocks, return difference between portfolios of high and low book-to-market ratio stocks, a term

structure factor which is measured by the difference of the yields of long-term Treasury bond and

short-term Treasury bill, and a default premium which is measured as the difference between the

yields of Baa and Aaa corporate bonds. Monthly data of these factors are kindly provided to us

by Hodrick and Zhang, and the data are the same as the ones that are used in Hodrick and Zhang

(2001). As the finite sample distribution that we derive is conditional on the realizations of the

factors, we consider the case where the matrix (X ′X)/T is set to

X ′X

T
=

[
1 µ̂′1

µ̂1 V̂11 + µ̂1µ̂
′
1

]
, (95)

where µ̂1 is the sample mean of the factors and V̂11 is the sample variance of the factors, estimated

from the monthly data over the sample period of January 1951 to December 1997. Under this

setting, we retain the same matrix (X ′X)/T for different values of T .

The test assets that we consider for N = 10 are the ten size-ranked portfolios of common stocks

in the New York Stock Exchange (NYSE). For N = 25, the test assets are 25 size and book-to-

market ranked portfolios of Fama and French (1993). For N = 100, the test assets are 100 size and

beta ranked portfolios of common stocks in the NYSE. Data for the 25 size and book-to-market

ranked portfolios are provided to us by Hodrick and Zhang, whereas the data for other test assets

are constructed from the CRSP monthly files. To obtain the nuisance parameters for our simulation,

we need B = [α, β] and Σ. Both β and Σ are set equal to their sample estimates obtained from
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the regressions using monthly data from January 1951 to December 1997. As for α, we set

α = 1Nγ0 + β̂(γ1 − µ̂1), (96)

where γ0 and γ1 are obtained using a GLS CSR of µ̂2 on 1N and β̂. Under this choice of α, the

parameters are set such that the null hypothesis is true (i.e., δ = 0). Finally, we derive the nuisance

parameters 1′NΣ−11N , Λ and ξ for each case based on our chosen values of (X ′X)/T , B and Σ, and

the exact distribution of δ̂2 can then be computed. The exact distribution of δ̂2 is evaluated using

the Monte Carlo integration approach based on 100,000 simulations. For most practical purposes,

the errors due to simulations are negligible.

B. Actual Sizes of Various Tests

In Table I, we present the actual probabilities of rejection using the asymptotic test in (89) for three

different levels of significance, under the assumption that the null hypothesis of H0 : δ = 0 is true.

Table I shows that when K = 1 and N = 10, the probabilities of rejection of the asymptotic test

are very close to the size of the test. However, when N increases, we find that there is a significant

over-rejection problem from using the asymptotic test. For example, for the case of K = 1 and

N = 100, we find that even for T as large as 600, the asymptotic test rejects the null hypothesis

38.6% of the time, when the asymptotic size of the test is supposed to be 5%.

For a fixed N , we find that the rejection rate of the asymptotic test goes down as we increase

K. For the case of N = 10, we find that the asymptotic test significantly under-rejects the null

hypothesis when K is large. For example, when K = 5 and N = 10, the asymptotic test rejects the

null hypothesis only 1.6% of the time, when the asymptotic size of the test is supposed to be 5%.

The fact that the probability of rejection of the asymptotic test is a decreasing function of K has

two implications. One implication is that even though additional factor does not help explaining

expected returns, they will be favored by the asymptotic test. Another implication is that even

though a model with a large number of factors is wrong, the asymptotic test can have low power

to detect it.

Overall, there are two countering effects. When N is relatively large to T , the asymptotic test

tends to over-reject. When K is relatively large to N , the asymptotic test tends to under-reject.

Which of the two effects dominates depends on the values of K, N , T and the nuisance parameters.
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Table I about here

With an understanding of the performance of the asymptotic test, we now turn our attention

to the approximate F -test. In Table II, we present the actual probabilities of rejection using the

approximate F -test in (84) for three different levels of significance, under the assumption that the

null hypothesis of H0 : δ = 0 is true. Overall, the approximate F -test is much better behaved than

the asymptotic test. When K = 1, the actual probability of rejection is almost identical to the

size of the test. In addition, the over-rejection problem associated with large number of test assets

for the asymptotic test is basically gone. This is expected because the over-rejection problem in

the asymptotic test is due to the estimation error in Σ̂, which the approximate F -test fully takes

into account in its denominator using the χ2
T−N+1 random variable. When K is large relative to

N , there is still some under-rejection problem with the approximate F -test, especially when T is

small.

Table II about here

As the exact distribution of δ̂2 involves some unknown nuisance parameters, practical use of it

requires the estimation of these nuisance parameters. In Section III.C, we describe a procedure for

estimating these nuisance parameters. It is of interest to investigate to what extent that the use

of estimated nuisance parameters distorts the size of the test. In Table III, we present the actual

probabilities of rejection using this approximate finite sample test based on the estimated nuisance

parameters for three different levels of significance, under the assumption that the null hypothesis

of H0 : δ = 0 is true. When K = 1, the actual probability of rejection is almost identical to the

size of the test, indicating that the effect of using the estimated nuisance parameters is negligible.

When K = 3 or 5, we find that the approximate finite sample test has some under-rejection and

over-rejection problems, especially when N is large. Comparing the approximate finite sample test

with the approximate F -test, it is not clear which test is better behaved. However, when T is small,

the approximate finite sample test appears to have an advantage because it results in less of an

under-rejection problem than the approximate F -test. Nevertheless, both of them are decisively

better than the asymptotic test.

Table III about here
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C. Nonnormal Reisduals

While the small sample distribution of δ̂2 assumes that the residuals are multivariate normally

distributed, we have good reasons to believe that it works fairly well even though the residuals

are not normally distributed. For tests of mean-variance efficiency of a given portfolio, the work

of MacKinlay (1985) and Zhou (1993) shows that although the F -test of Gibbons, Ross, and

Shanken (1989) relies on multivariate normality assumption of the residuals, it is rather robust to

departure from normality of the residuals. To examine if this is still the case for the finite sample

distribution of δ̂2, we repeat the same simulation experiment as before except that the residuals

are now generated using a multivariate t-distribution with five degrees of freedom and with the

same variance-covariance matrix as in the normal case. Under this multivariate t-distribution

assumption, the residuals and hence the returns have fat tails, which is what we often find in the

data. In each simulation, we generate data under the null hypothesis and test H0 : δ = 0 based

on the exact distribution under the normality assumption. In Table IV, we present the rejection

rates for various combinations of K, N and T . As we can see from Table IV, we find that the

rejection rates based on our exact distribution are extremely close to the size of the test, despite

the residuals are very different from normal. This robustness result is not surprising because while

B̂ is not exactly normal and Σ̂ is not exactly Wishart when the residuals are not multivariate

normally distributed, such approximations are in fact quite good even for moderate size of T . As

a result, we can still reasonably apply our small sample test even for cases that the residuals are

not multivariate normally distributed.20

Table IV about here

V. Conclusion

In this paper, we have conducted a comprehensive analysis of the HJ-distance for the case of linear

asset pricing models. We have also provided a geometric interpretation of the HJ-distance and

showed that it is a measure of how close the minimum-variance frontier of the test assets is to the

minimum-variance frontier of the factor mimicking positions, but the distance is normalized by the

20Although not reported, we have repeated our simulation experiment for a few other nonnormal distributions of
residuals, and the results are largely the same.
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zero-beta rate. A comparison of the sample HJ-distance with Shanken’s CSRT statistic revealed

that the fundamental difference between the regression approach and the stochastic discount factor

approach to tests of asset pricing models is in the choice of the estimated zero-beta rate. Un-

der normality assumption, we have provided an analysis of the exact distribution of the sample

HJ-distance. In addition, a simple and efficient numerical method to obtain the finite sample dis-

tribution of the sample HJ-distance was presented. Simulation evidence has shown that asymptotic

distribution for sample HJ-distance is grossly inappropriate when the number of test assets or the

number of factors is large. For finite sample inference, one is better off using the exact distribution

presented in this paper.

Despite the theoretical appeal of the population HJ-distance, researchers should be cautious

in using the sample HJ-distance for model evaluation and selection. We have shown that models

with small HJ-distance are good in explaining prices of the test assets but not necessary good in

explaining their expected returns. In addition, we have found that the sample HJ-distance is not

much different from many traditional specification tests. As a result, the sample HJ-distance shares

the same problems that plagued those specification tests. Specifically, our analysis and simulation

have shown that the sample HJ-distance tends to favor asset pricing models that have noisy factors

and is not very reliable in telling apart good models from bad models.
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Appendix

We first present two matrix identities that will be used repeatedly in the Appendix.21

Claim: Suppose Q = P +BCB′, where P and Q are m×m symmetric positive definite matrices,

B is an m× p matrix with full column rank, and C is a p× p symmetric matrix. Then we have

(B′Q−1B)−1B′Q−1 = (B′P−1B)−1B′P−1, (A1)

Q−1 −Q−1B(B′Q−1B)−1B′Q−1 = P−1 − P−1B(B′P−1B)−1B′P−1. (A2)

Proof: Since

Q−1 = P−1 − P−1BC(Ip +B′P−1BC)−1B′P−1, (A3)

we have

B′Q−1 = (Ip +B′P−1BC)−1B′P−1 (A4)

and

(B′Q−1B)−1 = (B′P−1B)−1(Ip +B′P−1BC). (A5)

Multiplying (A4) with (A5), we have the first identity

(B′Q−1B)−1B′Q−1 = (B′P−1B)−1B′P−1. (A6)

For the second identity, we have

Q−1 −Q−1B(B′Q−1B)−1B′Q−1

= Q−1[Im −B(B′Q−1B)−1B′Q−1]

= [P−1 − P−1BC(Ip +B′P−1BC)−1B′P−1][Im −B(B′P−1B)−1B′P−1]

= P−1 − P−1B(B′P−1B)−1B′P−1, (A7)

with the second last equality following from (A3) and (A6). This completes the proof.

Proof of Lemma 1: Observe that we can write

U = Σ +D

[
1 + µ′1V

−1
11 µ1 −µ′1V

−1
11

−V −1
11 µ1 V −1

11

]
D′ (A8)

21A single-factor version of these two identities were presented in Shanken (1982).
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and D = [µ2, V21 + µ2µ
′
1] = HA, where A is a nonsingular matrix given by

A =

[
1 µ′1

0K V11

]
. (A9)

Letting P = Σ, Q = U , and B = D, we can invoke (A2) and have

U−1 − U−1D(D′U−1D)−1D′U−1 = Σ−1 − Σ−1D(D′Σ−1D)−1D′Σ−1

= Σ−1 − Σ−1HA(A′H ′Σ−1HA)−1A′H ′Σ−1

= Σ−1 − Σ−1H(H ′Σ−1H)−1H ′Σ−1. (A10)

Putting this expression in (10), we obtain (12). This completes the proof.

Proof of Lemma 2: Suppose µm and Vm are the mean and variance of R1, and qm is a vector of

the cost of these K factor mimicking positions. When K > 1, a minimum-variance portfolio (with

unit cost) of the K factor mimicking positions is obtained by solving the following problem:

min
w
σ2
p = w′Vmw

s.t. w′µm = µp, (A11)

w′qm = 1. (A12)

Except using qm instead of 1K , it is the same as the standard portfolio optimization problem.

Standard derivation then gives (20) with a1 = µ′mV
−1
m µm, b1 = µ′mV

−1
m qm and c1 = q′mV

−1
m qm.

Using µm = V12V
−1

22 µ2, Vm = Var[R1] = V12V
−1

22 V21 and qm = V12V
−1

22 1N , we obtain the expressions

for a1, b1 and c1. When K = 1, we must have w = 1/qm and hence µp = µm/qm = b1/c1 and

σ2
p = Vm/q

2
m = 1/c1. This completes the proof.

Proof of Proposition 1: One way to prove (24) is to express D and U in terms of µ and V . For

brevity, we present a more intuitive proof here. Writing λ = [λ0, λ
′
1]′, where λ0 is a scalar and λ1

is a K-vector, the squared HJ-distance is given by

δ2 = min
λ

(Dλ− 1N )′U−1(Dλ− 1N ). (A13)

Since D = E[R2x
′] = [µ2, V21 + µ2µ

′
1] and

U = E[R2R
′
2] = V22 + µ2µ

′
2 = V22 +D

[
1 0′K

0K OK×K

]
D′, (A14)
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we can invoke (A1) and (A2) and write

δ2 = min
λ

(Dλ− 1N )′V −1
22 (Dλ− 1N )

= min
λ

(µ2λ0 + V21λ1 + µ2µ
′
1λ1 − 1N )′V −1

22 (µ2λ0 + V21λ1 + µ2µ
′
1λ1 − 1N ). (A15)

Using a reparameterization of λ to γ where

γ ≡

[
γ0

γ1

]
=

1
λ0 + µ′1λ1

[
1

−V11λ1

]
, (A16)

we can then write

δ2 = min
γ0,γ1

(µ2 − 1Nγ0 − βγ1)′V −1
22 (µ2 − 1Nγ0 − βγ1)
γ2

0

. (A17)

Conditional on a given choice of γ0, one only needs to choose γ1 to minimize the numerator. It is

easy to show that

γ∗1 = (β′V −1
22 β)−1β′V −1

22 (µ2 − 1Nγ0). (A18)

With this choice of γ1, we can minimize the objective function with respect to γ0 alone and have

δ2 = min
γ0

(µ2 − 1Nγ0)′[V −1
22 − V

−1
22 β(β′V −1

22 β)−1β′V −1
22 ](µ2 − 1Nγ0)

γ2
0

= min
γ0

θ2
2(γ0)− θ2

1(γ0)
γ2

0

. (A19)

Using

θ2
2(γ0)− θ2

1(γ0) = a− 2bγ0 + cγ2
0 − (a1 − 2b1γ0 + c1γ

2
0) = ∆a− 2∆bγ0 + ∆cγ2

0 , (A20)

we have
θ2

2(γ0)− θ2
1(γ0)

γ2
0

= ∆a
(

1
γ0

)2

− 2∆b
(

1
γ0

)
+ ∆c, (A21)

which is a quadratic function in 1/γ0. The minimum is obtained at γHJ0 = ∆a/∆b and hence

δ2 =
(
θ2

2(γHJ0 )− θ2
1(γHJ0 )

)
/(γHJ0 )2.

As for QC , we have conditional on a given value of γ0, the expected return errors are eCS(γ1) =

(µ2 − γ01N )− βγ1. It is easy to see that

min
γ1

eCS(γ1)′Σ−1eCS(γ1) = (µ2 − 1Nγ0)′[Σ−1 − Σ−1β(β′Σ−1β)−1β′Σ−1](µ2 − 1Nγ0). (A22)

Since Σ = V22 − βV11β
′, invoking the identity (A2), we have

(µ2 − 1Nγ0)′[Σ−1 − Σ−1β(β′Σ−1β)−1β′Σ−1](µ2 − 1Nγ0)

= (µ2 − 1Nγ0)′[V −1
22 − V

−1
22 β(β′V −1

22 β)−1β′V −1
22 ](µ2 − 1Nγ0)

= θ2
2(γ0)− θ2

1(γ0)

= ∆a− 2∆bγ0 + ∆cγ2
0 . (A23)
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The γ0 that minimizes this expression is γCS0 = ∆b/∆c, and hence QC is given by θ2
2(γCS0 )−θ2

1(γCS0 ).

Finally, since ∆a− 2∆bγ0 + ∆cγ2
0 ≥ 0 for any γ0, the determinant of the quadratic equation must

be nonpositive and we have (∆b)2 ≤ ∆a∆c. Since ∆a > 0 and ∆c > 0, we have ∆a/∆b ≥ ∆b/∆c

if ∆b ≥ 0, and ∆a/∆b ≤ ∆b/∆c if ∆b < 0. This completes the proof.

Proof of Proposition 2: The proof of Proposition 2 is identical to the proof of Proposition 1. All

we need is to replace all the population moments in the proof of Proposition 1 with their sample

counterparts.

Proof of Lemma 3: When gt(λ) is a martingale difference sequence, we have

S = Var[R2tx
′
tλ− 1N ] = Var[R2tx

′
tλ] = Var[(Bxt + εt)x′tλ] = Var[εtx′tλ] +BVar[xtx′tλ]B′. (A24)

Under the conditional homoskedasticity assumption, we have

Var[εtx′tλ] = E[Var[εtx′tλ|xt]] + Var[E[εtx′tλ|xt]] = E[(x′tλ)2Σ] + ON×N = E[(x′tλ)2]Σ (A25)

and hence

S = E[(x′tλ)2]Σ +BVar[xtx′tλ]B′. (A26)

When Yt follows a multivariate elliptical distribution, we have the following results from the Propo-

sition 2 of Kan and Zhou (2002)

Var[xt ⊗ εt] = E[xtx′t ⊗ εtε′t] = E[xtx′t]⊗ Σ +
[

0 0′K
0K κV11

]
⊗ Σ. (A27)

Using this result, we can write S as

S = Var[(λ′ ⊗ IN )(xt ⊗ εt)] +BVar[xtx′tλ]B′

= (λ′ ⊗ IN )
(
E[xtx′t]⊗ Σ +

[
0 0′K

0K κV11

]
⊗ Σ

)
(λ⊗ IN ) +BVar[xtx′tλ]B′

=
(
E[(x′tλ)2] + κλ′1V11λ1

)
Σ +BVar[xtx′tλ]B′. (A28)

This completes the proof.

Proof of Proposition 3: From the proof of Lemma 1, it is easy to see that

λ̂HJ = (D̂′Σ̂−1D̂)−1(D̂′Σ̂−11N ), (A29)

δ̂2 = 1′N [Σ̂−1 − Σ̂−1D̂(D̂′Σ̂−1D̂)−1D̂′Σ̂−1]1N . (A30)
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Let P = âΣ̂, Q = Ŝ. Note that we have B̂ = D̂A, where

A =
[

1 + µ̂1V̂
−1

11 µ̂1 −µ̂′1V̂
−1

11

−V̂ −1
11 µ̂1 V̂ −1

11

]
, (A31)

so we can write Q = P + D̂AĈA′D̂′ and invoke (A1) to obtain

λ̂GMM = (D̂′(âΣ̂)−1D̂)−1(D̂′(âΣ̂)−11N ) = (D̂′Σ̂−1D̂)−1(D̂′Σ̂−11N ) = λ̂HJ . (A32)

Similarly, we can invoke (A2) to obtain

J = T1′N [(âΣ̂)−1 − (âΣ̂)−1D̂(D̂′(âΣ̂)−1D̂)−1D̂′(âΣ̂)−1]1N

=
T1′N [Σ̂−1 − Σ̂−1D̂(D̂′Σ̂−1D̂)−1D̂′Σ̂−1]1N

â
=

T δ̂2

â
. (A33)

This completes the proof.

Proof of Lemma 4: Consider the following matrix

Â = [1N , B̂(X ′X)
1
2 ]′Σ̂−1[1N , B̂(X ′X)

1
2 ]. (A34)

Using Theorem 3.2.11 of Muirhead (1982), we have conditional on B̂,

Â−1 ∼WK+2(T −N + 1, Ã−1/T ), (A35)

where

Ã = [1N , B̂(X ′X)
1
2 ]′Σ−1[1N , B̂(X ′X)

1
2 ]. (A36)

Now, using Corollary 3.2.6 of Muirhead (1982) and noting that the (1, 1) element of Â−1 is 1/δ̂2

whereas the (1, 1) element of Ã−1 is 1/δ̃2, conditional on B̂, we have

1

δ̂2
∼W1(T −N + 1,

1
T δ̃2

), (A37)

and therefore
T δ̃2

δ̂2
∼ χ2

T−N+1. (A38)

Finally, since this conditional distribution does not depend on B̂, this is also the unconditional

distribution and in addition the ratio is also independent of δ̃2 (which is a function of B̂). This

completes the proof.
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Proof of Proposition 4: Define P = [P1, P2] as an N ×N orthonormal matrix with its first column

equal to

P1 =
ν

(ν ′ν)
1
2

. (A39)

Since the columns of P2 form an orthonormal basis for the space orthogonal to P1, this implies

P2P
′
2 = IN − ν(ν ′ν)−1ν ′ (A40)

and

Q′B′nP2P
′
2BnQ = Q′B′n[IN − ν(ν ′ν)−1ν ′]BnQ = Q′QΛQ′Q = Λ. (A41)

Let U ≡ [U1, U2] = [Q′B̃′nP1, Q
′B̃′nP2], we have vec(U) ∼ N(vec(Q′B′nP ), IN ⊗IK+1). Specifically,

we have E[U1] = Q′B′nν/(ν
′ν)

1
2 = ξ, E[U2] = Q′B′nP2, with U1 and U2 independent of each other.

Using these transformations and writing W = U2U
′
2 ∼WK+1(N − 1, IK+1,Λ), we have

δ̃2 = ν ′[IN − B̃nQ(Q′B̃′nPP
′B̃nQ)−1Q′B̃′n]ν

= ν ′ν[1− P ′1B̃nQ(UU ′)−1Q′B̃′nP1]

= ν ′ν[1− U ′1(U1U
′
1 +W )−1U1]. (A42)

Using the identity

(U1U
′
1 +W )−1 = W−1 − W−1U1U

′
1W
−1

1 + U ′1W
−1U1

, (A43)

we have

δ̃2 = ν ′ν

[
1− U ′1W−1U1 +

(U ′1W
−1U1)2

1 + U ′1W
−1U1

]
=

ν ′ν

1 + U ′1W
−1U1

. (A44)

Performing the same exercise on δ2, we have

δ2 = ν ′[IN −BnQ(Q′B′nPP
′BnQ)−1Q′B′n]ν

= ν ′ν[1− P ′1BnQ(Q′B′nP1P
′
1BnQ+Q′B′nP2P

′
2BnQ)−1Q′B′nP1]

= ν ′ν[1− ξ′(ξξ′ + Λ)−1ξ]

=
ν ′ν

1 + ξ′Λ−1ξ
. (A45)

This completes the proof.

Proof of (80): Under the null hypothesis, 1N is in the span of the columns of B, so ν is in the span

of the columns of Bn. Writing ν = Bnh, where h is a (K + 1)-vector, we have h = (B′nBn)−1B′nν.

As

B′n[IN − ν(ν ′ν)−1ν ′]Bnh = B′nBnh−B′nBnh(h′B′nBnh)−1h′B′nBnh = 0N , (A46)
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so h is proportional to qK+1, which is the eigenvector associated with the zero eigenvalue of B′n[IN−

ν(ν ′ν)−1ν ′]Bn, and we have qK+1 = ±h/(h′h)
1
2 . Therefore,

ξ2
K+1 =

(q′K+1B
′
nν)2

ν ′ν
=

(h′B′nν)2

(h′h)(ν ′ν)
=
ν ′ν

h′h
=

ν ′ν

ν ′Bn(B′nBn)−2B′nν
. (A47)

This completes the proof.

Proof of Proposition 5: From (73) and the definition of noncentral F -distribution, it suffices to

show that T δ̃2 is approximately distributed as(
1 + γ̂HJ1

′V̂ −1
11 γ̂HJ1

(γ̂HJ0 )2

)
χ2
N−K−1(d). (A48)

Since D = B(X ′X)/T , we can write

1N = DλHJ + eHJ = B(X ′X)
1
2h+ eHJ (A49)

by defining h = (X ′X)
1
2λHJ/T . It follows that

ν = Σ−
1
2B(X ′X)

1
2h+ Σ−

1
2 eHJ = Bnh+ Σ−

1
2 eHJ = B̃nh+ (Bn − B̃n)h+ Σ−

1
2 eHJ . (A50)

Since the first term is a linear combination of B̃n, it will vanish when it is multiplied by IN −

B̃n(B̃′nB̃n)−1B̃′n. Therefore, we can write

δ̃2 = ν ′[IN − B̃n(B̃′nB̃n)−1B̃′n]ν = Y ′[IN − B̃n(B̃′nB̃n)−1B̃′n]Y, (A51)

where

Y = (Bn − B̃n)h+ Σ−
1
2 eHJ ∼ N

(
Σ−

1
2 eHJ , (h′h)IN

)
. (A52)

Note that IN − B̃n(B̃′nB̃n)−1B̃′n is idempotent with rank N −K − 1. If we ignore the fact that Y

and B̃n are correlated (which is a good approximation when K is small relative to N),22 then we

have

T δ̃2 ∼ T (h′h)χ2
N−K−1

(
e′HJΣ−1eHJ

h′h

)
. (A53)

Using the reparameterization of

λHJ =
1

γHJ0

[
1 + µ̂′1V̂

−1
11 γHJ1

−V̂ −1
11 γHJ1

]
, (A54)

22Alternatively, we can follow the same argument as in Shanken (1985) by replacing B̃n in the idempotent matrix
by Bn.
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we can simplify T (h′h) to

T (h′h) = λHJ ′
(
X ′X

T

)
λHJ

=

[
λHJ0

λHJ1

]′ [
1 µ̂1

µ̂1 V̂11 + µ̂1µ̂
′
1

][
λHJ0

λHJ1

]

=
1 + γ̄HJ1

′V̂ −1
11 γ̄HJ1

(γHJ0 )2
, (A55)

where γ̄HJ1 = γHJ1 + µ̂1−µ1 is the ex post risk premium. Replacing γHJ0 and γ̄HJ1 by their consistent

estimates and using the fact that δ2 = e′HJΣ−1eHJ , we obtain the approximate F -distribution. This

completes the proof.

Proof of Lemma 5: Partition W into four blocks

W ≡

[
A b

b′ c

]
∼WK+1(N − 1, IK+1,Λ), (A56)

where A is the upper K×K submatrix of W . Under the null hypothesis, we have λK+1 = 0. Using

Lemma 2.1 in Gleser (1976), we can show that A ∼WK(N−1, IK ,Λ1), where Λ1 = Diag(λ1, ..., λK),

c− b′A−1b ∼ χ2
N−K−1, z = A−

1
2 b ∼ N(0K , IK), and they are independent of each other. Using the

partitioned matrix inverse formula, the last diagonal element of W−1 is given by

WK+1,K+1 = (c− b′A−1b)−1 ∼ 1
χ2
N−K−1

. (A57)

As X ′X = Op(T ), we have Bn = Op(T
1
2 ) and this implies λi = Op(T ) for i = 1, ...,K and

ξ = Op(T
1
2 ). It follows that A = Op(T ) and A−

1
2 = Op(T−

1
2 ). Since the upper K ×K submatrix

of W−1 is

A−1 +A−1bWK+1,K+1b′A−1 = A−
1
2 [IK + zWK+1,K+1z′]A−

1
2 , (A58)

its elements are Op(T−1). Similarly, the first K elements of the last column of W−1 is

−A−1bWK+1,K+1 = −A−
1
2 zWK+1,K+1 = Op(T−

1
2 ). (A59)

As ξ = Op(T
1
2 ), we have U1 = Op(T

1
2 ) and

1 + U ′1W
−1U1 = U2

1,K+1W
K+1,K+1 +Op(T

1
2 ). (A60)
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Note that the Op(T
1
2 ) term in the above expression is

1 +
K∑
i=1

K∑
j=1

W ijU1iU1j + 2U1,K+1

K∑
i=1

W i,K+1U1i, (A61)

where W ij is the (i, j) element of W−1 and U1i is the ith element of U1. The second term in this

expression is a quadratic form, so it is positive. For the last term, the first K elements of the

last column of W−1 is given by A−
1
2 zWK+1,K+1. As E[z] = 0K and it is independent of U1, A,

and WK+1,K+1, the last term has zero expected value. Therefore, the Op(T
1
2 ) term has a positive

expected value.

Finally, U2
1,K+1 ∼ χ2

1(ξ2
K+1), so its expectation is 1 + ξ2

K+1. Under the null hypothesis, we have

from the proof of (80) that ξ2
K+1 = (ν ′ν)/(h′h), where h = (B′nBn)−1(B′nν). Then, using a similar

proof of Proposition 5, we obtain T (h′h) = (1 + γ̄′1V̂
−1

11 γ̄1)/γ2
0 . This completes the proof.
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Figure 1
Rankings of Two Models Using HJ-Distance and Aggregate Expected Return Errors
The figure plots the two factor mimicking portfolios as well as the minimum-variance frontier
hyperbola of four test assets. The mimicking portfolio of the first factor produces small errors in
expected returns but large pricing errors for the four test assets. The mimicking portfolio of the
second factor produces large errors in expected returns but small pricing errors for the four test
assets.
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Figure 2
The Geometry of Hansen-Jagannathan Distance and CSRT Statistic
The figure plots the ex post minimum-variance frontier hyperbola of K mimicking positions and
that of N test assets on the (σ̂, µ̂) space. γ̂HJ0 is the estimated zero-beta rate that minimizes the
sample HJ-distance. The straight line HA is the tangent line to the frontier of the N test assets
and its slope is equal to θ̂2(γ̂HJ0 ). Point C is the point on the tangent line HA that is closest to
the origin. The straight line HB is the tangent line to the frontier of the K mimicking positions
and its slope is equal to θ̂1(γ̂HJ0 ). Point D is the point on the tangent line HB that is closest to
the origin. The squared sample Hansen-Jagannathan distance is given by 1/(OA)2 − 1/(OB)2 or
1/(OC)2 − 1/(OD)2. γ̂CS0 is the estimated zero-beta rate from a generalized least squares cross-
sectional regression of µ̂2 on 1N and β̂. The straight line GE is the tangent line to the frontier

of the N test assets and its slope is equal to θ̂2(γ̂CS0 ). The length of GE is
√

1 + θ̂2
2(γ̂CS0 ). The

straight line GF is the tangent line to the frontier of the K mimicking positions and its slope is

equal to θ̂1(γ̂CS0 ). The length of GF is
√

1 + θ̂2
1(γ̂CS0 ). The CSRT statistic is equal to GE2−GF 2.
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Figure 3
Power Function of Sample HJ-Distance for Two Models
The figure plots the probabilities of rejecting the null hypothesis H0 : δ = 0 as a function of the
length of time series observations (T ) for two different models. The returns of four test assets are
generated using a two factor model. The first model contains only the first factor and it has a
δ2 = 0.798. The second model contains only the second factor and it has a δ2 = 0.500. The size of
the test is 5% and the distributions of the sample HJ-distance under the null and the alternatives
are computed using the exact distribution, assuming the sample mean and the sample variance of
the factors are equal to their population counterparts.
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Figure 4
Power Function of Sample HJ-Distance for Models with Noisy Factor
The figure plots the probabilities of rejecting the null hypothesis H0 : δ = 0 as a function of the
length of time series observations (T ) for five different models. The returns of four test assets are
generated using a two factor model. A noisy version of the second factor is used in each one of the
five tested models, which is generated as f∗t = f2t +nt, where nt is a measurement error with mean
zero and independent of the returns and the factors. All five models have the same δ2 = 0.500 but
they differ in terms of their noise to signal ratio σn/σf , where σn/σf is the ratio of the standard
deviation of the noise to the standard deviation of the second factor. The size of the test is 5%
and the distributions of the sample HJ-distance under the null and the alternatives are computed
using the exact distribution, assuming the sample mean and the sample variance of the factors are
equal to their population counterparts.
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Table I
Sizes of Asymptotic Test of HJ-Distance Under Normality

The table presents the actual probabilities of rejection for the asymptotic χ2-test of H0 : δ = 0 with
different levels of significance under the null hypothesis, assuming the residuals are generated from a
multivariate normal distribution. The rejection decision is based on an asymptotic χ2-test of the sample
HJ-distance assuming conditional homoskedasticity. Results for different values of the number of factors
(K), test assets (N), and time series observations (T ) are based on 100,000 simulations.

N = 10 N = 25 N = 100

Level of Significance Level of Significance Level of Significance

K T 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 120 0.117 0.063 0.016 0.343 0.242 0.108 1.000 1.000 1.000
240 0.103 0.053 0.011 0.201 0.122 0.038 0.971 0.950 0.880
360 0.101 0.051 0.011 0.163 0.094 0.026 0.803 0.715 0.518
480 0.100 0.051 0.011 0.144 0.080 0.021 0.634 0.516 0.302
600 0.099 0.050 0.010 0.137 0.075 0.018 0.510 0.386 0.192

3 120 0.040 0.017 0.002 0.300 0.205 0.085 1.000 1.000 1.000
240 0.040 0.017 0.002 0.176 0.104 0.031 0.950 0.918 0.821
360 0.045 0.019 0.003 0.142 0.078 0.020 0.738 0.637 0.428
480 0.049 0.020 0.003 0.130 0.071 0.017 0.555 0.434 0.233
600 0.054 0.024 0.003 0.123 0.065 0.015 0.439 0.321 0.146

5 120 0.023 0.008 0.001 0.230 0.148 0.054 1.000 1.000 1.000
240 0.025 0.009 0.001 0.128 0.071 0.018 0.933 0.893 0.778
360 0.029 0.011 0.001 0.105 0.054 0.012 0.690 0.582 0.372
480 0.036 0.014 0.001 0.095 0.048 0.010 0.504 0.384 0.194
600 0.041 0.016 0.002 0.090 0.045 0.009 0.394 0.279 0.120
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Table II
Sizes of Approximate F -test of HJ-Distance Under Normality

The table presents the actual probabilities of rejection for the approximate F -test of H0 : δ = 0 with
different levels of significance under the null hypothesis, assuming the residuals are generated from
a multivariate normal distribution. The rejection decision is based on an approximate F -test of the
sample HJ-distance. Results for different values of the number of factors (K), test assets (N), and time
series observations (T ) are based on 100,000 simulations.

N = 10 N = 25 N = 100

Level of Significance Level of Significance Level of Significance

K T 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 120 0.093 0.047 0.010 0.094 0.046 0.009 0.092 0.045 0.009
240 0.101 0.052 0.011 0.097 0.049 0.010 0.098 0.048 0.010
360 0.104 0.053 0.012 0.098 0.049 0.010 0.098 0.049 0.010
480 0.104 0.054 0.012 0.099 0.049 0.010 0.100 0.050 0.011
600 0.105 0.053 0.012 0.100 0.050 0.010 0.100 0.050 0.010

3 120 0.052 0.024 0.004 0.062 0.028 0.005 0.058 0.025 0.004
240 0.071 0.034 0.007 0.072 0.034 0.006 0.099 0.050 0.010
360 0.084 0.043 0.009 0.077 0.037 0.007 0.108 0.055 0.012
480 0.094 0.050 0.011 0.081 0.039 0.007 0.111 0.058 0.013
600 0.101 0.054 0.013 0.122 0.063 0.014 0.113 0.059 0.013

5 120 0.034 0.015 0.002 0.056 0.026 0.004 0.045 0.020 0.003
240 0.052 0.024 0.005 0.067 0.032 0.006 0.097 0.048 0.009
360 0.069 0.034 0.007 0.076 0.037 0.007 0.110 0.056 0.012
480 0.084 0.043 0.010 0.081 0.039 0.008 0.117 0.061 0.013
600 0.096 0.051 0.012 0.085 0.042 0.008 0.120 0.062 0.014
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Table III
Sizes of Approximate Finite Sample Test of HJ-Distance Under Normality

The table presents the actual probabilities of rejection for the approximate finite sample test of H0 : δ =
0 with different levels of significance under the null hypothesis, assuming the residuals are generated
from a multivariate normal distribution. The rejection decision is based on an approximate finite
sample test of the sample HJ-distance using estimated nuisance parameters. Results for different values
of the number of factors (K), test assets (N), and time series observations (T ) are based on 100,000
simulations.

N = 10 N = 25 N = 100

Level of Significance Level of Significance Level of Significance

K T 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 120 0.117 0.060 0.012 0.097 0.048 0.009 0.093 0.047 0.009
240 0.113 0.058 0.011 0.099 0.050 0.010 0.098 0.049 0.010
360 0.110 0.056 0.010 0.099 0.049 0.010 0.100 0.050 0.010
480 0.108 0.054 0.010 0.099 0.050 0.010 0.100 0.051 0.010
600 0.105 0.054 0.010 0.100 0.050 0.010 0.099 0.050 0.010

3 120 0.097 0.043 0.006 0.141 0.072 0.014 0.079 0.037 0.007
240 0.116 0.055 0.009 0.135 0.070 0.014 0.149 0.078 0.017
360 0.124 0.059 0.010 0.122 0.062 0.012 0.147 0.077 0.017
480 0.129 0.063 0.011 0.112 0.057 0.011 0.142 0.074 0.017
600 0.131 0.064 0.011 0.106 0.053 0.010 0.138 0.074 0.015

5 120 0.063 0.025 0.002 0.141 0.073 0.014 0.070 0.032 0.005
240 0.084 0.036 0.004 0.149 0.078 0.017 0.164 0.088 0.020
360 0.100 0.044 0.006 0.146 0.076 0.017 0.165 0.091 0.021
480 0.109 0.050 0.007 0.141 0.074 0.015 0.164 0.089 0.021
600 0.116 0.054 0.007 0.138 0.072 0.015 0.159 0.087 0.020
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Table IV
Sizes of Finite Sample Test of HJ-Distance Under Nonnormality of Residuals
The table presents the actual probabilities of rejection for the finite sample test of H0 : δ = 0 with
different levels of significance under the null hypothesis, assuming the residuals are generated from a
multivariate Student-t distribution with five degrees of freedom. The rejection decision is based on the
simulated exact distribution of the sample HJ-distance under the normality assumption. Results for
different values of the number of factors (K), test assets (N), and time series observations (T ) are based
on 100,000 simulations.

N = 10 N = 25 N = 100

Level of Significance Level of Significance Level of Significance

K T 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 120 0.097 0.046 0.009 0.092 0.043 0.007 0.095 0.046 0.009
240 0.097 0.048 0.009 0.094 0.045 0.008 0.089 0.041 0.007
360 0.099 0.049 0.010 0.096 0.046 0.009 0.090 0.042 0.007
480 0.098 0.050 0.009 0.095 0.046 0.009 0.090 0.042 0.008
600 0.100 0.049 0.010 0.096 0.047 0.009 0.090 0.043 0.008

3 120 0.099 0.049 0.010 0.094 0.044 0.008 0.099 0.048 0.009
240 0.099 0.049 0.009 0.095 0.046 0.008 0.096 0.046 0.008
360 0.101 0.051 0.010 0.097 0.047 0.009 0.095 0.046 0.008
480 0.100 0.050 0.010 0.097 0.048 0.009 0.095 0.046 0.008
600 0.100 0.049 0.010 0.097 0.048 0.009 0.094 0.045 0.008

5 120 0.100 0.049 0.009 0.096 0.046 0.008 0.100 0.049 0.010
240 0.099 0.050 0.010 0.095 0.046 0.008 0.098 0.047 0.009
360 0.101 0.050 0.009 0.096 0.047 0.009 0.099 0.046 0.009
480 0.100 0.050 0.010 0.099 0.048 0.009 0.096 0.047 0.009
600 0.100 0.050 0.010 0.098 0.048 0.009 0.097 0.047 0.009
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