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Abstract

The paper discusses the moments of Wishart matrices, in both the central
and noncentral cases. The first part of the paper shows that the expectation
map has certain homogeneity and equivariance properties which impose con-
siderable structure on the moments, hitherto unrecognised. The second part
of the paper explains how the moments may be computed efficiently. The two
parts of the paper are completely independent, but the computations produce
precisely the algebraic structure predicted in the first part, as well as repro-
ducing all previously known formulae. A number of examples are given for the
more manageable cases.

JEL Classification: C01, C08

Preface

It is a great pleasure to contribute to this special issue in honour of Professor
A. L. Nagar. Nagar’s contributions to finite sample econometrics, in particular to
inference in simultaneous equations models, were extensive, and important. Many of
the procedures he worked on involved functions of either a single noncentral Wishart
matrix (e.g., TSLS, OLS estimators), or a noncentral Wishart and an independent
central Wishart matrix (e.g., LIML and k-class estimators). So it is quite appropriate
that our contribution should focus on that particular family of distributions - albeit
on a rather different problem than those usually met in econometrics.

1 Introduction

Let xi, i = 1, . . . , n be independent Nm(µi,Σ) vectors, with possibly different means
but common covariance matrix Σ. Let X = [x1, . . . , xn]′. If the µi are not all zero,
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then the matrix W = X ′X has a non-central Wishart distribution with n degrees of
freedom, covariance matrix Σ and matrix of noncentrality parameters Ω = Σ−1M ′M ,
where M = E[X] (Muirhead (1982, Section 10.3)).1 When M = 0, then W has a
central Wishart distribution. In this paper, we investigate the matrix-valued moments
of W

Ψk(Σ,Λ) = E[W k], k = 1, 2 . . . , (1)

where Λ = M ′M .
It is easy to see that the expectation of tr(W k) exists, so the Ψk(Σ,Λ) certainly

exist for all positive semi-definite Σ and Λ. Obviously, too, Ψk(Σ,Λ) must be symmet-
ric and positive semi-definite (because W k is). However, there are deeper properties
of the expectation map that provide considerable information about the structure
of Ψk(Σ,Λ), and it is these properties that we explain first. Both the central and
noncentral Wishart distributions have many applications, in statistics (Bayesian and
frequentist), in econometrics (in both finite-sample and asymptotic distribution the-
ory), and in many other disciplines. Properties of the distributions, including of
course its moments, are therefore of wide interest. This is the motivation for the
present paper, as it has been for a considerable literature on the problem. The ex-
tensive bibliography to the paper by Di Nardo (2014) provides excellent coverage of
the literature up to 2014.

For k = 1 the result is well-known, and straightforward to derive from the defini-
tion of W since E[xix

′
i] = Σ + µiµ

′
i, i = 1, . . . , n:

Ψ1(Σ,Λ) = nΣ + Λ. (2)

For the central case results were given for k = 2, 3, 4 in Gupta and Nagar (1999),
and Letac and Massam (2004) provide methods that can be used for any k. For the
noncentral case the result is known for k = 2 (see Magnus and Neudecker (1979) and
Neudecker and Wansbeek (1987)). However, for the noncentral case, general results
are not known, and are far from straightforward.

This paper is in two parts. In the first part we point out that the expectation op-
erator has certain important homogeneity and invariance properties. These provide,
by themselves, considerable insight into the structure of the moments as functions of
Σ in the central case, and of (Σ,Λ) in the noncentral case. We start with the central
case, and then develop the more complex analogous argument for the noncentral case.
These are qualitative results, so in the second part of the paper we explain how the
terms in the expansions can be efficiently computed. It must be emphasised that the
computational method in no way imposes the algebraic structure discussed in the first
part of the paper on the formulae obtained, but it does produce results that confirm
its validity completely. The expressions for the moments of course become rapidly
unmanageable as k increases, but details for a number of the manageable low-order
moments are given, here for the first time. We denote byO(m) the group of real m×m

1We do not require n ≥ m, and W can be singular.
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orthogonal matrices, and denote that a non-increasing sequence κ = (κ1, κ2, . . .) of
non-negative integers is a partition of k, i.e.,

∑m
i=1 κi = k, by κ ` k.

2 General structure: central case

In general, if Pm is the space of positive semi-definite m×m symmetric matrices, it is
clear that for each k ≥ 1 the expectation operator E[W k] maps Pm into itself: Σ :→
Ψk(Σ). Two properties of the map Ψk(Σ) are immediate from the density:

Proposition 1 (i) The function Ψk(Σ) is equivariant under the conjugate action of
O(m) :

Ψk(HΣH ′) = HΨk(Σ)H ′, H ∈ O(m). (3)

And, (ii) for any t > 0,
Ψk(tΣ) = tkΨk(Σ), (4)

so Ψk(Σ) is homogeneous of degree k in Σ.

Proof. (i) We let X̃ = XH. When M = 0, W = X ′X has a central Wishart distri-
bution with covariance matrix Σ and W̃ = X̃ ′X̃ = H ′WH has a central Wishart dis-
tribution with a covariance matrix HΣH ′, and Ψk(HΣH ′) = E[W̃ k] = E[HW kH ′] =
HΨk(Σ)H ′. (ii) In this case, we set X̃ =

√
tX, then W̃ = X̃ ′X̃ is a central Wishart

with a covariance matrix tΣ, and Ψk(tΣ) = E[W̃ k] = E[tkW k] = tkΨk(Σ).
Now, the subset of Pm consisting of those matrices that are equivariant under

O(m) and homogeneous of degree k consists of those matrices of the form

Ψk(Σ) =
k∑
r=1

ck−r(Σ)Σr, (5)

where the scalar coefficients ck−r(Σ) are homogeneous of degree k − r, and invariant
under Σ → HΣH ′, H ∈ O(m). See, for instance, Procesi (1976) (where the equiv-
ariants under the group action are called “concomitants”), or the argument in Letac
and Massam (2004).2

For r = k, c0 is of degree 0, i.e., a constant independent of Σ. For r < k the
coefficients may, because they are homogeneous symmetric polynomials, be written
as linear combinations of the power-sum symmetric functions indexed by partitions
of k − r :

pλ(Σ) =

`(λ)∏
i=1

pλi(Σ), λ ` k − r, (6)

2It is easy to see that the expression given for Ψk(Σ) has the required properties. Showing that
any matrix in Pm having these properties can be written in this form is a more subtle argument,
but is classical.
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where pi(Σ) = tr(Σi) and `(λ) stands for the number of nonzero parts in λ. That is,
for certain numerical coefficients cλ, where λ ` k − r, ck−r(Σ) may be written as

ck−r(Σ) =
∑
λ`k−r

cλpλ(Σ). (7)

Thus, we may write

Ψk(Σ) = c0Σk +
k−1∑
r=1

Σr

[ ∑
λ`k−r

cλpλ(Σ)

]
. (8)

Any other basis for the set of homogeneous invariant polynomials could also be used.
These properties of Ψk(Σ) are evident in the results obtained in the literature for
some small values of k (e.g., those reported in Gupta and Nagar (1999), p.99, or the
formulae given in Letac and Massam (2004)). The problem therefore reduces to that
of finding the coefficients cλ in this expression for the expectation: the cλ are the only
terms in the expansion (8) that are unknown. For k = 2, 3, 4, 5, we obtain, by the
methods described below, the following values for the cλ :

k = 2 k = 3 k = 4 k = 5
c0 n(n + 1) n(n2 + 3n + 4) n(n3 + 6n2 + 21n + 20) n(n4 + 10n3 + 65n2 + 160n + 148)
c(1) n 2n(n + 1) 3n(n2 + 3n + 4) 4n(n3 + 6n2 + 21n + 20)
c(2) - n(n + 1) n(2n2 + 5n + 5) 3n(n3 + 5n2 + 14n + 12)
c(11) - n 3n(n + 1) 6n(n2 + 3n + 4)
c(3) - - n(n2 + 3n + 4) 2n(n3 + 5n2 + 14n + 12)
c(21) - - 3n(n + 1) 4n(2n2 + 5n + 5)
c(111) - - n 4n(n + 1)
c(4) - - - n(n3 + 6n2 + 21n + 20)
c(31) - - - 4n(n2 + 3n + 4)
c(22) - - - n(2n2 + 5n + 5)
c(211) - - - 6n(n + 1)
c(1111) - - - n

Table 1: Coefficients in the expansion of E[W k] for k = 2, . . . , 5.

These coefficients agree with the expressions reported by Gupta and Nagar (1999)
for k = 2, 3, but both their formula for the case k = 4, and that given in its source,
de Waal and Nel (1973), are incorrect. The results reported for k = 4 agree with
those given by Letac and Massam (2004), equation (46). Evidently the coefficients
are polynomials in n, and there is clearly a great deal of structure here that we have
yet to understand.
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Remark 1 The coefficients cλ in the expansion do not depend on the matrix dimen-
sion m. Considering the case m = 1, therefore, we just have the k-th moment of
w ∼ σ2χ2

n, namely:

E[wk] = (2σ2)k
(n

2

)
k
. (9)

Writing out equation (8) for m = 1, on the other hand, we have

E[wk] = (σ2)k
k∑
r=1

∑
λ`k−r

cλ. (10)

We therefore have, for any k, and any m, the identity

k∑
r=1

∑
λ`k−r

cλ = 2k
(n

2

)
k
. (11)

This identity is exactly true in the above table, and there are evidently other properties
of the cλ that we have yet to unearth.

It should be emphasised again that the computational procedure described below
does not impose the structure in equation (8) on the result, but, as expected, repro-
duces it precisely. We give the more general analogous results for the noncentral case
next.

3 General structure: noncentral case

In the noncentral case the expectation operator defines a map Ψk(Σ,Λ) from Pm×Pm
to the set of m × m symmetric matrices. It is obvious again that the expectation
Ψk(Σ,Λ) must be a positive semi-definite symmetric matrix, so the analogue of Propo-
sition 1 is the following:

Proposition 2 The map Ψk(Σ,Λ) = E[W k] defined on Pm × Pm has the following
properties: (i) Ψk(Σ,Λ) is positive semi-definite symmetric, so the map is Pm ×
Pm 7−→ Pm; (ii) Ψk(Σ,Λ) is equivariant under the simultaneous action of O(m):
Σ→ HΣH ′, Λ→ HΛH ′, H ∈ O(m), i.e., for all H ∈ O(m),

Ψk(HΣH ′, HΛH ′) = HΨk(Σ,Λ)H ′, (12)

and (iii) Ψk(Σ,Λ) is homogeneous of degree k in (Σ,Λ), i.e., Ψk(tΣ, tΛ) = tkΨk(Σ,Λ).

The proof of (ii) and (iii) is identical to that of Proposition 1, and is left to the reader.
The fact that Ψk(Σ,Λ) must be positive semi-definite symmetric (with probability 1),
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i.e., Ψk(Σ,Λ) ∈ Pm follows directly from the fact that W k has that property almost
surely.3

We are therefore concerned with the set of symmetric, homogeneous 2-matrix
polynomials that are invariant under the simultaneous transformations Σ→ HΣH ′,
Λ → HΛH ′, H ∈ O(m). For each r = 1, . . . , k, there are 2r monomials in the two
matrices of degree r. Each such product has the required equivariance property, and
there are Σk

r=12r = 2(2k−1) monomials in total. Let a(r) = (a1, . . . , ar) be a sequence
of length r in which each term is either 0 or 1, the order of terms being important.
The monomials of degree r in (Σ,Λ) may be written as

Qa(r)(Σ,Λ) =
r∏
i=1

ΣaiΛ1−ai . (13)

Matrices of the form
k∑
r=1

∑
a(r)

ca(r)(Σ,Λ)Qa(r)(Σ,Λ), (14)

in which the coefficients ca(r)(Σ,Λ) are homogeneous of degree k−r, and are invariant
under the simultaneous transformations Σ → HΣH ′, Λ → HΛH ′, H ∈ O(m), have
the required invariance and homogeneity properties, and any homogeneous equivari-
ant polynomial in (Σ,Λ) can be written in this form.

Now, this observation implies that E[W k] has an expansion in which the terms are
a smaller set of matrices, namely, sums of the matrices in the equivalence class defined
by constancy of the trace function. That is, the coefficients ca(r)(Σ,Λ) in equation (14)
may be assumed constant on all sequences a(r) for which tr(Qa(r)(Σ,Λ)) is constant.
The argument, briefly, is as follows: taking the trace of the matrix (14) produces
an expansion in which the terms are the sums of all monomials with a common
trace. It follows by linearity that, for every nonsingular matrix A, E[tr(AW k)] has an
expansion of this form, and this implies that E[W k] itself has such an expansion. See,
for instance, the proof of Theorem 2.1 in Procesi (1976). We call this set of matrices
a basis for the expectation Ψk(Σ,Λ).

Example 1 r=4. In this case there are 24 = 16 monomials, but the basis consists of
the following 6 matrices (defined by the value of tr(·)):

tr(Σ4) : Σ4

tr(Λ4) : Λ4

tr(Σ3Λ) : Σ3Λ + ΛΣ3 + Σ2ΛΣ + ΣΛΣ2

tr(Σ2Λ2) : Σ2Λ2 + ΣΛ2Σ + ΛΣ2Λ + Λ2Σ2

tr(ΣΛΣΛ) : ΣΛΣΛ + ΛΣΛΣ
tr(ΣΛ3) : ΣΛ3 + Λ3Σ + ΛΣΛ2 + Λ2ΣΛ

3When Σ is positive definite, then Ψk(Σ,Λ) is also positive definite.
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Now, to examine this basis further, we make the following observations:

1. The terms in a sum with constant trace necessarily have the same number of
matrices of each type. That is, Σr

i=1ai = s is constant (and Σr
i=1(1−ai) = r−s)

on the terms in a sum, for s = 0, 1, . . . , r. We shall say that a term with s Σs
and (r− s) Λs is of type (sΣ, (r− s)Λ), for s = 0, 1, . . . , r. Note that for r = 4,
there are two possible traces of type (2Σ, 2Λ), but in all other cases there is one
possible trace of a given type.

2. The trace function defines an equivalence relation on the set of (non-commutative)
matrix-monomials Qa(r)(Σ,Λ). The basis elements are sums over the orbits de-
fined by tr(·), i.e., invariants under the group operation that leaves tr(·) fixed.
For arbitrary m×m matrices the orbit representatives for the equivalence classes
defined by tr(·) are called necklaces; the terms in the orbit are generated from a
single term of type (sΣ, (r− s)Λ) by cyclic permutation of its members. This is
the only subgroup of the symmetric group Sr that leaves the trace invariant for
general m×m matrices. However, our matrices Σ and Λ are both symmetric,
so the trace of a product is also invariant under transposition of the product,
which implies invariance under reflections as well. The orbit representatives
for our problem are therefore two-color bracelets, the terms in an orbit being
generated by cyclic permutations and reflections, i.e., by the action of the di-
hedral group Dr. The basis matrices defined by this equivalence are necessarily
symmetric, because invariant under reflections.4

It follows from these observations that Ψk(Σ,Λ) can be written in the form

Ψk(Σ,Λ) =
k∑
r=1

r∑
s=0

∑
π∈B(s,r−s)

cπ(Σ,Λ)Bπ(Σ,Λ), (15)

where B(s, r− s) is the set of two-color bracelets of type (sΣ, (r− s)Λ), and Bπ(Σ,Λ)
is the sum of the terms in the orbit indexed by π. That is,

Bπ(Σ,Λ) =
∑

a(r):tr(Qa(r)(Σ,Λ))=tr(Qπ(Σ,Λ))

Qa(r)(Σ,Λ) (16)

Here we denote different two-color bracelets by the subscript π, which can be re-
garded again as a string of zeros and ones, a particular sequence a(r) identifying
an orbit representative. Following convention, we define the two-color bracelet π as
the lexicographically smallest element of a(r) among the set that produces the same
tr(Qa(r)(Σ,Λ)). In the example above for r = 4 there is just a single bracelet for
s = 0, 1, 3, 4, but two bracelets for s = 2, a total of 6. Denoting by B(r, 2) the
number of two-color bracelets of length r we have:

4Thus, Ψk(Σ,Λ) is a linear combination of symmetric matrices, and is therefore itself symmetric.
There is no need to impose symmetry as a separate condition.
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r 1 2 3 4 5 6 7 8 9 10

B(r, 2) 2 3 4 6 8 13 18 30 46 78∑r
i=1B(i, 2) 2 5 9 15 23 36 54 84 130 208

Table 2: Numbers of two-color bracelets of length r = 1, . . . , 10.

The bottom row of the table gives the cumulative sum of the numbers of 2-color
bracelets. So, for instance, for k = 8 there are a total of 84 bracelets (i.e., terms
in the sum (15)), considerably less than the number of monomials in (14), which is
29 − 2 = 510.

Turning now to the coefficients of the various orbit-sums Bπ(Σ,Λ), for r = k the
coefficients of all Bπ(Σ,Λ) are of degree zero, i.e., constants independent of (Σ,Λ).
Thus, we may write

Ψk(Σ,Λ) =
k∑
s=0

∑
π∈B(s,k−s)

cπBπ(Σ,Λ) +
k−1∑
r=1

r∑
s=0

∑
π∈B(s,r−s)

cπ(Σ,Λ)Bπ(Σ,Λ), (17)

where the cπ in the first term are numerical constants. For r < k the coefficients
cπ(Σ,Λ) in the second term are homogeneous polynomials in (Σ,Λ) of degree k − r,
invariant under the simultaneous transformations Σ → HΣH ′, Λ → HΛH ′, H ∈
O(m). We can therefore write

cπ(Σ,Λ) =
∑

l1+l2=k−r

cl1,l2π (Σ,Λ), (18)

the notation here indicating that the coefficient is of degree l1 in Σ, and l2 in Λ.
Now, we can express the coefficient cl1,l2π (Σ,Λ) in terms of any basis for the space

of polynomials of degree l1 in Σ, l2 in Λ, with l1 + l2 = k − r, invariant under the
simultaneous transformations Σ → HΣH ′, Λ → HΛH ′, H ∈ O(m). Davis (1980)
discusses two bases for the space of polynomials with these properties — his invariant
polynomials with two symmetric matrix arguments, Cα,λ

φ (Σ,Λ), where α ` l1, λ ` l2,
and φ ` l1 + l2, and a set of trace-polynomials — generalizations of the power-sum
basis in the case of a single matrix. These are products of terms like[

tr
(
Σa1Λb1Σc1 · · ·

)]r1 [
tr
(
Σa2Λb2Σc2 · · ·

)]r2 · · · (19)

of total degrees l1, l2 in Σ, Λ respectively (only distinct terms appearing in the basis).
For instance, for (l1, l2) = (2, 1) the distinct elements are given by the vector

P 2,1(Σ,Λ) = [tr(Σ2Λ), tr(Σ2)tr(Λ), tr(ΣΛ)tr(Σ), tr(Σ)2tr(Λ)]′, (20)
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where we use P l1,l2(Σ,Λ) to denote the vector of distinct products of traces of degrees
l1 in Σ and l2 in Λ.5 We shall express our results in terms of the latter basis, because
it is a natural generalization of the power-sum basis in the central case. Since the
coefficients cl1,l2π (Σ,Λ) can be written as linear combinations of elements in the basis
vector P l1,l2(Σ,Λ), we can write them in the form

cl1,l2π (Σ,Λ) =

|P l1,l2 |∑
i=1

cl1,l2π,i P
l1,l2
i (Σ,Λ), (21)

where |P l1,l2| denotes the number of elements in P l1,l2(Σ,Λ). That is,

cπ(Σ,Λ) =
∑

l1+l2=k−r

|P l1,l2 |∑
i=1

cl1,l2π,i P
l1,l2
i (Σ,Λ). (22)

As in the central case, the only unknowns in the problem are the coefficients cl1,l2π,i and
these turn out again to be just polynomials in n. In the examples below we report not
the numerical coefficients cl1,l2π,i (because that would require a complicated diversion

into the question of indexing the trace-polynomials in the vectors P l1,l2(Σ,Λ)), but
just the coefficients cπ(Σ,Λ) in equation (17).

We end this section with examples of these expansions for k = 1, . . . , 4. We have
already noted the result for E[W ], and the following tables give the explicit expressions
for E[W k] for k = 2, 3, 4. These expansions were obtained by the algorithm to be
discussed in the next section. In the tables, we provide the terms in the expansion of
E[W k] and use the notation (X) for tr(X).

r Bπ(Σ,Λ) cπ(Σ,Λ)
1 Σ n(Σ) + (Λ)

Λ (Σ)
2 Σ2 n(n+ 1)

ΣΛ + ΛΣ n+ 1
Λ2 1

Table 3a: Expansion of E[W 2]. There are 6 monomials, but 5 bracelets in the
expansion.

5We have developed a computer program to generate the vector P l1,l2(Σ,Λ) for arbitrary degrees
(l1, l2).
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r Bπ(Σ,Λ) cπ(Σ,Λ)
1 Σ n(Σ)2 + (n+ 1)[n(Σ2) + 2(ΣΛ)] + 2(Σ)(Λ) + (Λ2)

Λ (Σ)2 + (n+ 1)(Σ2) + (ΣΛ)
2 Σ2 2(n+ 1)[n(Σ) + (Λ)]

ΣΛ + ΛΣ 2(n+ 1)(Σ) + (Λ)
Λ2 2(Σ)

3 Σ3 n(n2 + 3n+ 4)
Σ2Λ + ΣΛΣ + ΛΣ2 n2 + 3n+ 4
ΣΛ2 + ΛΣΛ + Λ2Σ n+ 2
Λ3 1

Table 3b: Expansion of E[W 3]. There are 14 monomials, but 9 bracelets in the
expansion.

r Bπ(Σ,Λ) cπ(Σ,Λ)
1 Σ n(Σ)3 + 3n(n+ 1)(Σ)(Σ2) + 6(n+ 1)(Σ)(ΣΛ)

+ (n2 + 3n+ 4)[n(Σ3) + 3(Σ2Λ)]
+ 3(n+ 1)(Λ)(Σ2) + 3(Σ)2(Λ) + 3(n+ 2)(ΣΛ2)
+ 3(Λ)(ΣΛ) + 3(Σ)(Λ2) + (Λ3)

Λ (Σ)3 + 3(n+ 1)(Σ)(Σ2) + (n2 + 3n+ 4)(Σ3)
+ 3(Σ)(ΣΛ) + 2(n+ 2)(Σ2Λ) + (Λ)(Σ2) + (ΣΛ2)

2 Σ2 3n(n+ 1)(Σ)2 + (2n2 + 5n+ 5)[n(Σ2) + 2(ΣΛ)]
+ 6(n+ 1)(Σ)(Λ) + (2n+ 3)(Λ2) + (Λ)2

ΣΛ + ΛΣ 3(n+ 1)(Σ)2 + (2n2 + 5n+ 5)(Σ2)
+ (3n+ 5)(ΣΛ) + 3(Σ)(Λ) + (Λ2)

Λ2 3(Σ)2 + (2n+ 3)(Σ2) + 2(ΣΛ)
3 Σ3 3(n2 + 3n+ 4)[n(Σ) + (Λ)]

Σ2Λ + ΣΛΣ + ΛΣ2 3(n2 + 3n+ 4)(Σ) + 2(n+ 2)(Λ)
ΣΛ2 + ΛΣΛ + Λ2Σ 3(n+ 2)(Σ) + (Λ)
Λ3 3(Σ)

4 Σ4 n(n3 + 6n2 + 21n+ 20)
Σ3Λ + Σ2ΛΣ + ΣΛΣ2 + ΛΣ3 n3 + 6n2 + 21n+ 20
Σ2Λ2 + ΣΛ2Σ + ΛΣ2Λ + Λ2Σ2 n2 + 5n+ 12
ΣΛΣΛ + ΛΣΛΣ n2 + 5n+ 10
ΣΛ3 + ΛΣΛ2 + Λ2ΣΛ + Λ3Σ n+ 3
Λ4 1

Table 3c: Expansion of E[W 4]. There are 30 monomials, but 15 bracelets in the
expansion.
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4 Computation

There remains the problem of how to compute the terms in the expansions given in
equations (8) and (17). An ideal method would produce just the numerical coefficients
in the expansions, since the other terms – both matrix and scalar polynomials in
(Σ,Λ) – are known. Even better would be recursive relations for the coefficients,
which seems a distinct possibility in view of the results given above. However, at
the time of writing this is not possible, and the method we use produces the entire
expansion. The required coefficients are extracted from this. It must be emphasised
that this computation, although formidable, need only be done once for each k.

4.1 An expression for W k

The starting point is to recognize that the (i, j) element of W k can be written as a sum
of products of k quadratic forms in normal random vectors. To see this, we let ei be
an n-vector of zeros except its i-th element is equal to one, and let X = [x1, . . . , xn]′.
Defining Aij = In ⊗ (eie

′
j + eje

′
i)/2 and x = vec(X ′), we can write the (i, j) element

of W as

Wij = e′iWej = tr(eje
′
iX
′X) = vec(X ′)′vec(eje

′
iX
′) = x′(In ⊗ eje′i)x = x′Aijx. (23)

Note that x ∼ Nmn(µ, In ⊗ Σ), where µ = vec(M ′) and M = E[X].

The (i, j) element of W k may be written as

(W k)ij =
m∑

r1=1

m∑
r2=1

· · ·
m∑

rk−1=1

Wi,r1Wr1,r2 · · ·Wrk−1,j, (24)

so is simply a sum of mk−1 products of k quadratic forms in x. This is the basis of our
computational method. Since W is symmetric, there are only h = m(m+1)/2 unique
elements in W . We will label the elements on and below the main diagonal of W as
follows: q1 = W11, q2 = W21, . . . , qm = Wm1, qm+1 = W22, qm+2 = W32, . . . , qh =
Wmm. The terms in equation (24) are products of the type

qκ ≡ qκ11 q
κ2
2 · · · q

κh
h ,

where the κ = (κ1, . . . , κh) are sequences of non-negative integers of length h with
|κ| =

∑h
i=1 κi = k (i.e., weak compositions of k with h parts). Equivalently, they are

products of the type qi1qi2 · · · qik with each ij an integer from (1, . . . , h), repetitions
allowed. Therefore, in order to evaluate (W k)ij using (24), we first need to evaluate
expectations of the type

E[qκ] ≡ E[qκ11 q
κ2
2 · · · q

κh
h ], |κ| = k. (25)
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We will first describe a direct and efficient method for numerical evaluation of
E[(W k)ij]. However, at the time of writing this approach does not seem to be adapt-
able to produce the symbolic expansion discussed in previous sections. We therefore,
in the following subsection, present an algorithm that produces the complete expan-
sion for Ψk(Σ,Λ) given in equation (15). This allows us – at least in principle – to
obtain explicit expressions for the coefficients cπ(Σ,Λ) in the expansion of E[W k] for
arbitrary k, as we have seen in Tables 3a–3c for k = 2, 3, 4.

4.2 Numerical evaluation of E[W k]

There are a number of existing methods for computing the expectation of a product
of k quadratic forms in normal random variables (see, for example, Kan (2008), or
Bao and Ullah (2010)). Since we need to compute E[qκ] for all |κ| = k, the most
efficient method is probably due to Hillier, Kan, and Wang (2014), in which they
present a super-short recursive algorithm for computing E[qκ]. However, the matrix
Aij in the quadratic form representation of Wij is potentially a very large matrix
(mn×mn), so applying their algorithm (as well as other algorithms) directly would be
computationally expensive. In the following Proposition, we adapt the algorithm for
computing E[qκ] in Hillier, Kan, and Wang (2014) to take advantage of the Kronecker
structure of the Aij. The proof of the following Proposition is given in the Appendix.

Proposition 3 Let qi = x′(In⊗Bi)x, i = 1, . . . , h, where x ∼ Nmn(vec(M ′), In⊗Σ),
and Bi, i = 1, . . . , h being m×m symmetric matrices. Define

dκ =
E[qκ]

2kκ1! · · ·κh!
. (26)

Then dκ can be obtained by using

dκ =
1

2k

[
ntr(Gκ) + tr(HκΛ̃)

]
, (27)

where Λ̃ = Σ−
1
2M ′MΣ−

1
2 , and Gκ and Hκ are two m × m matrices which can be

obtained recursively using

Gκ =
∑

1≤i≤h,
κi>0

B̃i

[
dκ(i)Im +Gκ(i)

]
, (28)

Hκ = Gκ +
∑

1≤i≤h,
κi>0

B̃iHκ(i) , (29)

with the boundary conditions of d0 = 1, G0 = H0 = 0m×m. In the above expressions,
κ(i) = (κ1, . . . , κi−1, κi − 1, κi+1, . . . , κh) and B̃i = Σ

1
2BiΣ

1
2 .

12



Two remarks on Proposition 3 are in order. The first is that the computational
time of E[qκ] depends on m but not n, which is a significant improvement over
existing algorithms for computing E[qκ]. The second is that this efficient algorithm
for computing E[qκ] also allows us to compute the expectations of more complicated
functions of W . For example, we can also compute E[WC1WC2 . . .WCk] for arbitrary
matrices C1 to Ck, or E[

∏r
i=1 tr(W i)κi ], where κ1 + 2κ2 . . . + rκr = k, because they

can all be written as the expectation of a sum of products of elements of W . An
example of the computation described in Proposition 3 for the case k = 2 is provided
in Appendix B.

The approach based on Proposition 3 is suitable for computing E[W k] numerically
when m is small. However, when m is large, there will be many quadratic forms
involved. In addition, we need to sum mk−1 terms E[qκ], and when k is large this
would also be computationally expensive. As a result, if one would like to compute
E[W k] numerically for large m, it is much more efficient to use the expansion for
E[W k]. That is, the coefficients cπ(Σ,Λ) in equation (17) are crucial, and we take up
the task of computing them in the next subsection.

4.3 Analytical expression for E[W k]

For qi = x′(In ⊗ Bi)x, i = 1, . . . , h, where x ∼ Nmn(µ, In ⊗ Σ) and µ = vec(M ′), we
can obtain an analytical (i.e., symbolic) expression for the expectation of a product
of k of the qi, say E[q1q2 . . . qk]. Such an expression can be obtained, for example, by
using the recursion given in Theorem 1 of Bao and Ullah (2010). The terms in this
expression can be written as a sum of various products of the quantities τ i1,...,ir and
θi1,...,is , which are defined by

τ i1,...,ir = tr((In ⊗Bi1)(In ⊗ Σ) · · · (In ⊗Bir)(In ⊗ Σ))

= ntr(Bi1ΣBi2Σ · · ·BirΣ), (30)

θi1,...,is = µ′(In ⊗Bi1)(In ⊗ Σ) · · · (In ⊗ Σ)(In ⊗Bis)µ

= tr(Bi1ΣBi2Σ · · ·ΣBisΛ), (31)

with Λ = M ′M . As an example, the following expansions are obtained:

E[q1q2] = 4θ1,2 + 2τ 1,2 + τ 1τ 2 + τ 1θ2 + τ 2θ1 + θ1θ2, (32)

E[q1q2q3] = τ 1τ 2τ 3 + 2(τ 1τ 2,3 + τ 2τ 1,3 + τ 3τ 1,2) + 8τ 1,2,3

+ (τ 1τ 2θ3 + τ 1τ 3θ2 + τ 2τ 3θ1) + 2(τ 1,2θ3 + τ 1,3θ2 + τ 2,3θ1)

+ 4(τ 1θ2,3 + τ 2θ1,3 + τ 3θ1,2) + (τ 1θ2θ3 + τ 2θ1θ3 + τ 3θ1θ2)

+ θ1θ2θ3 + 4(θ1θ2,3 + θ2θ1,3 + θ3θ1,2) + 8(θ1,2,3 + θ1,3,2 + θ2,1,3). (33)

The first step in our algorithm (for given k) is to generate an expansion like this
for each term in equation (24). Note that in each term, each of the subscripts on
the qi (an integer from (1, . . . , h)) appears exactly once in the subscripts of τ and θ.
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The expansion consists of all terms that can be constructed with this property. In
applying this Theorem to our case we have, as described earlier, Wij = x′(In⊗Bij)x,
where Bij = (eie

′
j + eje

′
i)/2. Since Wij and the corresponding Bij are indexed by

subscript-pairs (i, j), we modify the notation for the θ′s and τ ′s as follows:

τ (i1,j1),...,(ir,jr) = ntr(Bi1,j1ΣBi2,j2Σ · · ·Bir,jrΣ), (34)

θ(i1,j1),...,(is,js) = tr(Bi1,j1ΣBi2,j2Σ · · ·Bis,jsΛ). (35)

Before we describe the general algorithm, it is instructive to see how this algorithm
is obtained by working through the steps for the case k = 2. For k = 2, we use (32)
to obtain

E[(W 2)ij] =
m∑

r1=1

E[Wi,r1Wr1,j]

=
m∑

r1=1

[4θ(i,r1),(r1,j) + 2τ (i,r1),(r1,j) + τ (i,r1)τ (r1,j)

+ τ (i,r1)θ(r1,j) + τ (r1,j)θ(i,r1) + θ(i,r1)θ(r1,j)], (36)

Writing Σ = {σij} and Λ = {λij}, the terms that appear in these expressions can be
written in terms of the σij ’s and λij’s. For the example we have:

θ(i,r1),(r1,j) = tr

((
eie
′
r1

+ er1e
′
i

2

)
Σ

(
er1e

′
j + eje

′
r1

2

)
Λ

)
=

1

4
(σr1,r1λi,j + σr1,jλr1,i + σi,r1λj,r1 + σi,jλr1,r1), (37)

τ (i,r1),(r1,j) = ntr

((
eie
′
r1

+ er1e
′
i

2

)
Σ

(
er1e

′
j + eje

′
r1

2

)
Σ

)
=
n

4
(σr1,r1σi,j + σr1,jσr1,i + σi,r1σj,r1 + σi,jσr1,r1)

=
n

2
(σr1,r1σi,j + σi,r1σr1,j), (38)

τ (i,r1) = ntr

((
eie
′
r1

+ er1e
′
i

2

)
Σ

)
= nσi,r1 , (39)

τ (r1,j) = ntr

((
er1e

′
j + eje

′
r1

2

)
Σ

)
= nσj,r1 ,

θ(i,r1) = tr

((
eie
′
r1

+ er1e
′
i

2

)
Λ

)
= λi,r1 , (40)

θ(r1,j) = tr

((
er1e

′
j + eje

′
r1

2

)
Λ

)
= λj,r1 . (41)

Putting these terms together, we obtain

E[(W 2)ij] =
m∑

r1=1

(σr1,r1λij + σr1,jλr1,i + σi,r1λj,r1 + σijλr1,r1)
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+ n
m∑

r1=1

(σr1,r1σij + σi,r1σr1,j)

+ n2

m∑
r1=1

σi,r1σr1,j + n
m∑

r1=1

(σi,r1λr1,j + λi,r1σr1,j) +
m∑

r1=1

λi,r1λr1,j

= tr(Σ)λij + e′i(ΛΣ + ΣΛ)ej + tr(Λ)σij + ntr(Σ)σij + ne′iΣ
2ej

+ n2e′iΣ
2ej + ne′i(ΣΛ + ΛΣ)ej + e′iΛ

2ej. (42)

It follows that

E[W 2] = tr(Σ)Λ + (ΛΣ + ΣΛ) + tr(Λ)Σ + ntr(Σ)Σ + nΣ2

+ n2Σ2 + n(ΣΛ + ΛΣ) + Λ2

= tr(Σ)Λ + (n+ 1)(ΣΛ + ΛΣ) + [ntr(Σ) + tr(Λ)]Σ + n(n+ 1)Σ2 + Λ2. (43)

Picking out the coefficients in the above expression, we obtain the cπ(Σ,Λ) as reported
in Table 3a.

For general k, we need an algorithm to automate the above process. We first
need an explicit expression for the expectation of a product of k quadratic forms
qi1qi2 · · · qik , and have developed a computer program for generating the terms in this
expression for arbitrary k. This program is a modified version of the recursion given
in Theorem 1 of Bao and Ullah (2010). Each term is a product of various τ ’s and θ’s,
with each integer in the set {i1, i2, · · · , ik} appearing exactly once in the subscripts.

We next need to express these τ ’s and θ’s in terms of the elements of Σ and
Λ, and then sum over the k − 1 ri’s. To do so we proceed as follows: for the
term indexed by (i, r1, r2, . . . rk−1, j) in equation (24), we represent this by a 2k-
tuple (0, 1, 1, 2, 2, . . . , k − 1, k − 1, k), where 0 stands for i, 1 stands for r1, . . . , k − 1
stands for rk−1, and k stands for j. We then break the 2k-tuple into disjoint subsets,
where the number of subsets is determined by the number of elements (τ ’s and θ’s)
in that term, and membership of each subset is based on the subscripts of the τ and
θ terms. We illustrate this with an example.

Example 2 When k = 4, one of the terms in the expansion of E[q1q2q3q4] is 8τ 14θ23.
Since there are two terms in this product, we will have two subsets, one corresponding
to τ 14 and the other corresponding to θ23. The first subset corresponds to the first and
fourth pairs in the sequence (01122334) and it is (0134), the second subset corresponds
to the second and third pairs in the sequence and it is (1223). Therefore, for the term
8τ 14θ23, we break (01122334) into (0134)(1223). Then, since the corresponding τ and
θ are the traces of products, we can cycle the first element to the last in each subset,
which then gives (1340)(2231). For a term that involves τs there will be a factor n
attached for each occurrence of τ , and for the terms that involve θ, we adopt the
convention that the last pair corresponds to λ. Based on this convention, the term
(1340)(2231) will produce

8nσr1,r3σj,iσr2,r2λr3,r1 = 8nσi,jσr1,r3λr3,r1σr2,r2 .
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After summing each ri from 1 to m, i = 1, 2, 3, a term of this type will contribute

8ne′iΣejtr(ΣΛ)tr(Σ)

to the overall expectation.

For the general case, the result of summing over each ri, i = 1, . . . , k − 1, can be
obtained by constructing cycles from the k pairs of numbers in the final sequence.
We start with the pair that has an element of 0. If the other element in that pair is
k, then we are done with constructing the first cycle. If not, then we use the value of
the other element in the first pair to find the other pair that has the same element.
There is exactly one, since, except for 0 and k, all other elements appear twice in the
sequence. If the pair has k in it, then we are done. If not, we continue the process
by using the other element in the pair to locate the next pair. We keep this process
going on until we come to a pair that has k in it. From this first cycle, we identify
the (i, j) element of a matrix which is a product of Σ and Λ, which corresponds to
the pairs in the cycle (each pair is either an element of Σ or Λ). After the first cycle
is identified, we search the smallest index in the remaining pairs and continue to find
another cycle that ends with the same index. The second and subsequent cycles give
us the trace terms.

In the above example the first cycle comes from the second pair, (40), and con-
tributes an element of Σ. The second cycle starts with 1 and ends with 1, which
consists of the first and fourth pairs in the sequence. As the first pair is an element
of Σ and the fourth pair is an element of Λ, we obtain tr(ΣΛ) from the second cycle.
Finally, the last cycle starts with 2 and ends with 2, which is obtained by using the
third pair in the sequence and this cycle gives us tr(Σ).

By going through the above process, we create a typical term in E[(W k)ij]. How-
ever, the matrices in the product of k quadratic forms involve terms like (eie

′
r1

+
er1e

′
i)/2, (er1e

′
r2

+ er2e
′
r1

)/2 and so on. Therefore, to generate all terms in the ex-
pectation, we need to include not just the sequence (0, 1, 1, 2, 2, . . . , k − 1, k − 1, k),
but also all sequences that can be obtained from it by interchanging the elements in
each of the k pairs, resulting in altogether 2k sequences. We repeat the same exercise
as above and divide the sum of all the terms by 2k. In the example for k = 4, we
need to consider also (01122343), (01123234) all the way to (10213243), resulting in
16 sequences. With each sequence, we repeat the same process and sum the results
across the 16 sequences, then divide the sum by 16.

We can therefore summarize our algorithm for obtaining the symbolic expansion
of E[W k] as follows:

1. Using the program mentioned above, generate an expression for the expected
value of each product of k quadratic forms that occurs in equation (24) in terms
of τ ’s and θ’s.
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2. For each term in the explicit expression, break the 2k-tuple (0, 1, 1, 2, 2, . . . , k−
1, k − 1, k) into a number of subsequences, depending on how many elements
(τ ’s and θ’s) are in each term. The length of each subsequence is twice the
number of subscripts in τ or θ, and the pairs in the subsequence are indicated
by the subscripts of τ ’s and θ’s.

3. For each subsequence, move the first element to the last, group them into pairs.
Each pair represents an element in Σ with the exception that the last pair for
each θ actually represents an element in Λ. Multiply the product by n for each
occurrence of τ .

4. Take this product of elements of Σ and Λ and construct cycles from their indices.
The cycle that begins with 0 and ends with k represents a matrix. The other
cycles represent traces.

5. Take the original 2k-tuple, consider altogether 2k possible combinations of
reshuffling the elements in each pair, and repeat the exercise. Add all the
terms up and divide the final answer by 2k.

To make the above steps a little easier to follow, we work out the first four steps
for the case of k = 2 in the following table, which corresponds to the 2k-tuple of
(0, 1, 1, 2).

1 Coefficient 4 2 1 1 1 1
Term θ1,2 τ 1,2 τ 1τ 2 τ 1θ2 τ 2θ1 θ1θ2

2 Coefficient 4 2 1 1 1 1
Term (0,1,1,2) (0,1,1,2) (0,1)(1,2) (0,1)(1,2) (1,2)(0,1) (0,1)(1,2)

3 Coefficient 4 2n n2 n n 1
Term (1,1,2,0) (1,1,2,0) (1,0)(2,1) (1,0)(2,1) (2,1)(1,0) (1,0)(2,1)
Cycle (0,2)(1,1) (0,2)(1,1) (0,1,1,2) (0,1,1,2) (0,1,1,2) (0,1,1,2)

4 Coefficient 4 2n n2 n n 1
Term (Σ)Λ (Σ)Σ Σ2 ΣΛ ΛΣ Λ2

Table 4: Steps to obtain E[W 2].

It follows that for the first 2k-tuple of (0, 1, 1, 2), the sum of the six terms is

4(Σ)Λ + 2n(Σ)Σ + n2Σ2 + nΣΛ + nΛΣ + Λ2.

For the other three 2k-tuples, the corresponding expression is

(1, 0, 1, 2) : 4ΣΛ + 2nΣ2 + n2Σ2 + nΣΛ + nΛΣ + Λ2

(0, 1, 2, 1) : 4ΛΣ + 2nΣ2 + n2Σ2 + nΣΛ + nΛΣ + Λ2
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(1, 0, 2, 1) : 4(Λ)Σ + 2n(Σ)Σ + n2Σ2 + nΣΛ + nΛΣ + Λ2

Adding these four expressions together and dividing the sum by four, we obtain the
results in Table 3a:

E[W 2] = (Σ)Λ + (Λ)Σ + ΣΛ + ΛΣ + n(Σ)Σ + nΣ2 + n2Σ2 + nΣΛ + nΛΣ + Λ2

= (Σ)Λ + [(Λ) + n(Σ)]Σ + n(n+ 1)Σ2 + (n+ 1)(ΣΛ + ΛΣ) + Λ2. (44)

We have implemented this algorithm and computed the cπ(Σ,Λ) for E[W k] for k ≤ 10.
The coefficients as well as the Matlab programs are available upon request. For
k > 10, the program can still handle it but will take a very long time to run because
the expression for the expectation of a product of k quadratic forms already has
63,673,506 distinct terms when k = 10, and it goes up to 835,724,952 distinct terms
when k = 11. Therefore, for k > 10, the current method is not practical and a
method for determining cπ(Σ,Λ) in a recursive way would be preferable.6

5 Concluding Comments

By exploiting the homogeneity and group-theoretic properties of the mapping defin-
ing the moments of both a central and a noncentral Wishart matrix, and invoking
some classical results on matrix invariants, we have shown that the expressions for
the moments of a Wishart matrix have a well-defined structure. This structure is
reasonably simple to describe, even in the noncentral case, but it is challenging to
compute because the dimension of the problem increases rapidly with the degree, k,
of the moment of interest. Nevertheless, we have been able to construct a program
to compute the full expansions that, at least in principle, is valid for any k.

The structure results do, however, highlight the fact that the only unknowns in the
expressions for the moments are certain purely numerical coefficients – polynomials in
the degrees of freedom, n. It would be highly desirable that the computations could
be focused purely on those, perhaps being based on an at-present unknown recursive
scheme. At the time of writing our understanding of these coefficients is not sufficient
to permit this, and work continues on that challenge.

6Kuriki and Numata (2010, Theorem 1) presents an explicit expression for the expectation of a
product of elements from a noncentral Wishart matrix. Their results can also be used to obtain
E[W k]. However, their expression requires adding up a lot of terms even when k is modestly large.
For example, when k = 10, their expression has 23,758,664,096 terms and it is less efficient to use
than our method.
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APPENDIX A: Proof of Proposition 3

Let Z = XΣ−
1
2 , and z = vec(Z ′) = (In ⊗ Σ−

1
2 )x. We can then write

qi = x′(In ⊗Bi)x = z′(In ⊗ B̃i)z, (45)

where B̃i = Σ
1
2BiΣ

1
2 . It is easy to see that z ∼ Nmn(µ̃, Imn), where µ̃ = vec(Σ−

1
2M ′).

Hillier, Kan, and Wang (2014) provided a recursive algorithm for computing

dκ =
E[qκ]

2kκ1! · · ·κh!
. (46)

Specifically, they show that

dκ =
1

2k

[
tr(G̃κ) + µ̃′hκ

]
, (47)

where

G̃κ =
∑

1≤i≤h,
κi>0

(In ⊗ B̃i)
[
dκ(i)Inm + G̃κ(i)

]
, (48)

hκ = G̃κµ̃+
∑

1≤i≤h,
κi>0

(In ⊗ B̃i)hκ(i) , (49)

with the boundary conditions of d0 = 1, G̃0 = 0nm×nm and h0 = 0nm. Given the
Kronecker structure of the matrices in the quadratic forms in z, we can write

G̃κ = In ⊗Gκ. (50)

and Gκ can be obtained recursively using

Gκ =
∑

1≤i≤h,
κi>0

B̃i

[
dκ(i)Im +Gκ(i)

]
. (51)

Using the fact that

tr(HκΛ̃) = tr(HκΣ
− 1

2M ′MΣ−
1
2 )

= vec(Σ−
1
2M ′)′(In ⊗Hκ)vec(Σ−

1
2M ′)

= µ̃′(In ⊗Hκ)µ̃, (52)

we can define hκ = (In ⊗Hκ)µ̃ and obtain a recurrence relation for Hκ using

Hκ = Gκ +
∑

1≤i≤h,
κi>0

B̃iHκ(i) . (53)

Finally, using Gκ and Hκ, dκ can be obtained by using

dκ =
1

2k

[
ntr(Gκ) + tr(HκΛ̃)

]
. (54)

This completes the proof.
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APPENDIX B: Example for Proposition 3

To illustrate how Proposition 3 works, we consider an example of obtaining E[W 2] for
m = 2. For this case, W has 3 unique elements: q1 = W11, q2 = W21 and q3 = W22.
The unique elements of W 2 are

e′1W
2e1 =

2∑
r1=1

W1,r1Wr1,1 = q2
1 + q2

2, (55)

e′1W
2e2 =

2∑
r1=1

W1,r1Wr1,2 = q1q2 + q2q3, (56)

e′2W
2e2 =

2∑
r1=1

W2,r1Wr1,2 = q2
2 + q2

3. (57)

Proposition 3 can then be applied to obtain E[q2
1], E[q2

2], E[q2
3], E[q1q2], and E[q2q3].

To avoid repetition, we only work out E[q2
1] and E[q1q2] because the calculations of

the other terms are similar, and they can also be obtained by symmetry.
In order to compute E[q2

1] and E[q1q2], we use Proposition 3 to first obtain d(2,0) =
E[q2

1]/8 and d(1,1) = E[q1q2]/4, where

d(2,0) =
ntr(G(2,0)) + tr(H(2,0)Λ̃)

4
, (58)

d(1,1) =
ntr(G(1,1)) + tr(H(1,1)Λ̃)

4
. (59)

Using the fact that B1 = e1e
′
1 and B2 = (e1e

′
2 +e2e

′
1)/2, we can now use Proposition 3

to recursively obtain G(2,0), G(1,1), H(2,0), and H(1,1):

G(1,0) = B̃1d(0,0)I2 = Σ
1
2 e1e

′
1Σ

1
2 , (60)

H(1,0) = G(1,0), (61)

d(1,0) =
1

2
[ntr(G(1,0)) + tr(H(1,0)Λ̃)] =

ne′1Σe1 + e′1Λe1

2
, (62)

G(0,1) = B̃2d(0,0)I2 =
Σ

1
2 (e1e

′
2 + e2e

′
1)Σ

1
2

2
, (63)

H(0,1) = G(0,1), (64)

d(0,1) =
1

2
[ntr(G(0,1)) + tr(H(0,1)Λ̃)] =

ne′1Σe2 + e′1Λe2

2
, (65)

G(2,0) = B̃1[d(1,0)I2 +G(1,0)] = (d(1,0) + e′1Σe1)Σ
1
2 e1e

′
1Σ

1
2 , (66)

H(2,0) = G(2,0) + B̃1H(1,0) = G(2,0) + Σ
1
2 e1e

′
1Σ

1
2G(1,0) (67)

G(1,1) = B̃1[d(0,1)I2 +G(0,1)] + B̃2[d(1,0)I2 +G(1,0)]

20



= d(0,1)Σ
1
2 e1e

′
1Σ

1
2 +

e′1Σe1Σ
1
2 e1e

′
2Σ

1
2 + e′1Σe2Σ

1
2 e1e

′
1Σ

1
2

2

+ d(1,0)Σ
1
2

(e1e
′
2 + e2e

′
1)

2
Σ

1
2 +

e′1Σe2Σ
1
2 e1e

′
1Σ

1
2 + e′1Σe1Σ

1
2 e2e

′
1Σ

1
2

2
, (68)

H(1,1) = G(1,1) + B̃1H(0,1) + B̃2H(1,0) = G(1,1) + B̃1G(0,1) + B̃2G(1,0). (69)

It follows that

E[q2
1] = 2ntr(G(2,0)) + 2tr(H(2,0)Λ̃)

= (ne′1Σe1 + e′1Λe1)2 + 2e′1Σe1(ne′1Σe1 + 2e′1Λe1), (70)

E[q1q2] = ntr(G(1,1)) + tr(H(1,1)Λ̃)

= (ne′1Σe1 + e′1Λe1)(ne′1Σe2 + e′1Λe2)

+ 2(ne′1Σe1e
′
1Σe2 + e′1Λe1e

′
1Σe2 + e′1Λe2e

′
1Σe1). (71)
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