
Further Results on the Limiting Distribution of GMM

Sample Moment Conditions

Nikolay Gospodinov∗, Raymond Kan†, and Cesare Robotti ‡

First draft: May 2010
This draft: May 2012

∗Department of Economics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec,
Canada H3G 1M8; E-mail:nikolay.gospodinov@concordia.ca
†Joseph L. Rotman School of Management, University of Toronto, 105 St. George Street, Toronto, Ontario,

Canada M5S 3E6; E-mail:kan@chass.utoronto.ca
‡Research Department, Federal Reserve Bank of Atlanta, 1000 Peachtree St. N.E., Atlanta, Georgia,

30309, USA; E-mail:cesare.robotti@atl.frb.org



Further Results on the Limiting Distribution of GMM Sample

Moment Conditions

Abstract

In this paper, we examine the limiting behavior of GMM sample moment conditions and point

out an important discontinuity that arises in their asymptotic distribution. We show that the part

of the scaled sample moment conditions that gives rise to degeneracy in the asymptotic normal

distribution is T -consistent and has a non-standard limiting distribution. We derive the appropri-

ate asymptotic (weighted chi-squared) distribution when this degeneracy occurs and show how to

conduct asymptotically valid statistical inference. We also propose a new rank test that provides

guidance on which (standard or non-standard) asymptotic framework should be used for inference.

The finite-sample properties of the proposed asymptotic approximation are demonstrated using

simulated data from some popular asset pricing models.

JEL classification: C13, C32, G12.

Keywords: generalized method of moments; asymptotic approximation; T -consistent estima-

tor; weighted chi-square distribution; rank test.



1. INTRODUCTION

Over the past thirty years, the generalized method of moments (GMM) has established itself as

arguably the most popular method for estimating economic models defined by a set of moment

conditions. In his seminal paper, Hansen (1982) develops the asymptotic distributions of the GMM

estimator, sample moment conditions, and test of over-identifying restrictions for possibly nonlinear

models with sufficiently general dependence structure. This large sample theory proved to cover a

large class of models and estimators that are of interest to researchers in economics and finance.

There are cases, however, in which the root-T convergence and asymptotic normality of the

GMM sample moment conditions and estimators based on these moment conditions do not ac-

curately characterize their limiting behavior. In particular, it is possible that some linear combi-

nations of the GMM sample moment conditions have a degenerate distribution and the standard

limiting tools for inference are inappropriate. For example, Gospodinov, Kan and Robotti (2010)

demonstrate that some GMM estimators, which are functions of the sample moment conditions, are

proportional to the GMM objective function and, hence, cannot be root-T consistent and asymp-

totically normally distributed for correctly specified models. This situation is directly related to

the results in Lemma 4.1 and its subsequent discussion in Hansen (1982) which draw attention to

the singularity of the covariance matrix of the sample moment conditions. However, to the best

of our knowledge, the limiting behavior of the GMM sample moment conditions in the degenerate

case, when the covariance matrix reduces to a matrix of zeros, has not been formally investigated

in the literature.

In this paper, we study some linear combinations of the sample moment conditions that give

rise to degeneracy and analyze their asymptotic behavior. Interestingly, we show that in this case,

the scaled sample moment conditions evaluated at the GMM estimator are characterized by a

non-standard limiting theory. More specifically, we demonstrate that the estimated GMM moment

conditions converge to zero (the value implied by the population moment conditions) at rate T
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and have an asymptotic weighted chi-squared distribution. Besides being of academic interest, our

results prove to be useful for inference in asset pricing models. Furthermore, a similar degeneracy

occurs in the asymptotic analysis of Lagrange multipliers in the context of generalized empirical

likelihood (GEL) estimation which has gained increased popularity in econometrics in recent years.

Non-standard asymptotics (with an accelerated rate of convergence and non-normal asymptotic

distribution) often arises when the parameter of interest is near or on the boundary of the param-

eter space. Examples of this phenomenon include autoregressive roots near or on the unit circle

(Dickey and Fuller, 1979; Phillips, 1987), (near) unit root in moving average models (Davis and

Dunsmuir, 1996), local-to-zero signal-to-noise ratio in time-varying parameter models (Nyblom,

1989) and zero variance in non-nested model comparison tests (Vuong, 1989). In these cases, the

rate of convergence of the estimated parameter or test statistic of interest increases from root-T to

T and the asymptotic distribution changes from normal to a weighted chi-squared type of distribu-

tion. Interestingly, our paper shows that similar non-standard asymptotics can be encountered in

seemingly regular GMM problems. It should also be noted that the degeneracy of the asymptotic

distribution has been analyzed in other contexts although the existing results differ considerably

from ours. See, for example, Sargan’s (1959, 1983) discussion of nonlinear instrumental variable

models with possible singularity, Park and Phillips (1989) and Sims, Stock and Watson (1990) for

the analysis of time series models with a unit root, and Phillips (2007) for models with slowly

varying regression functions.

The rest of this paper is organized as follows. Section 2 introduces the general setup and

discusses an asset pricing example that illustrates the discontinuity in the asymptotic approximation

of the sample moment conditions. This section also provides the main theoretical results on the

limiting behavior of linear combinations of sample moment conditions and presents an easy-to-

implement rank test that determines which asymptotic approximation should be used. Section 3

reports simulation results based on a problem in empirical asset pricing and Section 4 concludes.
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2. ASYMPTOTICS FOR GMM SAMPLE MOMENT CONDITIONS

2.1. NOTATION AND ANALYTICAL FRAMEWORK

Let θ ∈ Θ denote a p × 1 parameter vector of interest with true value θ0 that lies in the interior

of the parameter space Θ and gt(θ) be a known function {g : Rp → Rm,m > p} of the data and θ

that satisfies the set of population orthogonality conditions

E[gt(θ0)] = 0m. (1)

The GMM estimator of θ0 is defined as

θ̂ = argminθ∈ΘḡT (θ)′WT ḡT (θ), (2)

where WT is an m×m positive definite weight matrix and ḡT (θ) = 1
T

∑T
t=1 gt(θ). The matrix WT

is allowed to be a fixed matrix that does not depend on the data and θ (the identity matrix, for

example), a matrix that depends on the data but not on θ, or a matrix that depends on the data and

a preliminary consistent estimator of θ0 as in the two-step and iterated GMM estimation. Given

the first-order asymptotic equivalence of the two-step, iterated, and continuously-updated GMM

estimators, our results below can be easily modified to accommodate the continuously-updated

(one-step) GMM estimator.

Let DT (θ) = 1
T

∑T
t=1

∂gt(θ)
∂θ′ , D (θ) = E

[
∂gt(θ)
∂θ′

]
and make the following assumptions.

Assumption A: Assume that

1√
T

T∑
t=1

gt(θ0)
d→ N(0m,V), (3)

whereV =
∑∞

j=−∞E
[
gt (θ0) gt+j (θ0)

′] is a finite positive definite matrix.

Assumption B: Assume that

(i) gt (θ) is continuous in θ almost surely, E [supθ∈Θ |gt (θ) |] <∞, and the parameter space Θ

is a compact subset of Rp,
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(ii) there exists a unique θ0 ∈ Θ such that E [gt (θ0)] = 0m and E [gt (θ)] 6= 0m for all θ 6= θ0,

(iii) WT
p→W, where W is a non-stochastic symmetric positive definite matrix,

(iv) DT (θ)
p→ D (θ) uniformly in θ on some neighborhood of θ0 and D0 ≡ D (θ0) is of rank p.

Assumption A is a high-level assumption that implicitly imposes restrictions on the data and

the vector gt(θ). The validity of this assumption can either be verified in the particular context

or it can be replaced by a set of explicit primitive conditions. Assumption A can be further

strengthened to allow for more general dependence structure (see, for instance, Stock and Wright,

2000). Assumption B imposes sufficient conditions that ensure θ̂
p→ θ0 in the interior of the compact

parameter space Θ. The uniform convergence and the full rank condition in Assumption B (iv) are

required for establishing the asymptotic distributions of θ̂ and ḡT (θ̂).

Under Assumptions A and B,
√
T ḡT (θ̂) is asymptotically normally distributed (Hansen, 1982,

Lemma 4.1) with mean zero and a singular asymptotic covariance matrix

Ω0 = [Im −D0(D
′
0WD0)

−1D′0W]V[Im −D0(D
′
0WD0)

−1D′0W]′. (4)

Furthermore, it can be easily seen that the asymptotic covariance matrix of
√
TD′0WḡT (θ̂) reduces

to a p× p matrix of zeros which renders the asymptotic distribution of
√
TD′0WḡT (θ̂) degenerate.

Provided that WT is a consistent estimator of W, a similar degeneracy occurs for
√
TD′0hT (θ̂),

where hT (θ̂) ≡WT ḡT (θ̂).

It is interesting to note that this type of asymptotic degeneracy extends to other setups and

arises, for example, in the analysis of Lagrange multipliers in the GEL estimation of moment

condition models. In the GEL framework, the estimator of the Lagrange multipliers associated

with the moment conditions takes a similar form as hT (θ̂) and has an asymptotic covariance

matrix given by V−1 −V−1D0

(
D′0V

−1D0

)−1
D′0V

−1 (see, for instance, Smith, 1997). It is easy

to see that premultiplying by D′0 reduces this asymptotic variance to a zero matrix. Therefore, the
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results that we present below can be adapted to deal with the possible asymptotic degeneracy of

sample Lagrange multipliers in the GEL framework.

For our analysis, it is more convenient to rewrite the asymptotic normality result in terms of the

nonzero parts of the covariance matrices of
√
T ḡT (θ̂) and

√
ThT (θ̂). Let Q denote an m× (m− p)

orthonormal matrix whose columns are orthogonal to W
1
2 D0. Then,

QQ′ = Im −W
1
2 D0(D

′
0WD0)

−1D′0W
1
2 . (5)

Lemma 1: Under Assumptions A and B,

√
TQ′W

1
2 ḡT (θ̂)

d→ N(0m−p,Q
′W

1
2 VW

1
2 Q) (6)

and

√
TQ′W− 1

2 hT (θ̂)
d→ N(0m−p,Q

′W
1
2 VW

1
2 Q). (7)

The role of matrix Q in Lemma 1 is similar in spirit to the decomposition of Sowell (1996)

in which the m vector of normalized population moment conditions W
1
2E[gt(θ0)] is decomposed

into p identifying restrictions used for the estimation of θ that characterize the space of identifying

restrictions and m − p over-identifying restrictions that characterize the space of over-identifying

restrictions. Lemma 1 shows that
√
TQ′W

1
2 ḡT (θ̂) and

√
TQ′W− 1

2 hT (θ̂) have a non-degenerate

asymptotic normal distribution. However, little is known about the limiting behavior of those linear

combinations of ḡT (θ̂) or hT (θ̂) that do not have an asymptotic normal distribution. The purpose

of this paper is to establish the rate of convergence and asymptotic distributions of D′0WḡT (θ̂) and

D′0hT (θ̂). Before we present our main result, we provide an example to illustrate the discontinuous

nature of the asymptotic analysis for linear combinations of ḡT (θ̂) or hT (θ̂).

2.2. MOTIVATION: AN ASSET PRICING EXAMPLE

Let yt(θ) be a candidate stochastic discount factor (SDF) at time t, where θ is a p vector of the

parameters of the SDF. Suppose we use m test assets to estimate the true SDF parameter vector
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θ0 as well as to test if the proposed SDF is correctly specified. Denote by Rt the payoffs of the m

test assets at time t and by q the vector of the costs of the m test assets. Let

gt(θ) = Rtyt(θ)− q. (8)

If the model is correctly specified, we have E[gt(θ0)] = 0m. A popular method of estimating θ0 is

to choose θ to minimize the sample squared Hansen-Jagannathan (HJ, 1997) distance, defined as

δ̂
2

T = min
θ

ḡT (θ)′WT ḡT (θ), (9)

where WT =
(

1
T

∑T
t=1 RtR

′
t

)−1
.

To determine whether the proposed SDF is correctly specified, we can examine the sample

pricing errors of the m test assets, i.e., ḡT (θ̂), where θ̂ is the vector of estimated parameters chosen

to minimize the sample HJ-distance. Alternatively, let λ denote an m × 1 vector of Lagrange

multipliers associated with the population moment conditions (pricing constraints) and consider

the estimated Lagrange multipliers

λ̂ = WT ḡT (θ̂), (10)

which are a transformation of the sample pricing errors. Hansen and Jagannathan (1997) show

that if the proposed SDF does not price the test assets correctly, then it is possible to correct the

mispricing of the SDF by subtracting λ′Rt from yt(θ). As a result, researchers are often interested

in testing H0 : λi = 0, i.e., in determining whether asset i is responsible for the proposed SDF to

deviate from the true SDF.

Gospodinov, Kan and Robotti (2010) show that for a linear SDF, q′λ̂ = −δ̂2T , where δ̂
2

T =

ḡT (θ̂)′WT ḡT (θ̂) is the squared sample HJ-distance. For the special case of q = [1, 0′m−1]
′ (i.e., the

payoff of the first test asset is a gross return and the rest are excess returns), the estimate of the

Lagrange multiplier associated with the first test asset, λ̂1, is T -consistent and shares the weighted

chi-squared distribution of δ̂
2

T under the assumption of a correctly specified model. This result is of

practical importance since applied researchers often rely on the statistical significance of individual
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Lagrange multipliers and pricing errors to determine whether an asset pricing model is correctly

specified (Cochrane, 1996; Hodrick and Zhang, 2001). Similar problems arise in other asset pricing

contexts: for example, in conducting inference on the pricing errors associated with traded factors

(see Peñaranda and Sentana, 2010). More generally, as we show below,

TD′0λ̂
d→ −(Ip ⊗ v′2)v1, (11)

where v1 and v2 are jointly normally distributed vectors of random variables. As a result, any

linear combination of λ̂ with a vector of weights that is in the span of the column space of D0 is

also T -consistent with a non-standard (product of normals) asymptotic distribution.

It is interesting to note that a similar type of discontinuity in the asymptotic approximation and

accelerated rate of convergence have been established by Park and Phillips (1989) and Sims, Stock

and Watson (1990) in an AR(p) model, p > 1, with a unit root in the AR polynomial. In particular,

these papers show that a linear combination of WT ḡT (θ0) with a vector of weights [α1, ..., αp]
′ 6=

[ᾱ, ..., ᾱ]′, for some nonzero constant ᾱ, is root-T and asymptotically normally distributed while

a linear combination of WT ḡT (θ0) with a vector of weights [α1, ..., αp]
′ = [ᾱ, ..., ᾱ]′ yields a T -

consistent and asymptotically non-normally distributed estimator.

2.3. MAIN RESULTS

We now turn to deriving the asymptotic distributions of D′0WḡT (θ̂) and D′0hT (θ̂). Due to the

similarities in their structure, we first present the results for D′0hT (θ̂) and discuss the case of

D′0WḡT (θ̂) in the next subsection. The following additional assumption on the joint limiting

behavior of D̂T = DT (θ̂) and hT (θ̂) is needed to establish the asymptotic distribution of D′0hT (θ̂).

Assumption C: Assume that

√
T

[
vec(Q′W

1
2 D̂T )

Q′W− 1
2 hT (θ̂)

]
d→ N(0(m−p)(p+1),Σ) (12)

for some finite positive semidefinite matrix Σ.

7



The asymptotic normality of the m − p vector Q′W− 1
2 hT (θ̂) follows directly from Lemma 1.

The main requirement is on the limiting behavior of the matrix D̂T which is, however, rather weak

and rules out only some trivial cases. It is important to note that we do not need to impose any

restriction on the rate of convergence of WT apart from being a consistent estimator of W (As-

sumption B (iii)). In contrast, as we argue later, deriving the asymptotic distribution of D′0WḡT (θ̂)

requires explicit assumptions on the rate of convergence of WT that can differ for parametric and

nonparametric heteroskedasticity and autocorrelation consistent (HAC) estimators.

We now state our main result in the following theorem.

Theorem 1: Under Assumptions A, B, and C,

TD′0hT (θ̂)
d→ −(Ip ⊗ v′2)v1, (13)

where v1 and v2 are (m−p)p and (m−p) vectors, respectively, and [v′1, v′2]
′ ∼ N(0(m−p)(p+1),Σ).

Proof. See Appendix.

In order to make the asymptotic approximation derived in Theorem 1 operational for conducting

inference, we need an estimate of the covariance matrix Σ. In the following, we provide explicit

expressions that can be used for consistent estimation of the covariance matrix Σ in Theorem 1.

Let GT (θ) = 1
T

∑T
t=1 ∂vec(∂gt(θ)/∂θ′)/∂θ′, G(θ) = ∂vec(D(θ))/∂θ′, and G0 = G(θ0).

Assumption D: Assume that GT (θ)
p→ G (θ) uniformly in θ on some neighborhood of θ0, where

G (θ) exists, is finite, and is continuous in θ ∈ Θ almost surely.

In the following lemma, we provide the explicit form of the matrix Σ.

Lemma 2. Let G̃ = (Ip ⊗Q′W
1
2 )G0. Under Assumptions A, B, and D, we have

Σ =
∞∑

j=−∞
E[dtd

′
t+j ], (14)
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where dt = [d′1,t, d′2,t]
′ and

d1,t = −G̃(D′0WD0)
−1D′0Wgt(θ0) + vec

(
Q′W

1
2
∂gt(θ0)

∂θ′

)
, (15)

d2,t = Q′W
1
2 gt(θ0). (16)

Proof. See Appendix.

The consistent estimation of the long-run covariance matrix Σ can proceed by using a HAC

estimator (see Andrews, 1991, for example) based on the sample counterparts of d1,t and d2,t.

2.4. DISCUSSION

The result in Theorem 1 has important implications for the asymptotic distribution of a linear

combination of hT (θ̂) with a weighting vector α which is in the span of the column space of D0.

In particular, if α = D0c̃ for a constant nonzero p vector c̃, then we have

Tα′hT (θ̂)
d→ −ṽ′1v2, (17)

where ṽ1 is the limit of
√
TQ′W

1
2 D̂T c̃, [ṽ′1, v′2]

′ ∼ N(02(m−p), Σ̃) with Σ̃ =
∑∞

j=−∞E[d̃td̃
′
t+j ],

d̃t = [d̃′1,t, d′2,t]
′ and d̃1,t = (c̃′ ⊗Q′W

1
2 )G0(D

′
0WD0)

−1D′0Wgt(θ0) + Q′W
1
2
∂gt(θ0)

∂θ′ c̃. Instead of

expressing the asymptotic distribution as the inner product of two normal random vectors, the

following lemma shows that we can alternatively express it as a linear combination of independent

χ2
1 random variables.

Lemma 3. Suppose that z = [z′1, z′2]
′, where z1 and z2 are both n × 1 vectors, is multivariate

normally distributed

z ∼ N(02n,Ψ), (18)

where Ψ is a positive semidefinite matrix with rank l ≤ 2n. Let Ψ = SΥS′, where Υ is an l × l

diagonal matrix of the nonzero eigenvalues of Ψ and S is a 2n × l matrix of the corresponding
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eigenvectors. In addition, let

Γ = Υ
1
2 S′

[
0n×n

1
2In

1
2In 0n×n

]
SΥ

1
2 . (19)

Then,

z′1z2 ∼
k∑

i=1

γixi, (20)

where the γi’s are the k ≤ l nonzero eigenvalues of Γ and the xi’s are independent χ2
1 random

variables.

Proof. See Appendix.

This lemma shows that the inner product of two vectors of normal random variables (with mean

zero) can always be written as a linear combination of independent chi-squared random variables.

This result proves very useful since it allows us to adopt numerical procedures for obtaining the

p-value of a weighted chi-squared test that are already available in the literature (Imhof, 1961;

Davies, 1980; Lu and King, 2002). Furthermore, this result helps us to reconcile the form of the

asymptotic approximation proposed in Theorem 1 with the weighted chi-squared distribution that

arises in some special cases as in the asset pricing example.

Extending the result in Theorem 1 to cover the limiting behavior of A′0ḡT (θ̂), where A0 = WD0,

requires stronger conditions. Defining ÂT = WT D̂T , we need to replace Assumption C by assuming

√
T

[
vec(Q′W− 1

2 ÂT )

Q′W
1
2 ḡT (θ̂)

]
d→ N(0(m−p)(p+1),Ξ) (21)

for some finite positive definite matrix Ξ. The conditions that (21) imposes on the mp vector

vec(ÂT −A0) can be best seen using the decomposition

√
T (ÂT −A0) =

√
T (WT D̂T −WD0)

=
√
TW(D̂T −D0) +

√
T (WT −W)D0 +

√
T (WT −W)(D̂T −D0)

=
√
TW(D̂T −D0) +

√
T (WT −W)D0 + op(1). (22)

10



While the conditions for the matrix D̂T are easily satisfied (Assumption C), the requirement

of root-T convergence for WT rules out nonparametric HAC estimators (see Andrews, 1991, for

example) but allows for some parametric HAC estimators (West, 1997). In general, this assumption

requires that WT is computed using a martingale difference sequence process or a dependent process

for which the form of serial correlation is known. Then, under the assumption in (21), it can be

shown, using similar arguments as in the proof of Theorem 1, that

TA′0ḡT (θ̂)
d→ −(Ip ⊗ u′2)u1, (23)

where [u′1, u′2]
′ ∼ N(0(m−p)(p+1),Ξ). We should note that, under some regularity conditions on

the kernel function and bandwidth parameter as in Andrews (1991) and Hall and Inoue (2003), a

similar limiting representation as in (23) can be derived for nonparameteric HAC estimators but

with a slower rate of convergence that depends on the smoothing parameter.

2.5. RANK RESTRICTION TEST

The speed of convergence of α′hT (θ̂) and α′WḡT (θ̂) depends crucially on whether α is in the

column span of D0. In some cases, we know that α is in the column span of D0 (for instance, in

our asset pricing example) and we should rely on the non-standard asymptotics developed above to

conduct statistical inference. In general, however, we do not know if α is in the column span of D0

and we need to resort to pre-testing in order to determine which asymptotic framework should be

used for the particular problem at hand. Below we propose a computationally attractive pre-test

that determines if α is in the span of the column space of D0.

Let Pα be an m× (m− 1) orthonormal matrix whose columns are orthogonal to α such that

PαP′α = Im −α(α′α)−1α′. (24)

Also, let Π = P′αD0. It turns out that determining if α is in the span of the column space of D0

is equivalent to determining if Π is of reduced rank.
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Under the null that Π is of (reduced) rank p− 1, H0 : rank(Π) = p− 1, there exists a nonzero

p vector c̃ such that D0c̃ = α, or equivalently (by premultiplying by P′α and using the properties

of Pα) Πc̃ = 0m−1 with the normalization c̃′c̃ = 1. As discussed in Cragg and Donald (1997), if

Π has a reduced column rank of p − 1, we can use an alternative normalization and express one

column of this matrix, say πj , as a linear combination of the other columns, assuming that c̃j 6= 0.

Without any loss of generality, we can order this column first and define the rearranged partitioned

matrix Π = [π1, Π2] such that

[π1, Π2]


−1
c2
...
cp

 = 0m−1 (25)

or

Π2c0 = π1, (26)

for some vector c0 = [c2, ..., cp]
′. This is equivalent to imposing a normalization on c̃ such that its

first element is −1. With such a normalization, c0 is uniquely defined provided that rank(Π) = p−1.

Let Π̂T = P′αD̂T . Using Assumption C and the proof of Lemma 2, it can be shown that

√
Tvec(Π̂T −Π)

d→ N(0(m−1)p,M), (27)

where M =
∑∞

j=−∞E[m̃tm̃
′
t+j ] and

m̃t = −(Ip ⊗P′α)G0(D
′
0WD0)

−1D′0Wgt(θ0) + vec

(
P′α

∂gt(θ0)

∂θ′

)
. (28)

In practice, M is replaced by a HAC estimator based on the sample counterparts of G0, D0, W

and gt(θ0). It should be stressed that the first term in the expression for m̃t explicitly accounts for

the estimation uncertainty in θ̂ when gt(θ0) is a nonlinear function of θ0. When gt(θ0) is linear

in θ0, the first term in the expression for m̃t drops out (G0 = 0p×p) and the second term does not

depend on θ0. As a result, the asymptotic variance of Π̂T depends only on the data and not on θ0.

Let lT (c) = Π̂2,T c− π̂1,T . Define the test statistic

LM = min
c
T [lT (c)′Λ̂T (c)−1lT (c)], (29)
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where Λ(c) = ([−1, c′] ⊗ Im−1)M([−1, c′]′ ⊗ Im−1) and Λ̂T (c) denotes its consistent estimator

obtained by substituting a HAC estimator of M. The LM statistic tests the null hypothesis that

Π is of rank p− 1 against the alternative that Π is of full rank p. The following lemma shows that

the rank test statistic LM is chi-squared distributed with m− p degrees of freedom under the null.

Lemma 4. Under Assumptions A to D, and H0 : rank(Π) = p− 1,

LM
d→ χ2

m−p. (30)

Proof. See Appendix.

It is important to note that the rank test statistic in equation (29) is invariant to scaling of c.

Furthermore, we would like to emphasize that the minimization in (29) is with respect to only a p−1

vector c, and the complexity of the minimization problem does not increase with m. Although it can

be shown (proof is available upon request) that the LM statistic in (29) is numerically equivalent

to the test statistic proposed by Cragg and Donald (1997), it offers substantial computational

advantages over the highly dimensional optimization problem in Cragg and Donald’s (1997) test.

Finally, our simulation experiments show that the test in (30) enjoys excellent size and power

properties.

3. ILLUSTRATION: LINEAR ASSET PRICING MODEL

In this section, we specialize our theoretical results to the linear specification of the asset pricing

model in Section 2.2 and assess the accuracy of the proposed asymptotic approximation in this setup

using a Monte Carlo simulation experiment. In particular, we evaluate the size of the weighted

chi-squared test on the Lagrange multiplier associated with the first asset when q = [1, 0′m−1]
′ (i.e.,

the payoff of the first asset is a gross return and the payoffs of the other assets are excess returns).

We consider two model specifications that are calibrated to monthly data for the period January

1932 – December 2006. The first one is calibrated to the capital asset pricing model (CAPM) with
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the value-weighted market excess return as risk factor. For the CAPM, the returns on the test

assets are the gross return on the risk-free asset and the excess returns on 10 size ranked portfolios.

The second specification is calibrated to the three-factor model (FF3) of Fama and French (1993)

with risk factors given by the value-weighted market excess return, the return difference between

portfolios of small and large stocks, and the return difference between portfolios of high and low

book-to-market ratios. For FF3, the returns on the test assets are the gross return on the risk-free

asset and the excess returns on 25 size and book-to-market ranked portfolios. All data are obtained

from Kenneth French’s website. The SDFs of the CAPM and FF3 include an intercept term.

For each model, the factors and the returns on the test assets are drawn from a multivariate

normal distribution. The covariance matrix of the factors and returns is chosen based on the

covariance matrix estimated from the data. The mean return vector is chosen such that the asset

pricing model holds exactly for the test assets. For each simulated set of returns and factors, the

unknown parameters θ0 of the linear SDF yt(θ0) = f̃ ′tθ0, where f̃t = [1, f ′t ]
′ with ft denoting the

vector of risk factors, are estimated by minimizing the sample HJ-distance, which yields

θ̂ = (D̂′TWT D̂T )−1(D̂′TWTq), (31)

where D̂T = 1
T

∑T
t=1 Rtf̃

′
t , WT =

(
1
T

∑T
t=1 RtR

′
t

)−1
, and q = [1, 0′m−1]

′. The estimated Lagrange

multipliers are given by

λ̂ = WT ḡT (θ̂) = WT

[
1

T

T∑
t=1

Rtyt(θ̂)− q

]
, (32)

and we consider the first element λ̂1. The next lemma specializes the results in Theorem 1 and

Lemma 2 to this setup. It should be noted that while Lemma 5 presents the limiting distribution

of T λ̂1 for the HJ-distance case, a similar result holds for any weighting matrix WT that converges

in probability to a non-stochastic positive definite matrix W .

Lemma 5. Let D0 = E[Rtf̃
′
t ], V =

∑∞
j=−∞E[(Rtf̃

′
tθ0 − q)(Rt+j f̃

′
t+jθ0 − q)′], W = (E[RtR

′
t])
−1,

Q denote an orthonormal matrix whose columns are orthogonal to W
1
2 D0, and suppose that As-
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sumptions A to D hold. Then,

T λ̂1 = Tq′λ̂
d→ −

m−p∑
i=1

γixi, (33)

where the xi’s are independent χ2
1 random variables and the γi’s are the eigenvalues of the matrix

Q′W
1
2 VW− 1

2 Q.

Proof. See Appendix.

In the analysis of the empirical size of our asymptotic approximation, the computed p-values

from the weighted chi-squared distribution in (33) are compared to the 10%, 5%, and 1% theoretical

sizes of the test. For a comparison, we also provide the empirical size of a standard normal test of

H0 : λ1 = 0 used, for example, in Hodrick and Zhang (2001). The empirical rejection probabilities

are computed based on 100,000 Monte Carlo replications.

Table I about here

For different sample sizes T , we report the simulation results for the two model specifications

in Panels A and B of Table I. In Panel A, the weighted chi-squared distribution provides a very

accurate approximation to the finite-sample behavior of λ̂1. In contrast, the standard normal test

leads to severe size distortions and rejects the true null hypothesis about 92% of the time at the 5%

significance level. In the case of 25 risky assets (Panel B), our approximation tends to over-reject

for small sample sizes. This over-rejection is a well documented fact in empirical finance and occurs

when the number of test assets m is large relative to the number of time series observations T (see,

for instance, Ahn and Gadarowki, 2004). As T increases, the empirical size of the weighted chi-

squared approximation approaches its nominal level. In contrast, the standard normal test always

rejects the true null hypothesis 100% of the time and does not improve as T increases.

While the incorrect size of the normal test is expected from our theoretical analysis, the severity

of these size distortions is somewhat surprising and deserves further attention. Note that the
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conventional t-statistic for testing H0 : α′λ = 0, where α = D0c̃ and c̃ is a nonzero p vector, is

defined as

tα′λ̂ =

√
Tα′λ̂(

α′WT Ω̂WTα
) 1

2

=
Tα′λ̂(

Tα′WT Ω̂WTα
) 1

2

, (34)

where Ω̂ denotes a consistent estimator of Ω0 in (4). Since
√
Tα′λ̂ is asymptotically degenerate, it

might be expected that the t-test will be undersized, which stands in contrast to the overrejections

reported in Table I. The following lemma derives the asymptotic distribution of the t-statistic for

testing H0 : α′λ = 0 and shows that the numerator
√
Tα′λ̂ and the denominator [α′WT Ω̂WTα]

1
2

shrink to zero at the same rate, rendering the limit of the ratio tα′λ̂ a bounded random variable.

Lemma 6. Suppose Rt and ft are i.i.d. multivariate elliptically distributed with finite fourth mo-

ments and kurtosis parameter κ = µ4/(3σ
4)−1, where σ2 and µ4 are the second and fourth central

moments of the elliptical distribution. Let H = E [̃ftf̃
′
t ] + κVar[̃ft]. Then,

tα′λ̂
d→ r
√
u+

√
1− r2w, (35)

where r = −c̃′Hθ0/
√

(c̃′Hc̃)(θ′0Hθ0), u ∼ χ2
m−p, w ∼ N(0, 1), and u and w are independent of

each other.

Proof. See Appendix.

The result in Lemma 6 shows that the asymptotic distribution of the statistic tα′λ̂ is a mixture

of two random variables. Also, it is straightforward to show that the first and second moments of

the asymptotic distribution in Lemma 6 are given by

E[tα′λ̂] = r

√
2Γ
(
m−p+1

2

)
Γ
(m−p

2

) , (36)

where Γ(·) is the gamma function, and

E[t2
α′λ̂

] = 1 + r2(m− p− 1). (37)
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When α = q, we have that c̃ = θ0, r = −1, and the test statistic of H0 : λ1 = 0 is asymptotically

distributed as −
√
χ2
m−p. One important implication of this result is that the correct asymptotic

distribution of the t-statistic of λ̂1 is miscentered compared to the standard normal approximation

and the shift to the left increases with the degree of over-identification. For example, the means of

this limiting distribution for the CAPM (with m − p = 9) and FF3 (with m − p = 22) are −2.92

and −4.53, respectively. These results clearly illustrate that the standard asymptotic inference can

be grossly misleading.

However, Lemma 6 also suggests that there are situations in which the standard normal is still

the appropriate limiting distribution of tα′λ̂. For example, this occurs when r = 0 or, equivalently,

c̃′Hθ0 = 0. Since the mixing coefficient r is consistently estimable, the asymptotic approximation

in Lemma 6 conveniently bridges these two extremes (r2 = 0 and r2 = 1).

Next, we investigate the empirical size properties of the sequential test of H0 : α′λ = 0 which

uses the LM rank test of H0 : rank(Π) = p− 1 from Section 2.5 as a pre-test. Recall that the rank

test determines if the normal or the weighted χ2 distribution theory should be used for testing the

hypothesis of interest H0 : α′λ = 0. Table II reports the empirical size and power of the reduced

rank test when α is in the span of the column space of D0 (α = q = [1, 0′m−1]
′) or not (α = 1m).

Overall, the rank test exhibits excellent size and power properties.

Table II about here

Table III presents the results on the empirical size of the sequential test of H0 : α′λ = 0 for

α = q = [1, 0′m−1]
′ and α = 1m by setting the nominal levels of the rank pre-test and second-stage

hypothesis test to be equal to each other. When α = q = [1, 0′m−1]
′, Π has a reduced rank and the

second-stage test uses the weighted χ2 limiting distribution for inference. As a result, the size of the

sequential test (Panel A in Table III) is very similar to the size of the weighted χ2 approximation

reported in Table I. On the other hand, when α is not in the column span of D0, the appropriate
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distribution theory is based on the conventional asymptotic normal approximation. Panel B in

Table III reveals that in this case, the rank test successfully identifies the appropriate asymptotic

framework and the empirical size of the sequential test is very close to its nominal level.

Table III about here

4. CONCLUSION

This paper derives some new results on the asymptotic distribution of linear combinations of GMM

sample moment conditions. These results complement Lemma 4.1 of Hansen (1982) with the cases

that give rise to singularity of the asymptotic covariance matrix and degeneracy of the asymptotic

distribution. Interestingly, we establish that in these cases, the GMM sample moment conditions

converge at rate T to their population analogs and follow a non-standard (weighted chi-squared)

limiting distribution. Finally, we propose an easy-to-implement rank test to determine which

asymptotic framework should be adopted for the particular problem at hand.
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APPENDIX: PROOFS OF THEOREMS AND LEMMAS

Proof of Theorem 1: Using the first-order condition D̂′ThT (θ̂) = 0p, we express TD′0hT (θ̂) as

TD′0hT (θ̂) = −T (D̂T −D0)
′hT (θ̂)

= −
√
T (D̂T −D0)

′W
1
2 (QQ′ + W

1
2 D0(D

′
0WD0)

−1D′0W
1
2 )
√
TW− 1

2 hT (θ̂)

= −
[√

T D̂′TW
1
2 Q
] [√

TQ′W− 1
2 hT (θ̂)

]
+
√
T
[
Q′W

1
2 D0

]′
Q′W− 1

2

√
ThT (θ̂)

−
[√

T (D̂T −D0)
]′

WD0(D
′
0WD0)

−1
[√

TD′0hT (θ̂)
]
. (A1)

Since Q′W
1
2 D0 = 0(m−p)×p,

√
TD′0hT (θ̂) = op(1) and

√
T (D̂T −D0) = Op(1), it follows that

TD′0hT (θ̂) = −
[√

T D̂′TW
1
2 Q
] [√

TQ′W− 1
2 hT (θ̂)

]
+ op(1). (A2)

Using Assumption C, let
√
Tvec(Q′W

1
2 D̂T ) converge to a vector of normal random variables v1.

Similarly, using (7) in Lemma 1, let
√
TQ′W− 1

2 hT (θ̂) converge to a vector of normal random

variables v2 and write the joint distribution of [v′1, v′2]
′ as

[v′1, v′2]
′ ∼ N

(
0(m−p)(p+1),Σ

)
. (A3)

Thus,

TD′0hT (θ̂) = vec(ThT (θ̂)′D0)
d→ −(Ip ⊗ v′2)v1. (A4)

This completes the proof of Theorem 1.

Proof of Lemma 2: To obtain the asymptotic distribution of vec(D̂T − D0), define D̃T =

1
T

∑T
t=1 ∂gt(θ0)/∂θ

′ and write

√
Tvec(D̂T −D0) =

√
Tvec(D̂T − D̃T ) +

√
Tvec(D̃T −D0). (A5)

For the first term, we use the mean-value theorem to obtain

√
Tvec(D̂T − D̃T ) = G0

√
T (θ̂ − θ0) + op(1)

= −G0(D
′
0WD0)

−1D′0W
1√
T

T∑
t=1

gt(θ0) + op(1), (A6)
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where the first equality follows from Assumption D and the second equality is ensured by the

conditions imposed in Assumption B. For the second term, we have

√
Tvec(D̃T −D0) =

1√
T

T∑
t=1

[
vec

(
∂gt(θ0)

∂θ′

)
− vec(D0)

]
. (A7)

Using expressions (A5), (A6), and (A7), we have

√
Tvec(Q′W

1
2 D̂T ) =

√
Tvec(Q′W

1
2 (D̂T −D0))

= (Ip ⊗Q′W
1
2 )
√
Tvec(D̂T −D0)

= −G̃(D′0WD0)
−1D′0W

1√
T

T∑
t=1

gt(θ0) +
1√
T

T∑
t=1

vec

(
Q′W

1
2
∂gt(θ0)

∂θ′

)
+ op(1) (A8)

using that G̃ = (Ip⊗Q′W
1
2 )G0. Stacking the expression for

√
Tvec(D̂′TW

1
2 Q) with Q′W

1
2 gt(θ0),

we have Σ =
∑∞

j=−∞E[dtd
′
t+j ], where dt = [d′1,t, d′2,t]

′ and

d1,t = −G̃(D′0WD0)
−1D′0Wgt(θ0) + vec

(
Q′W

1
2
∂gt(θ0)

∂θ′

)
, (A9)

d2,t = Q′W
1
2 gt(θ0). (A10)

This completes the proof of Lemma 2.

Proof of Lemma 3: Defining z̃ = S′z ∼ N(0l,Υ), we can write

z′1z2 = z′

[
0n×n

1
2In

1
2In 0n×n

]
z = z̃′S′

[
0n×n

1
2In

1
2In 0n×n

]
Sz̃. (A11)

Let e = Υ−
1
2 z̃ ∼ N(0l, Il). Then, we can write

z′1z2 = e′Υ
1
2 S′

[
0n×n

1
2In

1
2In 0n×n

]
SΥ

1
2 e = e′Γe. (A12)

Since e is standard normal, it follows that

z′1z2 ∼
k∑

i=1

γixi, (A13)

where the γi’s are the k ≤ l nonzero eigenvalues of Γ and the xi’s are independent χ2
1 random

variables. This completes the proof of Lemma 3.
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Proof of Lemma 4: Combining lT (c) = Π̂2,T c − π̂1,T = vec(Π̂2,T c − π̂1,T ) = ([−1, c′] ⊗

Im−1)vec(Π̂T ) and equation (27), we have

√
T lT (c0)

d→ N(0m−1,Λ(c0)), (A14)

where Λ(c0) = ([−1, c′0]⊗ Im−1)M([−1, c′0]
′ ⊗ Im−1). Let

ĉ = arg min
c

lT (c)′Λ−1T (c)lT (c) (A15)

be the estimator of c0. First, note that while the estimator ĉ depends on a preliminary estimator

θ̂ when gt(θ) is a nonlinear function of θ, the uncertainty associated with the estimation of θ is

already incorporated in M. Also, from the asymptotic equivalence of the estimator in (A15) with

the two-step GMM estimator, we have (Hansen, 1982)

√
T (ĉ− c0) = −[Π′2Λ(c0)

−1Π2]
−1Π′2Λ(c0)

−1√T lT (c0) + op(1). (A16)

Finally, using similar arguments as in Hansen (1982, Lemma 4.2), it follows that LM is asymp-

totically distributed as a chi-squared random variable with (m − 1) − (p − 1) = m − p degrees of

freedom. This completes the proof of Lemma 4.

Proof of Lemma 5: In the case of asset pricing models with a pricing constraint ḡT (θ) =

1
T

∑T
t=1 Rtyt(θ)−q, the expressions for d1,t and d2,t in the covariance matrix Σ =

∑∞
j=−∞E[dtd

′
t+j ]

in Lemma 2 specialize to

d1,t = −G̃(D′0WD0)
−1D′0W(Rtyt(θ0)− q) + (Q′W

1
2 Rt ⊗ Ip)

∂yt(θ0)

∂θ′
, (A17)

d2,t = Q′W
1
2 (Rtyt(θ0)− q), (A18)

where D0 = E
[
Rt

∂yt(θ0)
∂θ′

]
and G0 = E

[
(Rt ⊗ Ip)

∂2yt(θ0)
∂θ∂θ′

]
.

For the special case of a linear SDF that prices the test assets correctly, these expressions can

be further simplified and have the form

d1,t = Q′W
1
2 Rt ⊗ f̃t, (A19)

d2,t = Q′W
1
2 Rtf̃

′
tθ0 (A20)
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since G0 is a null matrix and Q′W
1
2 q = Q′W

1
2 D0θ0 = 0m−p from the definition of Q.

For the linear combination Tα′hT (θ̂), where α = D0c̃ and hT (θ̂) = λ̂, we have from the proof

of Theorem 1 that

T c̃′D′0λ̂ = −
[√

TQ′W
1
2 D̂T c̃

]′ [√
TQ′W− 1

2 hT (θ̂)
]

+ op(1). (A21)

It is straightforward to show using the results above that

√
TQ′W

1
2 D̂T c̃

d→ N

0m−p,
∞∑

j=−∞
E[d̃1,td̃

′
1,t+j ]

 , (A22)

where d̃1,t = Q′W
1
2 Rtf̃

′
t c̃. When c̃ = θ0, i.e., c̃′D′0λ̂ = q′λ̂, we have d̃1t = d2,t and it follows that

Tq′λ̂
d→ −v′2v2, (A23)

which is a linear combination of m− p independent chi-squared random variables with one degree

of freedom. Since v2 ∼ N(0m−p,Q
′W

1
2 VW

1
2 Q), the weights for the weighted χ2 distribution are

given by the eigenvalues of the matrix Q′W
1
2 VW

1
2 Q. This completes the proof of Lemma 5.

Proof of Lemma 6: Using that α = D0c̃, the numerator of the t-statistic tα′λ̂ can be expressed

as

T c̃′D′0λ̂ = T (c̃′D′0 − c̃′D̂′T )λ̂

= T (c̃′D′0 − c̃′D̂′T )W
1
2 QQ′W− 1

2 λ̂ + op(1)

= −[
√
T c̃′D̂′TW

1
2 Q][
√
TQ′W− 1

2 λ̂] + op(1)
d→ −z′1z2, (A24)

where z1 is the limiting distribution of
√
TQ′W

1
2 D̂T c̃ and z2 is the limiting distribution of

√
TQ′W− 1

2 λ̂.

Next, the consistent estimator of Ω0 in (4) is given by

Ω̂ = [Im − D̂T (D̂′TWT D̂T )−1D̂′TWT ]V̂[Im − D̂T (D̂′TWT D̂T )−1D̂′TWT ]′

= W
− 1

2
T [Im −W

1
2
T D̂T (D̂′TWT D̂T )−1D̂′TW

1
2
T ]W

1
2
T V̂W

1
2
T [Im −W

1
2
T D̂T (D̂′TWT D̂T )−1D̂′TW

1
2
T ]W

− 1
2

T

= W
− 1

2
T Q̂Q̂

′
W

1
2
T V̂W

1
2
T Q̂Q̂

′
W
− 1

2
T , (A25)
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where V̂ is a consistent estimator of V and Q̂ is an m × (m − p) orthonormal matrix with its

columns orthogonal to W
1
2
T D̂T . As a result, we can rewrite the term inside the squared root of the

denominator of the t-statistic as

Tα′WT Ω̂WTα = T c̃′D′0W
1
2
T Q̂Q̂

′
W

1
2
T V̂W

1
2
T Q̂Q̂

′
W

1
2
TD0c̃. (A26)

Since

√
T Q̂′W

1
2
TD0c̃ =

√
T Q̂′W

1
2
T (D0 − D̂T )c̃ =

√
TQ′W

1
2 (D0 − D̂T )c̃ + op(1)

= −
√
TQ′W

1
2 D̂T c̃ + op(1)

d→ −z1, (A27)

it follows that

Tα′WT Ω̂WTα
d→ z′1Q

′W
1
2 VW

1
2 Qz1. (A28)

Therefore, we have

tα′λ̂
d→ − z′1z2

[z′1Q
′W

1
2 VW

1
2 Qz1]

1
2

. (A29)

The joint distribution of z1 and z2 is N(02(m−p),Σ), where

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=

∞∑
j=−∞

E[d̃td̃
′
t+j ], (A30)

and

d̃t =

[
d̃1,t

d̃2,t

]
=

[
Q′W

1
2 Rtf̃

′
t c̃,

Q′W
1
2 Rtf̃

′
tθ0

]
. (A31)

Conditional on z1, we have

z2 ∼ N(Σ21Σ
−1
11 z1,Σ22 −Σ21Σ

−1
11 Σ12). (A32)

Noting that Q′W
1
2 VW

1
2 Q = Σ22, we have conditional on z1,

tα′λ̂
d→ N

(
−z′1Σ21Σ

−1
11 z1

(z′1Σ22z1)
1
2

,
z′1(Σ22 −Σ21Σ

−1
11 Σ12)z1

z′1Σ22z1

)
. (A33)

Let z̃1 = Σ
− 1

2
11 z1 ∼ N(0m−p, Im−p) and w ∼ N(0, 1) be independent of each other. Then, we can

write

tα′λ̂
d→ − z̃′1Σ

1
2
11Σ21Σ

− 1
2

11 z̃1

(z̃′1Σ
1
2
11Σ22Σ

1
2
11z̃1)

1
2

+

 z̃′1(Σ
1
2
11Σ22Σ

1
2
11 −Σ

1
2
11Σ21Σ

−1
11 Σ12Σ

1
2
11)z̃1

z̃′1Σ
1
2
11Σ22Σ

1
2
11z̃1

 1
2

w. (A34)
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If we assume that Rt and ft are i.i.d. multivariate elliptically distributed, (A34) can be greatly

simplified. Suppose that (Xi, Xj , Xk, Xl) follow a multivariate elliptical distribution with multi-

variate kurtosis parameter κ. Using Lemma 2 of Maruyama and Seo (2003), we have

E[XiXjXkXl] = (1 + κ)(σijσkl + σikσjl + σilσjk) + µiµjµkµl

+ σijµkµl + σikµjµl + σilµjµk + σjkµiµl + σjlµiµk + σklµiµj , (A35)

where µi = E[Xi] and σij = Cov[Xi, Xj ]. If we let R̃t = Q′W
1
2 Rt, we can easily establish that

E[R̃t] = Q′W
1
2 D0[1, 0′p−1]

′ = 0m−p, (A36)

Var[R̃t] = E[Q′W
1
2 RtR

′
tW

1
2 Q] = Q′W

1
2 W−1W

1
2 Q = Im−p, (A37)

Cov[R̃t, f̃
′
t ] = E[Q′W

1
2 Rtf̃

′
t ] = Q′W

1
2 D0 = 0(m−p)×p. (A38)

Then, using (A35), we obtain

Σ12 = E[d̃1,td̃
′
2,t]

= (1 + κ)Cov[c̃′f̃t,θ
′
0f̃t]Im−p + E[c̃′f̃t]E[θ′0f̃t]Im−p

= (E[(c̃′f̃t)(θ
′
0f̃t)] + κCov[c̃′f̃t,θ

′
0f̃t])Im−p

= (c̃′Hθ0)Im−p, (A39)

where H = E [̃ftf̃
′
t ] + κVar[̃ft]. Similarly, we have Σ11 = (c̃′Hc̃)Im−p and Σ22 = (θ′0Hθ0)Im−p.

Therefore, when Rt and ft are i.i.d. multivariate elliptically distributed, we can simplify the asymp-

totic distribution of tα′λ̂ to

tα′λ̂
d→ − c̃′Hθ0√

(c̃′Hc̃)(θ′0Hθ0)

√
z̃′1z̃1 +

[
1− (c̃′Hθ0)

2

(c̃′Hc̃)(θ′0Hθ0)

] 1
2

w = r
√
u+

√
1− r2w, (A40)

where r = −(c̃′Hθ0)/
√

(c̃′Hc̃)(θ′0Hθ0) and u = z̃′1z̃1 is a χ2
m−p random variable which is indepen-

dent of w. This completes the proof of Lemma 6.
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Table I
Empirical Sizes of the tests of H0 : λ1 = 0

Panel A: CAPM

Standard Normal Weighted χ2

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.978 0.929 0.689 0.144 0.082 0.022
300 0.977 0.925 0.682 0.121 0.065 0.015
450 0.976 0.923 0.679 0.115 0.060 0.014
600 0.976 0.924 0.679 0.111 0.057 0.013
750 0.975 0.923 0.679 0.109 0.057 0.012
900 0.976 0.923 0.680 0.107 0.055 0.011

Panel B: FF3

Standard Normal Weighted χ2

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 1.000 1.000 1.000 0.284 0.189 0.072
300 1.000 1.000 1.000 0.178 0.105 0.031
450 1.000 1.000 0.999 0.151 0.084 0.022
600 1.000 1.000 0.999 0.138 0.074 0.018
750 1.000 1.000 0.999 0.130 0.070 0.016
900 1.000 1.000 0.999 0.125 0.067 0.015

The table presents the actual probabilities of rejection for the asymptotic tests of H0 : λ1 = 0 with
different levels of significance, assuming that the factors and returns are generated from a multivariate
normal distribution. We consider two model specifications that are calibrated to monthly data for the
period January 1932 – December 2006. The model specification in Panel A is calibrated to the capital
asset pricing model (CAPM). The model specification in Panel B is calibrated to the three-factor model
of Fama and French (FF3, 1993). The results for different number of time series observations (T ) are
based on 100,000 simulations.
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Table II
Empirical Size and Power of the Rank Test

Panel A: α = q = [1, 0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.095 0.044 0.007 0.069 0.024 0.001
300 0.098 0.048 0.009 0.093 0.044 0.007
450 0.099 0.050 0.009 0.098 0.047 0.008
600 0.099 0.049 0.010 0.099 0.047 0.009
750 0.100 0.050 0.010 0.100 0.049 0.009
900 0.099 0.050 0.010 0.100 0.050 0.009

Panel B: α = 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.999 0.997 0.965 0.977 0.913 0.531
300 1.000 1.000 1.000 1.000 1.000 1.000
450 1.000 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000 1.000
750 1.000 1.000 1.000 1.000 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000 1.000

The table presents the actual probabilities of rejection for the LM rank test of H0 : rank(Π) = p−1 with
different levels of significance, assuming that the factors and returns are generated from a multivariate
normal distribution. We consider two model specifications (CAPM and FF3) that are calibrated to
monthly data for the period January 1932 – December 2006. Panel A presents the empirical size of the
rank test for α = q = [1, 0′m−1]′. Panel B reports the empirical power of the rank test for α = 1m.
The results for different number of time series observations (T ) are based on 100,000 simulations.
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Table III
Empirical Size of the Sequential Test

Panel A: α = q = [1, 0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.145 0.082 0.022 0.284 0.189 0.072
300 0.121 0.065 0.015 0.178 0.105 0.031
450 0.115 0.060 0.014 0.151 0.085 0.022
600 0.111 0.058 0.013 0.138 0.074 0.018
750 0.109 0.057 0.012 0.130 0.070 0.016
900 0.107 0.055 0.011 0.125 0.067 0.015

Panel B: α = 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.123 0.067 0.022 0.177 0.124 0.130
300 0.110 0.057 0.012 0.132 0.072 0.018
450 0.106 0.054 0.011 0.121 0.065 0.014
600 0.104 0.053 0.011 0.116 0.061 0.013
750 0.104 0.052 0.011 0.112 0.059 0.013
900 0.103 0.051 0.011 0.110 0.057 0.012

The table presents the actual probabilities of rejection for the sequential test (that includes a reduced
rank pre-test) of H0 : λ1 = 0 with different levels of significance, assuming that the factors and returns
are generated from a multivariate normal distribution. The nominal levels of the rank pre-test and the
second-stage test of H0 : λ1 = 0 are set equal to each other. We consider two model specifications
(CAPM and FF3) that are calibrated to monthly data for the period January 1932 – December 2006.
Panel A presents the empirical size of the sequential test for α = q = [1, 0′m−1]′, i.e., α is in the span of
the column space of D0. Panel B reports the empirical size of the sequential test for α = 1m, i.e., α is
not in the span of the column space of D0. The results for different number of time series observations
(T ) are based on 100,000 simulations.
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SIMULATION SETUP

This appendix contains some additional simulation results regarding the properties of the stan-

dard normal test, the weighted χ2 test, the LM rank test, and the sequential test considered in

the paper. In the simulation experiment, the factors (f) and the returns (R) on the test assets

for the CAPM (1 factor and 11 test asset returns) and FF3 (3 factors and 26 test asset returns)

are drawn from a multivariate normal distribution with a covariance matrix estimated from the

data. The mean return vector is chosen such that the asset pricing model holds exactly for the test

assets. For each simulated set of returns and factors, the unknown parameters θ0 of the linear SDF

y(θ0) = f̃ ′θ0, where f̃ = (1, f ′)′, are estimated by minimizing the sample HJ-distance, which yields

θ̂ = (D̂′TWT D̂T )−1(D̂′TWTq), (1)

where D̂T = 1
T

∑T
t=1 Rtf̃

′
t , WT =

(
1
T

∑T
t=1 RtR

′
t

)−1
, and q = [1, 0′m−1]

′. The estimated Lagrange

multipliers are given by

λ̂ = WT

[
1

T

T∑
t=1

Rtyt(θ̂)− q

]
, (2)

where yt(θ̂) = f̃ ′t θ̂.

We consider linear combinations of sample Lagrange multipliers with different choices of an m× 1

nonzero weighting vector α, i.e., α′λ̂. Let matrix Qc denote the null space of the p vector E[f̃tf̃
′
t ]θ0

and Q1
c be the first column of Qc. Also, let Π = P′αD0, where Pα is an m× (m− 1) orthonormal

matrix whose columns are orthogonal to α. In Tables I through IV, we analyze the empirical sizes

of four tests – (i) standard normal test of H0 : α′λ = 0, (ii) weighted χ2 test of H0 : α′λ = 0, (iii)

LM rank test of H0 : rank(Π) = p− 1, and (iv) sequential test of H0 : α′λ = 0 with a pre-test of

H0 : rank(Π) = p− 1, using three choices of α :

1. α = q = [1 ,0′m−1]
′,

2. α = D01p,

3. α = D0Q
1
c .

We also analyze the statistical properties of the rank and sequential tests when α in not in the

span of the column space of D0. Specifically, in Table V, we analyze the empirical power of the

1



rank test for α = 1m and α =
√
mq + 1m. In Table VI, we report results for the empirical size

of the sequential test for α = 1m and α =
√
mq + 1m. The empirical rejection probabilities are

computed based on 100,000 Monte Carlo replications.

STANDARD NORMAL TEST

Panels A and B of Table I show that the use of the standard normal test leads to severe over-

rejections when α is in the span of the column space of D0. By contrast, the normal test behaves

well in Panel C. These simulation results can be explained using the theoretical results in Lemma 6

in the paper. In particular, in Panel A we have α = q and r = −1, and the t-test is asymptotically

distributed as −
√
χ2
m−p. In Panel B, the squared t-test follows a mixture of two independent chi-

squared random variables with m−p and one degrees of freedom. Finally, in Panel C, α is set such

that r2 = 0 (and r = 0) and the t-test follows a standard normal distribution which explains why

the t-test works well in this setup.1

WEIGHTED χ2 TEST

In Table II, we report the empirical size of the weighted χ2 test. For the CAPM, our asymptotic

approximation works very well even for relatively small sample sizes. For FF3, we need a larger T

for the asymptotic approximation to work well. This is a well-known problem in empirical asset

pricing that arises when the number of test assets m is large relative to T (see, e.g., Ahn and

Gadarowski, 2004).

RANK TEST

Tables III and V report the empirical size and power of the rank test. Overall, the test has

excellent size and power properties. Some modest under-rejections only occur for FF3 when T =

150.

SEQUENTIAL TEST

In Tables IV and VI, we analyze the empirical size of the sequential test (that includes a reduced

rank pre-test) of H0 : λ1 = 0 when α is in the span of the column space of D0 and when α is not.

The sequential test we consider has the following structure. If we reject the null of reduced rank,

1Note that our conclusions are not affected by the particular choice of the column of Qc (the matrix described in
the simulation setup).

2



then we use the normal test in the second stage; otherwise, we use the weighted chi-squared test.

Acceptance and rejection of H0 : α′λ = 0 is based on the outcome of the second test. Let η1 be

the asymptotic size of the rank restriction test and η2 be the asymptotic size of either the normal

test or the weighted chi-squared test used in the second stage.

When α is in the span of the column space of D0 (Table IV), the rank restriction test will

accept the null of reduced rank with probability 1−η1 (asymptotically). Therefore, the probability

of using the normal test in the second stage is η1. Unconditionally, the normal test will reject with

probability p1 ≥ η2 (in our simulation setup) and the weighted chi-squared test will reject with

probability η2. Therefore, if the two tests are independent, the size of the sequential test is given

by

η1p1 + (1− η1)η2 ≥ η2.

In general, the two tests are dependent because both the rank restriction test and the test of

H0 : α′λ = 0 are specification tests. In this case, we can only establish an upper bound on the

probability of rejection of the sequential test, which is given by

η1 + η2.

When α is not in the span of the column space of D0 (Table VI), the rank restriction test will

reject the null of reduced rank with probability one (asymptotically), so the normal test will be

chosen in the second stage. As a result, the asymptotic size of the sequential test is simply η2.

The results in Tables IV and VI (which are obtained by setting the asymptotic sizes of the first

and second tests equal to each other, i.e., η1 = η2) show that the proposed sequential test tends to

behave well in our simulation setup.
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Table I
Empirical Size of the Standard Normal Test

Panel A: α = q = [1 ,0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.978 0.929 0.689 1.000 1.000 1.000
300 0.977 0.925 0.682 1.000 1.000 1.000
450 0.976 0.923 0.679 1.000 1.000 0.999
600 0.976 0.924 0.679 1.000 1.000 0.999
750 0.975 0.923 0.679 1.000 1.000 0.999
900 0.976 0.923 0.680 1.000 1.000 0.999

Panel B: α = D01p

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.968 0.910 0.661 1.000 1.000 0.998
300 0.965 0.907 0.650 1.000 1.000 0.998
450 0.964 0.904 0.650 1.000 1.000 0.998
600 0.965 0.905 0.647 1.000 1.000 0.998
750 0.966 0.904 0.648 1.000 1.000 0.998
900 0.965 0.904 0.648 1.000 1.000 0.997

Panel C: α = D0Q
1
c

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.129 0.071 0.017 0.187 0.115 0.037
300 0.114 0.059 0.013 0.141 0.079 0.020
450 0.109 0.056 0.012 0.127 0.068 0.017
600 0.107 0.055 0.012 0.120 0.063 0.015
750 0.106 0.053 0.011 0.117 0.062 0.014
900 0.105 0.053 0.011 0.115 0.060 0.013

4



Table II
Empirical Size of the Weighted χ2 Test

Panel A: α = q = [1 ,0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.144 0.082 0.022 0.284 0.189 0.072
300 0.121 0.065 0.015 0.178 0.105 0.031
450 0.115 0.060 0.014 0.151 0.084 0.022
600 0.111 0.057 0.013 0.138 0.074 0.018
750 0.109 0.057 0.012 0.130 0.070 0.016
900 0.107 0.055 0.011 0.125 0.067 0.015

Panel B: α = D01p

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.124 0.068 0.018 0.209 0.137 0.052
300 0.111 0.058 0.013 0.136 0.077 0.021
450 0.109 0.057 0.012 0.123 0.066 0.015
600 0.106 0.054 0.012 0.115 0.061 0.014
750 0.105 0.054 0.011 0.112 0.058 0.013
900 0.104 0.054 0.012 0.112 0.058 0.012

Panel C: α = D0Q
1
c

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.132 0.072 0.018 0.185 0.111 0.034
300 0.116 0.061 0.013 0.138 0.076 0.019
450 0.109 0.056 0.012 0.124 0.067 0.016
600 0.108 0.055 0.012 0.119 0.062 0.014
750 0.108 0.054 0.011 0.115 0.060 0.013
900 0.105 0.053 0.010 0.111 0.059 0.013
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Table III
Empirical Size of the Rank Test

Panel A: α = q = [1 ,0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.095 0.044 0.007 0.069 0.024 0.001
300 0.098 0.048 0.009 0.093 0.044 0.007
450 0.099 0.050 0.009 0.098 0.047 0.008
600 0.099 0.049 0.010 0.099 0.047 0.009
750 0.100 0.050 0.010 0.100 0.049 0.009
900 0.099 0.050 0.010 0.100 0.050 0.009

Panel B: α = D01p

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.096 0.045 0.007 0.072 0.026 0.001
300 0.099 0.047 0.009 0.093 0.043 0.007
450 0.100 0.050 0.010 0.098 0.046 0.008
600 0.100 0.050 0.010 0.098 0.048 0.008
750 0.101 0.050 0.010 0.100 0.048 0.009
900 0.101 0.050 0.010 0.100 0.050 0.009

Panel C: α = D0Q
1
c

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.084 0.036 0.004 0.048 0.015 0.001
300 0.093 0.044 0.007 0.079 0.033 0.004
450 0.097 0.046 0.008 0.088 0.039 0.006
600 0.097 0.046 0.008 0.091 0.043 0.007
750 0.097 0.047 0.008 0.094 0.044 0.008
900 0.097 0.048 0.009 0.095 0.045 0.008
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Table IV
Empirical Size of the Sequential Test

When α is in the Span of the Column Space of D0

Panel A: α = q = [1 ,0′m−1]
′

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.145 0.082 0.022 0.284 0.189 0.072
300 0.121 0.065 0.015 0.178 0.105 0.031
450 0.115 0.060 0.014 0.151 0.085 0.022
600 0.111 0.058 0.013 0.138 0.074 0.018
750 0.109 0.057 0.012 0.130 0.070 0.016
900 0.107 0.055 0.011 0.125 0.067 0.015

Panel B: α = D01p

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.141 0.072 0.018 0.210 0.137 0.052
300 0.146 0.072 0.014 0.145 0.080 0.021
450 0.149 0.075 0.015 0.143 0.073 0.016
600 0.149 0.074 0.015 0.142 0.072 0.015
750 0.149 0.074 0.015 0.145 0.072 0.015
900 0.149 0.075 0.015 0.147 0.074 0.015

Panel C: α = D0Q
1
c

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.119 0.067 0.017 0.180 0.110 0.034
300 0.103 0.055 0.012 0.130 0.073 0.019
450 0.095 0.050 0.012 0.116 0.063 0.015
600 0.094 0.049 0.011 0.110 0.058 0.014
750 0.093 0.048 0.010 0.106 0.056 0.013
900 0.091 0.047 0.010 0.102 0.055 0.012
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Table V
Empirical Power of the Rank Test

Panel A: α = 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.999 0.997 0.965 0.977 0.913 0.531
300 1.000 1.000 1.000 1.000 1.000 1.000
450 1.000 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000 1.000
750 1.000 1.000 1.000 1.000 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000 1.000

Panel B: α =
√
mq + 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.999 0.997 0.965 0.974 0.904 0.508
300 1.000 1.000 1.000 1.000 1.000 1.000
450 1.000 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000 1.000
750 1.000 1.000 1.000 1.000 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000 1.000
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Table VI
Empirical Size of the Sequential Test

When α is not in the Span of the Column Space of D0

Panel A: α = 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.123 0.067 0.022 0.177 0.124 0.130
300 0.110 0.057 0.012 0.132 0.072 0.018
450 0.106 0.054 0.011 0.121 0.065 0.014
600 0.104 0.053 0.011 0.116 0.061 0.013
750 0.104 0.052 0.011 0.112 0.059 0.013
900 0.103 0.051 0.011 0.110 0.057 0.012

Panel B: α =
√
mq + 1m

CAPM FF3

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

150 0.124 0.065 0.022 0.211 0.151 0.142
300 0.110 0.057 0.012 0.151 0.086 0.023
450 0.108 0.054 0.011 0.134 0.073 0.018
600 0.106 0.053 0.011 0.126 0.067 0.016
750 0.105 0.052 0.011 0.119 0.063 0.015
900 0.104 0.052 0.010 0.116 0.061 0.013
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