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Spurious Inference in Reduced-Rank
Asset-Pricing Models

Abstract

This note studies some seemingly anomalous results that arise in possibly misspecified, reduced-rank

linear asset-pricing models estimated by the continuously-updated generalized method of moments.

When a spurious factor (that is, a factor that is uncorrelated with the returns on the test assets) is

present, the test for correct model specification has asymptotic power that is equal to the nominal

size. In other words, applied researchers will erroneously conclude that the model is correctly

specified even when the degree of misspecification is arbitrarily large. The rejection probability of

the test for overidentifying restrictions typically decreases further in underidentified models where

the dimension of the null space is larger than one.

Keywords: Asset pricing; Spurious risk factors; Reduced-rank models; Model misspecification;

Continuously-updated GMM; Rank test; Test for overidentifying restrictions.
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1 Introduction

This note characterizes the limiting behavior of the specification test based on the continuously-

updated generalized method of moments (CU-GMM) estimator in linear asset-pricing models when

the derivative matrix of the moment conditions is rank deficient. For example, this could arise

when the model includes spurious factors; that is, factors that are uncorrelated with the returns

on the test assets.

In a recent paper, Gospodinov, Kan, and Robotti (2014) analyze the detrimental effects of lack

of identification on estimation, testing, and evaluation of asset-pricing models using the Hansen

and Jagannathan (1997) distance. Concerns about the reliability of goodness-of-fit measures for

noninvariant estimators in beta-pricing models and stochastic discount factor (SDF) models with

excess returns have also been raised by Kan and Zhang (1999), Kleibergen and Zhan (2015), and

Burnside (2016). In this study, we show that the use of CU-GMM1 does not alleviate these inference

problems and, somewhat surprisingly, makes them substantially worse when spurious factors are

included in the model.

In particular, we demonstrate that, in the presence of a spurious factor, the power of the

specification test is equal to its size. As a consequence, an applied researcher would conclude with

high probability that the model is correctly specified and proceed with constructing standard errors

and test statistics that assume correct model specification. Since these statistics would not take

into account the extra uncertainty arising from potential model misspecification, the inference on

the model parameters would be distorted and would manifest itself in highly significant estimates

for factors that do not contribute to improved pricing. In addition, we derive explicitly the limiting

distribution of the specification test when the dimension of the null space of the model exceeds one.

In this case, the power of the test under the alternative of a misspecified model is below the size of

the test that uses critical values from the standard chi-squared approximation.

The rest of the note is organized as follows. Section 2 derives the limiting distribution of the

model specification test in correctly specified and misspecified models with possible underidentifi-

cation. This section also presents Monte Carlo simulation results. Section 3 concludes.

We adopt the following notation throughout the note: E[yt] and Var[yt] denote the expected

value and the variance of a random variable yt, respectively; 1N is an N × 1 vector of ones; 0N

1The CU-GMM estimator is invariant to data scaling, reparameterizations and normalizations, curvature-altering
and stationarity-inducing transformations, etc. (Hall, 2005). Peñaranda and Sentana (2015) demonstrate convincingly
the appeal of the CU-GMM estimator by showing the numerical equality of prices of risk, overidentifying restrictions
tests, and pricing errors in alternative representations of asset-pricing models estimated by CU-GMM. Also, note that
the invariance property is not special to CU-GMM and is a feature of the class of generalized empirical likelihood
estimators.
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is an N × 1 vector of zeros; IN is the identity matrix of dimension N × N ; rank(A) denotes

the column rank of a matrix A; vec(A) signifies column vectorization of a matrix A; ⊗ denotes

the Kronecker product;
p→ and

d→ stand for “convergence in probability” and “convergence in

distribution”, respectively; ∼ stands for “distributed as”; N (·) denotes the normal distribution and

χ2
m denotes the chi-squared distribution with m degrees of freedom.

2 Limiting Behavior Under Rank Deficiency

2.1 Model and Assumptions

Let x′tλ be a candidate SDF at time t, where xt = [1, f ′t ]
′, ft is a (K − 1)-vector of systematic risk

factors, and λ = [λ0, λ
′
1]
′ is a K-vector of SDF parameters.2 Also, let Rt denote the gross returns

on N (N > K) test assets and et(λ) = Dtλ− 1N , where Dt = Rtx
′
t.
3 The CU-GMM estimator of

λ is defined as the solution to (Hansen, Heaton, and Yaron, 1996)

J = T min
λ
ē(λ)′V̂e(λ)−1ē(λ), (1)

where ē(λ) = T−1
∑T

t=1 et(λ) and V̂e(λ) is a consistent estimator of the long-run variance matrix of

the sample pricing errors Ve(λ) =
∑∞

j=−∞E[(et(λ)− ē(λ))(et+j(λ)− ē(λ))′].4 This is the J test of

the validity of the asset-pricing model restriction Dλ = 1N , where D = E[Dt]. The model is said

to be misspecified if Dλ 6= 1N for all λ.

Let Yt = [f ′t , R
′
t]
′ with E[Yt] ≡

[
µf
µR

]
and Var[Yt] ≡ V =

[
Vf VfR

VRf VR

]
. We now formally

define a spurious factor.

Definition (Spurious Factor). A spurious factor ft,i is defined such that E[Rtft,i] = µRµf,i,

where µf,i ≡ E[ft,i].

It follows from this definition that the presence of a spurious factor renders the D matrix rank

deficient. For example, by writing D more explicitly as

D = [E[Rt], E[Rtft,1], . . . , E[Rtft,i], . . . , E[Rtft,K−1]] , (2)

2The SDF is typically defined in terms of conditional expectations (Hansen and Richard, 1987). Our specification
of the SDF remains valid if conditioning information is incorporated through scaled factors and returns (see, for
example, Section 8.1 in Cochrane, 2005). We should note that, given the widely documented weak predictive ability
of conditioning variables for future returns, this approach could further exacerbate the spurious factor problem
discussed in this note.

3When Rt is a vector of payoffs with initial cost q 6= 0N , we just need to replace 1N with q. In addition, the
analysis in the note can be adapted to handle the case of excess returns with q = 0N .

4In the case of iid data, Newey and Smith (2004, footnote 2) and Antoine, Bonnal, and Renault (2007) establish
the equivalence of this CU-GMM estimator and the CU-GMM estimator based on the uncentered optimal weighting
matrix. This equivalency continues to hold for time series data when the weighting matrix is of general form.
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it is easy to see that E[Rtft,i] = µRµf,i and E[Rt] = µR are collinear and D has one degree of rank

deficiency.

To gain some intuition for the results to follow, consider the N × (K + 1) matrix H ≡ [1N , D]

and note that the asset-pricing model restriction Dλ = 1N can be rewritten as Hv = 0N , where

v = [1, −λ′]′. Hence, the specification test is essentially testing that matrix H is of reduced rank

since, if the asset-pricing model holds, the vector 1N is in the column space of the matrix D. This

implies that there exists a nonzero vector v that solves Hv = 0N . When the model is correctly

specified (Dλ = 1N ) and well identified (matrix D is of full column rank), v = [1, −λ′]′ and there

is a member of the null space of H for which the first entry of v is equal to, or can be normalized

to, one. However, there are also cases where H is of reduced rank but the first entry of v is zero.

For instance, when the model is misspecified (Dλ 6= 1N ) with a spurious factor (D is rank deficient

of degree one), the vector v that solves Hv = 0N is proportional to [0, −µf,K−1, 0′K−2, 1]′, where,

for convenience, the spurious factor is ordered last. Any attempt to normalize the first element of

v to one in a given sample when its population value is actually zero will be approximately offset

by making the rest of the coefficients large in magnitude. Despite these mathematical differences,

a test that is insensitive to the scaling of a vector in the null space will fail to make a meaningful

distinction in these two cases. In summary, the invariant J test cannot distinguish whether the

reduced rank of H arises because the vector 1N lies in the column space of D (correctly specified

model) or because the vector 1N is not in the column space of D but D is of reduced column rank

K − 1 (for example, a misspecified model with a spurious factor).

From this discussion, it proves useful to rewrite the objective function J (λ) ≡ T ē(λ)′V̂e(λ)−1ē(λ)

in (1) in a slightly different form. Let Ht = [1N , Dt], and V̂d and V̂h denote consistent estimators

of the long-run variance matrices Vd = limT→∞Var[T−
1
2
∑T

t=1 vec(Dt)] and Vh = limT→∞Var[T−
1
2∑T

t=1 vec(Ht)], respectively. Then, we have

et(λ) = (−v′ ⊗ IN )vec(Ht), (3)

V̂e(λ) = (−v′ ⊗ IN )V̂h(−v′ ⊗ IN )′ = (λ′ ⊗ IN )V̂d(λ⊗ IN ), (4)

and

J (λ) = T (D̂λ− 1N )′[(λ′ ⊗ IN )V̂d(λ⊗ IN )]−1(D̂λ− 1N ), (5)

where D̂ = 1
T

∑T
t=1Dt. The expression (5) for the CU-GMM objective function is convenient

because it requires a consistent estimator of Vd which is only a function of the data. We show below

that this form of the CU-GMM objective function is directly related to the objective function for

testing the reduced rank of a matrix.

For our main results, we impose the following assumption.
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Assumption 1. Assume that Yt is a jointly stationary and ergodic process with a finite fourth

moment and V is a positive-definite matrix. In addition, assume that V̂d
p→ Vd, where Vd is a

positive-definite matrix.

Assumption 1 provides primitive conditions for the central limit theorem approximation of the

product of returns and factors. It allows for general heteroskedasticity and serial correlation in the

covariance matrix Vd. This assumption is sufficient for bounding the asymptotic distribution of the

J test under possible underidentification. In order to obtain the explicit limiting distribution of

the J test when the null space of the model is more than one-dimensional, we impose some further

restrictions on the data and the model.

2.2 Asymptotic Distribution of the Specification Test

As mentioned above, the asset-pricing model restriction can be expressed as Hv = 0N , where

H = [1N , D] is of dimension N × (K + 1). In this section, we study the limiting behavior of

the model specification test when H is rank deficient of degree r (r = 1, 2, . . . ,K), where the

rank deficiency arises either because the asset-pricing restrictions are satisfied or D itself is rank

deficient, or both. In that sense, the limiting distribution of the specification test will depend only

on degree of rank deficiency r and not on whether the model is correctly specified or misspecified.

More specifically, suppose that the matrix H has a column rank K + 1− r (r = 1, 2, . . . ,K), that

is, there exist r distinct linear combinations of the columns of H that are equal to zero vectors.

Also, let P1 be an N × (N − 1) orthonormal matrix whose columns are orthogonal to 1N such that

P ′1P1 = IN−1 and

P1P
′
1 = IN − 1N (1′N1N )−11′N . (6)

Note that premultiplying by P ′1 removes the column of ones from the matrix H. Thus, performing

a rank test on the (N −1)×K matrix P ′1D provides a convenient way of testing for rank deficiency

of H. Under the null that P ′1D is of reduced rank K − 1, there exists a nonzero K-vector c such

that P ′1Dc = 0N−1 with the normalization c′c = 1.5 As a result, for the purpose of testing whether

the asset-pricing model is correctly specified, one could use the Cragg and Donald (1997) test6 of

H0 : rank(P ′1D) = K − 1, which can be rewritten as an invariant test of the form

CD = T min
c:c′c=1

(P ′1D̂c)
′[(c′ ⊗ P ′1)V̂d(c⊗ P1)]

−1(P ′1D̂c). (7)

5Solving P ′1Dc = 0N−1 requires some normalization since this condition only determines the direction of the
vector c (up to a sign) but not its length (Hillier, 1990). While various normalizations are possible, here we employ
the normalization c′c = 1. The unit norm also imposes compactness (see Hansen, 2012). The relationship between c
and λ is made explicit in the proof of Theorem 1 in the Appendix.

6See Cragg and Donald (1997), Robin and Smith (2000), and Kleibergen and Paap (2006) for a detailed analysis
of rank restriction tests.

4



Let r denote the dimension of the null space of H. We first establish the limiting behavior of

the J test for r ≥ 1 under the general conditions in Assumption 1. More specifically, The limiting

behavior of the J test is obtained under a general structure of the Vd matrix for which a consistent,

possibly heteroskedasticity and autocorrelation consistent (HAC), estimator is available.

Theorem 1: Suppose that the matrix H has a column rank K + 1 − r for an integer r ≥ 1, and

Assumption 1 holds. Then, the limiting behavior of the J test for correct model specification can

be characterized as follows: (a) when r = 1, J d→ χ2
N−K , and (b) when r ≥ 2, limT→∞ Pr[J ≤

a] ≥ Pr[xN−1 ≤ a], where xN−1 ∼ χ2
N−1.

Proof : See Appendix.

The result in Theorem 1 shows that the limiting behavior of the J test is determined entirely

by the dimension of the null space of H and not by whether the model is correctly specified or

misspecified. This observation is key in understanding the lack of power of the J test when the

model is misspecified. While the rank reduction in H in well-identified models arises only when

the asset-pricing restrictions are satisfied, the presence of spurious factors leads to a rank reduction

in H through a rank deficiency in D even when the asset-pricing restrictions do not hold. In the

latter case, the test will have difficulties rejecting the null of correct model specification even if the

degree of model misspecification is arbitrarily large. The proof of this result explores the numerical

equality between the J and CD tests which has important implications for testing the validity of the

asset-pricing model (see also Kleibergen and Mavroeidis, 2009, and Arellano, Hansen, and Sentana,

2012). Part (a) of Theorem 1 is concerned with the situation when the null space of H is one-

dimensional (r = 1) and the parameter vector c is uniquely identified, up to a sign. Part (a) embeds

two cases: (i) the model is correctly specified and identified, and (ii) the model is misspecified with

a spurious factor. In the first case, the asset-pricing restrictions hold (Dλ = 1N ) and 1N lies in

the column space of D so that matrix P ′1D is of reduced column rank with a one-dimensional null

space. The asymptotic result for this case, J = CD d→ χ2
N−K , is standard (Hansen, 1982; Hansen,

Heaton, and Yaron, 1996; Cragg and Donald, 1997).

In the second case, 1N is not in the column space of D (that is, Dλ 6= 1N ), but D is of reduced

column rank. Hence, P ′1D is of reduced rank and the null space is again one-dimensional. Because

D is rank deficient due to the presence of a spurious factor, we have rank(P ′1D) = K − 1 and

CD d→ χ2
N−K . From the numerical equality of the J and CD tests, we have that J d→ χ2

N−K

even when the model is misspecified and the J test does not exhibit power in rejecting the null

hypothesis of correct model specification.7

7There are other cases when D is rank deficient with similar consequences on the power of the J test. For
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When the null space of P ′1D is more than one-dimensional, there is a multiplicity of solutions to

P ′1Dc = 0N−1 and the model is underidentified (see Arellano, Hansen, and Sentana, 2012; Manresa,

Peñaranda, and Sentana, 2016). Part (b) in Theorem 1 establishes that the J test is asymptotically

bounded by the χ2
N−1 distribution. Since the set of solutions of c for r > 1 is multi-dimensional,

this underidentification implies that there are more degrees of freedom in selecting a vector c for

solving P ′1Dc = 0N−1. In this situation, the specification test will lack power when the model is

indeed misspecified and the rejection rates of the test will be bounded by the nominal size of the

χ2
N−1 distribution. In the context of asset-pricing models for equity returns, N is typically much

larger than K and the χ2
N−1 asymptotic bound is not substantially more conservative than the

asymptotic distribution in part (a) of Theorem 1.

Theorem 1 characterizes the limiting distribution of the J test under very general conditions

but provides only a conservative upper bound when r ≥ 2. Theorem 2 below presents the explicit

asymptotic distribution for this underidentified case, where the dimension of the null space of H

is r ≥ 2, at the cost of some more restrictive assumptions. To introduce these assumptions, let

Σ = VR − VRfV −1f VfR, β = VRfV
−1
f , α = µR − βµf , B = [α, β], and B̂ be the sample counterpart

of B.

Theorem 2: Suppose that the matrix H has a column rank K + 1 − r for an integer r ≥ 1 and

Assumption 1 holds. In addition, assume that
√
Tvec(B̂ − B)

d→ N (0NK , E[xtx
′
t]
−1 ⊗ Σ). Then,

we have

J d→ wr, (8)

where wr is the smallest eigenvalue of Wr ∼ Wr(N −K − 1 + r, Ir), and Wr(N −K − 1 + r, Ir)

denotes the Wishart distribution with N −K − 1 + r degrees of freedom and a scaling matrix Ir.

Furthermore, Pr[wr ≤ a] ≥ Pr[xN−K ≤ a], where xN−K ∼ χ2
N−K .

Proof : See Appendix.

Sufficient conditions for the high level assumption on vec(B̂) in the beta representation of the

model are contemporaneous conditional homoskedasticity and a martingale difference sequence

requirement for the projection error of returns on factors. Note that these conditions are only

sufficient and the result in Theorem 2 may continue to hold when more general features of the data

are allowed. For example, under the assumption that [f ′t , R
′
t]
′ are jointly elliptically distributed,

the returns Rt can exhibit conditional heteroskedasticity but Theorem 2 still holds (see the Online

Appendix). Also, Theorem 2 imposes lack of serial correlation on the projection errors but not on

example, the full-rank condition on D may also be violated when the model includes two factors that are noisy
versions of the same underlying factor.
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the data. In a more general context of a multi-period conditional linear factor model (Hansen and

Richard, 1987), the implied errors will have a zero conditional expectation under correct model

specification but not necessarily under model misspecification with spurious factors. Even in this

case, it may be better practice to impose the martingale structure (or approximate martingale

structure as in Hansen, 1985) on the error term. While this would render the weighting matrix

and the asymptotic limit in Theorem 2 invalid, our main point that model misspecification will be

difficult to detect in the presence of spurious factors remains intact. For full generality, however,

one should resort to the asymptotic bound result in Theorem 1.

The more restrictive conditions in Theorem 2 are imposed to ensure that the weighting matrix

in (7) has an approximate Kronecker structure.8 This allows us to express the objective function in

(7) as a ratio of quadratic forms and an eigenvalue problem, which gives rise to the Wishart limiting

distribution. As shown in part (a) of Theorem 1, the case r = 1, where the Wishart distribution

specializes to the χ2
N−K distribution, holds under general conditions but it is included in Theorem 2

for completeness. Theorem 2 also shows that the J test is asymptotically bounded by the χ2
N−K

distribution which is a sharper bound than the asymptotic bound in part (b) of Theorem 1. The

following figure plots the limiting distribution of the J test for r = 1, 2, and 3 when N −K = 7.

Figure 1 about here

The lack of power of the specification tests in underidentified models suggests that the decision

regarding the model specification should be augmented with additional diagnostics. For instance,

the tests developed by Arellano, Hansen, and Sentana (2012), Peñaranda and Sentana (2015), and

Manresa, Peñaranda, and Sentana (2016) can detect if the lack of rejection of the model specification

tests is genuine or is due to the presence of a spurious factor.

2.3 Simulation Results

In this section, we undertake a small Monte Carlo simulation experiment to evaluate the empirical

rejection rates of the specification test for the CU-GMM estimator. We consider four linear models:

(i) a model with a constant term and a useful factor, (ii) a model with a constant term and a spurious

factor, (iii) a model with a constant term, a useful, and a spurious factor, and (iv) a model with

a constant term, three useful, and two spurious factors. For each of the four specifications, we

consider separately the case of a correctly specified and a misspecified model. This allows us to

8See, for instance, Guggenberger, Kleibergen, Mavroeidis, and Chen (2012, p. 2655) for a discussion on the
importance of the Kronecker product assumption for this type of result.
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assess the properties of the specification test when the null space of H is of dimension r = 0, 1, 2,

and 3.

The returns on the test assets and the useful factors are drawn from a multivariate normal

distribution. In all simulation designs, the covariance matrix of the simulated test asset returns is set

equal to the sample covariance matrix from the 1959:2–2012:12 sample of monthly gross returns on

the 25 Fama-French size and book-to-market ranked portfolios. For misspecified models, the means

of the simulated returns are set equal to the means of the actual returns. For correctly specified

models, the means of the simulated returns are set such that the asset-pricing model restrictions are

satisfied. The means and variances of the simulated useful factors are calibrated to the sample means

and variances of the three Fama-French factors (see Fama and French, 1993).9 The covariances

between the useful factors and the returns are chosen based on the sample covariances estimated

from the data. The spurious factors are generated as standard normal random variables which are

independent of the returns and the useful factors. The time series sample size is T = 200, 600, and

1000, and all results are based on 100,000 Monte Carlo replications. We also report the limiting

rejection probabilities (denoted by T =∞) for the specification test based on our asymptotic results

in Theorem 2 since our simulation setup satisfies the assumptions of Theorem 2.

Table I presents the probabilities of rejection of the model specification test at the 10%, 5%,

and 1% nominal levels.

Table I about here

When the model contains only a useful factor (Panel A), the J test is correctly sized and

consistent under the alternative as T → ∞. Some size distortions occur for small T , but this is a

well documented finding and is mainly due to the relatively large number of test assets used in our

simulations.

Consistent with our theoretical results, the empirical rejection probabilities of the specification

test are less than the nominal size when the model is correctly specified but it contains one or more

spurious factors. In addition, the specification test does not exhibit any power in the presence of a

spurious factor and the empirical rejection probabilities approach the nominal size under the alter-

native of a misspecified model (last three columns of Panels B and C). As a result, when a spurious

factor is included in the model, the researcher will erroneously conclude (with probability one minus

the nominal size of the test) that the model is correctly specified even when the misspecification of

the model is arbitrarily large. Finally, the last three columns of Panel D show that, when r = 2,

9When the model contains only one useful factor, the mean and variance of the simulated useful factor is calibrated
to the sample mean and variance of the value-weighted market excess return from Fama and French (1993).
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the power of the CU-GMM test under the alternative of a misspecified model is below the size

of the test that uses critical values from the standard chi-squared approximation. These spurious

results should serve as a warning signal in applied work where many macroeconomic factors are

only weakly correlated with the returns on the test assets.

3 Concluding Remarks

In this note, we establish the limiting properties of the CU-GMM specification test of asset-pricing

models, and show that the inference based on this test can be misleading when spurious factors

are present. It is important to stress that this is not an isolated problem limited to a particular

sample, test assets, and asset-pricing models.

While the results in this note are developed in the context of linear factor models, we conjec-

ture that similar results characterize the limiting behavior of specification tests in a more general

setup. For example, Cragg and Donald (1996) establish the inconsistency of the Anderson-Rubin

test for overidentifying restrictions in underidentified linear instrumental variable models while

Dovonon and Renault (2013) derive the asymptotic distribution of the specification test under lack

of first-order identification. Furthermore, Guggenberger, Kleibergen, Mavroeidis, and Chen (2012)

characterize the asymptotic behavior of the upper bound of the subset Anderson-Rubin statistic in

linear instrumental variables regression models with potentially weak identification. Extending the

results to the class of generalized empirical likelihood estimators (Newey and Smith, 2004) is also

a promising direction for future research.

Appendix: Proofs

A.1 Proof of Theorem 1

We start by showing the numerical equality between the J and CD tests. Note that this is an

algebraic equality and does not depend on statistical assumptions. Let P = [1N/
√
N, P1], where

P1 is the orthonormal matrix defined in the text. Then, we can write

J (λ) = T (D̂λ− 1N )′[(λ′ ⊗ IN )V̂d(λ⊗ IN )]−1(D̂λ− 1N )

= T (D̂λ− 1N )′P (P ′V̂e(λ)P )−1P ′(D̂λ− 1N )

= T

[
1′N (D̂λ−1N )√

N

P ′1D̂λ

]′  1′N V̂e(λ)1N
N

1′N V̂e(λ)P1√
N

P ′1V̂e(λ)1N√
N

P ′1V̂e(λ)P1

−1 [ 1′N (D̂λ−1N )√
N

P ′1D̂λ

]
. (A.1)
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Denote the matrix in the middle as

A ≡

 1′N V̂e(λ)1N
N

1′N V̂e(λ)P1√
N

P ′1V̂e(λ)1N√
N

P ′1V̂e(λ)P1

 =

[
A11 A12

A21 A22

]
. (A.2)

Using the following formula for the inverse of a partitioned matrix

A−1 =

[
0 0′N−1

0N−1 A−122

]
+

1

A11 −A12A
−1
22 A21

[
−1

A−122 A21

][
−1

A−122 A21

]′
, (A.3)

we obtain

J (λ) = CD(λ) +
T

N(A11 −A12A
−1
22 A21)

[1′N V̂e(λ)P1(P
′
1V̂e(λ)P1)

−1P ′1D̂λ− 1′N (D̂λ− 1N )]2, (A.4)

where CD(λ) = Tλ′D̂′P1[(λ
′ ⊗ P ′1)V̂d(λ⊗ P1)]

−1P ′1D̂λ.

Note first that

N(A11 −A12A
−1
22 A21) = 1′N V̂e(λ)1N − 1′N V̂e(λ)P1(P

′
1V̂e(λ)P1)

−1P ′1V̂e(λ)1N =

= 1′N V̂e(λ)[1N − P1(P
′
1V̂e(λ)P1)

−1P ′1V̂e(λ)1N ]

= 1′N V̂e(λ)V̂e(λ)−
1
2 [IN − V̂e(λ)

1
2P1(P

′
1V̂e(λ)P1)

−1P ′1V̂e(λ)
1
2 ]V̂e(λ)

1
2 1N

= 1′N V̂e(λ)V̂e(λ)−
1
2 [V̂e(λ)−

1
2 1N (1′N V̂e(λ)−11N )−11′N V̂e(λ)−

1
2 ]V̂e(λ)

1
2 1N

=
N2

1′N V̂e(λ)−11N
. (A.5)

Similarly, rearranging the term in the square brackets gives

1′N V̂e(λ)P1(P
′
1V̂e(λ)P1)

−1P ′1D̂λ− 1′ND̂λ+N

= −[1N − P1(P
′
1V̂e(ĉ)P1)

−1P ′1V̂e(ĉ)1N ]′D̂λ+N

= −
N1′N V̂e(λ)−1(D̂λ− 1N )

1′N V̂e(λ)−11N
. (A.6)

Thus,

T

N(A11 −A12A
−1
22 A21)

[1′N V̂e(λ)P1(P
′
1V̂e(λ)P1)

−1P ′1D̂λ−1′N (D̂λ−1N )]2 =
T (1′N V̂e(λ)−1(D̂λ− 1N ))2

1′N V̂e(λ)−11N
.

(A.7)

For the numerical equality of the J and CD tests, we need to show that 1′N V̂e(λ)−1(D̂λ− 1N ) = 0

when evaluated at the minimizer of J (λ), λ̂. The first-order conditions for the CU-GMM estimator

are given by (see Antoine, Bonnal, and Renault, 2007)10[
T∑
t=1

πt

(
∂et(λ̂)

∂λ′

)′]
V̂e(λ̂)−1ē(λ̂) ≡ D̂′πV̂e(λ̂)−1(D̂λ̂− 1N ) = 0K , (A.8)

10Note that V̂e(λ)−1(D̂λ− 1N ) is, up to a sign, the vector of Lagrange multipliers associated with the N moment
conditions (Antoine, Bonnal, and Renault, 2007).
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where the weights πt =
(

1− ē(λ̂)′V̂e(λ̂)−1
[
et(λ̂)− ē(λ̂)

])
/T induce the moment conditions to be

exactly satisfied,
∑T

t=1
πtet(λ̂) = 0N . Since this forces the vector 1N to be in the column span

of D̂π, it follows that 1′N V̂e(λ̂)−1(D̂λ̂ − 1N ) = 0. Note that the CD test is invariant to scaling

and normalizations of the parameter vector so that minλCD(λ) = minc:c′c=1CD(c) ≡ CD and

minλJ (λ) ≡ J = CD.11 Since under the null H0 : rank(P ′1D) = K − 1 we have CD d→ χ2
N−K

(Cragg and Donald, 1997), it immediately follows by J = CD that J d→ χ2
N−K . This completes

the proof of part (a).

For part (b), consider the more general case when the true dimension of the null space of H is

r ≥ 1. Let c∗ denote the parameter vector under the null H0 : rank(P ′1D) = K − 1 that solves

P ′1Dc∗ = 0N−1. Note that this restriction can hold for both correctly specified and misspecified

models when r ≥ 1. Furthermore, a non-zero vector c∗ that solves P ′1Dc∗ = 0N−1 always exists

although the set of solutions for c∗ is r-dimensional. This is not the case for the parameter vector

λ for which λ∗ that solves Dλ∗ − 1N = 0N cannot be defined when the model is misspecified

and it contains spurious factors. Since ĉ is the minimizer of minc:c′c=1CD(c) ≡ CD, we have that

CD(c∗) ≥ CD. Also, from Stock and Wright (2000), we have CD(c∗)
d→ χ2

N−1. Then, it follows that

the test J = CD is asymptotically bounded by the χ2
N−1 distribution when r ≥ 2. This completes

the proof of part (b).

A.2 Proof of Theorem 2

First, we will rewrite the CD test in an asymptotically equivalent but simpler form. Let X be a

T ×K matrix with a typical row x′t and note that

B̂ = D̂

(
X ′X

T

)−1
, (A.9)

Then, using that
√
Tvec(B̂ −B)

d→ N (0NK , E[xtx
′
t]
−1 ⊗ Σ) (A.10)

and the delta method, we have

√
Tvec(D̂ −D)

d→ N
(
0NK , E[xtx

′
t]⊗ Σ + (IK ⊗B)Vx(IK ⊗B′)

)
, (A.11)

where Vx is the asymptotic variance of
√
Tvec ((X ′X)/T − E[xtx

′
t]).

12 Therefore, for any nonzero

vector c, we have

√
T (P ′1D̂c− P ′1Dc)

d→ N
(
0N−1, c

′E[xtx
′
t]cP

′
1ΣP1 + (c′ ⊗ P ′1B)Vx(c⊗B′P1)

)
. (A.12)

11If we let λ̂ = âĉ, the constant â that solves 1′N [â2V̂e(ĉ)]−1(D̂âĉ− 1N ) = 0 is given by â =
1′N V̂e(ĉ)

−11N

1′
N

V̂e(ĉ)−1D̂ĉ
.

12Note that Vx is singular because xt has one as its first element.

11



Hence under the assumptions of Theorem 2, we can consistently estimate (c′⊗P ′1)Vd(c⊗P1) using

A(c) = A1(c) +A2(c), where A1(c) = c′(X ′X/T )cP ′1Σ̂P1 and A2(c) = (c′⊗P ′1B̂)V̂x(c⊗ B̂′P1), with

Σ̂ and V̂x being consistent estimators of Σ and Vx, respectively. When P ′1D has a reduced rank, we

have

J = CD = T min
c:c′c=1

(P ′1D̂c)
′[(c′ ⊗ P ′1)V̂d(c⊗ P1)]

−1(P ′1D̂c) = JA + op(1), (A.13)

where

JA = T min
c:c′c=1

(P ′1D̂c)
′A(c)−1(P ′1D̂c). (A.14)

Next, we will show that

JA = T min
c:c′c=1

(P ′1D̂c)
′A1(c)

−1(P ′1D̂c) + op(1). (A.15)

Let ĉ be the optimal c in (A.14) and note that ĉ is Op(1) since ĉ′ĉ = 1 by the adopted normalization.

Since A2(c) is a positive-definite matrix, it follows that A(c)−1 � A1(c)
−1 and

T (P ′1D̂ĉ)
′A(ĉ)−1(P ′1D̂ĉ) ≤ T min

c:c′c=1
(P ′1D̂c)

′A1(c)
−1(P ′1D̂c) ≤ T (P ′1D̂ĉ)

′A1(ĉ)
−1(P ′1D̂ĉ). (A.16)

Then, in order to establish the result in (A.15), it is sufficient to show that

T (P ′1D̂ĉ)
′A(ĉ)−1(P ′1D̂ĉ) = T (P ′1D̂ĉ)

′A1(ĉ)
−1(P ′1D̂ĉ) + op(1). (A.17)

Using that

A1(ĉ)
−1 = A(ĉ)−1 +A(ĉ)−1A2(ĉ)[A2(ĉ)−A2(ĉ)A(ĉ)−1A2(ĉ)]

−1A2(ĉ)A(ĉ)−1, (A.18)

where [A2(ĉ)−A2(ĉ)A(ĉ)−1A2(ĉ)]
−1 is a positive-definite matrix, we obtain

T (P ′1D̂ĉ)
′A1(ĉ)

−1(P ′1D̂ĉ) = T (P ′1D̂ĉ)
′A(ĉ)−1(P ′1D̂ĉ)

+
√
T (P ′1D̂ĉ)

′A(ĉ)−1A2(ĉ)[A2(ĉ)−A2(ĉ)A(ĉ)−1A2(ĉ)]
−1A2(ĉ)A(ĉ)−1

√
T (P ′1D̂ĉ). (A.19)

Since A(ĉ), A2(ĉ), and [A2(ĉ)−A2(ĉ)A(ĉ)−1A2(ĉ)]
−1 are Op(1), it suffices to show that

A2(ĉ)A(ĉ)−1
√
TP ′1D̂ĉ = op(1). (A.20)

From the first-order conditions of (A.14), we have

√
T (P ′1D̂ĉ)

′A(ĉ)−1P ′1D̂ −
1√
T

[
√
T (P ′1D̂ĉ)

′A(ĉ)−1B(ĉ)⊗
√
T (P ′1D̂ĉ)

′A(ĉ)−1][IK ⊗ vec(IN−1)] = 0′K ,

(A.21)

where B(ĉ) = (ĉ′ ⊗ IN−1)[(X ′X/T )⊗P ′1Σ̂P1 + (IK ⊗P ′1B̂)V̂x(IK ⊗ B̂′P1)]. In deriving the limiting

distribution below, we show that the middle term in (A.16), T minc:c′c=1(P
′
1D̂c)

′A1(c)
−1(P ′1D̂c), is

12



Op(1). The first inequality in (A.16) then implies that a quadratic form in
√
T (P ′1D̂ĉ)

′A(ĉ)−
1
2 is

bounded by an Op(1) random variable. Since B(ĉ) and A(ĉ) are Op(1), then

1√
T

[
√
T (P ′1D̂ĉ)

′A(ĉ)−1B(ĉ)⊗
√
T (P ′1D̂ĉ)

′A(ĉ)−1][IK ⊗ vec(IN−1)] = op(1) (A.22)

and

D̂′P1A(ĉ)−1
√
TP ′1D̂ĉ = op(1). (A.23)

Furthermore, substituting for D̂ = B̂(X ′X/T ) and pre-multiplying both sides by the Op(1) matrix

(X ′X/T )−1, we obtain

B̂′P1A(ĉ)−1
√
TP ′1D̂ĉ = op(1). (A.24)

Finally, substituting for A2(ĉ), we have

A2(ĉ)A(ĉ)−1
√
TP ′1D̂ĉ = (ĉ′ ⊗ P ′1B̂)V̂x(ĉ⊗ B̂′P1A(ĉ)−1

√
TP ′1D̂ĉ) = op(1), (A.25)

where the last equality follows from (A.24). Thus,

T (P ′1D̂ĉ)
′A(ĉ)−1(P ′1D̂ĉ) = T (P ′1D̂ĉ)

′A1(ĉ)
−1(P ′1D̂ĉ) + op(1) (A.26)

and

J = T min
c:c′c=1

c′D̂′P1(P
′
1Σ̂P1)

−1P ′1D̂c

c′(X ′X/T )c
+ op(1)

= T min
c̃:c̃′c̃=1

c̃′B̂′P1(P
′
1Σ̂P1)

−1P ′1B̂c̃

c̃′[(X ′X/T )−1]c̃
+ op(1), (A.27)

where c̃ is proportional to (X ′X/T )c. Using (A.27) and the invariance property of the estimator,

it then follows that the J test is asymptotically distributed as T times the smallest eigenvalue of

(Anderson, 1951; Sargan, 1958)

Ω̃ = (X ′X/T )B̂′P1(P
′
1Σ̂P1)

−1P ′1B̂. (A.28)

Let Lf be a lower triangular matrix such that LfL
′
f = Vf and define

L =

[
1 0′K−1
µf Lf

]
. (A.29)

Using that (X ′X)/T
p→ LL′ and Σ̂

p→ Σ, the J test has the same distribution as the smallest

eigenvalue of

W = TL′B̂′P1(P
′
1ΣP1)

−1P ′1B̂L. (A.30)

Define Z = (P ′1ΣP1)
− 1

2P ′1B̂L and M = (P ′1ΣP1)
− 1

2P ′1BL. We have

√
Tvec(Z −M)

d→ N (0(N−1)K , I(N−1)K). (A.31)
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Since P ′1BL has rank K−r, there exists a K×r orthonormal matrix C1 such that MC1 = 0(N−1)×r.

Let C = [C1, C2] be a K ×K orthonormal matrix, and define Z̃ = [Z̃1, Z̃2] = [ZC1, ZC2]. Using

(A.10) and MC1 = 0(N−1)×r, we have

√
T

[
vec(Z̃1)

vec(Z̃2 −M2)

]
d→ N

([
0(N−1)r

0(N−1)(K−r)

]
,

[
I(N−1)r 0(N−1)r×(N−1)(K−r)

0(N−1)(K−r)×(N−1)r I(N−1)(K−r)

])
,

(A.32)

where M2 = MC2 and all columns of M2 are nonzero vectors. From the fact that W = T (Z ′Z)

and W̃ = T (Z̃ ′Z̃) share the same eigenvalues, it is sufficient to obtain the limiting distribution of

the smallest eigenvalue of W̃ which is equal to the reciprocal of the largest eigenvalue of

W̃−1 =

[
W̃ 11 W̃ 12

W̃ 21 W̃ 22

]
. (A.33)

Using the formula for the inverse of a partitioned matrix, we have

W̃ 11 =
(√

TZ̃ ′1[IN−1 − Z̃2(Z̃
′
2Z̃2)

−1Z̃ ′2]
√
TZ̃1

)−1 d→Wr(N −K − 1 + r, Ir)
−1, (A.34)

W̃ 12 = −W̃ 11Z̃ ′1Z̃2(Z̃
′
2Z̃2)

−1 = Op(T
− 1

2 ), (A.35)

W̃ 22 = (TZ̃ ′2Z̃2)
−1 + (Z̃ ′2Z̃2)

−1(Z̃ ′2Z̃1)W̃
11(Z̃ ′1Z̃2)(Z̃

′
2Z̃2)

−1 = Op(T
−1), (A.36)

where Wr(N − K − 1 + r, Ir) denotes the Wishart distribution with N − K − 1 + r degrees of

freedom and a scaling matrix Ir. Therefore, the limiting distribution of the largest eigenvalue

of W̃−1 is the same as the limiting distribution of the largest eigenvalue of W̃ 11. Equivalently,

the smallest eigenvalue of T Ω̃ has the same limiting distribution as wr, the smallest eigenvalue of

Wr ∼ Wr(N −K − 1 + r, Ir), where Wr denotes the limit of the inverse of W̃ 11.

We now show that Pr[wr ≤ a] ≥ Pr[xN−K ≤ a], where xN−K ∼ χ2
N−K . When r = 1,

J d→ w1 ∼ χ2
N−K . When r ≥ 2, by the Bartlett decomposition of a Wishart matrix, we can write

Wr =

 Wr−1 W
1
2
r−1z

z′W
1
2
r−1 xN−K + z′z

 , (A.37)

where Wr−1 ∼ Wr−1(N −K − 2 + r, Ir−1), z ∼ N (0r−1, Ir−1), and they are independent of each

other and xN−K . Using the fact that the eigenvalues of Wr are the same as the reciprocal of the

eigenvalues of W−1r , it follows that

wr = min
ω:ω′ω=1

ω′Wrω =

(
max

ω:ω′ω=1
ω′W−1r ω

)−1
≤ ([0′r−1, 1]W−1r [0′r−1, 1]′)−1 = xN−K ∼ χ2

N−K .

(A.38)

This completes the proof.
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Table I
Rejection Rates of the Specification Test

The table presents the rejection rates of Hansen, Heaton, and Yaron’s (1996) test for overidentifying restric-
tions (J ) under correctly specified and misspecified models. The results are reported for different levels of
significance (10%, 5%, and 1%) and for different values of the number of time series observations (T ) using
100,000 simulations, assuming that the returns are generated from a multivariate normal distribution with
means and covariance matrix calibrated to the 25 size and book-to-market Fama-French portfolio returns
for the period 1959:2–2012:12. The J test statistic is compared with the critical values from a χ2

N−K distri-
bution. The rejection rates for the limiting case (T =∞) in Panels B, C, and D are based on the results in
Theorem 2.

Size Power

T 10% 5% 1% 10% 5% 1%

Panel A: Model with 1 Useful Factor Only

200 0.211 0.128 0.040 0.900 0.831 0.636
600 0.134 0.073 0.018 1.000 1.000 0.999
1000 0.121 0.065 0.014 1.000 1.000 1.000
∞ 0.100 0.050 0.010 1.000 1.000 1.000

Panel B: Model with 1 Spurious Factor Only

200 0.022 0.007 0.000 0.127 0.060 0.010
600 0.008 0.002 0.000 0.114 0.057 0.011
1000 0.007 0.002 0.000 0.108 0.054 0.011
∞ 0.005 0.001 0.000 0.100 0.050 0.010

Panel C: Model with 1 Useful and 1 Spurious Factor

200 0.017 0.005 0.000 0.102 0.044 0.006
600 0.008 0.002 0.000 0.109 0.055 0.010
1000 0.007 0.002 0.000 0.108 0.054 0.010
∞ 0.005 0.001 0.000 0.100 0.050 0.010

Panel D: Model with 3 Useful and 2 Spurious Factors

200 0.000 0.000 0.000 0.003 0.000 0.000
600 0.000 0.000 0.000 0.005 0.001 0.000
1000 0.000 0.000 0.000 0.006 0.001 0.000
∞ 0.000 0.000 0.000 0.006 0.001 0.000
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Figure 1. Limiting Distribution of the Specification Test J . The figure plots the asymptotic
distributions of J presented in Theorem 2 for r = 1, 2, and 3 (for N −K = 7).
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