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Statistical tools based on the generalized method of mo-
ments (GMM) procedures outlined by Hansen (1982) are
increasingly being used in the analysis of business cycles
(e.g., see Backus, Gregory, and Zin 1989; Backus and Ke-
hoe 1992; Backus, Kehoe, and Kydland 1994; Braun 1994;
Braun and Evans 1991, 1995; Burnside, Eichenbaum, and
Rebelo 1993; Cecchetti, Lam, and Mark 1993; Christiano
and FEichenbaum 1992; den Haan 1995; Fisher 1993; Mar-
shall 1992; Reynolds 1992). For the most part, the the-
ory available for conducting inference with these tools is
asymptotic. Recently, efforts have been made to investigate
the finite-sample accuracy of the asymptotic theory. Much
of this work has focused on the sampling distribution of
statistics used in the empirical analysis of asset-pricing and
inventory-investment models. Analyses in the context of
studies of asset-pricing theories include those of Burnside
(1991), Ferson and Foerster (1994), Kocherlakota (1990),
Neely (1993), and Tauchen (1986). West and Wilcox (1992)
and Fuhrer, Moore, and Schuh (1993) conducted finite-
sample studies of inference in the context of inventory-
investment models. Analyses of the finite-sample proper-
ties of instrumental variables estimation include those of
Christiano (1989), Ericsson (1991), and Nelson and Startz
(1990).

This article uses Monte Carlo methods to investigate the
finité-sample properties of statistics often used in the anal-
ysis of business cycles. We are particularly interested in
the finite-sample performance of GMM for conducting in-
ference about correlations, standard deviations, and rela-
tive standard deviations of data that have been filtered to
induce covariance stationarity. We focus on the two fil-
ters most often used in business-cycle analysis, the first-
difference filter and the Hodrick—Prescott (HP) filter. In re-
cent years the use of the HP filter has become widespread in
the analysis of business cycles. A selected set of examples
includes the work of Backus and Kehoe (1992); Backus et
al. (1992, 1994); Benhabib, Rogerson, and Wright (1991);
Bils and Cho (1994); Blackburn and Ravn (1992); Brand-

ner and Neusser (1992); Braun (1994); Braun and Evans
(1991, 1995); Burnside et al. (1993); Chadha and Prasad
(1994); Cho and Cooley (1994); Christiano and Eichenbaum
(1992); Cooley and Ohanian (1991); Correia, Neves, and Re-
belo (1992); Danthine and Girardin (1989); Englund, Pers-
son, and Svensson (1992); Fisher (1993); Greenwood and
Hercowitz (1991); Hansen (1985); Hornstein (1993); Huh
(1993); Kydland and Prescott (1982, 1991); Prescott (1986);
and Watson (1993). The use of more than one detrending
filter in the analysis of business cycles reflects the diver-
sity of interest on the part of researchers, and the fact that
different filters emphasize different frequencies in the data.

To calculate the asymptotic standard errors using GMM,
one needs to estimate the zero-frequency spectral density
of a particular disturbance process. We estimate this using
the heteroscedasticity and autocorrelation consistent (HAQ)
procedures described by Newey and West (1987, 1994), An-
drews (1991), and Andrews and Monahan (1992). The es-
timators differ according to the choice of kernel, the band-
width parameter, and the order of prewhitening. Our sta-
tistical environment (chosen for empirical plausibility) has
the property that use of the HP filter results in substantial
serial correlation in the relevant GMM disturbance process.
As is well known, persistence puts zero-frequency spectral-
density estimators to a severe test.

We begin our analysis by investigating the coverage
probabilities of confidence intervals computed for vari-
ous second moments of detrended data. We first discuss
these issues thoroughly in the context of a univariate data-
generating mechanism (DGM) that has proved useful in the
analysis of several macroeconomic data series. The advan-
tage of this DGM, aside from its empirical plausibility, is
that its simplicity enables one to develop intuition about
the reasons that alternative HAC estimators have different
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finite-sample properties. We then analyze the finite-sample
properties of these HAC estimators using artificial data gen-
erated by a multivariate DGM, estimated by fitting a vector
autoregression (VAR) to the set of postwar U.S. macroeco-
nomic data typically analyzed in business-cycle studies.

Next, we evaluate the finite-sample properties of the chi-
squared test implemented by Christiano and Eichenbaum
(1992) for testing the fit of an equilibrium business-cycle
model. The test compares a model’s implications for sec-
ond moments with the actual second moments estimated
in the data. The test takes into account the joint sampling
uncertainty in model parameter estimates and data second
moments.

This article is organized as follows. Section 1 lays out
the asymptotic sampling theory that is relevant to our anal-
ysis. Section 2 discusses the different procedures to estimate
the spectral density at frequency 0. Section 3 describes the
features of the HP filter that are relevant to our analysis.
Section 4 presents the analysis of inference about second-
moment properties. Section 5 analyzes the finite-sample
properties of the test of an equilibrium model. Finally, Sec-
tion 6 presents a summary of our main findings and con-
cludes.

1. GENERALIZED METHOD OF MOMENTS

In this section we discuss the use of GMM for the estima-
tion of parameters and for testing hypotheses. (For textbook
treatments, see Davidson and MacKinnon 1993; Hamilton
1994; Ogaki 1992). In Subsection 1.1, we survey the rel-
evant large-sample theory. In Subsection 1.2, we discuss
hypothesis testing.

1.1 Large-Sample Theory

Suppose we wish to estimate an n x 1 vector, ¢°, of pa-
rameters. To do so using GMM, we need to first identify an
n x 1 vector, u; (), which is a strictly stationary stochastic
process for each ¢y € R™ and which has the property

Eut(¢0) :07 (1)

where ¥ denotes the true values of the parameters of the
underlying DGM. [For other regularity conditions on . (v),
see Hansen (1982).] We consider the exactly identified case
only so that the dimensions of the GMM error, u;, and
the parameter vector, v, coincide. For an analysis of finite-
sample issues in the overidentified case, see Burnside and
Eichenbaum (1996). In the exactly identified case, the GMM
estimator of ¢°, denoted vr, is defined by

T
Suw(w), @
t=1

where T denotes the sample size. According to Hansen
(1982), v>7 has the following asymptotic distribution:

gr(r) =0, gr(¥) = T

VT ($r —4°) ~ N(0,V), 3)
where

V=D7'S(D)7". (4)
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Here, D is given by

Ogr ()
oY’

D=E

\ ] : (5)
w=y°

and / denotes transposition. Moreover, S is the (positive
definite) spectral density at frequency O of uy (¢°), defined
by

S= > G ©6)
l=—00
and
Cr = Euy(¥)us1(4)'- (7)

Because V is unknown, in practice it must be replaced
by a consistent sample estimate, Vi, which is based on re-
placing D and S in (4) by Dr and Sp. Here, Dr is com-
puted by replacing the expectation operator in (5), with the
sample average operator and ¢° with Y. Moreover, Sr is
obtained by applying an estimator of the spectral density
at frequency O to u;(¢7). Thus, in practice, inference is
conducted based on

VT = f);lSvT(b’/T)-l' (8)
We discuss alternative estimators, S‘T, in Section 2.

1.2 Hypothesis Testing

To test a hypothesis about the ith element of ¢°, v, we
can make use of the fact that, asymptotically,
C
ipLT_%_ ~ N(0,1), 9)
(Viir/T)

where @i,T is the ith element of @T and VHT is the ith
diagonal element of V.

We will also consider tests of joint hypotheses about the
elements of 1°. Let F be a differentiable function that maps
R™ into the m x 1 zero vector, 0,,. Then F(¢°) =
represents m hypotheses, each of Wthh potentially 1nvolves
all elements of 4. To test the null hypothesis, F(¢/%) = O,
we make use of the fact that, if indeed F(¢/°) = O, then
asymptotically

VIF(r) ~ N(Op, Vi), Ve = fFROVIERS), (10
where the m x n matrix f(¢°) is defined as follows:
0 OF
0% = 55 |,

In practice, V in (10), which depends on unknown param-
eters, is estimated by replacing ¢° with Y7 and V with Vi

Ve = f(r)Vrf(dr)' (11)
We base inference on the asymptotic result:
TF(r) [Ver] ' Fr) ~ Xm. (12)
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The popular “calibration” procedure of Kydland and
Prescott (1982) tests a restriction of the form F(¢°) = 0,
The procedure calculates the second moments implied by
an economic model at the estimated values of its parame-
ters and compares these second moments with the second
moments observed in the data. Equation (12) constitutes a
formal theory of inference that can potentially be of assis-
tance in making this comparison. It takes into account the
joint-sampling uncertainty in the model parameter estimates
and data second moments.

2. ESTIMATION OF A SPECTRAL DENSITY AT
FREQUENCY ZERO

This section discusses the computation of Sy, an estima-
tor of the spectral density of u;(z/°) at frequency 0. This
object is central to econometric analyses using GMM. In
Section 1 we showed that in the exactly identified case ST 18
required for conducting hypothesis tests on the parameters,
v. In the overidentified case not considered in this article,
St also plays a role in computing the point estimates, U
(see Hansen 1982). In our simulation analysis we study five
zero-frequency spectral-density estimators, Sr, and these
are described here.

It is useful for us to describe our estimators of S by
reference to the following baseline class of nonparametric
estimators [see den Haan and Levin (1994) for an analysis
of parametric estimators]:

(13)
j=-T+1

where «(-) is a weighting function (kernel) to be discussed
later and

T
. 1 . .
C = m Z Ut("l’T)ut—l(d)T)/-,
t=I+1
1=0,....,T—1, (14)
where ¢, = C". pl=-1,—- ,—T+1. In (14), the scalar,

n. is included as a ﬁmte sample correction. In Subsection
2.1, we discuss a perturbation on the preceding estimator
that was described by Andrews and Monahan (1992) and
involves “prewhitening” u;(¢7). In Subsections 2.2 and
2.3, we discuss aspects of the problem of choosing the
kernel, .

2.1 Prewhitening

Andrews and Monahan (1992) proposed and studied a
modification to the class of estimators defined by (13),
which involves prewhitening u,(¢7). Their procedure is ex-
ecuted in three steps. In the prewhitening step, compute
47 (¥r), the fitted residual from the following bth-order
VAR, to ut(wT)

b
= Y A (br) + 47 (Y1), (15)
r=1
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where @} (¢¥7) = us(¢r) when b = 0. The second step ap-
plies an estimator of the spectral density at frequency 0 to
iy (Yr):

T-1
(16)

j=—T+1

where C* is the jth autocovariance of ﬁ;(LZ}T), computed
using the analog of (14), and «(-) is a real- valued kernel
discussed later. Finally, the prewhitened estimator of S, St

is
b -1 b
s - (1_ Z&) 5 (1_ ZAT>
r=1 r=1

We define S8 = S} = Sr when b = 0, where Sy is defined
in (13). Andrews and Monahan (1992) gave no advice on the
appropriate choice of . In their Monte Carlo studies, they
considered b = 0 and b = 1, and we consider b =0, 1, 2.

M-

(17)

2.2 Alternative Choices of the Kernel, k

We now discuss the choice of the kernel, «(-). Newey and
West (1987) used the Bartlett kernel; that is,

. 6
n(j>=[1— %] . o<liE <,

k(j) =0, 3/€l>1, (18)

with 8 = 1. We refer to (17) with the Bartlett kernel as the
Bartlett estimator of S, with bandwidth £ and prewhitening
parameter b. An alternative kernel, proposed by Hansen
and Hodrick (1980) and White (1984), is (18) with 6 = 0.
We refer to this as the unweighted, truncated kernel. An
advantage of the Bartlett kernel is that positive definite-
ness of ST is guaranteed, but this is not the case for the
unweighted, truncated kernel. To accommodate the latter
observation, we define the unweighted, truncated estimator
of S, with bandwidth & and prewhitening parameter b as
one that uses the truncated kernel to compute S5 in (17)
when $%. is positive definite and the Bartlett estimator oth-
erwise. In the data-generating processes considered in this
article, we found that failure of positive definiteness occurs
with low probability. In particular, in all of our experiments
involving artificial datasets of length 120 observations, the
frequency with which positive definiteness fails never ex-
ceeds 6% and is typically closer to 1%. We also considered
datasets of length 1,000, and in these we never encountered
the problem.

We also consider the quadratic spectral (QS) kernel pro-
posed by Andrews (1991):

K(J) = kas(i/€); (19)

where
25 sin(67wx/5)
1222 6mrx/5

with kqs(0) = 1. Like the Bartlett kernel, this kernel guar-
antees a positive definite estimator of S.

kqs(z) = —cos(6rz/5)| (20)
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Table 1. Zero-Frequency Spectral-Density Estimators
Name Type of estimator Kernel Bandwidth
Uw (11) Unweighted Equation (18) with 6 = 0 11
BART (11) Bartlett Equation (18) with § = 1 11
BARTLETT Bartlett Equation (18) with 6 = 1 Andrews, Automatic
Qs Qs Equation (19) and (20) Andrews, Automatic
NW Bartlett Equation (18) with 6 = 1 Newey-West, Automatic

2.3 Automatic Bandwidth Selection

In this subsection, we describe data-based (“automatic’)
methods that select bandwidths for the Bartlett and QS ker-
nels. We denote a bandwidth that is selected as a function
of the data by £7. Andrews (1991) and Newey and West
(1994, referred to hereafter as Newey-West) each described
methods that can be used to compute 7 for the Bartlett,
QS, and other kernels. Although when n > 1 their effi-
ciency criterion guiding the selection of ¢7 differs slightly,
the primary difference between Andrews and Newey—West
lies in their strategies for exploiting the information in the
sample autocorrelation function to select a value for &7.
The Andrews procedure, as implemented by Andrews and
Monahan (1992), assumes an (autoregressive) AR(1) para-
metric structure for the autocovariance function, which en-
ables the analyst to select the truncation parameter based
on just the variance and first-order autocovariance. By con-
trast, Newey—West do not assume a parametric structure, so
their procedure must select the lag length based on a longer
list of autocorrelations.

Neither method is entirely automatic in the sense that it
completely avoids selecting parameters exogenously. In the
case of the Andrews method, a time series model must be
selected for 4} (¢)7). No automatic procedure is offered for
doing this, though Andrews and Monahan (1992) did rec-
ommend (on computational tractability grounds, it seems)
the AR(1) model. Similarly, the Newey—West method re-
quires picking a bandwidth parameter (not ¢ itself!) exoge-
nously, and in their work they used two arbitrarily chosen
values for it.

For the kernels discussed in Subsection 2.2, consistency
of St—that is, pllmST = S—is guaranteed if {r — oo at
the appropriate rate as T — oo (see Andrews and Monahan
1992). Andrews and Newey—West selected {¢7} to optimize
asymptotic efficiency criteria. The optimal choice of &7 is

&r = 1.1447[a(1)T)V/3, 21)
for the Bartlett kernel and
ér = 1.3221[a(2)T)V/5 (22)

for the QS kernel (see Andrews and Newey-West and the
references they cite). In practice, in (21)~(22), a(1) and «(2)
must be replaced by sample estimates.

We turn now to a description of the details of the
Andrews optimal bandwidth-selection procedure and the
Newey-West optimal bandwidth-selection procedure.

2.3.1 The Andrews Bandwidth-Selection Procedure.
Andrews proposed estimating the parameters of a time se-

ries model for @} (47) and provided formulas for estimating
«(1) and «(2) based on the parameter estimates. In practice,
Andrews and Monahan recommended ﬁttiAng an AR(1) rep-
resentation to the ath component of 4} (v¥r),a = 1,...,n.
Letting (p,, 62) denote the associated ﬁrst order autoregres—
sive and innovation variance parameters,

Zn w 49,6,
a=1"¢ (1 — pa)%(1 + fa)?

a(l) = = (23)
Yam1%a T80
and
n 4p &4
Wq 7%y
&(2) — Z =1 (1—pa)® (24)

0-4
> a1 Wa T=pa*

We follow Andrews and Monahan, who suggested setting
we = 1 for all a.

To summarize, the Andrews bandwidth-selection proce-
dure is implemented in the following four steps:

and compute the fitted resid-

1. Obtain a series, u;(¢7), |
b > 1. If b = 0, then 4} (vr) =

uals, @X(¢7), in (15) if
Ut (1/)T)

2. Fit scalar AR(1) representations to each of the n ele-
ments of 4} (y7). Denote the resulting parameter estimates
by (pa,62),a=1,...,n.

3. Select a set of weights, w,,a =1,...,
&(1), &(2) using (23)—(24).

4. Evaluate (21)~22) with «(q) replaced by a(q),q =
1,2.

n, and compute

We refer to the procedure for computing 5’; that uses the
QS kernel and the preceding bandwidth-selection method
as the Andrews (QS) estimator of S, with prewhitening pa-
rameter b. We refer to the procedure that uses the Bartlett
kernel and the preceding bandwidth-selection method as the
Andrews (Bartlett) estimator of S, with prewhitening param-
eter b.

2.3.2 The Newey-West Bandwidth-Selection Procedure.
Newey—West’s formulas for &(1) and &(2) are as follows:

w F @y
4(q) = | ——— =1,2, 25
D)= —=o, q (25)
and they make w a vector of 1Is. Here,
!
F@ = N")519Cy,  1=p(T/100)*°.  (26)

j==1

Newey-West avoided making parametric assumptions
about the time series representation of 4;(1)7). They had
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Figure 1. Filter Weights for the HP Filter. The figure displays the

HP filter weights used to compute the ith observation of the detrended
variable, as indicated in the header. The sample length is equal to 120
observations.

to choose an exogenous bandwidth parameter, 3, however.
They suggested doing so by trying alternative values and
“then exercising some judgment about sensitivity of results”
(p. 2). In practice, they worked with values of § equal to
4 and 12. In our Monte Carlo experiments we used 3 = 4.
We found very little difference between setting 3 equal to 4
or 12. To summarize, the Newey—West bandwidth-selection
procedure is implemented in the following four steps:

1. Follow step 1 in the Andrews procedure.

2. Set 3 and compute F(@ ¢ =0, 1,2, using (26).

3. Select a set of weights, w, and compute 4(q),q = 1,2,
using (25).

4. Evaluate (21)+22) with a(q) replaced by a(gq),q =
1,2, and retain the integer value of £7.

We refer to the procedure for computing 5’; that uses
the Bartlett kernel and the preceding bandwidth-selection
method as the Newey—-West (Bartlett) estimator of S, with
prewhitening parameter b. For convenience, the various
zero-frequency spectral estimators and their names are sum-
marized in Table 1.

313

3. THE HODRICK-PRESCOTT FILTER

We consider two detrending methods, first-differencing
and applying the HP filter. We briefly review properties of
the HP filter that are relevant to our analysis.

Suppose that we have a partial realization of length
T,Y = [Y_r/241,. .., Yr/2]’, of a stochastic process, {Y:}.
Application of the HP filter to this partial realization
first involves computing a 7T-dimensional trend path, 7 =

[T—T/241,- -+, Tr/2]’, which minimizes
T/2
Z (Y — Tt)2
t=—T/2+1
T/2-1
A Y - = (- @D
t=—T/2+2

with A normally being set to 1,600 with quarterly data. The
detrended series is Y¢ = [Y4,, PITIRE ,Yﬁ/z]' , where Y2 =
Y, — 7¢. As pointed out by Prescott (1986), the solution to
this problem can be represented as follows:

Y= ArY, (28)
where At is a T x T matrix with elements that depend on
the values of A and 7 but not on the data, Y. Thus, the
weights in the HP filter, the rows of Az, are a function
of T. The weights are graphed in Figure 1 for T = 120
and A = 1,600. The figure displays the entries in rows
2,10,25,60,95,110, and 118 of Ajz0. These are the filter
weights for Y4, ¢t = —58,—50,—-35,0,35,50, and 58, re-
spectively. The filter weights used to get Y{ are essentially
the HP filter weights for 7" = co. The figure indicates that
these weights extend forward and backward in time a little
over 25 periods. For this reason, the 25th and 95th rows of
A120 show some (slight) evidence of truncation. For obser-
vations on Y2 that are less than 25 periods from the end-
points of the data set, the HP filter weights are significantly
different from their 7" = oo values.

There is a simple representation of the HP filter weights
for large T. As shown by King and Rebelo (1993), manip-
ulation of the first-order conditions of the preceding opti-
mization problem shows that, as T — o0,Y?% — g(L)Y;,

* first difference fitter

15 high pass filter

A S
0.5 HP filter

o 0.1 02 03 04 05 06 0.7 0.8 [e2°] 1

o

Figure 2. Transfer Functions for Alternative Filters. w denotes fre-
quency of oscillations divided by .
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Table 2. Coverage Probabilities: Univariate DGM (p = .4)
HP A
Spectral estimator b 5% 10% 90% 95% 5% 10% 90% 95%
T=120
TRUE 3.6 9.2 10.6 6.6 47 9.5 10.0 4.8
UW (11) 0 18.7 23.8 15.2 10.8 12.6 17.7 13.0 8.1
BART (11) ] 19.3 236 16.7 10.3 11.0 16.1 10.8 55
BARTLETT 0 19.0 23.2 16.4 9.8 9.5 14.7 9.9 46
Qs o] 18.6 229 15.0 9.4 9.5 14.4 9.3 4.2
NW 0 20.9 24.4 18.0 11.7 10.0 15.1 10.7 5.4
UwW (11) 1 19.6 23.9 16.0 11.0 13.1 17.8 13.4 8.1
BART (11) 1 16.5 21.1 9.9 5.8 10.9 16.0 10.3 5.1
BARTLETT 1 12.1 17.5 5.5 1.6 8.5 13.7 8.1 3.2
Qs 1 12.0 17.3 5.0 1.3 8.8 14.0 8.2 3.4
NwW 1 16.7 205 9.3 5.1 9.0 14.1 9.5 4.4
UW (11) 2 19.1 24.0 15.8 10.8 13.3 17.7 13.4 8.3
BART (11) 2 18.6 228 15.8 9.8 11.1 15.8 10.5 55
BARTLETT 2 18.8 223 15.5 9.6 9.5 14.1 8.8 4.0
Qs 2 18.8 222 15.7 9.7 9.7 14.2 8.9 4.1
NW 2 18.8 221 15.5 9.6 9.7 145 9.1 5.1
T = 1,000
TRUE 4.5 9.1 10.7 5.5 4.9 10.0 9.7 5.3
UW (11) 0 8.8 15.7 13.3 7.7 7.8 133 10.6 5.2
BART (11) 0 11.1 17.4 15.4 9.4 7.8 13.3 10.3 55
BARTLETT 0 9.0 15.5 13.0 7.4 7.8 13.6 10.3 5.9
Qs 0 8.6 15.4 12.6 6.8 7.7 13.4 10.0 56
NW 0 111 17.7 15.2 9.0 7.9 13.5 103 6.2
uw (11) 1 9.6 16.2 13.2 8.4 7.9 134 10.6 53
BART (11) 1 7.4 13.0 10.0 4.9 7.7 13.1 9.8 5.3
BARTLETT 1 5.7 10.7 7.7 3.9 7.2 13.1 95 5.2
Qs 1 5.0 9.3 6.8 3.1 71 13.1 9.5 5.2
NwW 1 75 13.6 11.1 5.3 7.0 12.9 9.6 5.3
UW (11) 2 9.0 15.8 1341 7.5 7.9 134 10.6 53
BART (11) 2 10.0 17.2 14.8 8.6 7.5 1341 10.1 5.2
BARTLETT 2 10.8 17.4 15.0 9.2 7.4 13.1 9.5 5.4
Qs 2 10.8 17.3 151 9.1 7.4 13.1 95 54
NW 2 10.7 17.3 15.0 9.1 7.0 12.9 9.6 53

NOTE: This table reports the coverage probabilities of the t statistic that tests whether the standard deviation of detrended Xz is equal to its true value. The DGM for x; is given by Ax; = 44X, 1+
O1ey, with ep ~ MO, 1). The 5% (95%) and 10% (30%) columns report the frequency that the ¢ statistic is less (higher) than the lower (upper) 5% and 10% critical value. The row TRUE uses the
Monte Carlo standard deviation of the parameter estimate to calculate the standard error. For definitions of the spectral estimators, see Table 1. b indicates the order of prewhitening. HP(A) refers
to Hodrick-Prescott detrending (first-differencing). The results are based on 1,000 independently simulated datasets, each of length T.

where, for A = 1,600,

(1-L-Y2(1 - L)?
hIR(IL-Y)

g(L) = .7794

h(L) =1 - 1.7771L + .7994L%. (29)

This result provides the sense in which, for large T, the HP
filter induces covariance stationarity in processes that re-
quire up to fourth-differencing to induce stationarity. (Ex-
amples include processes that are integrated of order up
to 4.) In addition, the preceding discussion suggests that,
for A = 1.600 and finite T' > 40, HP-filtered observations
in the middle of a dataset virtually coincide with g(L)Y;,
a covariance stationary process. These considerations have
led researchers to conclude that the HP filter, as conven-
tionally applied, is equivalent to the application of g(L) to
the data, together with a particular strategy for dealing with
endpoints. Baxter and King (1995) also discussed the end-

point issue, and they suggested dealing with it by dropping
observations at the beginning and the end of the dataset.
Although it is beyond the scope of this article to do so, it
would be of interest to compare the sampling properties of
this strategy for dealing with endpoints with the conven-
tional strategy.

At the beginning of this article we drew attention to the
fact that the HP and first-difference filters emphasize differ-
ent frequencies (see also Singleton 1988). This is illustrated
in Figure 2, which shows how the first-difference and g(L)
filters scale the spectrum of a raw time series. The hori-
zontal axis reports w, which is frequencies divided by m,
and the vertical axis reports the transfer function of the
filter. Cycle periods are given by 2/w. Because business-
cycle analysis is primarily concerned with quarterly data,
we think of the period as being one quarter. As is well
known, the first-difference filter amplifies the high (quar-
ters 8 and lower) frequency components of the data while
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Table 3. Diagnosing Fat-Tail and Skewness Problem in Table 2 (p = .4)

HP A
Spectral estimator b 1 i i l 1 i
T= 120
UW (11) 0 .50 .00269 .001870 .34 .000827 .000680
BART (11) 0 .62 .00269 .001790 47 .000827 .000725
BARTLETT 0 .61 .00269 .001810 54 .000827 .000761
Qs 0 .59 .00269 001867 .53 .000827 .000772
Nw 0 .65 .00269 .001687 49 000827 .000740
Uw (11) 1 .33 .00269 .001973 .32 .000827 .000680
BART (11) 1 .48 .00269 002277 47 .000827 .000738
BARTLETT 1 .56 .00269 002829 52 .000827 .000808
Qs 1 .57 .00269 .002867 .52 .000827 .000805
NwW 1 47 .00269 .002346 .47 .000827 .000782
Uw (11) 2 .48 .00269 .001867 .33 .000827 .000678
BART (11) 2 .59 .00269 .001862 45 .000827 .000735
BARTLETT 2 .62 00269 .001871 46 .000827 .000793
Qs 2 .62 .00269 .001864 .46 .000827 .000789
NwW P .62 00269 .001869 .45 .000827 .000781
T = 1,000
UW (11) 0 46 .000959 .000819 .37 .000299 .000280
BART (11) 0 .55 .000959 .000741 47 .000299 .000278
BARTLETT 0 .49 .000959 .000826 .53 .000299 .000276
Qs 0 .50 .000959 .000835 .53 .000299 .000279
NW 0 48 .000959 .000751 41 .000299 .000274
Uw (11) 1 .36 .000959 .000809 .36 .000299 .000282
BART (11) 1 .59 .000959 000911 47 .000299 .000282
BARTLETT 1 .58 .000959 .000987 .55 .000299 .000285
Qs 1 .58 .000959 .001045 .55 .000299 .000285
NwW 1 .45 .000959 .000898 .48 .000299 .000284
UW (11) 2 .46 .000959 .000820 .36 .000299 .000280
BART (11) 2 .53 .000959 .000771 .46 .000299 .000282
BARTLETT 2 .54 .000959 000755 51 .000299 .000285
Qs 2 .54 .000959 000755 .51 .000299 .000284
NW 2 .55 .000959 .000760 47 .000299 .000283

NOTE: Column | reports the correlation between 1 and {V7]'/2, column il reports the Monte Carlo standard deviation of 7, and column
lil reports the Monte Carlo mean of [\77-]1’2. For definitions of the spectral estimators, see Table 1. b indicates the order of prewhitening.
The data-generating process for x; is given by Ax; = .4Ax,_1+ 0leq, with &, ~ N(O, 1). HP(A) refers to Hodrick-Prescott detrending
(first-differencing). The results are based on 1,000 independently simulated datasets, each of length T.

reducing the lower frequency components. The HP filter
resembles the high-pass filter, also displayed in the figure,
which eliminates cycles of period 32 quarters and greater
and leaves shorter cycles untouched. The figure reveals why
some business-cycle analysts prefer the HP filter. To them,
using first-difference-adjusted data to study business cycles
is much like using seasonally adjusted data to study the sea-
sonal cycle. Business-cycle frequencies are commonly as-
sociated with periods 8 through 32 quarters (i.e., w = .063
to .25), and the first-difference filter dramatically reduces
the relative importance of these.

At the same time, there are reasons that some researchers
prefer to work with the first-difference filter. For example,
for some researchers the variable of interest may be de-
fined in terms of the first-difference filter because, say, they
are interested in the growth rate of gross domestic prod-
uct, or inflation, rather than the levels of these variables.
In this article, we simply take it as given that, for a vari-
ety of reasons, some researchers work with the HP filter

and others with the first-difference filter. Our task here is
to provide information on the small-sample distribution of
various statistics based on these two filters.

4. INFERENCE ABOUT SECOND MOMENTS

Our Monte Carlo experimental design is motivated by
a desire to provide evidence on the finite-sample proper-
ties of statistics commonly used in the analysis of business
cycles. Therefore, it is important to us that (a) we study
statistics that are actually in use and (b) we employ em-
pirically plausible DGM’s for our experiments. Subsection
4.1 uses a univariate DGM often used in the analysis of
macroeconomic data. An advantage of using this model is
that its simplicity allows us to gain intuition into the basic
results. In the context of this DGM, we study the finite-
sample performance of a standard-deviation estimator. We
then proceed to analyze a multivariate DGM, obtained by
fitting a four-variable VAR to the main macroeconomic data
series—consumption, employment, output, and investment.
Here, we analyze the finite-sample properties of 23 second
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Figure 3. Standard Deviation of HP-Filtered Data. The figure plots
the standard deviation of x¢, where x? is obtained by detrending 120
observations using the indicated filter. Plim signifies p/imrk.odﬁr. The
DGM is Equation (30) with p = .4 and o = .01. See Section 4.1.1 for
details.

moments commonly studied in the analysis of business cy-
cles. The insights obtained in the univariate environment
provide intuition into the qualitatively similar results that
we get in our multivariate setting.

4.1 A Univariate DGM

We suppose that the data, x;, are generated by
(30)

where vy = pry_q + oer,er ~ N(0,1),t = —T/2 + 1,
....T/2,|p| <1, and o > 0. Christiano (1992) argued that
this is a good representation for log gross national product
(GNP). Cooley and Hansen (1989) and den Haan (1995)
used this to model money growth.

We consider the problem of estimating the standard de-
viation of detrended z;,z¢. Consequently, our parameter
vector ¢ is composed of a single element (ie., ¥° =
[E(z¢)?]Y/2, and n = 1). It is readily confirmed that, when
z{ is obtained by first-differencing, the following specifica-
tion of u, (1) satisfies the conditions discussed in Section 3;

w(¥) = (28)® - (¥)°. 31)

Note that we commit a slight abuse of notation here be-
cause the value of ¢ depends, of course, on the method of
detrending. The value of ¥° is unambiguous for the case
of first-differenced data. This is not so, however, when data

Ty = Xt—1 + Uy,
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07
06
05
0.4
03
02

first difference, p = 0.4

01 \ first difference, p = 0

1.2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lag

Figure 4. Autocorrelation Coefficient of (x¢)?. The figure plots the
autocorrelation coefficients of (x?)? when the raw data are generated by
Equation (30) with p = .4 and o = .01.
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have been HP filtered. We confront this first, before report-
ing the resuits of our Monte Carlo experiments.

4.1.1 The Standard Deviation of HP-Filtered Data.
When z¢ is obtained by HP filtering x;, (31) does not
exactly satisfy the conditions in Sections 1 and 2. End-
point effects associated with the filter have the implica-
tion that x¢ and, hence, u;(¢)) are not strictly station-
ary. To quantify this, we computed ¥ = [E(z$)?]'/? for
t =-T/2+1,...,T/2 and T = 120. The expression
should not be confused with 1/3T, defined after (2), where
T denotes sample size. For comparison, we also computed
90 = [E(EH2)V2 for t = —T/2+1,...,T/2 and T = 120,
where #¢ = g(L)z;. We refer to g(L) as the infeasible HP
filter because it requires having an infinite number (actu-
ally, 25 or so will do) of data points prior to the first ob-
servation and after the last observation in the dataset. By
contrast, the feasible HP filter requires only the available
data. We computed v and ¢ using a Monte Carlo analy-
sis with 100,000 replications, in which p = .4 and ¢ = .01.
For the experiments with the feasible HP filter, each repli-
cation is composed of 220 observations, with the starting
value of z, set to O and the first 100 observations discarded
to randomize initial conditions. The feasible HP filter was
then computed using the remaining 120 observations. For
the experiments related to the infeasible HP filter, 600 ob-
servations were generated per replication, with the first 100
deleted from the analysis to randomize initial conditions. To
approximate the infeasible HP filter, we applied the feasi-
ble HP filter with Asqg to the remaining observations and
then kept the middle 120 observations for analysis. These
calculations produced :E‘t{i and :v?,i for t = —59,...,60, and
i=1,...,100,000:

. ) 100,000 . 1/2
Yy = [ m 21 (xt,i) ]

y ) 100,000 o 1/2
Ve = {100,000 2 (x“')} ’

for t = —59,...,60.
These objects are graphed in Figure 3. In addition, we dis-

" play plimy._, %7, which is .01877 and was computed by

inverse-Fourier transforming the spectrum of g(L)z;. Note
the substantial variation in 1 at the beginning and at the
end of the dataset, revealing that (z¢)? is not stationary in
the mean. [See Baxter and King (1995) for a similar result
using a different DGM.] By contrast, in the middle 60 ob-
servations v is roughly constant and equal to v?, which in
turn essentially coincides with plim._,__tr. These findings
are consistent with the observations about the nature of the
HP filter made in Section 3.

The endpoint effects in z¢ present a problem for us. The
asymptotic theory requires that 1° in the numerator of (9)
be the standard deviation of z¢. But there is no such num-
ber, independent of ¢. There are at least three options. The
first is to equate ° with ¥? = [E(z%)?]'/? for observa-
tions in the middle of an HP-filtered dataset. A feature of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Christiano and den Haan: Small-Sample Properties of GMM

1.4

13
Y21 UNWEIGHTED
11 \

, i

¥ ¥
09
08 a
BARTLETT
07
06
05
0.4}
0 10 20 30 0 50 60 70 80 %0 100

BANDWIDTH, &

Figure 5. S(¢) Divided by S; HP Filter and b = 0. S(§) is the spec-
tral density of the GMM residual associated with data detrended by the
Hodrick-Prescott filter, using the indicated kernel and bandwidth . S is
equal to S(¢) as € — oo. The DGM is Equation (30) with p = .4 and
o = .01. See Table 1 for definitions of the spectral estimators.

this option is that it overstates the degree of variation in
z¢. For example, the mean value of ¢ for all values of
t is .01813. A second option is to equate 0 with E1[)T,
which is .01793 for T = 120. (This was approximated by
averaging over 1,000 Monte Carlo replications of ¥p.) The
discussion in the previous paragraph suggests that these two
options are asymptotically equivalent. For example, when
T = 1.000. Exyr = .01864, which is nearly equivalent to
plimT_,dizT. The third option is to throw away the first
and last 25 observations. We did not implement this option
because we are interested in implementing the HP filter as
it is used in practice. We decided to go with the second op-
tion for two reasons. First, this way of selecting 1° seems
closest in spirit to equating ¢° with the “true” standard
deviation of z¢. Second, this choice is conservative from
the point of view of the conclusions of our analysis. We
will show that asymptotic theory does not work well in fi-
nite samples. Evidence presented later suggests that, had we
pursued the first option, it would have worked even worse.
For the sake of comparability, we treat ¢/° in the case of
the first-difference filter analogously.

4.1.2 Results Based on No Prewhitening.  Our results
for the case b = 0 can be summarized as follows. We show
that there is substantial distortion—in terms of fat tails and
skewness—in estimated confidence intervals for the stan-
dard deviation of z¢. This reflects two features of the sam-
pling distribution of Vir: It is biased downward, and it co-
varies positively with ¢r-. The former is the principal reason
for the fat tails, and the latter accounts for skewness. The
downward bias in V7 is more severe the more persistence
there is in wu;(%). This is a particularly important consid-
eration when the data have been HP filtered. Persistence
leads to distortions in part by requiring a large lag band-
width, which the methods we implement tend to underesti-
mate, accounting in part for the downward bias in V. Fi-
nally, the performances of our various estimators are very
similar.

These results reflect six observations, based principally
on an examination of the b = 0,p = .4,0 = .01 case. For
money and GNP growth, this value of p is the empirically
relevant one. First, for both the HP and first-difference fil-
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Figure 6. S(¢) Divided by S; First-Difference Filter and b = 0. SE)is
the spectral density of the GMM residual associated with data detrended
by the first-difference filter, using the indicated kernel and bandwidth §.
S is equal to S(t) as ¢ — oo. The DGM is Equation (30) with p = .4
and o = .01. See Table 1 for definitions of the spectral estimators.

ters, there is a substantial amount of skewness in the ¢ statis-
tic defined in Equation (9) when b = 0 and the number of
observations, T, is 120 (see Table 2, p. 314, top panel). We
examined the impact on our results of identifying ¥° with
plimz/A)T rather than with the E@/)T, and consistent with the
discussion in Section 4.1.1, we found that this exacerbates
the skewness problem. For example, the BART (11) row in
the top left panel of Table 2 becomes 26.0, 33.4, 9.3, and
6.0. Second, when T = 120, there is also a substantial fat-
tail problem in that the sum of the probabilities of being in
the top and bottom 5% tails substantially exceeds 10%, and

Table 4. Sampling Properties of Bandwidths (p = .4)

HP A
Spectral estimator b / i / 1
T=120
BARTLETT 0 10.70 2.85 2.41 1.31
Qs 0 10.00 3.21 2.29 1.03
NW 0 5.00 1.74 442 3.96
BARTLETT 1 3.26 .84 46 .36
Qs 1 2.96 45 72 .34
NwW 1 13.05 10.11 5.00 3.85
BARTLETT 2 71 44 .32 .26
Qs 2 .95 40 .58 .27
NW 2 3.18 1.84 4.45 3.47
T = 1,000
BARTLETT 0 24.26 2.1 5.30 1.08
Qs 0 17.30 1.76 3.76 .60
NW 0 11.79 264 6.63 3.41
BARTLETT 1 6.91 .83 45 25
Qs 1 4.67 48 72 .26
NW 1 40.70 14.86 6.75 3.76
BARTLETT 2 74 43 17 13
Qs 2 .98 .37 .39 .18
NW 2 5.86 3.09 6.68 3.66

NOTE: Column | reports the Monte Carlo mean of ¢ and column Il reports the Monte Carlo
standard deviation of ¢£y. For definitions of the spectral estimators, see Table 1. The data-
generating process for x; is given by Ax; = .4Ax,_1+ .01e,, with &4 ~ MO, 1). HP(A) refers to
Hodrick-Prescott detrending (first-differencing). The results are based on 1,000 independently
simulated datasets, each of length T.
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Table 5. Coverage Probabilities-Univariate DGM (p = .1)

HP A
Spectral estimator b 5% 10% 90% 95% 5% 10% 90% 95%
T=120
TRUE 3.7 9.0 10.5 6.5 4.9 9.8 10.4 52
UW (11) 0 18.9 24.2 14.7 10.6 11.6 15.6 12.8 8.8
BART (11) 0 18.0 24.0 15.4 9.4 9.7 14.2 10.4 59
BARTLETT 0 17.9 23.9 15.4 9.1 7.9 13.0 9.7 4.0
Qs 0 17.8 231 15.0 8.9 7.8 13.2 2.8 38
NW 0 19.1 24.7 17.1 10.8 9.2 13.6 10.2 48
UW (11) 1 19.6 239 15.3 115 11.7 15.8 12.7 8.5
BART (11) 1 16.7 21.4 12.3 7.3 9.6 13.9 10.7 5.6
BARTLETT 1 14.8 19.1 8.5 4.0 7.7 125 9.6 4.0
Qs 1 14.7 19.0 8.1 44 7.7 13.0 9.7 40
NW 1 16.2 20.6 11.0 6.0 9.2 13.4 10.1 4.9
Uw (11) 2 19.1 238 15.2 11.5 11.8 15.6 12.9 8.7
BART (11) 2 175 229 14.1 8.8 9.8 14.3 105 59
BARTLETT 2 16.6 21.6 13.1 7.7 8.4 12.9 9.2 4.2
Qs 2 16.6 219 13.3 7.8 8.6 13.1 9.4 43
NW 2 16.9 22.0 13.4 7.7 9.0 13.7 9.8 54
T = 1,000
TRUE 43 8.7 10.6 5.8 47 9.5 10.2 5.4
UW (11) 0 8.3 16.1 13.0 6.7 6.9 13.0 1.5 53
BART (11) 0 105 17.8 15.0 8.4 6.8 12.4 10.9 57
BARTLETT 0 9.3 17.0 135 7.1 7.0 12.2 105 5.4
Qs 0 95 17.2 13.5 7.0 6.8 122 105 5.4
NW 0 11.1 18.1 14.7 8.6 7.0 12.4 10.8 56
Uw (11) 1 8.3 15.9 13.1 7.0 6.9 13.0 11.5 5.3
BART (11) 1 85 15.2 12.4 6.2 6.8 12.4 10.8 56
BARTLETT 1 7.1 12.9 9.7 45 6.7 12.1 10.4 53
NW 1 8.3 14.8 12.1 6.2 6.9 12.4 10.7 55
UwW (11) 2 8.3 16.0 13.0 6.8 7.0 13.0 115 53
BART (11) 2 8.9 16.6 13.3 7.1 6.7 12,5 10.9 5.6
BARTLETT 2 9.3 16.1 13.2 7.0 7.1 12.4 10.6 52
Qs 2 9.3 16.1 13.2 7.0 7.1 12.4 10.7 52
NW 2 9.3 16.5 13.6 7.2 7.1 125 10.6 55

NOTE: This table reports the coverage probabilities of the ¢ statistic that tests whether the standard deviation of detrended x; is equal to its true value. The DGM for x; is given by Ax; = 1AX, 4+
.01856¢;. with <, ~ N0, 1). The 5% (95%) and 10% (90%) columns report the frequency the ¢ statistic is less (higher) than the lower (upper) 5% and 10% critical value. The row TRUE uses the
Monte Carlo standard deviation of the parameter estimate to calculate the standard error. For definitions of the spectral estimators, see Table 1. b indicates the order of prewhitening. HP(A) refers
to Hodrick—Prescott detrending (first-differencing). The results are based on 1,000 independently simulated datasets, each of length T

similarly for the top and bottom 10% tails. We also investi-
gated the consequences of applying the infeasible HP filter
and found that our results regarding skewness and fat tails
are essentially unaffected by this change. This suggests that
these problems do not reflect the endpoint features of the
HP filter.

Third, the finite-sample distortions appear to reflect prob-
lems with V7. This can be seen by noting that there is almost
no fat-tail or skewness problem in the row corresponding to
TRUE. This suggests that the distribution of the numerator
in (9) is nearly normal and indicates that the skewness and
fat-tail problems arise almost entirely from the sampling
properties of V. Results in column I of Table 3 (p. 315)
bear out this view as it applies to skewness. They show that
the numerator and denominator of (9) are positively cor-
related. Results in columns II and III of Table 3 identify
problems in the sampling distribution of Vi, which may
account for the fat-tail problem evident in Table 2. In par-
ticular, they show that, when b = 0, the GMM estimator,

Vi, is biased downward. Other things being the same, this
would be expected to blow up tail areas.

Fourth, distortions appear to reflect the persistence in
ut(¢). The literature on small-sample properties of variance
estimators notes that high temporal dependence can lead to
coverage probabilities for confidence intervals that are too
low—that is, that lead to excessive rejections (see Andrews
1991; Andrews and Monahan 1992; Ericsson 1991). The im-
pact of persistence on our results can be seen in two ways,
by comparing results based on the HP and first-difference
filters and by comparing results based on p = .4 and p = .1.

Distortions—in both long and short samples—appear to
be substantially lower for computations based on the first-
difference filter than for computations based on the HP
filter. And the HP filter leaves substantially more tempo-
ral dependence in z¢ than does the first-difference filter.
One way to see this is shown in the results in Figure 4 (p.
316). That figure displays four autocorrelation functions for
ut(z[)T), where (1) is defined in (31). Each autocorrela-
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tion function is based on 100,000 observations of artificial
data generated from (30) and is differentiated according to
whether the data have been HP filtered or first-differenced
and whether p = 0 or p = .4. The lowest two autocorre-
lation functions are based on first-difference filtering. The
higher two are based on HP filtering. From our perspective,
the notable feature of this graph is how high and relatively
insensitive to p the autocorrelation of u,(¢7) is when the
underlying data have been HP filtered. (For related obser-
vations, see Cogley and Nason 1995.)

Note that, with the drop in p, the coverage probabilities
are somewhat closer to their nominal values in the case
of first-differenced data, but there is less improvement with
HP-filtered data. This is consistent with the notion that per-
sistence in x¢ is an important factor underlying the poor
small-sample distribution of our test statistic. Recall from
Figure 4 that a reduction in p substantially reduces the per-
sistence of z¢ when data have been first-differenced but not
when data have been HP filtered.

Fifth, high persistence produces a downward bias in Vr
in part because our automatic bandwidth-selection proce-
dures select low bandwidths. To see this, we note first that
the relatively high persistence in u,(i)r) when data have
been transformed by the HP filter implies that a high band-
width parameter is needed to estimate the zero-frequency
spectral density. Consider the results in Figures 5 and 6 (p.
317). They graph S(£)/S against values of the bandwidth
parameter, £ = 1,...,101. S(&) is (13) with the summation
truncated at j = £, using the kernel indicated in the figure.
These objects were computed using a single realization of
length T = 100,000 generated from (30) with p = .4 and
o = .01. In these calculations, b = 0 and S is approximated
by S(101), computed using the unweighted, truncated ker-
nel [i.e., (18) with § = 0.] This normalization guarantees
that all the curves in Figures 5 and 6 eventually converge
to unity. Figures 5 and 6 report results based on filtering
data using the HP filter and the first-difference filter, re-
spectively.

Consistent with the findings in Figure 4, Figures 5 and 6
suggest that it takes a much higher value of ¢ to get a vari-
ance estimator to converge for data based on the HP filter
than for data based on the first-difference filter. For exam-
ple, in the case of “BARTLETT,” the variance estimator has
90% converged to & less than 6 when the data have been
first-differenced, but a value of £ in excess of 31 is needed
to get comparable convergence when the data have been HP
filtered. The results in column I of Table 4 (p. 317) indi-
cate that the automatic lag-selection procedures detect the
need for a higher bandwidth when data have been HP fil-
tered. The procedures based on Andrews and Newey—West
select average lag lengths of 10 and 5, respectively. As the
figure indicates, with too small a bandwidth, one expects
the standard-error estimate to be understated and tails to be
blown up.

Sixth, results for the various procedures are all very sim-
ilar. In this example, it makes little difference how exactly
the bandwidth or kernel is picked. For example, even though
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the lag lengths picked by the Andrews and Newey—West
methods are different, the results in Figure 5 indicate that
the implied estimates of S are not very different.

Finally, the skewness and fat-tail problems are reduced
when the number of observations is increased to 1,000 (see
the bottom half of Table 2). This is to be expected, based on
large-sample theory. But the reduction is surprisingly small,
particularly for results based on the HP filter.

4.1.3 Results Based on Prewhitening.  Our results in
this subsection can be summarized as follows. We show
that first-order prewhitening has a beneficial impact on the
fat-tail problem but relatively less impact on the skewness
problem. The impact on the fat-tail problem reflects that
first-order prewhitening reduces the downward bias in Vr
that contributes to fat tails when b = 0. An important objec-
tive of a project such as ours is to determine which of the
several existing zero spectral-density estimators works best
in our setting. And so we initially found it interesting that
the Andrews and Monahan zero-frequency spectral-density
estimator appears to outperform the Newey-West proce-
dure when b = 1. It turns out, however, that this result does
not actually indicate any inherent superiority in the for-
mer. These procedures have a variety of potential sources
of bias. In our application the results reflect that the for-
mer procedure is driven by two sources of bias that tend
to cancel, but only one of these sources of bias is present
in the Newey—West procedure. The two sources of bias are
(1) misspecification of the parametric model underlying the
Andrews procedure, which leads to an underestimate of the
bandwidth, and (2) a bias affecting both procedures, which
leads to an underestimate of S(&) for any given bandwidth,
¢. In contrast with the no-prewhitening case, consideration
(1) by itself leads to an overestimate of V. This is because
first-order prewhitening in our context induces high-order
negative autocorrelation in the prewhitened wu;(v), uy ().
Finally, our results based on second-order prewhitening are
somewhat discouraging because they are essentially identi-
cal to the b = 0 results. Moreover, we are not aware of any
algorithm that would lead a researcher to select b = 1. We
show that the Akaike information criterion (AIC) invariably
leads to a selection of b = 2.

These results reflect four observations, with the first three
being based on b = 1. First, in the cases when prewhitening
does help, it does so mainly by alleviating the problem of
fat tails and does little to reduce the skewness problem.
(Compare the b = 1 rows with the b = 0 rows in Table 2)
For example, when 7' = 120 and data have been HP filtered,
the sum of the lower and upper 5% tail area probabilities
is 28.0 for QS when b = 0 and falls to 13.3 when b = 1. At
the same time, the left tail area exceeds the right by 9.4%
when b = 0 and by 10.7 when b = 1. The favorable impact
on the fat-tail problem of increasing b is consistent with
simulation results of Andrews and Monahan (1992). But
they did not analyze skewness. In our example we would
clearly overstate the benefits of prewhitening by abstracting
from skewness.

Second, the beneficial impact on the fat-tail problem of
first-order prewhitening appears to reflect a rise in the mean
of Vi (see column III, Table 3). This impact appears to have
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Figure 7. S(¢) Divided by S; HP Filter and b = 1. S(€) is the spec-
tral density of the GMM residual associated with data detrended by the
Hodrick-Prescott filter, using the indicated kernel and bandwidth §. S is
equal to S(€) as £ — oo. The DGM is Equation (30) with p = .4 and
o = .01. See Table 1 for definitions of the spectral estimators.

been greatest for QS and BARTLETT, and not surprisingly,
these also exhibit the smallest fat-tail problem (see Table 2
and Table 5, p. 318).

Third, the differences between the automatic bandwidth-
selection methods are greatest with b = 1. For b = 1,
Newey-West (NW) appears to perform worst, at least rel-
ative to the fat-tail problem. For example, the sum of the
upper and lower 5% tail areas is equal to 21.8 for NW and
to 13.7 and 13.3 for BARTLETT and QS, respectively. We
argue that, ironically, the relatively poor performance of
NW reflects that it is distorted by fewer sources of bias.
To see this, we note first that selecting the bandwidth by
the Newey-West procedure delivers about the same results
as the much simpler procedure of simply setting £ exoge-
nously to 11. [Compare the BART (11) and NW rows in the
HP block of columns in Tables 2 and 5.] As can be seen
in Table 4 (col. I), the mean value of & chosen by NW is
roughly the same as the bandwidth in the BART (11) proce-
dure. In contrast, the BARTLETT procedure selects a much
lower £1 on average.

The reason that, in this example, Newey—West selects
much higher £7s on average than does Andrews is instruc-
tive about the differences between these procedures. When
b = 1, it appears that the autocorrelation function of @} is
positive for the first few lags, after which it turns sharply
negative. This can be seen in Figure 7, which is the exact

analog of Figure 5, for b = 1. Note the initial rise in “UN-

WEIGHTED,” followed by a sharp fall, as the bandwidth
increases above £ = 3. To see the implications of this, recall
that the two methods select the bandwidth based on differ-
ent strategies for extrapolating autocovariances of 4 The
AR(1) version of the Andrews procedure used here looks
at the lag 0 and 1 autocovariances of @; and extrapolates
based on this. When b = 1, Figure 7 shows that this extrap-
olation is very misleading. The AR(1) assumption clearly
entails specification error because it completely misses the
oscillatory behavior of the actual autocovariance function.
Because, in addition, the first-order autocorrelation is small,
the Andrews procedure picks a small bandwidth. Newey—
West looks at more elements in the autocorrelation function,

Journal of Business & Economic Statistics, July 1996

properly detects its complexity, and therefore sets a much
higher value of the bandwidth, on average.

In view of the apparently superior performance of
Newey-West over Andrews in selecting the bandwidth, it
is ironic that Newey—West nevertheless underperforms rela-
tive to Andrews in our Monte Carlo results. The resolution
appears to lie in the effects of finite-sample bias. In par-
ticular, we have found that the mean of the finite-sample
analog of the curves in Figure 7 lies considerably below
those curves. [That is, letting S7(£) denote an estimator of
S(£), we found that ESp(€) < S(¢) for various values of
¢ and various kernels.] Given the nature of the hump near
the origin, methods that select a small bandwidth, in ef-
fect, overcome this small-sample bias. Thus, the superior
performance of the AR(1) Andrews procedure appears to
reflect the offsetting effect of specification error on bias.
The Newey—West procedure does relatively poorly because
it also suffers from bias, but it does not enjoy the compen-
sating effects of specification error. Clearly, this result is
specific to the DGM we have assumed. Still, it illustrates
the kind of factors that have an impact on the small-sample
performance of alternative zero-frequency spectral-density
estimators.

Fourth, consider the effects of second-order prewhiten-
ing; that is, b = 2. Andrews and Monahan (1992) and
Newey-West did not consider this case, but they gave no
motivation for only considering first-order prewhitening.
(For a further analysis, see den Haan and Levin 1994.) We
had expected second-order prewhitening to improve the per-
formance of our test statistic, given the complex behavior
of the autocorrelation function when b = 1. Moreover, with
an AIC the AR(2) was chosen 939 times out of 1,000 data
over an AR(1) to model ut(zﬁT), for the case with p = 4,
HP-filtered data, and T' = 120. To our surprise, performance
actually deteriorated and closely resembles the b = 0 case.
Presumably, this reflects that, as in the b = 0 case, a low
value of &7 (see Fig. 8) and bias [for any &7, S7(ér) un-
derestimates S(¢)] both work in the same direction, toward
underestimating V. This accounts for the reappearance of
the fat-tail problem when b = 2.

14
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Figure 8. S(¢) Divided by S; HP Filter and b = 2. S(€) is the spec-
tral density of the GMM residual associated with data detrended by the
Hodrick—Prescott filter, using the indicated kernel and bandwidth §. S is
equal to S(¢) as ¢ — oo. The DGM is Equation (30) with p = .4 and
o = .01. See Table 1 for definitions of the spectral estimators.
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Table 6. Coverage Probabilities for oy: U.S. VAR DGM

HP A
Spectral estimator b DGM 5% 95% 5% 95%
BART (11) 0 N 21.6 11.6 15.4 7.8
BART (11) 0 B 20.6 9.8 11.8 6.2
BARTLETT 0 N 222 11.0 14.0 7.2
BARTLETT 0] B 21.0 9.4 11.6 5.4
NW 0 N 25.6 16.0 14.4 8.2
NW 0 B 234 14.2 12.0 6.2
BART (11) 1 N 10.6 0.6 15.2 7.8
BART (11) 1 B 9.8 0.2 11.6 4.8
BARTLETT 1 N 12.2 0.6 13.8 7.2
BARTLETT 1 B 11.2 0.4 1.4 4.2
NW 1 N 14.0 1.6 13.8 7.2
NW 1 B 1.2 1.0 11.4 4.2

NOTE: This table reports the coverage probabilities of the ¢ statistic that tests whether the
standard deviation of detrended y; (GNP) is equal to its true value. The DGM is a VAR described
in Section 4.2. The 5% (95%) column reports the frequency that the t statistic is less (higher)
than the lower (upper) 5% critical value. The value of b indicates the order of prewhitening. The
generated errors are either normal (DGM = N) or bootstrapped (DGM = B). For definitions of
the spectral estimators, see Table 1. HP refers to Hodrick-Prescott detrending, and A refers to
first-differencing.

4.2 A Multivariate DGM

We estimated a DGM for log consumption, ¢;, log GNP,
y:. log gross investment, 7;, and log hours, n;. For this, we
use the quarterly postwar U.S. data described by Christiano
(1988). We impose that c;, y;, i; are each integrated of order
1 and that y; — ¢;, y: — i:, s are each covariance stationary.
Define

Ay
Yt — Ct
Yt — it

e

Y; = (32)

We estimated a VAR for Y; for the period 1957:1-1984:1
and used this to simulate 500 artificial data sets, each of
length 115 observations. We did this in two ways, one by
a Monte Carlo procedure of drawing the disturbances from
the normal distribution with variance estimated from the
data (the rows marked with DGM of “N” in Tables 6 and
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7) and the other by bootstrapping the actual fitted residu-
als (the rows marked with DGM of “B” in Tables 6 and
7). We implement these two procedures as a check on the
robustness of our results.

In each artificial dataset, we computed (9) for 23 statis-
tics. For each statistic, we recorded the frequency of
times, across datasets, that (9) was less than the nom-
inal 5% critical value and the frequency of times that
(9) exceeded the 95% critical value. Our 23 statistics
are standard in the business-cycle literature. They in-
clude oy, 0./0y,0:/0y, 0n/0y, Ow/Ty, 0w /0w, Where o, de-
notes the standard deviation of the detrended variable
z = y,ci,n,w and w denotes labor productivity; that
is, w = y — n. In addition, they include 17 correlations:
pyz(T), 7 = —1,0,1, for x = ¢, i, n,w; pyy(7), T = 11
and pun(7),7 = —1,0,1. Our analysis was done for each
of the two detrending methods. The results are similar to
what we found in the univariate analysis in Section 3.

Consider Table 6, which reports findings for o,.
Standard-error estimates, \/F/; , were based on three mea-
sures of the zero-frequency spectral density: BART (11),
BARTLETT, and NW. Recall that the choice of kernel for
all three procedures is the Bartlett kernel but that the choice
of bandwidth differs across these three estimators. There
are three results we would like to emphasize. First, results
are very similar for the experiments with Normal and with
bootstrapped errors. Second, for both detrending methods
there is a skewness and fat-tail problem when the data have
not been prewhitened. The problem is less severe for data
that have been first-differenced. These findings closely re-
semble those reported for the analysis in Section 4.1. If any-
thing, the skewness and fat-tail problem is more severe here.
Third, when detrending is by HP filter, prewhitening helps
the fat-tail problem a great deal but has little impact on
the skewness problem. For example, the average of the left
and right tail areas is 16.6 for BART (11) when there is no
prewhitening and 5.6 when there is first-order prewhitening.
The latter is very close to the asymptotically correct value
of 5.0. At the same time, the difference between the left

Table 7. Coverage Probabilities for Various Statistics, Summary Results: U.S. VAR DGM

HP A
Spectral estimator b DGM ! I " v / i m v
BART (11) 0 N 18.1 23 7.5 7 7.3 20 35 9
BART (11) 0 B 15.9 23 6.2 6 7.2 20 3.4 1
BARTLETT 0 N 14.8 21 6.0 8 6.0 16 34 10
BARTLETT 0 B 13.6 20 5.1 8 57 17 2.8 14
NW 0 N 20.7 20 5.9 11 9.9 16 34 8
NW 0 B 19.3 20 5.3 9 9.5 17 29 13
BART (11) 1 N 101 23 5.6 7 6.2 21 3.2 9
BART (11) 1 B 9.0 22 4.5 5 5.8 20 3.1 12
BARTLETT 1 N 8.7 19 4.8 10 52 17 341 10
BARTLETT 1 B 7.7 19 3.8 11 4.9 17 2.8 12
NW 1 N 12.2 19 4.8 10 8.6 17 3.1 10
NW 1 B 11.2 19 3.7 11 7.9 17 2.8 12

NOTE: This table reports summary statistics for the coverage probabilities of the # statistic that tests whether a sample moment of detrended x; is equal to its true value. The DGM is a VAR
described in Section 4.2. The generated errors are either normal (DGM = N) or bootstrapped (DGM = B). For definitions of the spectral estimators, see Table 1. bindicates the order of prewhitening.
HP refers to Hodrick-Prescott detrending, and A refers to first-differencing. I—the average of the absolute deviation between the sum of the two 5% tail areas minus 10% across all 23 statistics.
ll—the number of times the sum of the two 5% tail areas is larger than 10%. Ili—the average absolute value of the difference between the upper and the lower 5% tail areas. IV—the number of

times the lower 5% tail area is bigger than the upper 5% tail area.
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Figure 9. Coverage Probabilities for Various Statistics (multivariate
DGM). The gray (black) columns report the frequency that the t statistic
is higher (less) than the upper (lower) 5% critical value. For definitions of
the spectral estimators, see Table 1. The value of b indicates the order
of prewhitening. The ordering of the statistics is as follows: 1 = o, 2
= 00y, 3= 0oy, 4= 0p/0,, 5= ouloy, 6= Ouwlo, 7= py(—1), 8
= poy(=1). 9= py(=1), 10= poy(—1), 11 = puy(~1), 12= pun(—1),
13 = pg(0), 14 = py(0), 15 = pn(0), 16 = Puy(0), 17 = pun(0),
18= py(1), 19 = po(1), 20 = py(1), 15 = poy(1), 16 = puy(1), 17
= puwn(1), where o, stands for the standard deviation of variable x and
px(T) stands for the correlation coefficient between z, and X, r.

and right tail areas is 10.0 in each case. Prewhitening helps
little when the underlying data have been first-differenced.
Here too the results closely resemble what we found in the
previous subsection.

Table 7 contains a summary of the findings for the other
statistics. The full set of results, available on request, are
too numerous to reproduce here. In any case, the message
from these results is fairly simple and corresponds closely
to our findings in Subsection 4.1.

The left panel of Table 7 reports results based on HP
filtering the data, whereas the right panel is based on first-
differencing. The columns labeled “I” report the absolute
deviation from 10% of the sum of the two tail areas, aver-
aged over all 23 statistics. This average does not indicate
the typical sign of the deviation, so we also present columns
labeled “II,” which indicate the number of times, out of 23,
that the deviation was positive. A positive deviation indi-
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cates a fat-tail problem. Columns labeled “III” report the
absolute value of the difference between the left and right
tail areas, averaged over the 23 statistics. This is a measure
of skewness, although the absolute value operator destroys
information about whether the skewness is to the left or
right. Columns labeled “IV” provide information on that
by reporting the number of times that the skewness is to
the left—that is, the number of times that the deviation is
positive.

Consider columns I and II. With no prewhitening (b = 0)
almost all statistics display a substantial fat-tail problem,
which averages from about 14% to 20%, depending on the
exact statistical procedure used. The problem is consider-
ably less severe when data have been first-differenced, al-
though it is still substantial, being on the order of from
5% to 10%. Here, as in the example in Subsection 4.1,
prewhitening reduces the fat-tail problem by a substantial
amount when the underlying data have been HP filtered and
very little when the data have been first-differenced.

Columns labeled III and IV indicate that, with no
prewhitening, there is a skewness problem on the order
of from 4% to 7% for results based on HP-filtered data.
The problem is less severe when the data have been first-
differenced. Here, as in Subsection 4.1, prewhitening has
little impact on the skewness problem. Column IV indi-
cates that there is little consistency among the underlying
results on the direction of skewness. In fact, some statistics
do not suffer from a skewness problem.

A subset of the results is represented in Figure 9. For
each statistic, for BARTLETT and NW, and for b = 0,1,
we display the probability of a statistic exceeding the 95%
(height of gray bar) critical value and of being less than the
5% (black bar) critical value. Results are reported for each
of our 23 statistics, and the numbering code for these statis-
tics (1-23) is explained in the note to the figure. Moreover,
the normal distribution was used in simulating the DGM.
The fact that there is no pattern in the direction of skewness
is evident. In addition, the beneficial impact on the fat-tail
problem of raising b from 0 to 1 is also evident.

Finally, whether we use the bootstrap or normal distribu-
tion in simulating our DGM makes little difference to the
results. This is consistent with the underlying asymptotic
theory.

5. A WALD-TEST EXAMPLE

In this section we study the finite-sample properties of
the Wald-type statistics proposed by Christiano and Eichen-
baum (1992) for testing the null hypothesis that a model’s
implications for the second-moment properties of a set of
variables coincide with the second-moment properties of
those variables in the data. We pursue this in a simple ex-
ample.

This Wald test provides a statistic to evaluate a model’s
goodness of fit and overcomes an important weakness of the
calibration approach. The calibration approach consists of
two steps. In the first step the model’s structural parameters,
1, and some data second moments, v, are estimated. The
economic model implies a relation between the structural
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Table 8. Coverage Probabilities for Wald-Test Example, Experiment 1 (p = .1)

Spectral estimator T b 5% 10% 90% 95% AVE (€7)
HP-filtered data
TRUE 120 — 4.6 8.8 10.2 4.8 —
BARTLETT 120 0 35 6.9 28.5 20.5 10.40
NW 120 0 4.3 7.7 24 .1 16.4 5.20
BARLETT 120 1 5.0 10.6 17.7 11.9 3.20
NW 120 1 5.3 9.5 21.1 15.5 9.90
BARLETT 120 2 3.8 7.0 26.3 19.8 .81
NwW 120 2 4.2 8.0 26.0 17.9 3.10
TRUE 1,000 —_ 53 9.0 10.1 5.6 —
BARTLETT 1,000 0 4.7 8.3 16.6 11.0 23.30
NW 1,000 0 3.6 6.9 16.2 10.0 12.80
BARLETT 1,000 1 55 9.6 113 7.0 7.00
NW 1,000 1 3.8 8.3 12.3 7.6 29.70
BARLETT 1,000 2 4.8 8.0 17.6 1.7 .86
NW 1,000 2 3.5 71 16.2 10.1 6.44
TRUE 5,000 — 3.7 9.1 10.0 4.7 —
BARTLETT 5,000 0 3.6 8.2 12.7 6.7 40.30
NW 5,000 0 4.0 8.9 119 7.0 28.40
BARLETT 5,000 1 3.7 8.7 11.8 59 12.00
NwW 5,000 1 4.3 9.2 10.2 5.7 39.00
BARLETT 5,000 2 3.2 7.7 16.8 9.3 1.04
NW 5,000 2 3.8 84 13.3 8.1 19.30
First-differenced data

TRUE 120 —_ 4.5 9.4 9.9 4.9 —
BARLETT 120 0 3.7 9.1 11.2 6.1 2.30
BARTLETT 120 1 4.3 9.3 11.4 6.3 50
TRUE 1,000 —_ 4.6 11.0 9.5 53 —_
BARLETT 1,000 0 4.6 10.8 11.3 6.0 4.70
BARTLETT 1,000 1 4.7 10.9 10.2 5.6 .40
TRUE 5,000 — 53 9.8 104 4.5 —_
BARLETT 5,000 0 52 9.3 109 57 8.20
BARTLETT 5,000 1 53 9.6 10.8 56 .40

NOTE: The 5% (95%) and 10% (90%) columns report the frequency the x2 statistic is less (higher) and the lower (upper) 5% and
10% critical value. For definitions of spectral estimators, see Table 1. b indicates the order of prewhitening. HP refers to Hodrick—Prescott
detrending, and A refers to first-differencing. AVE (¢7) is the Monte Cario mean of the bandwidth parameter.

parameters and the second moments. We denote this rela-
tion by ¥ = g(¢1), or F(¢) = 0. The second step consists
of comparing the estimated second moments, 1[)2,T, with
the ones implied by the economic model, g(z/hjlyT). Single-
ton (1988) pointed out that a disadvantage of the calibration
approach is that the metric of evaluating the difference be-
tween 'ZLQQT and g(zﬂlyT) is not made explicit. In Section 1,
we showed how standard asymptotic theory can be used to
construct a formal metric of the difference between the two
sets of moments.

An alternative estimation and testing strategy imposes the
restriction F(¢¥) = 0 during estimation. For example, the
vector ¢ could be estimated by designating v, as the free
parameters and setting 2 = ¢(%1). This estimation strategy
would typically require the use of a nonlinear search algo-
rithm to optimize the estimation criterion, and this would
typically involve evaluating g(v;) hundreds, perhaps thou-
sands, of times. A difficulty with this strategy is that for
many interesting models, it is computationally costly to cal-
culate g(v;) for a particular value of ;. An advantage of
the Wald procedure studied here is that it involves estimat-

ing ¢ without imposing the restrictions of the model. Then,
for testing purposes, all that is required is the derivative
of g(-), and numerical procedures to approximate this only
require evaluating g(%1) a few times.

5.1 The Brock—Mirman Model

We use the Brock—Mirman version of the neoclassical
growth model, which has log-utility and complete depre-
ciation. As demonstrated by Long and Plosser (1983), this
model has the advantage that its analytic solution is known.
The finite-sample properties of test statistics are, therefore,
not affected by approximation error in the model solution.
Den Haan and Marcet (1994) showed that small numerical
errors can be important for the distribution of the test statis-
tics. More complicated examples were analyzed by Burn-
side (1991) and Burnside and Eichenbaum (1994).

According to the model, a planner selects contingent
plans for consumption, ¢;, and capital, k;;+;, to maxi-
mize Ey Y o, Btlog(c;) subject to the resource constraint,
ct+kir1 = kexp(2:); the exogenous technology shock pro-
cess, Az, = pAz;_1 + oey; and the given initial conditions,
ko > 0,29,2_1. Here, 8 = 99,0 = 0l,a = 3,p = .1,
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Table 9. Coverage Probabilities for Wald-Test Example Experiment 2 (p = .1), HP-Filtered Data

Spectral estimator T b 5% 10% 90% 95% AVE (¢71)
TRUE 120 — 33 9.1 11.7 5.1 —_
BARTLETT 120 0 3.3 7.6 213 14.4 10.40
NW 120 0 3.6 8.9 16.9 9.7 4.30
BARLETT 120 1 6.5 13.7 7.0 4.8 23.80
NW 120 1 3.9 9.8 20.4 13.6 23.80
BARLETT 120 2 3.4 8.4 20.0 14.1 .70
NW 120 2 4.3 8.2 213 14.8 3.80
TRUE 1,000 — 5.2 9.4 9.2 5.0 —
BARTLETT 1,000 0 4.8 8.6 14.2 8.2 23.30
NW 1,000 0 4.8 8.8 13.6 7.8 8.70
BARLETT 1,000 1 6.9 125 3.9 2.2 6.20
NW 1,000 1 5.0 9.0 13.4 7.8 78.10
BARLETT 1,000 2 4.8 8.8 13.3 7.8 .80
NW 1,000 2 5.9 10.5 142 8.5 8.60
TRUE 5,000 — 48 10.0 9.4 5.0 —
BARTLETT 5,000 0 4.6 9.4 10.4 6.3 40.30
NW 5,000 0 4.5 9.3 115 6.6 23.80
BARLETT 5,000 1 5.6 11.2 6.0 2.6 10.70
NW 5,000 1 4.8 9.4 9.6 5.2 103.40
BARLETT 5,000 2 4.3 9.4 11.2 6.7 1.10
NW 5,000 2 4.6 8.6 11.0 5.4 10.90

NOTE: The 5% (95%) and 10% (90%) columns report the frequency the X2 statistic is less (higher) and the lower (upper) 5% and
10% critical value. For definitions of spectral estimators, see Table 1. b indicates the order of prewhitening. HP refers to Hodrick-Prescott
detrending, and A refers to first-differencing. AVE (£7) is the Monte Carlo mean of the bandwidth parameter.

and g, ~ N(0,1). As is well known, the contingency plan
that solves this problem is k;+; = afy:, where y; is out-
put and y; = kJexp(z:). Some simple algebra shows that
Alog k41 is an AR(2) with parameters equal to o + p and
—ap. If p = .1, then the law of motion for Alog k41 is not
very different from the simple example discussed in Sec-
tion 4.1.

5.2 The Wald Test

We simulated 1,000 artificial datasets for this economy,
of length 120, 1,000, and 5,000 observations each. We per-
formed two different experiments. To simplify the Monte
Carlo exercise, we only estimate one model parameter, o
or p. and estimate one second moment, the standard devi-
ation of detrended capital. In the first experiment we take
the values of the structural parameters p, 3, and « as given
and the value of o as unknown. In the second experiment
we take the values of ¢, 3, and « as given and the value of
p as unknown. We now describe the first experiment.

In each dataset, we estimated a 2 x 1 vector, v, where

"o Y1 . ag
= (n)-(2) e
and
or = [E(zf)*)"/2, (34)

where z{ denotes detrended log(k:). As before, z¢ is alter-
natively the first-difference of log(k;) or HP-filtered log(k;).
We specified the following 2 x 1 GMM error vector:

Azt— AZg_ 2 2
(1) = (( P 1)° = (¥1) ) . (35)

(z)? = (¢2)?

It is easily established that, when detrending is accom-
plished by first-differencing, that Eu;(°) = 0 and wu, sat-

isfies the other conditions in Section 1. As before, under
HP filtering, u;(1) does not satisfy the conditions of Sec-
tion 1 exactly due to the influence of endpoint effects in
the application of the HP filter. We proceed as though the
asymptotic results in Section 1 are valid anyway, however.

Given a value of ¢ and of the other model parameters, it
is possible to compute the model’s implied variance of z¢.
Denote this by g(1). In the case of the HP filter, g(-) is
obtained by first applying the inverse-Fourier transform to
the spectral density of the HP-filtered series and then taking
the square root of the result. When the data are detrended by
first-differencing, then z¢ is an AR(2) and we can calculate
g(-) analytically. Then

F@°) = (¥3)" —g(¥7) =0.

We computed F(¢)r) in the artificial data and compared the
small-sample distribution of the test statistic in (12) with
the chi-squared distribution with 1 df. We will refer to this
experiment as Experiment 1. In Experiment 2, the value of
o is considered known and the value p is estimated. Here
Equation (35) is replaced by

((Azt - ¢1Azt—1)Azt—1)
(2)? — (¥2)? .

The simple nature of this example prevents us from estimat-
ing ¢ and p simultaneously and still having a meaningful
Wald test. It is not hard to show that in that case the vari-
ance of F'(¢r) would be singular.

The results for Experiments 1 and 2 are presented in Ta-
bles 8 and 9, respectively. In Section 4.1, we found that
results are not very sensitive to whether the Bartlett or
quadratic spectral (QS) kernel is used. As a result, we only
report results based on the Bartlett kernel in this section.

(36)

ut(Q/)) - (37)
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Figure 10. S(¢) Divided by S: Wald Test, Experiment 2, and the HP
Filter. S(¢) is the spectral density of the GMM residuals in Experiment
2 associated with data detrended by the Hodrick—Prescott filter, using
the indicated kernel and bandwidth €. S is equal to S(¢) as §€ — oc. For
details, see Section 5.2.2, and see Table 1 for definitions of the spectral
estimators. The value b indicates the order of prewhitening.

We used the Andrews and Newey-West methods to cal-
culate the optimal bandwidth. Consistent with the notation
in Section 4, here we refer to the variance estimators (VT)
based on the first and second procedure as BARTLETT and
NW, respectively (see Table 1).

5.2.1 Experiment 1: Innovation Variance Estimated.
Our results are generally consistent with the findings of Sec-
tion 4. Five observations are worth emphasizing. First, as in
Section 4, the coverage probabilities are closer to their nom-
inal values when data have been filtered by first-differencing
rather than when they are HP filtered. In fact, the results
are surprisingly good for the first-difference filter, even with
T = 120. For this reason, to save space we only report the
results based on BARTLETT for the first-difference filter.

Second, we found substantial skewness in the distribu-
tion of our test statistic. Moreover, this skewness primarily
reflects a rightward shift relative to the chi-squared distri-
bution. This is a problem because in practice one is only
interested in one-sided tests.

The third observation is that first-order prewhitening in-
creases the values of Vi 7, especially at low values of the
bandwidth. This helps reduce the fat-tail problem. In this
experiment, first-order prewhitening also helps to reduce
the skewness problem. Here, as in the example in Sec-
tion 4.1, second-order prewhitening does not help. Although
first-order prewhitening helps, it only does so very little
when data are HP filtered. The frequency of falsely reject-
ing the null hypothesis at the 5% or 10% levels is around
twice what it should be in a sample of size 120. Fourth,
as in the Section 4.1 example, first-order prewhitening has
a bigger effect on the fat tail with BARTLETT than with
NW. Fifth, as expected, the asymptotic theory is validated
when the number of observations becomes large.

5.2.2 Experiment 2: Autocorrelation Estimated. The
results of Experiment 2, reported in Table 9, are similar to
those of Experiment 1. Here, too, NW exhibits fatter tails
relative to BARTLETT when there is first-order prewhiten-
ing. For example, in Table 9 (7" = 120), the sum of the two
5% tail area probabilities is 17.5% for NW versus 11.3%
for BARTLETT.
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The reason for the poor performance of NW relative
to BARTLETT when there is first-order prewhitening ap-
pears to reflect that there are offsetting biases in the lat-
ter, as in the Monte Carlo analysis in Section 4.1. To see
this, consider Figure 10. This figure exhibits Vi 70 000 as
a function of the bandwidth used in the underlying zero-
frequency spectral-density calculation. Note how first-order
prewhitening leads to values of Vg 70000 that are very high
at low values of the bandwidth. For example, with the
Bartlett kernel and first-order prewhitening, a bandwidth
of around 3 results in Vr being overestimated by a factor
of around 2.8. In addition, in results not reported here, we
find that estimates of Vpr are downward biased for every
fixed bandwidth.

For reasons like those reported in Section 4.1, the An-
drews optimal bandwidth selection method computes a low
value for the bandwidth (see Table 9). In a large sample,
this would lead to an upward bias in VF,T. When T = 120,
however, the upward bias roughly cancels the downward
bias, allowing Andrews to turn in a tolerable performance.
At the same time NW, which accurately recognizes that a
much larger bandwidth is needed, does poorly. Here, as in
Section 4.1, the problem is that NW does not have an up-
ward bias to cancel the downward bias in estimating Vg 7.
This is why NW produces fatter tail-area probabilities.

Thus, BARTLETT’s good performance relative to NW is
a Pyrrhic victory. Although it is nice that BARTLETT per-
formed well, the manner in which this was accomplished—
by the offsetting effects of two biases—is cause for discom-
fort. There would of course be no problem if in practice the
two biases in BARTLETT were perfectly correlated across
applications. But that this is not the case is suggested by
the results based on 7" = 1,000 and 7" = 5,000 in Table 9.
There we see that BARTLETT with first-order prewhiten-
ing has thin tails. For example, in Table 9, the upper 5%
tail area is equal to 2.2 for BARTLETT and equal to 7.8
for NW when T = 1,000. When T' = 5,000, these numbers
for BARTLETT and NW are, respectively, 2.6 and 5.2. The
presence of thin tails reflects that the bandwidth parame-
ter increases quite slowly as the number of observations
increases. For example, for 7' = 5,000 observations, Table
9 indicates that the bandwidth parameter is only 10.7 for
BARTLETT. Figure 10 indicates that a bandwidth parame-
ter of 10.7 could still produce a 30% overestimate of VF,T.
At the same time, the downward bias in estimates of IA/F,T
disappears in a sample of 5,000. Then the only source of
bias that remains is the upward bias stemming from the
overly short bandwidth parameter. This example suggests
that the upward and downward sources of bias in this model
are not perfectly correlated.

6. SUMMARY AND CONCLUSION

We investigate, by Monte Carlo methods, the finite-
sample properties of GMM procedures for conducting in-
ference about statistics that are commonly used in the
business-cycle literature. The results are disappointing. The
asymptotic theory appears to provide a poor approximation
in finite samples. We find that this problem is most severe
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when the underlying detrended data exhibit substantial per-
sistence. This is because our procedures for computing con-
fidence intervals require an estimate of the zero-frequency
spectral density of the GMM error process, which is a par-
ticular function of the detrended data. As is well known,
zero-frequency spectral-density estimators show consider-
able imprecision when the data are persistent.

That persistence is an important element of the problem
is consistent with our finding that the distortions are greater
when we consider statistics based on data transformed us-
ing the HP filter rather than the first-difference filter. In our
statistical environment, HP-filtered data exhibit more per-
sistence than first-difference-filtered data for two reasons,
(1) the data have the property that there is more persistence
in the business-cycle frequencies than there is in the higher
frequencies and (2) the HP filter emphasizes the former
and the first-difference filter the latter. Among the various
procedures we used, we found none that satisfactorily re-
solve the persistence problem. For example, there is a zero-
frequency spectral-density estimator designed specifically
to accommodate persistence—the prewhitening procedure
of Andrews and Monahan (1992). We had only limited suc-
cess with it, however. We did find that prewhitening can
reduce (without eliminating) the fat-tail problem but that
this depends very sensitively on precisely how the degree
of prewhitening is selected. In addition, although there is
some evidence that prewhitening can alleviate the fat-tail
problem, it seems to have relatively little impact on skew-
ness.

An important question addressed by our work is, “What
procedure for computing confidence intervals works best?”
Although we tried several procedures, none turned out to
uniformly dominate the rest. The ones we tried are dif-
ferentiated according to how the zero-frequency spectral
density of the GMM error process is estimated. In each
case, we consider the nonparametric approach, which in-
volves computing a weighted average of autocovariances up
to some finite lag length. In terms of sampling performance,
the differences among the various procedures studied came
down to how the lag length was chosen. One lag-selection
procedure, due to Andrews (1991) and Andrews and Mon-
ahan (1992), places structure on the autocovariances and
computes the lag length based on an examination of the
lag-one autocovariance. The other lag-selection procedure,
due to Newey-West, examines a longer list of autocovari-
ances. Not surprisingly, we found that the Newey-West

lag-selection procedure works best when the autocovari-

ance function exhibits a complicated pattern, and the first-
order autoregressive assumption underlying the Andrews
and Monahan (1992) procedure is misspecified. We ex-
pected, therefore, that confidence intervals computed based
on the Newey—West procedure would exhibit fewer dis-
tortions. We particularly expected this when there is first-
order prewhitening because we found in our application that
this produces an exotically shaped autocovariance function
that is completely unlike the autocovariance function of a
first-order autoregression. It was to our initial great sur-
prise, therefore, that with first-order prewhitening the An-
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drews and Monahan (1992) procedure actually dominates
the Newey-West procedure. The reason for this is that
small-sample biases in the estimation of autocovariances
also matter, in addition to misspecification, in determining
finite-sample performance. In our environment, the impact
of these two factors roughly cancel. The fact that Andrews
and Andrews and Monahan suffered from both problems
and Newey and West from only one explains why the for-
mer do better. Given the reason that the former dominated
the latter in this case, we thought this experiment did not
constitute a clear basis for preferring the Andrews and An-
drews and Monahan procedure. This and other experiments
left us with conflicting evidence on whether one or the other
of these two procedures dominates.

The results reported in this article are a clear indication
that a more reliable sampling theory is required for the
statistics used in the analysis of business cycles. The need is
less pressing for analysts who use the first-difference filter.
This is little comfort, however, for researchers interested in
the frequencies emphasized by the HP filter.
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