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The purpose of this article is to investigate the small-
sample properties of generalized method of moments
(GMM) estimators applied to asset-pricing models. Our al-
ternative asymptotically efficient estimators include ones in
which the weighting matrix is estimated using an initial
(consistent) estimator of the parameter vector, ones in which
the weighting matrix is iterated to convergence, and ones in
which the weighting matrix is changed for every hypotheti-
cal parameter value. The last of these three approaches has
not been used very much in the empirical asset-pricing lit-
erature, but it has the attraction of being insensitive to how
the moment conditions are scaled. In addition, we study the
advantages to basing statistical inferences directly on the
criterion function rather than on quadratic approximations
to it.

We address the following issues:

1. How does the procedure for constructing the weight-
ing matrix affect the small-sample behavior of the GMM
criterion function?

2. How do the confidence regions of parameter estima-
tors constructed using the GMM criterion function perform
relative to confidence regions based on the usually con-
structed standard errors?

3. Is the small-sample overrejection often found in stud-
ies of GMM estimators reduced when using an estimator in
which the weighting matrix is continuously altered?

4. How are the small-sample biases of the GMM esti-
mators affected by the choice of procedure for constructing
the weighting matrix?

Because there has been an extensive body of empiri-
cal work investigating the consumption-based intertemporal
capital asset-pricing model (CAPM) using GMM estimation
methods, we use such models as laboratories for our Monte
Carlo experiments. As in the work of Tauchen (1986) and

Kocherlakota (1990a), all of our experiments come from
single-consumer economies with power utility functions.
Within the confines of these economies, there is still con-
siderable flexibility in the experimental design. Some of
our experimental economies are calibrated to annual time
series data presuming a century of data. Other economies
are calibrated to monthly postwar data. In the experiments
calibrated to annual data and several of the experiments cal-
jbrated to monthly data, the moment conditions are nonlin-
ear in at least one of the parameters of interest. Moreover,
some of the specifications introduce time nonseparabilities
in the consumer preferences that are motivated by either
local durability or habit persistence. In the other experi-
ments calibrated to monthly data, the moment conditions
are, by design, linear in the parameter of interest. Some of
these setups are special cases of the classical simultaneous-
equations model. For other setups, the observed data are
modeled as being time averaged, introducing a moving av-
erage structure in the disturbance terms.

The article is organized as follows. Section 1 describes
the alternative estimators we study and the related econo-
metric literature. Section 2 specifies the Monte Carlo en-
vironments we use. Section 3 gives an overview of the
calculations including a description of how inferences are
made based directly on the shape of the criterion functions.
Section 4 then presents the results of the Monte Carlo ex-
periments using a lognormal model calibrated to monthly
data. Section 5 presents the results calibrated to annual and
monthly data using a Markov-chain approximation. Finally,
our concluding remarks are in Section 6.
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1. ALTERNATIVE ESTIMATORS AND
RELATED LITERATURE

One of the goals of our study is to compare the finite-
sample properties of three alternative GMM estimators,
each of which uses a given collection of moment condi-
tions in an asymptotically efficient manner. Write the mo-
ment conditions as

Elp(X:, 8)] = 0, (M

where 3 is the k-dimensional parameter vector of interest.
In (1) the function ¢ has n > k coordinates. We assume
that {1/vT Zthl ©(Xy, 3)} converges in distribution to
a normally distributed random vector with mean 0 and co-
variance matrix V{(3).

Let V1(3) denote (an infeasible) consistent estimator of
this covariance matrix. This latter estimator is typically
made operational by substituting a consistent estimator for
3. denoted {b%.}. An efficient GMM estimator of the param-
eter vector 3 is then constructed by choosing the parameter
vector b that minimizes

1 I
T Z@(th)

The first two GMM estimators that we consider differ in
the way in which this is accomplished.

!/

T
Vr(oh)] [ ; Zso(Xub)} e

Two-Step Estimator. The first estimator, called the rwo-
step estimator, uses an identity matrix to weight the moment
conditions so that b% is chosen to minimize

T

1 T1 &
T Zw(xt,b)] {T— Z«p(xt,m]-
t=1

t=1

3)

Let b2 denote the estimator obtained by minimizing (2).

Iterative Estimator. The second estimator continues
from the two-step estimator by reestimating the matrix
V(3) using V(b3 ") and constructing a new estimator b..
This is repeated until b%. converges or until j attains some
large value. Let b5° denote this estimator.

Continuous-Updating Estimator. Instead of taking the
weighting matrix as given in each step of the GMM esti-
mation, we also consider an estimator in which the covari-
ance matrix is continuously altered as b is changed in the
minimization. Formally let b be the minimizer of

7

T
T Z*P(Xt«b)

T
V(b)) { = Zw(Xt,b)} G

Allowing the weighting matrix to vary with b clearly al-
ters the shape of the criterion function that is minimized.
Although the first-order conditions for this minimization
problem have an extra term relative to problems with
fixed weighting matrices, this term does not distort the lim-
iting distribution for the estimator. [See Pakes and Pollard
(1989, pp. 1044-1046) for a more formal discussion and
provision of sufficient conditions that justify this conclu-
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sion.] An advantage of this estimator relative to the previ-
ous two is that it is invariant to how the moment conditions
are scaled even when parameter-dependent scale factors are
introduced. A simple example of a continuous-updating es-
timator is a minimum chi-squared estimator used for re-
stricted multinomial models in which the efficient distance
matrix is constructed from the probabilities implied by the
underlying parameters and hence is parameter dependent.

The three GMM estimators have antecedents in the clas-
sical simultaneous-equations literature. Consider estimating
a single equation, say y; = ('z¢ + u;, where 3 is the pa-
rameter of interest. Let z; denote the vector of predeter-
mined variables at time t that by definition are orthogo-
nal to u;. One way to estimate 3 is to use two-stage least
squares, which is our two-step estimator under the addi-
tional restrictions that the disturbance term is conditionally
homoscedastic and serially uncorrelated. In this case the
iterative estimator converges after two steps and hence is
the two-step estimator. It is well known that the two-stage
least squares estimator is not invariant to normalization. In
fact Hillier (1990) criticized the two-stage least squares es-
timator by arguing that the object that is identified is the
direction [1, —3] but not its magnitude. Hillier then showed
that the conventional two-stage least squares estimator of
direction is distorted by its dependence on normalization.

As an alternative, Sargan (1958) suggested an instrumental-
variables-type estimator that minimizes

(5)

by choice of b. Under the additional restrictions imposed on
the disturbance term discussed in the previous paragraph,
this is our continuous-updating estimator. Notice that if we
ignore the denominator term in (5) and minimize, the solu-
tion is the two-stage least squares estimator. By including
the denominator term, Sargan showed that, for an appro-
priate choice of z;, the solution is the (limited informa-
tion) quasi-maximum likelihood estimator (using a Gaus-
sian likelihood), which as an estimator of direction is in-
variant to normalization.

The estimation environments that we study are more
complicated than the one just described. Sometimes the
moment conditions are not linear in the parameters, and
the disturbance terms are often conditionally heteroscedas-
tic and/or serially correlated. As a consequence, the two-
step and iterative estimators no longer coincide and the
continuous-updating estimator can no longer be interpreted
as a quasi-likelihood estimator. The estimation methods re-
main limited information, however, in that the moment con-
ditions used are typically not sufficient to fully characterize
the time series evolution of the endogenous variables.

The second goal of our analysis is to compare the reli-
ability of confidence regions computed using quadratic ap-
proximations to criterion functions to ones based directly
on the deterioration of the original criterion functions. The
former approach is more commonly used in the empirical
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asset-pricing literature partially because it is easier to im-
plement. The latter approach exploits the chi-squared fea-
ture of the appropriately scaled criterion functions. From
the vantage point of hypothesis testing, the plausibility of
an observed deterioration of the criterion function caused
by imposing parameter restrictions can be assessed by using
the appropriate chi-squared distribution. Using this same
insight, confidence regions can be computed by using the
appropriate chi-squared distribution to prespecify some in-
crement in the criterion function and inferring the set of
parameter values that imply no more than that increment.
Such confidence regions can have unusual shapes and, in
fact, may not even be connected. One of the key questions
of this investigation is whether or not they lead to more
reliable statistical inferences.

One of our reasons for studying the performance of
criterion-function-based inference comes from the work of
Magdalinos (1994). Within the confines of the classical
simultaneous-equations paradigm, Magdalinos studied the
performance of alternative tests of instrument admissibil-
ity. As a result of his analysis, Magdalinos recommended
altering the weighting matrix to embody the restrictions
as is done in the continuous-updating method. In addition,
he found that test statistics are better behaved using the
limited-information maximum likelihood estimator than the
two-stage least squares estimator. Recall that the former
estimator coincides with our continuous-updating estima-
tor and the latter to our two-step and iterated estimators
in the classical simultaneous-equations estimation environ-
ment considered by Magdalinos.

Another reason is Nelson and Startz’s (1990) criticism
of the use of instrumental-variables methods for study-
ing consumption-based asset-pricing models. These au-
thors were concerned about the behavior of instrumental-
variables estimators when the instruments are poorly cor-
related with the endogenous variables. Their arguments
were based on analogies to results derived formally for ¢
statistics and overidentifying restrictions tests in the classi-
cal simultaneous-equations setting. The question of inter-
est to us is the extent to which criterion-function-based
inference and continuous updating can help overcome the
concerns of Nelson and Startz. Furthermore, Stock and
Wright (1995) provided a theoretical rationale for consid-
ering the continuous-updating criterion function instead of
other GMM implementations in situations in which the
model is poorly identified.

The finite-sample properties of the two-step and iterative
GMM estimators in an asset-pricing setting have been stud-
ied previously by Tauchen (1986), Kocherlakota (1990a),
and Ferson and Foerster (1994). These investigators did
not study the properties of the continuous-updating estima-
tor, nor did they study the behavior of criterion-function-
based confidence regions. Furthermore, Tauchen (1986) and
Kocherlakota (1990a) considered only the case of time-
separable preferences for the representative consumer.

2. MONTE CARLO ENVIRONMENT

We consider several Monte Carlo environments to assess
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the finite-sample properties of the estimators described in
Section 1. The data-generating mechanisms are constructed
to be consistent with a representative agent consumption-
based capital asset-pricing model (CCAPM). Estimators of
the parameters of the representative agent’s utility function
are considered along with tests of the overidentifying con-
ditions implied by the model. We use the CCAPM as the
basis of our experiments because GMM has been used ex-
tensively in studying this model (e.g., see Dunn and Single-
ton 1986; Eichenbaum and Hansen 1990; Epstein and Zin
1991; Ferson and Constantinides 1991; Hansen and Single-
ton 1982). Furthermore, the CCAPM forms the basis for
two studies of the finite-sample properties of GMM con-
ducted by Tauchen (1986) and Kocherlakota (1990a).

Preferences and Euler Equations. In the model the rep-
resentative consumer is assumed to have preferences over
consumption given by

[e.9} _ 1_,7_1
vo=E| Y s (et fo) . y>0, (6
t=0

-~

where ¢; is consumption at date ¢. The parameter 6 cap-
tures some time nonseparability in preferences. Exam-
ples of models with time nonseparability in preferences
can be found in the work of Abel (1990), Constantinides
(1990), Detemple and Zapatero (1991), Dunn and Single-
ton (1986), Eichenbaum and Hansen (1990), Gallant and
Tauchen (1989), Heaton (1993, 1995), Novales (1990), Ry-
der and Heal (1973), and Sundaresan (1989). If § > 0, con-
sumption is durable or substitutable over time. If § = 0,
the preferences of the consumer are time-additive. If § < 0,
consumption is complementary over time and the prefer-
ences of the representative consumer exhibit habit persis-
tence.

We consider estimators of the parameters 8, +, and 6, as
well as tests of the model based on implications of the Eu-
ler equations. Let mus; = (¢; + 6c;—1)™, which can be
interpreted as the indirect marginal utility for consumption
“services” as measured by s; = ¢; + fc,—;. Similarly, let
mucy = (Ct + OCt_l)_’y + HéE[(CH_l + 9ct)"’|]-"t], where F;
gives the information set at time ¢. The Euler equation for a
representative agent’s portfolio allocation decision is given
by

muc; = E(6mucyy1 Ry Fe), N
where R; 1 is a gross return on an asset from t to ¢ + 1.
Because aggregate consumption is growing over time, we

divided (7) by mus, to induce stationarity. The (normalized)
Euler equation that we consider is then given by

Mucs B ( 5 MuCH

mus: muse

Reos m) . ®)
Removing conditional expectations from (8) results in the
Euler-equation error

mucy
¢t+2(6a v 0) = :

Rt+1 > (9)

muse

where muc} = (¢; +60ce—1)"" +60(ce+1 +0c:) 7. Note that
E(¢i42|F) = 0. Furthermore, notice that, when 6 is not
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Table 1. Maximum Likelihood Estimator of Monthly Law of Motion
Order  Unrestricted No time avg. Time averaged
of C(L) log-likelihood Log-likelihood 0% Log-likelihood o
1 3,220.6 — — — —
2 3,237.3 3,214.9 4.55 — —
3 3,238.8 3,218.1 4.21 3,230.3 4.99

0, o;42 has a first-order moving average [MA(1)] structure.
By choosing instruments, z;, in F;, unconditional moment
conditions are given by

Elpi+2(6.7.0)] = Elztdt42(6,7,0)] = 0.

Finally, notice that ¢, can be expressed in terms of con-
sumption ratios and returns, which we take to be stationary
processes.

One unpleasant feature of these moment conditions is
that they can always be made to be satisfied in a degener-
ate fashion. Suppose that v = 0 and 68 = —1; then clearly
muc; = 0 and the moment conditions are trivially satis-
fied. Without imposing additional constraints on the pa-
rameter vectors, this degeneracy in the moment conditions
creates problems for the two-step and iterative estimators.
Of course, when time separability is imposed (6 = 0), these
problematic parameter values cannot be reached. When 6 is
permitted to be different from 0, Eichenbaum and Hansen
(1990) were led to divide the moment conditions by 1+ 66
so that the two-step and iterative estimators not be driven
to the degenerate values. We will do likewise. An attractive
property of the continuous-updating estimator is its insensi-
tivity to parameter-dependent scale factors and hence to the
moment transformation used by Eichenbaum and Hansen
(1990). Moreover, the criterion of the continuous-updating
estimator does not necessarily tend to 0 in the vicinity v = 0
and 86 = —1. Although the estimated mean for {42} be-
comes small in the neighborhood of these parameter values,
so does the estimated asymptotic covariance matrix, and
the criterion function for the continuous-updated estimator
plays off this tension.

We build several Monte Carlo environments to simulate
returns and consumption growth that are consistent with
(8). These are used to assess the finite-sample properties
of the estimators of Section 1 based on the moment condi-
tions (10).

(10)

2.1 Lognormal Model

Time-Additive Model, No Time Averaging. In our first
Monte Carlo environment we model consumption growth
and returns directly by assuming that they are jointly log-
normally distributed as in the work of Hansen and Singleton
(1983). Let Y () = [log(c;/ci_1)log Rélog RI]', where ¢, is
aggregate consumption at time ¢, R is the gross return on a
stock index at time ¢, and R/ is the gross return on a bond
at time t. We assume that

Y; :#+B(L)€t, (11)

where ¢, is a normally distributed three-dimensional ran-
dom vector that is independent over time and has zero mean
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and covariance matrix I and where p is the mean of Y;.
Furthermore, B(L) is a matrix of polynomials in the lag
operator. To use this assumption about the dynamics of con-
sumption and returns along with the Euler equation (7), we
assume that the preferences of the representative agent are
time additive. In this case the Euler-equation error for each
return can be written as

(12)

where E(n;,1|F:) = 0 and & is a constant (e.g., see Hansen
and Singleton 1983).

The relation (12) implies a set of restrictions on the law
of motion (11). To impose these restrictions, we consider
several finite-order parameterizations of B(L) and use the
methods described by Hansen and Sargent (1991). These
parameterizations are of the form

cL)
alL)’

where C(L) is a 3 x 3 matrix of polynomials in the lag
operator and a(L) is a 1 x 1 polynomial in the lag operator.
We restrict the polynomial a(L) to be second order and
considered several different orders of C(L).

To estimate the constrained law of motion, we used
monthly data from 1959.2 to 1992.12. Aggregate consump-
tion is seasonally adjusted real aggregate consumption of
nondurables plus services for the United States taken from
CITIBASE. These data were converted to a per capita mea-
sure by dividing by total U.S. population for each month,
obtained from CITIBASE. The equity return is the value-
weighted return from the Center for Research in Security
Prices (CRSP), and the bond return is the Fama-Bliss risk-
free return from CRSP. Each of these return series was
converted into a real return using the implicit price deflator
for nondurables and services from CITIBASE.

For simplicity we removed the sample mean from the
vector Y; so that the constants in (11) and (12) did not have
to be estimated. As a result, the only preference parame-
ter to be estimated is . The results of estimating the law
of motion (11) using exact maximum likelihood for differ-
ent orders of the polynomial C(L) are given in Table 1.
The column labeled “Unrestricted log-likelihood” reports
the log-likelihood in the case of unrestricted estimation of
the polynomials in the lag operator. The columns labeled
“no time avg.” report the log-likelihood and the estimated
value of v under the restrictions implied by (12). In search-
ing for the maximized log-likelihood, larger values of the
log-likelihood were found for values of « larger than 50.
The results reported in Table 1 for the constrained models
correspond to local maxima. We used the local maximizers
for our simulations because they result in plausible values
for ~. Notice that there is substantial improvement in the
log-likelihood in moving from a first- to a second-order
polynomial for C(L) in the unrestricted case. This indi-
cates that more than a first-order polynomial is needed for
C(L). There is little improvement in going to a third-order
polynomial in the unrestricted case.

For both the second- and third-order polynomial cases,
there is great deterioration in the log-likelihood when the

—vlog(ci1/ct) +log Rep1 — K = Npy1,

B(L) = (13)
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model restrictions are imposed. This is consistent with the
results reported by Hansen and Singleton (1983). Moreover,
there is little improvement in the log-likelihood in moving
from a second-order to a third-order C'(L). For this reason
we used the point estimates from the restricted model with a
second-order C'(L) to conduct our Monte Carlo experiments
for the lognormal model with no time averaging.

In assessing the finite-sample properties of GMM esti-
mators in this case, we constructed 500 Monte Carlo sam-
ples, each with a sample size of 400. A sample size of
400 approximates the size of available monthly consump-
tion data. We constructed moment conditions based on the
Euler-equation errors for both the bond and the stock re-
turns simultaneously. For each Euler-equation error we used
one period lagged (log) bond and (log) stock returns and one
period lagged (log) consumption growth as instruments. We
did not include constants as instruments because the data
are simulated under the assumption that they have a zero
mean.

Time-Additive Model With Time Averaging. As a further
data-generating mechanism, we also consider an example
in which the decision interval of the representative agent
is much smaller than the interval of the data. Suppose that
there are n decision periods within each observation period.
For example, if the representative agent’s decision interval
is a week and data are observed monthly, then n would be
approximately 4. The representative agent’s utility function
at time t is given by

> Coanm)tY =1
U =E|Y (6)" ﬁ’{—%—— ‘ft} . (4
h=0

If we maintain the assumption that consumption and returns
are jointly lognormally distributed, the Euler-equation error
nt+1 is again given by (12). Moreover, this error can be
decomposed as

Tt+1 = ZCH—h/nv (15)
h=1

where

Cean/n = EMes1 | Feansm) = EMesr| Fra(h-1y/n). (16)

In this environment, we presume that observed consump-
tion does not correspond to the actual point-in-time con-
sumption of the representative agent but instead is an av-
erage of actual consumption over one unit of time. Specifi-
cally, suppose that observed consumption, c{, is a geometric
average of actual consumption,

n 1/n
a __
C = ct—l+h/n 3
h=1

and similarly for the observed return, R?. Averaging (12)
over time implies that

(17)

—7log(ciy1/ct) +log RY 4

n

= K+ ZCt—1+(r/n)+<h/n)~ (18)
1 h=1

S|

T=
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Notice that in this case the Euler-equation error

1 n n
Ny = n Z ZCt—1+(7'/n)+(h/n) (19)

7=1 h=1

is predictable at time ¢. However, E(n¢,|F:—1) = 0 so
that instruments can be chosen from the information set
at time t — 1. An instrumental-variables estimator of this
model must account for the MA(1) structure of the moment
condition.

We estimated the log-linear law of motion (13) for con-
sumption and asset returns under the restriction implied by
(18). Because the consumption data are an arithmetic aver-
age of consumption expenditures over a period, in applying
(18) to actual consumption data we assume that geomet-
ric averages and arithmetic averages are approximately the
same. This assumption was made by Grossman, Melino,
and Shiller (1987), Hall (1988), and Hansen and Singleton
(1996). Note also that the returns in (18) are time averaged.
For simplicity, in estimating the law of motion (13), we use
the monthly CRSP series directly. Furthermore, the model
with time averaging imposes a weaker set of restrictions
than does the model that takes no account of time averaging
because we do not impose the restriction on the first-order
autocorrelation of the Euler-equation error of the stock re-
turn. In the limit case of continuous decision making, the
first-order autocorrelation of the error should be .25, as dis-
cussed by Grossman et al. (1987) and Hall (1988).

We consider the case of a third-order polynomial for
C(L) and a second-order polynomial for a(L). The results
of this estimation are reported in Table 1 in the columns la-
beled “Time averaged.” Notice that the log-likelihood func-
tion improves somewhat compared to the case in which time
averaging is ignored. The model, however, is still substan--
tially at odds with the data. The estimated value of « is
slightly larger as well.

We used this model to create 500 Monte Carlo draws,
each with a sample size of 400. As in the case of no time
averaging, we studied estimators based on the Euler equa-
tions for both returns. In this case the instruments were
(log) stock returns, (log) bond returns, and (log) consump-
tion growth, all lagged two periods.

2.2 Discrete-State Models

In our second set of Monte Carlo environments we fol-
low Tauchen (1986) and Kocherlakota (1990a) and consider
a Markov-chain model for aggregate consumption and div-
idend growth. Aggregate consumption is assumed to rep-
resent the endowment of the representative consumer, and
dividends represent the cash flow from holding stock. We
form one-period stock returns and the returns to holding a
one-period (real) discount bond. Each of these returns can
be represented as functions of the state of the Markov chain.
Construction of these returns in the case of time-additive
utility was described by Kocherlakota (1990a) and Tauchen
(1986).
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Table 2. Preference Settings for Discrete State-Space Model

0o (crroc,_4) "7 =1

— t t t—1

U= E{Zfzo 6 T -~

Preference case 6 ¥ 0
TS1 .97 1.3 0
TS2 1.139 13.7 0
TNSH 97 1.3 1/3
TNS2 97 1.3 —1/3
TNS3 .97 1.3 —-2/3

Annual Model. To calibrate the first Markov chain, we
used the method described by Tauchen and Hussey (1991)
to approximate a first-order vector autoregression (VAR) for
consumption and dividend growth. The parameters of the
VAR are taken from Kocherlakota (1990a) and are given by

g | _ [ 004 117 414 | [ gy
[ In A } = { 021 ] * { 017 161 ] [ In sy } T

(20)

where &; is the gross growth rate of real annual dividends
on the Standard & Poor 500, where ), is the gross growth
rate of U.S. per capita real annual consumption, and where

.01400 .00177

TN
Efeeet) = | 00177 00120 |

21
Furthermore, ¢; is assumed to be normally distributed and
uncorrelated over time. The Markov chain for [§; A" is
chosen to have 16 states.

In simulating data from this model we chose several
values of the preference parameters of the representative
consumer. These are presented in Table 2. Preference set-
ting TS1 was used by Tauchen (1986) and preference set-
ting TS2 was used by Kocherlakota (1990a). As shown by
Kocherlakota (1990a), these latter parameters, along with
the Markov-chain model of endowments, imply first and
second moments for asset returns that mimic their sample
counterparts. The large value of § in TS2 is not inconsistent
with the existence of an equilibrium in the model because
of the large value of v (Kocherlakota 1990b).

We restrict our attention to “moderate” values of § and -y
in our examination of time-nonseparable preferences, and
we consider a range of values of 6. Parameter setting TNS1
introduces a modest degree of durability by letting § = %,
and TNS2 introduces habit persistence with § = ~%. TNS3
results in a more extreme amount of habit persistence by
setting # = —2. The asymmetric (in magnitude) across the
specifications of 6 is guided in part by the a priori notion
that there should only be a limited amount of durability
in the goods classified as “nondurable” in National Income
and Product Accounts and by empirical evidence for a sub-
stantial degree of habit persistence reported by Ferson and
Constantinides (1991).

In implementing the estimators, the Euler equations for
the stock and bond returns are multiplied by instrumental
variables to construct moment conditions. The two instru-
ment sets are listed in Table 3. Monte Carlo results for
other moment conditions were given by Hansen, Heaton,
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and Yaron (1994). GMM estimates and test statistics were
computed for 500 replications of a sample size of 100.
This sample size corresponds approximately to the length
of most annual datasets.

Monthly Model. We repeated some of the experiments
using a law of motion calibrated to postwar monthly data.
As in the construction of the Markov chain for the an-
nual model, we started with a first-order VAR for con-
sumption and dividend growth. The consumption data used
in estimating the VAR were aggregate U.S. expenditures
on nondurables and services described in Subsection 2.1.
We constructed dividends implied by the monthly CRSP
value-weighted portfolio return. These dividends were con-
verted to real dividends using the implicit price deflator for
monthly nondurables and services taken from CITIBASE.
This dividend series is highly seasonal because of the reg-
ular dividend payout policies of most companies. To avoid
modeling this seasonality, we let & = log(d: /di—12)/12,
and we assumed that &, represents the one-period dividend
growth of the model. The series {log(d;/d;—12)} appears to
be stationary.

The parameters of the VAR estimated using these data
are given by

Ing | [ .0012
In\, | — | .0019
—.1768 1941 Iné&_1
[ 0267 —.2150 } [ In A1 }+et, (22)

where
,. [ 1438 .0001 s
Eleet) = { 0001 o145 | <10 (23)

As in the case of the annual Markov-chain model, we
approximated the VAR of (22) and (23) with a 16-state
Markov chain using the methods of Tauchen and Hussey
(1991). The Monte Carlo data consisted of 500 replications
of a sample size of 400. We focused exclusively on the more
“moderate” preference configuration (TS1), adjusting 6 for
the shorter sampling interval. (More precisely, we used the
twelfth root of .97 in place of .97 for é.) In addition, we
generated Monte Carlo data using nonseparable specifica-
tion TNS1 and TNS2, again with § adjusted appropriately.

3. OVERVIEW OF MONTE CARLO RESULTS
3.1 Descriptive Statistics

In describing the results of the various Monte Carlo ex-
periments in Sections 3 and 4, we focus most of our dis-
cussion on the following calculations:

Table 3. Moment Conditions

Number of moment

Moment set Instruments, z; conditions
M1 R?, R An 1 8
M2 Ap, 1 4
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1. We found the minimum value of the criterion function.
Call this Jp. The limiting distribution of T.J7 is chi-squared
with degrees of freedom equal to the number of moment
conditions minus the number of parameters estimated. We
used this limiting distribution to test the overidentifying
moment conditions.

2. We evaluated the criterion function at the true param-
eter vector. Call this J77. The limiting distribution of TJ is
chi-squared with degrees of freedom equal to the number of
moment conditions. With this limiting distribution, we char-
acterize the family of parameter vectors that look plausible
from the standpoint of the moment conditions. Stock and
Wright (1995) advocated the use of this type of inference
when it is suspected that the parameters are poorly identi-
fied. Here we examine whether the limiting distribution of
JF provides a reasonable small-sample approximation for
conducting this inference.

3. We found the minimum value of the criterion func-
tion when + is constrained to be its true value. Call this J.
Because + is the only parameter estimated in the lognor-
mal model, in this case J7. coincides with J& . The limiting
distribution of T'(J}. — Jr) is chi-squared with 1 df. This
limiting distribution allows us to construct a confidence re-
gion for v based on the increments of the criterion func-
tion from its unconstrained minimum. By evaluating T(JF
— Jr) we determined whether the true value of v is in the
resulting interval for alternative confidence levels.

4. We constructed the more standard confidence intervals
for ~ based on a quadratic approximation to the criterion
function. In particular, let yr be an estimator of  and oF
be the estimated asymptotic standard error of the estimator
v7- We study T(yr — +¥)?/(o7)%, which has an asymptotic
chi-squared distribution with 1 df. Notice that this object is
Just the Wald statistic for the hypothesis that the true value
of the parameter is ~. In constructing this statistic for the
continuous-updating estimator, the standard errors include
a term that reflects the derivative of the GMM weighting
matrix with respect to the parameters.

Our Monte Carlo calculations are greatly simplified by
our knowledge of the true parameter vector. In empirical
work, the corresponding computations would be more com-
plicated. For instance, to construct a confidence interval
for ~ based on the original criterion function, a researcher
would have to characterize numerically the hypothetical
values of this parameter that are consistent with a prespeci-
fied deterioration in the criterion while concentrating out all
of the other parameters. When there are very few remain-
ing components in the parameter vector (in our examples 0,
1, or 2), this concentration is tractable. This approach may
become very difficult, however, when the parameter vector
is large.

In reporting our Monte Carlo results we use one of the
graphical methods advocated by Davidson and McKinnon
(1994). For each Monte Carlo setup we computed the em-
pirical distributions of the statistics and compared them to
the corresponding chi-squared distributions. The results are
plotted on a set of figures constructed as follows. For each
probability value (depicted on the  axis), we computed the
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corresponding chi-squared critical value and the fraction of
the actual computed statistics that are above that value (de-
picted on the y axis). Thus the 45-degree line (depicted as
...) is the appropriate reference for assessing the quality of
the limiting distribution. Following Davidson and McKin-
non (1994), these plots are referred to as p-value plots, and
we present the results for the interval [0, .5] because this
bounds the region of probability values used in most appli-
cations. Although we use probability values as our basis of
comparison, confidence intervals at alternative significance
levels can be assessed by simply subtracting the probability
values from 1.

The figures are organized as follows. For each Monte
Carlo setup we first consider a single figure with four
graphs titled as follows: “(a) Minimized”, “(b) True”, “(c)
Constrained-Minimized” and “(d) Wald,” corresponding to
the statistics Ty, TJY, T(J2 — Jr), and T(yy — )%/
(07.)%, respectively. To provide a formal statistical measure
of the distance between the empirical distributions and their
theoretical counterparts, on each figure a band around the
45-degree line is plotted using dotted lines. This band is a
90% confidence region based on the Kolmogorov—Smirnov
Test. This states that the probability that the maximal dif-
ference between the empirical distribution and the theoret-
ical one will lie within those lines is 90%. Maximal dif-
ferences within these bands are not statistically significant
at the 10% significance level. Although we present results
for the interval [0, .5], the Kolmogorov—Smirnov confidence
region is based on calculating the supremum between the
empirical distribution and the 45-degree line over the region
[0, 1].

In each graph, the dashed line gives the Monte Carlo re-
sults for the two-step estimator, the dot-dash line for the
iterated estimator, and the solid line for the continuous-
updating estimator. For the minimized criterion function re-
sults, there is a necessary ordering between the continuous-
updating and the iterative estimator. When the iterative esti-
mator converges, the value of the criterion function can also
be obtained by the continuous-updating estimator. Because
the continuous-updating estimator minimizes its criterion,
this minimized value must be smaller than the criterion for
the iterative estimator. As a result, the plot for the mini-
mized criterion of the continuous-updating estimator must
lie below the plot for the iterative estimator unless the it-
erative estimator fails to converge. There is no natural or-
dering between the results for the two-step estimator and
the continuous-updating estimator or between the two-step
estimator and the iterative estimator.

To complement our p-value plots, we also provide some
results summarizing the performance of the implied param-
eter estimators. The finite-sample properties of the point es-
timates are of interest in their own right and in some cases
provide additional insights into the behavior of the p-value
plots.

3.2 Numerical Search Routines

The two-step and iterative estimators are given by
the minimizers of the objective function (2), and the
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Figure 1. Criterion Functions, Monthly Lognormal Model, No
Time Averaging: ——— , lterative; — — —, Two-Step; , Continuous-
Updating.

continuous-updating estimator is given by the minimizer
of the objective function (4). For some of our experiments,
the estimators are given by solutions to linear equations. In
the other cases we used the numerical optimization routines
fminu.m and fmins.m, which are part of the “Optimization
Toolbox” for use with MATLAB. The routine fminu.m im-
plements a quasi-Newton method, which is dependent on
an initial setting for the parameters. To check whether the
results were sensitive to initialization, we considered sev-
eral different starting values that included the true param-
eter vector. When this gradient method failed to converge
or resulted in unusual estimates, we also used the routine
fmins.m, which is a simplex search method. Details on these
MATLAB programs can be found in the MATLAB Opti-
mization Toolbox manual. In Section 4 we show that the
continuous-updating criterion can make numerical search
for the minimizer difficult. As a further check on our nu-
merical results, when we obtained extreme parameter esti-
mates we also examined the continuous-updating criterion
over a grid of the parameters. This gave us additional assur-
ance that the estimated parameters were indeed minimizers
of the criterion.

4. MONTE CARLO RESULTS, LOGNORMAL MODEL

For the case of time-averaged data, {¢:} has an MA(1)
structure, as we discussed in Section 2.1. To account for
this, the estimator of Vr(b) was computed by first consid-
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ering an estimator of the form

T
Vr(b) = % {ZQOT(thb)(PT(Xt:b)/

t=1

T
+ E [or(Xi—1,b)or(Xe, b)’

t=2

+ @T(Xt, b)QOT(Xt—ls b)l]} 3 (24)

where o7(X3,b) = o(Xp,b) — 1/T 1, ¢(X¢,b). When
this estimator was not positive definite, we used an esti-
mator proposed by Durbin (1960) (see also Eichenbaum,
Hansen, and Singleton 1988). Durbin’s estimator is obtained
by first approximating the MA(1) model with a finite-order
autoregression. The residuals from this autoregression are
used to approximate the innovations. Then the parameters
of the MA(1) model are estimated by running a regression
of the original time series onto a one-period lag of the
“approximate” innovations. Finally, an estimate of Vr(b)
is formed using the estimated MA coefficients and sample
covariance matrix for the residuals. This procedure has the
advantage that the finite-order MA structure of {¢;} is im-
posed and the estimator is positive semidefinite by construc-
tion. It does, however, rely on the choice of a finite-order
autoregression to use in the approximation. In implement-
ing the estimator we ran a 12th-order autoregression in the
initial stage. Although this covariance matrix estimator was
used in searching for the parameter estimates, it was not
needed at any of the converged parameter values.

(a) Minimized (b) True
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Figure 2. Criterion Functions, Monthly Lognormal Model, Time Av-
eraging: ———, lterative; — — —, Two-Step; , Continuous-Updating.
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Table 4. Properties of Estimators of v, Lognormal Mode!
Property Continuous-updating lterative Two-step
A. No time averaging, true v = 4.55
Median 3.72 1.64 1.73
Mean 717117 1.81 2.06
Truncated mean* 4.47 1.81 2.06
10% quantile —3.67 —-.23 —.20
90% quantile 18.75 4.00 4.33
B. Time averaging, true v = 4.99

Median 3.48 1.75 1.74
Mean —518.14 1.88 2.04
Truncated mean* 3.18 1.88 2.04
10% quantile —-10.48 —.29 —.66
90% quantile 11.52 4.22 4.85

* Estimates with absolute values greater than 100 were excluded from the computation of the
truncated means.

Criterion Functions. Figures 1 and 2 report the prop-
erties of the criterion functions for the two Monte Carlo
experiments. Figure 1 is for the case of no time averaging
of the data, and Figure 2 is for the case of time averaging.
Figures 1(d) and 2(d) report the results using the Wald (ap-
proximate quadratic) criteria. The results for the Wald and
constrained-minimized criteria are identical for the iterative
and two-step estimators. This occurs because the model is
linear in the parameters and the weighting matrix is fixed
in constructing (J4 — Jr). For the continuous-updating
estimator, the results for the Wald and the constrained-
minimized criteria are different due to the dependence of
the weighting matrix on the hypothetical parameter values.

Notice that the small-sample distributions of the mini-
mized criterion functions for the iterative and two-step es-
timators are greatly distorted. The small-sample tests of the
overidentifying restrictions based on the minimized crite-
rion values are too large, leading to overrejections of the
model when using these estimators. The minimized crite-
rion function for the continuous-updating estimator is much
better behaved, and the small-sample distribution is very
close to being x? for both Monte Carlo experiments. Tests
of the overidentifying restrictions of the models using the
minimized value of the criterion function of the continuous-
updating estimator have the correct size for the model with-
out time averaging and similarly for the model with time
averaging for probability values less than about .1. Even
for probability values greater than .1, the distribution of the
minimized criterion for the continuous-updating estimator
is not greatly distorted.

The finite-sample coverage probabilities of the three
ways of constructing confidence regions for v are depicted
in subplots (b), (c), and (d) in Figures 1 and 2. Recall that
the constrained-minimized and Wald criteria coincide when
they are based on the two-step and iterative estimators but
differ when the continuous-updating estimator is used. The
small-sample coverage probabilities are greatly distorted
for the intervals constructed with the iterative and two-step
estimators in all cases. In particular, they do not contain the
true parameter values as often as is to be expected from the
limiting distribution. In the case of the continuous-updating
estimator, for low p values coverage rates are too small for

Journal of Business & Economic Statistics, July 1996

confidence intervals built from the Wald criteria, but the
distortion is substantially smaller than with the other two
estimators. Finally, the coverage rates of the confidence re-
gions implied by the true and constrained-minimized crite-
ria for the continuous-updating estimator accord well with
the asymptotic distribution and are clearly better than the
coverage rates for the other estimators.

These Monte Carlo results for the lognormal model sup-
port the following remedy for the concerns raised by Nel-
son and Startz (1990). From the standpoint of hypothe-
sis testing and confidence-interval construction, use of the
continuous-updating criterion is much more reliable than
the other methods we study. The tests of the overidentifying
restrictions based on the continuous-updating estimator do
not reject too often and in fact are quite well approximated
by the limiting distribution. Although confidence intervals
based on the Wald criteria can be badly distorted, partic-
ularly for the two-step and iterative estimators, confidence
regions constructed from the continuous-updating criteria
have coverage probabilities that are close to the ones im-
plied by the asymptotic theory. This occurs for confidence
sets based on both the constrained-minimized criterion in
panel (c) and the true criterion in panel (b). The latter result
supports the recommendation of Stock and Wright (1995)
to base confidence intervals on the level of the continuous-
updating criterion.

Parameter Estimates. Table 4 reports summaries of mea-
sures of central tendency for the three estimators of +y along
with 10% and 90% quantiles. The medians for the two-step
and iterative estimators are considerably lower than the true
value of ~, whereas the median bias for the continuous-
updating estimator is much smaller. The distribution for the
continuous-updating estimator, however, is also more dis-
persed, as evidenced by the larger increment between the
10% and 90% quantiles. Moreover, the Monte Carlo sam-
ple means for the continuous-updating estimator are much
more severely distorted than they are for the other two es-
timators. The enormous sample means for the continuous-
updating estimator occur because in the case of no time
averaging and of time averaging there were 23 and 31 sam-
ples, respectively, in which the estimates are, in absolute
value, larger than 100. When these are removed from the
Monte Carlo samples, the sample means of the continuous-
updating estimator are closer to the true values than are the
means for the other two estimators.

Recall that the analog to the two-step and iterative esti-
mator in the classical simultaneous-equations model is two-
stage least squares and that the analog to the continuous-
updating estimator is limited-information (quasi) maximum
likelihood. It is known from the literature that there are
settings in which the two-stage least squares estimator has
finite moments, but the limited-information maximum like-
lihood estimator does not (e.g., see Mariano and Sawa 1972;
Sawa 1969). In light of these theoretical results and our
Monte Carlo findings, the continuous-updating estimator
is not an attractive alternative to the other estimators we
consider if our bases of comparison are the (untruncated)
moment properties [or even relative squared errors as in
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(a) Continuous—-Updating (b) Iterative

(c) Two Step

Figure 3. Smoothed Distribution of Estimated Angle Implied by (1,
~r1), Monthly Lognormal Model, No Time Averaging.

the work of Zellner (1978)]. On the other hand, Anderson,
Kunitomo, and Sawa (1982) advocated use of the limited
information estimator over the two-stage least squares esti-
mator because, among other things, the median bias of the
former estimator is smaller. We also find less distortion in
the medians for the continuous-updating estimator in our
experiments.

As we noted previously, one attractive attribute of the
continuous-updating estimator is its invariance to ad hoc
(parameter dependent) transformations of the moment con-
ditions. For example suppose that we reparameterize (12)
as

(25)

assuming that x = 0. In (25) the parameters 7o and ~, are
not uniquely identified by the moment conditions, whereas
their ratio is. The parameterization in (12) allows identifi-
cation of v, by setting 7; = 1. The continuous-updating
estimator of « in (12) is invariant to how this identification
is achieved via restrictions on (25). Notice however that the
two-step and iterative estimators are sensitive to the cho-
sen normalization. Hillier (1990) achieved identification in
a different manner by making the direction from the origin
defined by (vo,7;) in two-dimensional space the object of
interest. Although this angle is identified, the length of the
ray from the origin along which the true value of (vo,71)
is not. Hillier’s defense of limited information maximum
likelihood over conventional two-stage least squares is that
the former is a better estimator of direction.

To see whether such a conclusion might well extend
to comparisons between the continuous-updating estima-
tor and the other two estimators we consider, we report
smoothed distributions of the estimated “direction” in Fig-
ures 3 and 4. We measure direction by the angle (as mea-
sured in radians) between the horizontal axis and the point
(1, ). Because there is still a sign normalization that must

Yolog(ces1/ct) + vlog R = Met1,
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be imposed for identification, we restrict attention to the
interval [—7/2,7/2]. In smoothing the histogram, we used
Gaussian kernel with a bandwidth of .1. The value of the
density estimate is plotted at each of the sample points us-
ing a circle. The shape of the smoothed distribution along
with the mass of the plotted circles provides evidence about
the small-sample distribution of the parameter estimators.
Notice that the primary modes of the continuous-updating
angle estimator are very close to the true parameter values,
but the modes of the other two angle estimators are dis-
torted. Moreover, the density estimates for the modal angle
are larger for the continuous-updating method. The Monte
Carlo distributions for the continuous-updating angle es-
timator also, however, have secondary modes near —m/2,
corresponding to large-in-magnitude estimates of ~y with the
wrong sign.

Continuous-Updating Criterion Function. The criterion
function for the continuous-updating estimator can some-
times lead to extreme outliers for the minimizing value of .
This occurs in the two Monte Carlo experiments for some
of the trials, as we discussed previously. To see why this
can occur, suppose for simplicity that there is a single re-
turn under consideration, no time averaging, and several
instruments. The moment conditions are constructed using

¥(Xy, g) = [log Rey1 — glog(cer1/ce)]zes (26)
where z; is a vector of instruments and E[¢(Xy,v)] = 0
[see Eq. (12)]. Because the moment conditions are linear in
g, the criteria for the iterated and two-step estimators are
quadratic in g. In contrast, the criterion for the continuous-
updating estimator converges as g gets large. To see this,
observe that for a large value of g the sample average
of ¥(X,,g) is approximately g times the sample mean of
log(ceq1/ct)2: and the sample covariance is approximately

(a) Continuous~Updating (b) Iterative
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Figure 4. Smoothed Distribution of Estimated Angle Implied by (1,
~71), Monthly Lognormal Model, Time Averaging.
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Figure 5. Criterion Function for Continuous-Updating Estimator, Monthly Lognormal Model, No Time Averaging.

g2 times the sample covariance of log(c;41/ct)z;. There-
fore, for large g, the criterion function is approximately
a quadratic form that is (1/7) times the chi-squared test
statistic for the null hypothesis that

E[lOg(CH_l/Ct)Zt} = 0. (27)

As a result it is possible for the minimized criterion for
the continuous-updating criterion to be minimized at a very
large value of g.

To further illustrate this potential problem, the upper plot
in Figure 5 is of the criterion function for the continuous-
updating estimator for a Monte Carlo draw in which
the value of g that minimizes the criterion function is
673,750.4. The lower plot in Figure 5 gives the average
value of the criterion function over the Monte Carlo ex-
periments. These results are for the case of no time aver-
aging. Notice that in the upper plot the criterion function
approaches its lowest value as g becomes large in absolute
value. Even in the lower plot the criterion function asymp-
totes to a local minimum for large negative values of g. The
numerical search used to implement the estimator could be
complicated by the flat sections of the criterion function and
the search routine could end up spuriously searching in the
direction of very large values of ¢. This is particularly true
for a gradient-based method (such as fminu.m in MATLAB)
in which the routine attempts to set the gradient of the cri-
terion function to 0. When the parameter vector is of low
dimension, this problem can easily be assessed by gridding
the parameter vector and evaluating the criterion function at
the grid points. This is what we did to make sure that large
estimates of g were not due to numerical problems. When

the parameter vector is of large dimension, however, imple-
menting the continuous-updating estimator may sometimes
be difficult.

Estimation of v and 6. The Monte Carlo environments
of the lognormal and Markov-chain models differ in the
assumed law of motion for consumption and returns and
in the number of estimated parameters. To allow a more
direct comparison with the Markov-chain results, we now
consider a Monte Carlo experiment with the log-linear law
of motion, where both v and § are estimated. This second
parameter allows us to check whether the favorable per-
formance of the continuous-updating estimator reported in
Figures 1 and 2 is unique to the single-parameter setup.

To implement this case, we assume that § = .971/12 and
that the mean of the (log of) consumption growth is equal
to its sample mean. These parameter values, along with the
model for B(L) in (13), imply a set of restrictions on the
unconditional mean of Y; given in (11). Monte Carlo sam-
ples of Y; were drawn under these restrictions. To estimate
¢ and v we used moment conditions M1 of Table 3.

The results of this Monte Carlo experiment are displayed
in Figure 6. As in Figures 1 and 2, rejection rates of the
overidentifying restrictions in the case of the continuous-
updating estimator are similar to those predicted by the
asymptotic distributions, at least for probability values of
less than .2. Moreover, as before, the small-sample distribu-
tions of the minimized criteria of the two-step and iterative
estimators are greatly distorted. In this case, however, a test
based on the minimized criterion of the two-step estimator
would underreject the restrictions of the model. Coverage
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probabilities of the true values of both § and ~ based on the
“true” criterion accord well with the asymptotic distribution
when using the continuous-updating estimator. The cover-
age probabilities for the other two estimators, however, are

substantially at odds with the theory.
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Figure 7. Criterion Functions, Annual Markov-Chain Model, 6 = .97,
~ = 1.3, 8 = 0, Moment Conditions M1: ———., Iterative; — — —, Two-Step;
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Referring now to panel (c), the coverage rates for
the true-constrained criterion are somewhat too small for
the continuous-updating estimator. The coverage proba-
bilities are much more seriously distorted, however, for
the two-step and iterative estimators just as in Figures 1
and 2. Moreover, confidence intervals based on the true-
constrained criterion for the continuous-updating estimator
are a little better behaved than those based on the Wald
statistic for all three estimators. To summarize, the results
displayed in Figure 6 are largely consistent with the results
in which ~ is the only parameter estimated.

5. MONTE CARLO RESULTS,
MARKOV-CHAIN MODELS

5.1 Time-Separable Preferences, Annual Data

First we consider the results for time-separable prefer-
ences (# = 0) using the Markov-chain model calibrated to
annual data. For these runs Vr(b) is computed as a sim-
ple covariance matrix estimator. The resulting p-value plots
are depicted in Figures 7-9 for different combinations of
the preference settings and moment sets given in Tables 2
and 3. Features of the Monte Carlo distributions for the
point estimates of + are reported in Table 5.

Results for v = 1.3 and § = .97. We start by dis-
cussing the results obtained using the more “moderate”
values of the preference parameters TS1 that were used
by Tauchen (1986). Figure 7 displays the results for the
first set of eight moment conditions M1. Note from panel
(b) that the GMM criterion functions evaluated at the true
parameter values are larger than predicted by the asymp-
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totic theory. Although the asymptotic approximations are
better with the continuous-updating estimator, at least for
smaller probability values, the criterion evaluated at the true
parameters is still too large. On the other hand, the mini-
mized criteria functions are much better behaved, especially
for the continuous-updating estimator with probability val-
ues less than .15 [see Fig. 7(a)]. Confidence intervals based

Table 5.  Properties of Estimators of -y,
Markov-Chain Model, Annual Data

Property Continuous-updating lterative Two-step
A TS1-M1, truey = 1.3, 6 = .97
Mean 1.90 .85 1.08
Truncated mean* 1.90 .85 1.08
Median 1.15 .70 .78
10% quantile 0.61 13 —1.25
90% quantile 5.76 1.60 4.09
B TS1-M2, true vy = 1.3, 6 = .97
Mean 1.36 1.35 1.35
Truncated mean* 1.53 1.35 1.35
Median 1.17 1.10 1.25
10% quantile .61 —1.35 —2.71
90% quantile 4.10 3.51 5.59
C. TS2-M2, true vy = 13.7, 6 = 1.139
Mean 6.29 13.68 14.10
Truncated mean* 14.80 13.68 14.10
Median 14.14 13.10 13.43
10% quantile 8.96 9.01 9.85
90% quantile 22.68 19.40 19.54

* Estimates with absolute values greater than 100 were excluded from the computation of the
truncated means.

Journal of Business & Economic Statistics, July 1996

on criteria-function behavior performed poorly in this set-
ting, although they performed better for the continuous-
updating estimator than for the other two estimators. More-
over, the criterion-function-based confidence intervals for
the continuous-updating estimator proved to be more reli-
able than the confidence intervals based on the Wald sta-
tistic.

Figure 8 reports plots for the set of four moment con-

" ditions M2. The reduction in moment conditions (relative

to M1) leads to an improvement in the underlying central
limit approximations depicted in panel (b). This is espe-
cially true for the continuous-updating criterion function
except at large probability values. The minimized criterion-
function values used to test the overidentifying restrictions
behave as predicted by the asymptotic theory for all three
estimators. The criterion-function-based confidence inter-
vals work quite well for the continuous-updating estimator
but not for confidence intervals based on the Wald statistic
[compare panels (¢} and (d)].

In summary, asymptotic theory gives a poor guide for
statistical inference in the case of moment conditions M1.
Presumably this occurs because of the many moment con-
ditions relative to the sample size. For the smaller moment
condition set M2, the asymptotic approximations work con-
siderably better. For both moment conditions the asymptotic
distributions for the overidentifying restrictions tests and
criterion-function-based inference are more reliable when
based on the continuous-updating estimator.

Recall that the minimized value of the continuous-
updating criterion is always less than or equal to that of the
limiting criterion of the iterative estimator. Tauchen (1986)
reported cases in which the minimized criterion function for
the iterative estimator led to underrejection of the overiden-
tifying restrictions. In these cases the underrejection of the
overidentifying restrictions was more pronounced when us-
ing the continuous-updating criterion function. See Hansen
et al. (1994) for an analysis of one of these cases.

Of course, assessing the reliability of the asymptotic the-
ory as applied to the different parameter estimators is a
different question than assessing the performance of the pa-
rameter estimators themselves. In regard to this latter ques-
tion, the results in the first portion of Table 5 show that the
continuous-updating estimator has considerably less bias in
the median than the other two estimators in the case of M1.
The iterative estimator, however, has much less dispersion
in this case as measured by the width between the .10 and
.90 quantiles. In the case of M2, there is little median bias
for all three estimators. On the other hand, the dispersion
in the continuous-updating estimator is smaller than that of
the other two estimators.

Results for v = 13.7 and § = 1.139. Next we con-
sider results using the preference specification considered
by Kocherlakota (1990a) (TS2 in Table 1). We only con-
sider the performance of GMM estimators obtained using
moment conditions M2. Our results are displayed in Figure
9 and Table 5. With this change in parameter configura-
tion, the results for the M2 moment conditions are similar
to those in Figure 8. In regard to the parameter estimates,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hansen, Heaton, and Yaron: Finite-Sample Properties of Some Alternative GMM Estimators

(a) Minimized
0.5 ~73 0.5

(b) True

0.4 e 0.4 .

02 03 04 05

(d) Wald

0.4 e 0.4
v S
0.3 4 0.3
7y VA

s 7
01n 7 0.1y -
0z ” T Qem==-= -7

0 01 02 03 04 05 0 01 02 03 04 05
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again the median bias is small relative to the dispersion
for all three estimators. The continuous-updating estima-
tor displays somewhat more dispersion than the other two
estimators.

5.2 Time-Separable Preferences, Monthly Data

To explore the extent to which the limiting distribution
provides a better guide for inference for larger sample sizes
(with less extreme data points), we redid some of our cal-
culations using simulations calibrated to monthly data as
described in Subsection 2.2. We focused exclusively on
the more “moderate” preference configuration adjusting 6
accordingly. In this case we only looked at estimators con-
structed using moment conditions M1 and M2. We are par-
ticularly interested in moment set M1 because of its com-
mon use in practice when analyzing postwar data. Our re-
sults are reported in Figures 10 and 11 and Table 6. Notice
that all of the asymptotic approximations are consistently
reliable for the continuous-updating estimation method. In
sharp contrast, large-sample inferences for the two-step es-
timator are of particularly poor quality with the exception
of the overidentifying restrictions test using M2. Moreover,
it is of note that the iterative estimates and the continuous-
updating estimates are very close to one another when M2
is used. This is reflected in quantiles reported in Table 6 as
well as in the “Minimized” and “Constrained-Minimized”
graphs. Presumably, the reason for this is that the weight-
ing matrix tends to be a relatively “flat” function of the
parameters.

In regard to the parameter estimates of 7, both the
continuous-updating estimator and the iterative estimators
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have distributions that are much more concentrated around
the true parameter value than the distributions for the two-
step estimator (again see Table 6). The performance of the
two-step estimator could potentially be improved by using
a different weighting matrix in the first step. For example,
the residuals from nonlinear two-stage least squares applied -
to each Euler equation could be used to estimate the asymp-
totic covariance matrix of the moment conditions. Another
possibility is to use the covariance matrix of the prices of
the “synthetic” securities implicit in the use of instrumental
variables. See Hansen and Jagannathan (1993) for a discus-
sion of this weighting matrix.

Table 6. Properties of Estimators of v, Markov-Chain Model,
Monthly Data: True v = 1.3, § = .97"12

Property Continuous-updating Iterative Two-step
A. TS1-M1
Mean 1.37 1.25 1.57
Truncated mean” 1.37 1.25 1.57
Median 1.28 1.18 117
10% quantile 1.02 .96 —2.12
90% quantile 1.85 1.61 4.63
B. TS1-M2
Mean 1.38 1.38 1.84
Truncated mean* 1.38 1.38 1.84
Median 1.27 1.27 127
10% quantile 1.00 1.00 —2.95
90% quantile 1.89 1.89 6.50

* Estimates with absolute values greater than 100 were excluded from the computation of the
truncated means.
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These particular Monte Carlo experiments are ones in
which the unconditional moment restrictions provide much
more identifying information about the power parameter ~y
than any of the other experiments we report on. Not only are
estimates more accurate than the estimates obtained from
the Monte Carlo experiments calibrated to annual data, but
also the estimates from the lognormal Monte Carlo experi-
ments reported in Section 3 that have the same sample size.
Presumably the main reason for this latter disparity is that
the Markov-chain models are calibrated to dividend behav-
ior rather than return behavior. As is well known from the
empirical asset-pricing literature, the dividend calibrations
imply returns that are less volatile than historical time series
because of some fundamental model misspecification.

5.3 Time-Nonseparable Preferences, Annual Data

As we discussed in Subsection 5.1, the continuous-
updating estimator generally provides more reliable infer-
ence in the case of time-separable preferences when data
are generated from the annual Markov-chain model. Even
for that estimator, however, it is only when moment con-
ditions M2 are used that the distributions of the crite-
ria TJr (minimized), TJZ (true) and 7'(J} — Jr) (con-
strained-minimized) accord well with the corresponding
chi-squared distributions. For these reasons we consider re-
sults with time-nonseparable preferences using only mo-
ment conditions M2 and only for the continuous-updating
estimator. To construct our Monte Carlo datasets we used
the three time-nonseparable settings of the parameters listed
in Table 2 as TNS1, TNS2, and TNS3 (§ = 3,6 = -1,
6= ——) We also used data generated with 6 = 0 but still
estimated with the parameter §. Unlike the case of time-
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separable preferences when the restriction 6 = 0 is imposed
in the estimation, the estimator Vr(b) of the asymptotic co-
variance matrix accommodates an MA(1) structure in the
Euler-equation errors. As in Section 3, we used the Vr(b)
estimator given in (24) except when it was not positive def-
inite, in which case we shifted to Durbin’s (1990) estimator
with a fourth-order autoregression.

Figure 12 presents the p-value plots for the criterion func-
tions for the different settings for 6. The p-value plots of
Figures 1, 2, 6, and 7-11 considered results for fixed pref-
erence parameters and the three different estimators. The
same Monte Carlo data were used for the experiments for
each estimator in these plots.

In contrast to the time-separable case (the solid line in
Fig. 8), the distribu‘ion of the minimized criteria imply
small-sample overrejection of the moment conditions for
each of the settings for 4. Furthermore, even when evalu-
ated at the true parameters, the criterion functions are not
distributed as a chi-square. This occurs for all four settings
of 6 including § = 0 (time-separable preferences). Evidently
the estimator of the asymptotic covariance matrix of the
moment conditions, which assumes an MA(1) structure for
the errors, causes small-sample distortion of the GMM cri-
terion function. Notice that the distributions of the Wald
statistics are very far from being chi-squared. Consistent
with the results reported in Section 4 and Subsections 5.1

Table 7. Properties of Estimators of v and 6, Markov-Chain
Model, Annual Data: Continuous-Updating Estimator,
Truey= 13,6 = .97

Property ¥ 0
A. TNS1-M2, true 6 = %
Mean 4.56 599 x 10%
Truncated mean” 456 .83
Median 1.71 52
10% quantile .64 10
90% quantile 10.83 1.25

B. TS1-M2, true 8 = 0

Mean 5.88 -.34
Truncated mean* 3.67 —-.34
Median 73 -.12
10% quantile .00 —-.92
90% quantile 10.92 .18
C. TNS2-M2, true 6 = —
Mean 3.05 —.46
Truncated mean* 2.69 —.46
Median .97 —.42
10% quantile .01 —.93
90% quantile 8.28 —.0t
D. TNS3-M2, true 6 = —$
Mean 41 .07
Truncated mean* 2.16 —.64
Median 1.22 —.69
10% quantile .04 —-.94
90% quantile 5.79 —.40

* Estimates with absolute values greater than 100 were excluded from the computation of the

truncated means.
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and 5.2, confidence intervals for v constructed using the
criterion function perform much better than those based on
the Wald statistic.

Table 7 reports statistics summarizing the properties of
the estimators of v and #. The estimator of v does not in
general perform as well as in the time-separable preference
case (see Table 5 for the comparison). The median for vr is
substantially below the true value of v in the case of 8§ =0
and 8 = —% and above for 8 = é Furthermore, the dis-
persion of the estimators of ~ is considerably larger than
when time separability is correctly imposed, at least in part
due to having to estimate an additional parameter and to
accommodate MA(1) terms in the estimator of the asymp-
totic covariance matrix V (b). Regarding the estimators of
6. there is substantial dispersion for each case as evidenced
by the 10% and 90% quantiles. Notice further that there
is some median bias in the estimators of § for the cases
of = 1,0, and —3 (panels A, B, and C of Table 7). In
summary, the annual data do not permit simultaneous esti-
mation of # and v with any reasonable precision, at least
for moment condition M2.

5.4 Time-Nonseparable Preferences, Monthly Data

Using the monthly Markov-chain model, we also exam-
ined the time-nonseparable model for 6 = 1,0, and —3%
and for moment conditions M2. We further considered mo-
ment conditions M1 because these conditions are often used
in practice and because the continuous-updating estima-
tors demonstrated reasonable small-sample properties under
time-separable preferences. We did not consider the case
of § = —% with the monthly model because the Markov-
chain model implies that the covariance matrix of the Euler-
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equation errors is close to being singular at this value of 6.
Once again we used the estimator of V(b) given by (24).
When Durbin’s (1960) estimator was necessary we used a
twelfth-order autoregression.

Figure 13 reports the results for criterion functions using
moment conditions M1. Under M1, the minimized crite-
rion performs reasonably well for all three settings of 6.
Tests of the overidentifying restrictions of the model have
the correct small-sample size in this case. Notice further
that the criterion T'(J}. — Jr) (constrained-minimized) is
close to being chi-squared distributed but that the distri-
bution of the Wald statistic is very far from chi-squared.
Hence, we continue to find that inferences based directly
on criterion functions are much more reliable than those
based on quadratic approximations to the criterion func-

Table 8. Properties of Estimators of v and 6, Markov-Chain Model,
Monthly Data: Continuous-Updating Estimator, True v = 1.3, 6 = .97 1712

Property ¥ 0

A. TNS1-M1, true 6 = }

Mean 13.56 .35
Truncated mean” 2.90 .35
Median 1.27 .34
10% quantile .79 22
90% quantile 7.35 48

B. TS1-M1, true 8 =0

Mean 16.68 —.01
Truncated mean™ 4.18 —.01
Median 1.29 .01
10% quantile .38 —.23
90% quantile 13.46 19
C. TNS2-M1, true 6 = —
Mean 6.03 —.42
Truncated mean” 5.82 —.42
Median 1.24 —-.35
10% quantile .00 —.98
90% quantile 17.95 .09
D. TNS1-M2, true 6 = %
Mean 153.96 66
Truncated mean* 11.09 .66
Median 1.45 .37
10% quantile 48 .16
90% quantile 410.29 1.16
E. TNS1-M2, true 8§ = 0
Mean 62.51 —.14
Truncated mean* 17.89 —-.14
Median 1.40 .04
10% quantile .03 —.66
90% quantile 142.79 .26
F TNS2-M2, true 6 = — 3
Mean 12.98 —.40
Truncated mean* 12.78 —.40
Median .35 -.58
10% quantile .01 —-91
90% quantile 40.99 a7

* Estimates with absolute values greater than 100 were excluded from the computation of the
truncated means.
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tions. Finally, we report summary statistics of the central
tendency of the estimators of y and 6 in Table 8, panels A,
B, and C. Lack of prior knowledge of the parameter # again
causes the estimator of + to be much less precise as mea-
sured by the distance between the 90% and 10% quantiles.
(For instance, compare the first column of Table 6 to panel
B of Table 8.)

Figure 14 presents the p-value plots for moment condi-
tions M2. In this case the distribution of the minimized cri-
terion functions and the constrained-minimized criteria are
not chi-squared. The model’s overidentifying conditions are
rejected too often for all of the parameter settings, and con-
fidence intervals for the parameter v have the wrong cov-
erage probabilities. With moment conditions M2, allowing
for time nonseparability results in a substantial number of
very large estimates of ~ as reflected by the size of the 90%
quantiles (see Table 8, panels C, D, and E). It appears that
the addition of returns as instruments (the difference be-
tween moment conditions M1 and M2) improves the per-
formance of the estimator and the quality of the central
limit approximations.

6. CONCLUDING REMARKS

In this article we examined the finite-sample proper-
ties of three alternative GMM estimators that differ in the
way in which the moment conditions are weighted. Partic-
ular attention was paid to both the performance of tests
of overidentifying restrictions and to comparing alternative
ways of constructing confidence sets. In documenting finite-
sample properties, we used several different specifications
of the CCAPM. The experiments differed substantially in
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the amount of sample information that there is about the
parameters of interest. Although the experiments do not
uniformly support the conclusion that one estimator domi-
nates the others, some interesting patterns emerged.

1. Continuous updating in conjunction with criterion-
function-based inference often performed better than other
methods for annual data; however, the large-sample approx-
imations are still not very reliable.

2. In monthly data the central limit approximations for
the continuous-updating estimation method applied in con-
junction with the criterion-function-based method of infer-
ence performed well in most of our experiments, including
ones in which the parameters are estimated very accurately
and ones in which there is a substantial amount of disper-
sion in the estimates.

3. Confidence intervals constructed using quadratic ap-
proximations to the criterion function performed very
poorly in many of our experiments.

4. The continuous-updating estimator typically had less
median bias than the other estimators, but the Monte Carlo
sample distributions for this estimator sometimes had much
fatter tails.

5. The tests for overidentifying restrictions are, by con-
struction, more conservative when the weighting matrix is
continuously updated, and in many cases this led to a more
reliable test statistic.

Our reason for exploring criterion-function-based infer-
ences and continuous updating is to assess some simple
ways of making GMM inferences more reliable. More-
over, when continuous updating is used in conjunction
with criterion-function-based inferences, the large-sample
approximations become invariant to parameter-dependent
transformations of the moment conditions. In this article
we have made no attempt to explore the ramifications for
power of the resulting statistical tests. Moreover, from the
standpoint of obtaining point estimates, we see no partic-
ular advantage to using continuous updating when mini-
mizing GMM criterion functions. For example, continuous
updating can indeed fatten the tails of the distributions of
the estimators. In this sense continuous updating sometimes
inherits the defects of maximum likelihood estimators rel-
ative to two-stage least squares estimators in the classical
simultaneous-equations environment.

Our Monte Carlo experiments for monthly data were suf-
ficiently successful to convince us to reexamine some of
the empirical evidence for the CCAPM. In most tests of
the CCAPM, the model’s overidentifying conditions are re-
jected (e.g., see Hansen and Singleton 1982). Because the
two-step or iterative estimator is typically used in practice,
one potential explanation for these rejections could be the
tendency of these estimators to result in overrejection of
the model in small samples. To assess this possibility we
estimated the time-separable and time-nonseparable mod-
els using the continuous-updating estimator. We used the
consumption and return data described in Subsection 2.1
along with moment conditions M1 given in Table 3.

Estimation of the time-separable model resulted in point
estimates of § and v of .25 and 720.65, respectively. This
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Figure 15. GMM Criterion Functions, Monthly Data, v Constrained, Moment Conditions M1.

is an example in which the tail behavior of the criterion
results in large estimated value of . The minimized GMM
criterion was 5.94 with an implied p value of .43; hence,
it appears that the continuous-updating estimator implies
that the model is not at odds with the data. The estimate
parameters, however, are very far from being economically
plausible. As we found in several of our Monte Carlo ex-
periments, with the continuous-updating estimator, extreme
point estimates of the parameters are possible. In those
cases, however, there typically was little deterioration in
the criterion function when evaluated near the true param-
eter values, so in practice it is important to evaluate the
criterion function at plausible values of the parameters. In
this case we restricted - to the range [0, 20] and estimated 6
for each hypothetical value of «. The resulting minimized
criterion as a function of ~ is plotted in the top panel of
Figure 15. Notice that for this range of v the minimized
criterion function is well above 30, where the implied p
value is essentially 0. As a result, once a plausible set of
parameters is considered, the model is still rejected when
using the continuous-updating estimator.

In estimation of the time-nonseparable model, the point
estimates of the parameters were also quite implausible with
estimates of 8,7, and 8 of 1.20, 267.96, and .32, respec-
tively. The bottom panel of Figure 15 presents the criterion
function for the continuous-updating estimator with ~ re-
stricted to the range [0, 20]. At y = 20 the criterion reaches
a minimum of 13.55 with an implied p value of .035. As
a result, even at this extreme value for v the model is still
substantially at odds with the data.
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In summary, although the continuous-updating estimator
does not save the CCAPM, the experiments that we have
presented provide evidence that it should be of use in many
GMM estimation environments.
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