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This article uses asymptotic theory and simulations
to evaluate instrumental variables (IV) estimators of a
scalar dynamic linear equation that has a conditionally ho-
moscedastic moving average (MA) disturbance. Equations
such as the one we consider arise frequently in empirical
work (e.g., the inventory articles cited hereafter; Oliner,
Rudebusch, and Sichel 1992; Rotemberg 1984); as do re-
lated nonlinear equations (e.g., Epstein and Zin 1991).

The conventional approach to estimating such equations
is to specify a priori an instrument vector of fixed and finite
length and select the linear combination of the instruments
that is asymptotically efficient in light of the serial corre-
lation and (when relevant) conditional heteroscedasticity of
the disturbance (Hansen 1982). We examine two versions
of this estimator, the two differing only in the specification
of instrument vector. We also consider a single version of
an estimator that begins by defining a wide space of possi-
ble instrument vectors and uses a data-dependent method to
choose the instrument vector that is asymptotically efficient
in that space (Hansen 1985). In our application, we define
this space in such a fashion that it includes the first two
instrument vectors. So this estimator by definition must be
at least as efficient as the other two, and in our application
it is strictly more efficient.

Our aims are threefold. The first is to quantify the asymp-
totic efficiency gains from using the optimal estimator for
some plausible data-generating processes (DGP’s). The sec-

ond is to supply simulation evidence on the finite-sample:

behavior of the estimators, with regard to both parameter
estimates and test statistics. The third is to illustrate the
implementation of the optimal estimator.

The initial impetus for this article came from our own and
others’ empirical work with inventory models (indeed, the
DGP’s that we use in this article are calibrated to estimates
from inventory data). A comparison of several empirical
studies indicates that seemingly small changes in specifica-
tion or estimation technique result in large changes in esti-
mates (see West in press). But such problems do not seem
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to be unique to inventory applications, as is indicated by the
other articles in this symposium. Moreover, it is known that
test statistics often are poorly sized in time series models
(see the references following and the other articles in this
symposium).

In some applications, it is possible to use bootstrap-
ping rather than conventional asymptotic theory to con-
struct test statistics. But in many applications, nonlinearities
or an inability or unwillingness to simultaneously model
all endogenous variables make it difficult or impossible to
solve for decision rules or reduced forms; the absence of a
tractable DGP then makes such bootstrapping problematic.
In any case, the quality of parameter estimates is important
even in applications in which bootstrapping of test statistics
is straightforward.

There is therefore a critical need to understand the be-
havior of the Hansen (1982) estimator that is used in
much work and to evaluate alternative IV estimators whose
asymptotic or finite-sample behavior may be preferable.
Work that has considered asymptotic properties includes
that of Hayashi and Sims (1983), who found that, for
some stylized DGP’s, an alternative estimator sometimes
yielded dramatic asymptotic efficiency gains relative to that
of Hansen (1982). Hansen and Singleton (1988) found the
same, for the optimal estimator that we too consider.

Some earlier work has evaluated the finite-sample per-
formance of the Hansen (1982) estimator [as well as that of
another estimator that we do not consider (iterated GMM)],
in nonlinear and linear equations with moving average (MA)
(Popper 1992; Tauchen 1986; West and Wilcox 1994) or se-
rially uncorrelated disturbances (Ferson and Foerster 1991;
Kocherlakota 1990). This work has found that asymptotic
approximations to the finite-sample distributions of param-
eter estimates and test statistics often, but not always, are
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reasonably accurate. The nature of such discrepancies as do
arise varies from study to study and seems not to be easy
to characterize in general terms. To our knowledge, there
is no evidence on the finite-sample behavior of the other
estimator that we consider.

We find that, for a sample size of 300, asymptotic the-
ory generally provides a tolerably good approximation to
the finite-sample distribution of parameter estimates for all
three of our estimators. For the most part, estimates are
only slightly more dispersed than asymptotic theory pre-
dicts and are centered correctly. For a sample size of 100,
dispersion is rather greater and centering more erratic, but
the theory still provides at least a rough guide.

In particular then the parameter estimates of the optimal
estimator tend to be more tightly concentrated around the
true parameter values than are those of the conventional
one. In some but not all DGP’s, the efficiency gains from
the optimal estimator are dramatic, with this estimator hav-
ing asymptotic standard errors and finite-sample confidence
intervals that are smaller by a factor of two than those of the
conventional estimator whose instruments are the variables
in the reduced form of the model.

Asymptotic theory is somewhat less successful in approx-
imating the behavior of test statistics. Consistent with the
simulations in some recent work on estimation of covari-
ance matrices in the presence of serially correlated distur-
bances [e.g., Andrews (1991) and Newey and West (1994),
as well as some of the simulations of Kocherlakota (1990)
and Ferson and Foerster (1991)], we find that tests some-
times are badly sized. In one extreme case, a nominal .05
test for the conventional estimator has an actual size of
about .01 even in samples of size 10,000. Overall, test statis-
tics for the optimal estimator are sized as well (or poorly)
as are those of the conventional estimator.

Three important limitations of our study should be noted.
The first is that our own previous work (West and Wilcox
1994), which used exactly the DGP’s we use here, gener-
ally gave a more pessimistic picture than do the simulations
here on the distribution of the parameter estimates of one
of our two versions of the conventional estimator. We have
selected for further analysis and comparison the best per-
forming of the estimators that we previously studied. Taken
by itself, then, this article probably gives too supportive
an evaluation of the finite-sample behavior of our estima-
tors. Second, we experiment with only a limited range of
DGP’s. The contrast between the results of Kocherlakota
(1990) and Tauchen (1986), both of whom were motivated
by the consumption-based capital asset-pricing model, sug-
gests that results may be sensitive to changes in the DGP’s.
Finally, apart from a brief mention of asymptotic proper-
ties, we do not consider maximum likelihood estimation of
the decision rule implied by our model. Although such a
technique is feasible and perhaps desirable in the context
of our simple linear model, nonlinearities or an inability
to model all endogenous variables makes maximum likeli-
hood infeasible in many applications; we use our model for

Journal of Business & Economic Statistics, July 1996

simplicity but would like to develop lessons that may be
applicable in much broader contexts.

The article is organized as follows. Section 1 describes
the model, solves for a reduced form that will be used to
generate data, and describes our DGP’s. Section 2 describes
our three estimators. Section 3 displays simulation results.
Section 4 presents an empirical example. Section 5 con-
cludes. An appendix contains a brief overview of the eco-
nomic model underlying our econometric work. An addi-
tional appendix, available on request, contains some mate-
rial omitted from the published article to save space.

1. THE MODEL AND DATA-GENERATING
PROCESSES

1.1 Model

As described in the Appendix, we consider estimation of
a first-order condition from an inventory model studied by
(among others) West (1986a), Eichenbaum (1989), Ramey

(1991), Krane and Braun (1991), and Kashyap and Wilcox
(1993). This first-order condition may be written

E{H; — 51 X142 — BoXoty1 — B3St41 —ug} = 0,

Xieyz = —b*Hypo + (267 + 20)Hyp1 + (26 + 2)Hy s
— Hy_g — bS5+ (b® + 2b)Si41
—(2b+1)S, + Si_1;

Xots1 = bHepy + Hy_q +bSit1 — Si. (1.1)

In (1.1), S, is real sales, H, real end-of-period inventories, b
a discount factor (0 < b < 1), E; mathematical expectations
conditional on information known at time ¢, and u, an iid
normal cost shock that is observable to a representative firm
but unobservable to the econometrician; 3y, J2, and 33 are
parameters whose estimation is the subject of our study. In
line with some of the empirical work just cited, we include
deterministic terms in both our DGP’s and our economet-
ric estimation but suppress these terms for the moment for
notational economy.

Equation (1.1) is a first-order condition for optimality in
inventory behavior. (See the Appendix and West in press.)
To close the model, we must specify a process for sales.
For simplicity, we specify that sales follow an exogenous
second-order autoregressive [AR(2)] process,

St = @151 + $2S5:—2 + €54, (1.2a)

where ¢ and ¢, are such that S; is 7(0) around trend and
€ss is the iid normal innovation in the S; process. Appli-
cation of standard techniques for solving linear rational-
expectations models then yields the reduced-form equation
for inventories,

Hy =M+ A)Hpo1 — MAoHi o
+ m1St—1 + m2Si—2 + €pe, (1.2b)

where \; and )\, are roots of a certain fourth-order polyno-
mial whose coefficients are functions of b, 31, 82, and (33 and
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Table 1. Data-Generating Processes: Parameters of Cost Function
Mnemonic B1 B2 B3
A .160 .016 .002
B 126 —.252 .376
o} .099 .199 .01001
D 197 —.099 .010

NOTE: 3,.3,. and 33 are the regression parameters in (2.1).

m; and 7y are certain nonlinear functions of b, Ay, As, @1,
and ¢2. See the Appendix.

1.2 Generating the Synthetic Data

To generate data, we need to specify (a) the cost param-
eters, which are imbedded in the §’s in (1.1); (b) the pa-
rameters of the forcing processes—that is, the autoregres-
sive coefficients of the sales process (¢; and ¢,) and the
variance—covariance matrix of (us,es:)’; (c) the coefficients
on deterministic terms.

In all DGP’s, the discount factor b was set to .995 (ap-
propriate if the data are assumed to be monthly). We exper-
iment with four sets of values of the 3’s in (1.1); these are
given in Table 1. All are based on studies using U.S. data
of one sort or another. That the 3’s typically have several
nonzero digits (rather than just being, say, integers) should
not be construed as indicating that it is a matter of sub-
stance that the 3’s be exactly as indicated. Rather, the 3’s
are nonlinear functions of some underlying economically
interpretable parameters, which we set to be round num-
bers. A paragraph in the Appendix, which likely will be
of interest only to someone interested in reproducing the
results of our study, gives these underlying parameters.

In Table 1, parameter set A is roughly consistent with the
estimates for the postwar aggregate data of West (1990)
and those for automobile data of Blanchard and Melino
(1986), parameter sets B and C with those for postwar two-
digit manufacturing of Ramey (1991) and West (1986a),
respectively, and parameter set D with those for auto data
from the 1920s and 1930s of Kashyap and Wilcox (1993).

Table 2 reports parameters for exogenous processes. The
autoregressive coefficients of .7 and .2 were chosen to
match roughly the estimates of an AR(2) around trend
fit to real sales of nondurable-goods manufacturing indus-
tries, monthly, 1967-1990. The sales innovation variance
of .120833 was chosen so that the implied unconditional
variance of sales is 1 (a harmless normalization). The vari-
ance of the cost shock u; and its correlation with the sales
shock g, were chosen so that, in conjunction with the cost
parameters of parameter set A (Table 1), the implied ra-
tio var(H;)/var(S;) and the implied correlation of H; and
S; approximately matched that of monthly nondurables-
manufacturing industries, 1967-1990, with H, total inven-
tories.

All regressions and instrument lists included a constant
and a trend. Thus, the reduced form used to generate the
data was not literally (1.2) but

Si = ¢15:_1 + ¢25:_ + constant + trend + g;  (1.3a)

and
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Table 2. Data-Generating Processes: Parameters of
Exogenous Processes

var(esg) var(u) ples, u)

-5

o1 2
.75 .20

.120833 3.5

NOTE: ¢, and ¢, are the autoregressive parameters of the sales process defined in (1.2); s
is the sales shock defined in (1.2); u is the cost shock defined in (1.1).

Hy = (M +X)Him1 — MAaH

+ m18¢-.1 + m2S;_2 + constant

+ trend + €. (1.3b)

Coefficients on trend terms in (1.3a) and (1.3b) were cho-
sen so that the implied coefficients of variation of AS; and
AH, were each .2, a figure that approximately matches esti-
mates for monthly nondurables, 1967-1990. Because differ-
ent choices of cost parameters imply different autoregres-
sive coefficients in (1.3b), the coefficient on the trend term in
(1.3b) varies from DGP to DGP. Note that, although the rel-
evant empirical work typically models trends as determin-
istic, this decision may not be innocuous. We do not know
the extent to which our results are applicable to systems es-
timated in error correction (e.g., Kashyap and Wilcox 1993)
or differenced form (e.g., West 1990); either of these trans-
formations would likely produce regressors distinctly less
autocorrelated than in our simulations, which in turn might
have a notable effect on small-sample behavior.

A complete DGP is specified by combining a given set
of cost parameters (A, B, C, or D) with the sales and cost
shock processes. Given one of our four DGP’s, we generate
data as follows. As noted previously, the vector of shocks
(ug,e5¢) is assumed to be iid normal. This implies that H;
and S; are normally distributed. We begin by drawing a
vector of initial values from the unconditional distribution
of the 4 x 1 vector (Ho, H_1,S0,5-1)". We then use (1.3)
to generate 10,004 observations recursively.

Most of our experiments used a sample size of either 100
or 300, in which case we use observations 1 and 2 for lags
and observations 103/104 or 303/304 for leads and discard
the final 10,000 — 104 or 10,004 — 304 observations. These
9,700 additional observations were reserved for some addi-
tional experiments. One thousand samples were generated
for each DGP. A sample size of 300 was chosen because
there are currently about 300 monthly observations avail-
able on manufacturing inventories at the two-digit level in
the United States. The sample size of 100 was chosen for
comparison.

Table 3 displays the implied values of the parameters of
the inventory equation (1.2b) for each of our DGP’s. The

Table 3. Data-Generating Processes: Implied Coefficients
of Inventory Equation

DGP Ar+ Az -1z Ty T2
A 1.22 —.42 14 —.12
B .24 —.14 .38 .05
C 1.07 —.22 10 -.09
D 1.43 —.69 .33 —.15

NOTE: Xq+Xp, —AqAg, 7y, and mp are the coefficients of the reduced-form inventory equation
(1.3b).
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values of A; + Ao and —A; \q, the coefficients on inventor-
ies lagged once and twice, imply considerable serial correla-
tion in inventories conditional on sales (i.e., slow adjustment
of inventories to sales shocks) for DGP’s A and D, mild se-
rial correlation for DGP C, and little serial correlation for
DGP B.

2. ESTIMATING THE PARAMETERS

For algebraic simplicity, we ignore constant and trend
terms throughout this section. In the simulations, all equa-
tions and instrument lists included a constant and a trend.

2.1 Conventional Instrumental Variables

We make the first-order condition (1.1) estimable by re-
placing expected with realized values and moving all vari-
ables but H, to the right side:

Hy = 81 X142 + BaXoer1 + 03St41 + Veq2
= X8+ visa.
vire = Ut — Si(Xuere — ErXury2)
— Bo(Xat+1 — ExXors1) — B3(Ser — EtSiqa);
Xi = (Xis2, X241, Se41)'s 8= (61,62, 63)" (2.1)

As is typical in empirical work, we impose a value of b,
which allows us to construct X;; and Xo;; the value chosen
is that used in generating the data, b = .995. Our conven-
tional IV estimator calculates 3 linearly as follows. Let Z;
be a g x 1 vector of instruments. Apart from deterministic
terms, ¢ = 4 or ¢ = 12 in the Monte Carlo experiments,
and Z; consists of (g/2) lags of H; and of S;. We let IVq
denote the estimator (2.3) defined later when there are ¢
instruments:

Iv4: 2, = (HtAhSt-th—QaSt—Z)l

IV12: Z, = (H;—1,5¢-1,Hi—2,5:—2,H¢_3,5:_3,

Ht—4ﬁSt—4aHt-—5vSt—5’Ht—G;St—G)/- (22)

[Note that the presence of the cost shock u, invalidates the
use of H; and S, as instruments; see (1.2).] See Section 2.2
on the rationale for use of lags beyond those in the reduced
form.

Let T be the sample size (7' = 100 or 7' = 300 in most
of the Monte Carlo experiments). Let Z be a T x ¢ matrix
whose tth row is Zj, and, similarly let X = [X[] be the T'x3
matrix of right-side variables and Y = [H;] the T x 1 vector
of the left-side variable. Given Z;, the IV estimator that
has the smallest possible asymptotic variance—covariance
matrix 1s

B=(X'"ZWZ'X) X' ZW Z'Y, (2.3)
where W is a ¢ x ¢ matrix that is an estimate of
the inverse of the spectral density at frequency O
of the ¢ x 1 vector Z;v,o—that is, the inverse of
Z;C:_OC EZtZ{wijgng_j‘ Because the cost shock u; is
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iid, Z,v;;2 is MA(2) and this infinite sum collapses to

2

14
= E EZiZ,_ ;viy2viq2-j
=2

2
= Z EZtZ£_jEUt+27Jt+2__j

j==2
= To+ (T +T)+ (T2 +T1%)
= 7Co + 1 (C1 + C}) + 12(C2 + C3),

Y= E’Ut’Ut*j; Cj = EZtZ{&—j- (24)

The scalar ;s are the same for any choice of Z;; the matrix
C;’s and I';’s change with different Z,’s. The asymptotic

variance—covariance matrix of 7'V/2(3 — f) is then
V = (EX ZIWWEZ:X})™", (2.5)

We construct W as follows. Let ¥;,o be the two-stage
least squares residual, and let

T
r,=7" Z VAV IO (2.6)
t=j+1
for j > 0. Let m = min(10, [T*/%]), where
4 = 1.1447(3W 73023, 5 = 95, + 46,
§0) = 60 +261 +262; 65 =wTjw, w=(1,1,1,1).
We set
-1
W= T+ Y [1-5/(m+ DT, + 1) 2.7
j=1

The weights 1 — 7/(m + 1) guarantee that W is positive
semidefinite. Newey and West (1994) provided analytical
and simulation evidence on this technique for estimating
W (although that article did not consider truncating m at
10 or at any bound less than the sample size; we do that
here to speed computation).

2.2 The Optimal Instrumental Variables Estimator

In the textbook simultaneous-equations model, in which
regression disturbances are iid, use of instruments other
than those in the reduced form would yield no asymp-
totic gain and possibly a finite-sample penalty. That this is
not true when disturbances are serially correlated is implic-
itly recognized in textbook discussions of generalized least
squares (GLS) [here, we interpret ordinary least squares
(OLS) and GLS as IV estimators in which the instruments
are the right-side variables or transformations of those vari-
ables]. Hayashi and Sims (1983) pointed out that, although
the usual GLS estimator is inconsistent in models with MA
errors and predetermined but not exogenous instruments, a
transformation similar to that of GLS can yield an estimator
more efficient than that of Hansen (1982). More generally,
Hansen (1985) established conditions for optimality of an
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Table 4. Parameters of the MA(2) Disturbance
DGP 94 2] Modulus of larger root
A 1.27 —.45 .67
B .50 -.19 43
C .93 —.18 .67
D 1.44 -.71 .85

NOTE: ¢, and ¢, are the parameters of the MA(2) disturbance v, »; see (2.1) and (2.9). The
modulus presented is that of the larger of the two roots to 22 ~ 6,z — 6, = 0.

IV estimator in models in which instruments are predeter-
mined but not exogenous, and the orthogonality condition
is potentially infinite-dimensional. Such is the case in many
time series models, including ours, that any and all lags of
predetermined variables (in our case H; and S;) are legiti-
mate instruments.

In our application, a smaller asymptotic variance—
covariance matrix is obtained when a larger number of
lags of H; and S; are used as instruments in estimation
of (2.3). Thus, the asymptotic variance—covariance matrix
of, say, IV6 is smaller than that of IV4, and that of IV12 is
smaller still. For models in which the disturbance follows
a conditionally homoscedastic MA process, such as ours,
Hansen (1985) provided a closed-form expression for the
linear combination of instruments that emerges asymptoti-
cally as the number of instruments used approaches infinity.
Because this estimator is optimal in the class of estimators
that use linear combinations of lags of H; and S; as instru-
ments, we call it IV* rather than IVoo.

Let R} be the (4 x 1) vector of reduced-form variables,
Ry = (Hi_1,Si—1,H;-2,5:_2) (= the vector of instru-
ments used in IV4). Write the second-order vector autore-
gression (VAR) (1.2) as a first-order VAR in R},

R = F*"R; | + ¢4, (2.8)

& = ((‘:Ht_l,€st_1,0,0)/,

where, for example, F*(1,1) = Ay + A2 and F*(2,2) = ¢1.
Write the MA representation of Equation (2.1)’s distur-
bance v;.0 as

Vir2 = Nty — O170e 1 — a1y,

(2.9)

Let P* be the 3 x 4 matrix of coefficients of the projection
of X, on R}, E(X;|R;) = EX;RY(ER;R})"'R; = P*R}.
In our particular case, application of the general formula
supplied by Hansen (1985) indicates that an optimal set of
instruments Z; satisfies

M = vy — E(ve|vp—1,v1-2,...).

ZE=0,Z; |+ 627 o+ P*(Iy — 0, F* — 6,F*?)"'R}.

(2.10)

Any instrument vector obtained by a nonsingular linear
transformation of Z; is, of course, optimal as well. The
population variance—covariance matrix resulting from use
of an optimal instrument vector is

(BZ; X)W~ Y EX.2;")7,
(W*)™! = 7Go + (G1 + GY) + 72(G2 + GY),

v; = Evgvgj; G, =EZ;z ;. (2.11)
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Asymptotic standard errors may be computed from (2.10)
and (2.11) in straightforward but tedious fashion.

Observe from (2.10) that, if ; and 6, were O, as
would be the case if v;,2 were iid, the optimal instrument
list would be the usual two-stage least squares one, Z;
= EX.RY(ER;R;)~'R;, and there would be no point in
using as instruments any variables other than those in the
reduced form (1.2). It follows that, if 8; and 6, are close to
0, efficiency gains from using instruments other than those
in the reduced form will be small, but if 8, and 6, are large,
in the sense that one or both of the roots of 22 — 6,2z — 0,
are near unity in modulus, such efficiency gains potentially
will be large. For each of our four DGP’s, Table 4 presents
6, and 6, along with the modulus of the larger root of
22 — 61z — 6,. It may be seen that this root is smallest for
DGP B, suggesting that the efficiency gains from use of IV*
will be relatively small with that DGP.

Table 5 presents the ratio of the standard errors of (1)
1Vq for various ¢’s to (2) IV* for each of our four DGP’s.
Diminishing returns to use of instruments beyond those in
the reduced form set in fairly rapidly; indeed, when 12 in-
struments (6 lags each of H; and S;) are used, the asymp-
totic standard errors in all cases are within 8% of those of
IV*. On the other hand, for DGP’s A, C, and D, there are
substantial gains to using instruments beyond the 4 in the
reduced form. Table 5 persuaded us to include IV12 in our
simulation analysis: In DGP’s A, C, and D it is much more
efficient than IV4; it is roughly as efficient as IV* asymptot-
ically but may (and in fact does) perform worse in samples
of typical size than IV*, presumably because of the many
parameters estimated in the first-stage regression.

[Note that the class of estimators in which IV* is opti-
mal does not include full information maximum likelihood
(FIML), which gains additional efficiency by exploiting the
cross-equation restrictions of the (Hy, S;)’ process. For 3,

Table 5. Asymptotic Standard Errors, IVq Relative to w*

Parameter
DGP Estimator B1 B2 B3
A \"Z) 2.21 2.26 1.40
A V6 1.46 1.47 1.13
A V8 1.19 1.20 1.05
A V12 1.08 1.03 1.01
B V4 1.12 1.10 1.02
B V6 1.00 1.00 1.00
B v8 1.00 1.00 1.00
B V12 1.00 1.00 1.00
C V4 1.49 1.51 1.31
C V6 1.16 117 1.10
C \:] 1.06 1.07 1.04
C V12 1.01 1.01 1.01
D V4 3.02 299 1.31
D Ve 1.67 1.63 1.07
D V8 1.23 1.22 1.03
D V12 1.08 1.08 1.03

NOTE: IVq is the conventional IV estimator described in (2.2) and (2.3), where Z; consists of
q instruments (q = 4, 6, 8, or 12); IV* is the optimal estimator described in (2:12) and (2.13).
The table presents the ratio of the square roots of the diagonal elements of (a) the variance—
covariance matrix of Vg [computed according to (2.5)}, to (b) the variance—covariance matrix of
IV* [computed according to (2.11)).
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Table 6. Distributions of Standardized Parameter Estimates, From Simulations, T = 100

B1-B1 B2-B2 Bs—B3
DGP estimator 50% ClI Median Trimmed MSE 50% Cl Median Trimmed MSE 50% Cl Median Trimmed MSE
A
V4 (~.6, .8) .07 1.14 (—.8, .6) —-.10 1.20 (—3.1, 1.6) —.68 2.51
V12 (—.3,.9) .29 .92 (—.9, .3) -.30 .98 (—4.3, .8) —1.26 2.52
v* (—.4, .4) .04 61 (—.5, .4) ~.06 .63 (—2.7, 1.6) -.39 2.27
asy™* (-.3, .3) .00 .21 (-.3,.3) .00 .20 (—.5, .5) .00 .51
B
V4 (—.5,1.0) 27 1.13 (=11, 4) -.38 1.24 (—.5,1.2) .23 1.47
V12 (—.2, 1.0) 47 .94 (—1.4, —.0) —.63 1.34 (—.2,1.7) .67 1.79
Iv* (—.5,.7) 14 .93 (—.9, 4) —.22 1.09 (—.5, 1.1) .24 1.33
asy* (—.6, .6) .00 79 (—.6, .6) 00 .82 (-.7,.7) .00 .97
C
V4 (—.7,.8) A1 1.14 (—.8, .6) —.13 1.17 (—1.1,2.8) .66 2.41
V12 (.0, 1.0) 54 .98 (—1.1, —-.1) -.59 1.06 (—2.3, 1.0) -.59 2.18
Iv* (—.8, .5) —.06 91 (—.5, .8) .03 91 (—.4, 3.9) 1.19 2.06
asy™ (—.5, .5) .00 45 (—.4, .4) 00 .44 (—.5, .5) .00 .59
D
V4 (—.6, .9) A1 1.23 (—.9, .6) —.11 1.28 (—3.1, .5) —-1.02 2.30
V12 (—.4,.8) 15 1.05 (—.8,.5) —-.15 1.06 (—3.6, .3) —-1.39 2.38
Iv* (—.3, .4) .05 53 (—.5,.3) —.07 .55 (—2.6, .5) —.84 2.11
asy™ (—.2,.2) .00 11 (—.2,.2) .00 A1 (—.5, .5) .00 .58
asy4 (-.7,.7) .00 1.00 (—-.7,.7) .00 1.00 (—.7,.7) .00 1.00

NOTE: The estimating equations are V4 (2.3), IV12 (2.3), IV* (2.13). The difference between estimated and population parameter is standardized by dividing by asymptotic standard error for IV4.
The “50% CI" is a 50% confidence interval constructed using the 250th and 750th largest of the 1,000 estimates; “Median” is the 500th largest such entry; “Trimmed MSE" is @a mean squared error

computed after dropping observations greater than 3.0 in absolute value and is expressed relative to the MSE for a standard normal similarly trimmed. “asy*

" presents the asymptotic values for

IV* and (approximately) IV12, which vary from DGP to DGP because the ratio of standard errors of IV* to IV4 varies from DGP to DGP (see Table 5 and the text). “asy4” presents the asymptotic

values for V4.

for example, the ratios of the asymptotic standard errors of
FIML to IV* are A: .90; B: .84; C: .69; D: .90. The ratios
for the other parameters are comparable. For our DGP’s,
then, the efficiency gains associated with FIML relative to
IV* are modest, a result consistent with West (1986b).]
We operationalize (2.10) for a given artificial sample
of size T as follows, leaving for future research
evaluation of other ways of making IV* feasible.
(a) We estimate four different autoregressive systems
in (H;, S;)) by OLS and use the Schwarz criterion
to choose one of them. The specifications differ in
terms of right-side variables in the two equations:
Hi 1.5 1. Hy 2:Hy 1, S¢-1,Hy—2,S1-2; Hy—1,5¢-1, Hy—2,
St—o. Hy_3,8;_3;Hy_1,Se—1,Hi—2,S¢—2, Hy_3, 53, Hi a4,
S;—4. Once we have chosen the order of the autoregression,
we write the system as a vector AR(1). Let F be the es-
timated autoregressive coefficients of that system, R; the
associated variables. (Note that F has the same dimension
as F*, and R, = R}, only when the Schwarz criterion
chooses the correct DGP.) (b) We then obtain P from an
OLS regression of X; on R; and 51 and ég by maximum
likelihood applied to residuals obtained from IV4. (c) Next,
we use (2.10) to construct an estimate of the unconditional
variance—covariance matrix of (Z;/,Z;”,)’ and then draw

(zz'.Z*'\) from its unconditional normal distribution. (d)

Then we use (2.10) to generate Z;* recursively forward from
t=1tot=T,
Zr=60,2; |+ 60,27 o+ P(I—6,F—60,F)"'R,. (2.12)

(e) Finally, we estimate 3 as

(2.13)

2.3 Test Statistics

For our first two estimators, we construct covariance ma-
trices and compute test statistics in a familiar way. For ex-
ample, for the conventional IV estimator, an estimate of V
[defined in (2.5)] is constructed as

T -1
(Z X Z! /T) 11% (Z ZJ({/T)] (2.14)

for W defined in (2.7). Let V(z j) be the (7,7) element of
V. The t statistic for Ho: ﬂl = (3, for example, is then
computed as

(B - B1)/IV(1,1)/T]V/2. (2.15)
J statistics, or tests of instrument-residual orthogonality,
were computed for our first two estimators as

T T
-1 (Z 'E]t+2Zt/> W (Z Zt’lA}t+2> ’é‘ X2(q - 3), (216)
t=1

t=1

where W was constructed as described previously. The test
of instrument-residual orthogonality is not applicable for
the optimal estimator because the dimension of the instru-
ment vector is identical to that of the right-side variables.
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Table 7. Distributions of Standardized Parameter Estimates, From Simulations, T = 300

B1~B1 B2-82 B3B3
DGP estimator 50% Cli Median Trimmed MSE 50% Cl Median Trimmed MSE 50% Cl Median Trimmed MSE
A
V4 (—.7, .8) 14 1.14 (—.8, .6) —.15 1.14 (—-1.2,.9) —-.17 1.76
V12 (—.2,.7) .29 57 (-.7,.2) —.29 57 (—1.3, .6) -.32 1.64
Iv* (=.3, .4) .08 .36 (-4, .3) -.09 .35 (—.9, .6) —.14 1.38
asy* (-.3,.3) .00 21 (=.3,.3) .00 .20 (—.5, .5) .00 51
B
V4 (—.6,.9) 21 1.10 (—.9, .5) -.30 1.16 (—.6,.9) .14 1.21
V12 (—.3, 1.0) .41 .98 (-1.1, .2 —.49 1.15 (—4,12) .37 1.38
Iv* (—.5,.7) 14 .84 (—.8, .4) -.22 92 (—.5,.9) .18 1.11
asy* (—.6, .6) .00 79 (—.6, .6) .00 .82 (—.7,.7) .00 .97
C
V4 (—.7, .8) 10 1.13 (—.8,.7) -.11 1.14 (—6, 1.5) .36 1.66
V12 (—.2,.9) 44 .78 (-.9,.1) —.45 .78 (—.8,.9) -.07 1.33
IvV* (-7, .4) —.06 .70 (—4,.7) .04 .70 (—-.1,1.7) .58 1.39
asy™ (—.5, .5) .00 .45 (—4, 4) .00 44 (—.5,.5) .00 .59
D
V4 (—.6, .8) 15 1.14 (—.8, .6) —.15 1.16 (—1.3, 4) —-.34 1.53
V12 (—.3, .6) .16 48 (—.6,.3) -.15 .49 (—1.3, 4) —.43 1.56
IvV* (—.2,.3) .06 .25 (—.3,.2) —.06 .26 (—1.1, 4) —.29 1.28
asy™ (—.2,.2) .00 11 (—.2,.2) .00 A1 (—.5, .5) .00 .58
asy4 (—=.7,.7) .00 1.00 (-.7,.7) .00 1.00 (-.7,.7) .00 1.00

NOTE: See note to Table 6.

For the optimal estimator, the variance—covariance matrix
used in computing test statistics was

-1

) T -1 T
= (Z A:X;/T) (W) (2 th}*'/T>
t=1 t=1
(2.17)

In (2.17), we initially computed W* in a fashion analogous
to (2.7). But the resulting test statistics sometimes were
very poorly sized. So for 3,6;, and 6, defined in (2.12)
and (2.13), we instead followed West (1994) and estimated
W= as

. RN
We = (T“l Zdtdg)

(it = ﬁt+2(2z* - élz:«t»l - é22:+2)
b2 = e — 01 — Oy,

{)t+2 = Ht — X;,G, 770 = 77_1 =0. (218)
W= is positive semidefinite by construction. It may be
shown that W™ so defined is consistent. In estimating W,
it might be of interest to apply a computation like (2.18)
[or, as a referee has pointed out, to impose conditional ho-
moscedasticity, or to iterate once more so that IVq resid-
uals are used in estimation of 3 (see Kocherlakota 1990)].
To keep the scope of the study manageable, however, we
did not, and we limited our analysis of the conventional IV
estimator to the version that seems to us to be most widely
used.

3. SIMULATION EVIDENCE ON DISTRIBUTION OF
PARAMETER ESTIMATES

Tables 6 and 7 present some Monte Carlo results on the
distribution of the parameter estimates, Table 6 for a sample
size T = 100, Table 7 for T = 300. They are organized by
DGP. For each DGP, the tables present results for three
estimators—IV4 (2.2), IV12 (2.3), and IV* [(2.12), (2.13)].
The “asy*” rows in each panel give asymptotic quantities
for IV*, and the “asy4” row at the bottom of the table does
the same for IV4; in light of Table 5, the “asy*” row applies
approximately to IV12 as well.

Each estimated parameter was standardized by subtract-
ing the population parameter value and then dividing by the
IV4 population asymptotic standard error. The population
rather than the estimated standard error was used because
our interest at the moment is in the distribution of param-
eter estimates rather than the distribution of test statistics.
According to the asymptotic theory, the resulting quantity
should be approximately N(0,1) for IV4, N(0,(c*/a4)?)
for IV* and N(0, (012/04)?) for IV12, where ¢* /04 and
012/ 04 are computed from the relevant rows of Table 5. For
example, in DGP A, the asymptotic theory implies that stan-
dardizing the IV* estimate of /; in this fashion produces an
N(0,.452) variable, where .45 = 1/(2.21); the comparable
variance for IV12 is .47% = (1.03/2.21)2.

For each of the three parameters, the columns labeled
“50% CI” gives a 50% confidence interval constructed by
dropping the largest 250 and smallest 250 of the 1,000 stan-
dardized parameter estimates, or, for “asymptotic,” the val-
ues appropriate for an N(0, 1) variable. The difference be-
tween the upper and lower bounds of these confidence inter-
vals is the interquartile range. “Median” gives the median
of the 1,000 estimates.
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Figure 1. Estimated and Theoretical Densities of Parameter Estimates, DGP A, T = 300. The figure presents densities for three different
estimators applied to data drawn from a single DGP with sample size equal to 300. The three panels in the first row describe the density of the
parameter estimates from the conventional estimator that uses two lags each of inventories and sales as instruments (four stochastic variables
total). Similarly, the three panels in the second row describe the density of the conventional estimator that uses six lags each of inventories and
sales as instruments, and the panels in the third row describe the density of the estimator that is optimal in the class of all estimators that use
linear combinations of lags of inventories and sales as instruments. Within each panel, the solid line describes the estimated small-sample density
of the parameter estimate, and the dashed line describes the theoretical normal density suggested by standard asymptotic theory.

“Trimmed MSE” gives a mean squared error computed
by (a) dropping all entries greater than 3.0 in absolute value,
(b) calculating the average squared value of the remaining
observations, and (c) dividing by .9735, which is the vari-
ance of an N (0, 1) variable doubly truncated at —3 and +3
(Johnson and Kotz 1970, p. 83). We trimmed before com-
puting the MSE because the simultaneous-equations liter-
ature indicates that second moments of our estimator may
not exist because our equation has only one more instrument
than right-side variable (e.g., Phillips 1983). The decision
to truncate at 3.0 was arbitrary; in related work, which only
considered a sample size of 300 (West and Wilcox 1994),
we found little sensitivity to the exact point of truncation.

In conjunction with Table S, we read Tables 6 and 7
as follows. First, as measured by either interquartile range
(width of the 50% CI’s) or trimmed MSE, the asymptotic
theory underpredicts the variability of all three estimators.
The discrepancies between asymptotics and simulation are
larger for T = 100 than T = 300 (no surprise) and larger
for 33 than for 3; or 3, (for reasons that are not clear to us).
Of the three estimators, the asymptotic approximation pre-
dicts variability most poorly for IV12. The trimmed MSE
for this estimator is generally more than twice the approx-

imate theoretical figure in the asy* row, as is the width of
the interquartile range. By the same measures, the theory
does moderately better for IV*, but better still for IV4.

On the other hand, the measures of dispersion that are
probably most relevant in practice are the raw figures them-
selves rather than those figures relative to asymptotic the-
ory. Our second point is that in this light IV12 is less vari-
able than IV4, slightly so with 7 = 100 (Table 6), more
notably so with 7' = 300. But IV* is notably less variable
than IV4 and IV12 for both sample sizes (although there
are occasional exceptions).

Our third point pertains to bias. For 7' = 100, centering
of parameters is a little erratic. Although there does not
appear to be a persistent tendency for median bias to be
of a particular sign, median bias is often substantial from
the point of view of asymptotic theory. In particular, if one
standardizes the IV12 estimate by its asymptotic standard
deviation rather than the IV4 standard deviation used in Ta-
bles 6 and 7, all 12 estimates have a median value of 3-8
that is more than .4 asymptotic standard deviations, and 10
are greater than .5. For all three estimators, asymmetry in
the 50% CT’s is also evident in Table 6. On the other hand,
Table 7 indicates that, although some problems remain, par-
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Table 8. Size of Nominal .05 T Tests, From Simulations

T= 100 T = 300
DGP Estimator B4 B2 B3 B1 B2 B3
A v4 .061 .056 .004 .063 .060 .001
V12 142 134 .020 .080 .067 .004
V> .080 .077 .068 .076 .073 .087
B V4 .073 072 .065 .065 .053 .061
V12 193 .260 231 103 104 106
v* 115 .073 .059 056 .052 .066
C V4 .073 .071 .010 075 .076 .011
V12 .264 264 .031 .158 154 014
v* 115 119 .053 .080 .082 .050
D V4 .020 .018 .002 037 .028 .002
vVt2 047 .044 .026 017 .015 .006
v* .083 .086 .091 118 117 114

NOTE: In each of 1,000 simulations, we computed t statistics testing whether each of the three 8/s equals its Table 1 population value.
This table presents the fraction of simulations in which the square of the t statistic exceeded 3.84, which is the .05 critical value for a

x2(1) random variable.

ticularly with IV12, by and large the estimators are centered
correctly for T = 300.

Once again, however, the measure of bias that is more
relevant in practice is that reported in the tables, in which
all parameter estimates are normalized by the same asymp-
totic standard error. Our fourth point, then, is that the IV12
estimator shows the most median bias, IV* the least.

Some of these points are clearly illustrated in Figure 1.
For T = 300, DGP A, this plots estimates of the density
of the simulation estimates of the parameters (solid lines)
along with the theoretical normal density suggested by the
asymptotic theory (dashed lines). We constructed the sim-
ulation densities using a normal kernel and a bandwidth of
27 ~ 1.06(1,000)"1/5 = 1.06(sample size)~/® (e.g., see
Silverman 1986). Note that, although the horizontal scales
are the same on all nine plots, the vertical scale for [V4
(row 1) is different from that for IV12 (row 2) and IV*
(row 3).

The figure illustrates that the asymptotic approximation
works best for IV4, worst for IV12. The IV12/IV* dis-
crepancies between simulation results and asymptotic the-
ory are, however, sufficiently small that either is less dis-
persed than is IV4. The IV4 and IV* simulation densities

Table 9. Size of Nominal .05 J Tests, From Simulations

T= 100 T= 300
DGP Estimator J size J size
A V4 .041 .056
V12 .001 .001
B V4 .052 .061
V12 .004 .023
Cc V4 .039 .051
V12 .003 .001
D V4 .042 .055
V12 .001 .000

NOTE: In each of 1,000 simulations, tests of instrument-residual orthogonality were computed
as in (2.16). This table presents the fraction of simulations in which the resulting statistic was
greater than 3.84 (IV4) or 16.92 (IV12), which are the .05 critical values for xz(l) and x2(9)
random variables.

are noticeably better centered than are those of [V12. An
appendix, available on request, has comparable figures for
the other DGP’s and for T = 100. These tell a qualitatively
similar story. So too do estimates that set the bandwidth at
(.75) x (bandwidth in Fig. 1) and (1.25) x (bandwidth in
Fig. 1).

Overall, then, IV12 probably shows the sharpest depar-
tures from asymptotic theory, perhaps because of overfit-
ting in the first-stage regression; IV4 shows the least. By
our measures of variability, IV4 is worst, IV* best; by our
measures of bias, IV12 is worst, IV* best. Regardless of
how one trades off variability versus bias, then, IV* seems
the best-performing estimator. With the exception of 3 for
DGP’s B and C for T' = 100 and T = 300, IV* is better than
either of the other two estimators as measured by median
bias, trimmed MSE, or width of 50% CIL.

Tables 8 and 9 present information on the size of test
statistics. Table 8 presents the size of nominal .05 tests of
the hypothesis Hy: 8; = population value, 7 = 1,2,3, com-
puted as the square of the usual ¢ statistic. Asymptotically
each test statistic is x?(1), and the table reports the fraction
of the 1,000 simulations for which the computed statistic
was greater than 3.84 [the .05 critical value for a x?(1) ran-
dom variable]. The asymptotic standard error on a given
fraction is [(.05)(.95)/1,000]*/2 ~ .007.

For IV4 and IV*, tests for 8; and 3, typically were well
behaved for both T = 100 and T = 300 [at least by the
standards of recent work such as that of Newey and West
(1994)1]; actual sizes ranged from about .02 to about .12. For
IV12, test statistics of 5, and (2 were more poorly sized,
especially for T = 100 (e.g., in DGP C, both sizes were
about .26). This latter result is perhaps unsurprising, in that
Tables 6 and 7 and Figure 1 indicated that the asymptotic
approximation works more poorly for parameter estimates
of IV12 than for IV4 or IV*.

Those tables and that figure also indicated that all three
estimators had greater difficulty estimating 33 than 3, or
(2. Tables 8 and 9 do indeed show that tests on (B3 were
generally more problematic than those on 3, and jz, but in
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Figure 2. Actual and Nominal Sizes of t Tests, DGP A, T = 300. The figure compares the actual (plotted on the y axis) and nominal (plotted on
the x axis) sizes of t tests, for the same three estimators and the same data-generating process as were used in Figure 1. If the tests were correctly
sized, all curves would lie on the 45-degree line. In cases in which the curve is above the 45-degree line, the t test rejects the null hypothesis too
frequently, and conversely for cases in which the curve is below the 45-degree line.

a fashion that surprised us: IV4 and IV12 tend to reject not
too much but too infrequently. Presumably this indicates
that, even though the parameter estimates are too spread
out (Tables 6 and 7), the relevant entries of the variance—
covariance matrices are even more spread out, the result
being egregious underrejection rather than egregious over-
rejection. IV* suffers from no such problem. We conjecture
that this is due more to the way the covariance matrix was
estimated (see Sec. 2.4) than to something inherent in the
way the parameters were estimated: We repeated the cal-
culation of Table 8 for 7' = 300 for IV*, calculating Equa-
tion (2.17)’s W* in a fashion analogous to that described
in Equations (2.6) and (2.7). The size of nominal .05 tests
of Table 8 on 3, 52, and 83 were DGP A: .001, .000, .001;
DGP B: .040, .037, .044; DGP C: .023, .022, .003; DGP
D: .000, .000, .001. The evidence of West (1994) suggests
that use of the estimator (2.18) might result in a similar
improvement of the sizes of the test statistics for IV4 and
IvVi2.

Once again, some of these points are clearly reflected in
a figure, this time the Figure 2 plot of actual versus nomi-
nal sizes for DGP A, T' = 300. All three estimators reject
slightly too much for 3; and 85 (the first two columns of
the figure), as does IV* for 33 (last column, last row). IV4
and IV12 reject much too infrequently for 83 (last column,
first two rows). The figure shows that this applies not only
to nominal .05 tests (the focus of Tables 8 and 9) but to
tests of nominal sizes ranging from .01 to .25. (A referee
has noted that such statements should be interpreted with
caution because we do not provide a p value for statements
concerning the joint behavior of tests over a range of nomi-
nal sizes.) Analogous plots for other DGP’s and for 7' = 100
are available in the additional appendix and are also con-
sistent with Table 8.

IV4 is sufficiently simple computationally that we re-
peated our simulation exercise for DGP A with samples of
size 10,000 {relaxing the constraint on the maximum value
of the bandwidth m [defined following (2.6)] in a fashion
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Table 10. Estimates of Aggregate Nondurables in Manufacturing, 1967-1992

(7)
(1) (2 (3) ) (5) (6) Modulus of
Estimator By B2 B3 6, I larger root
V4 114 160 .004 .84 —-.35 42
(.044) (.134) (.008)
V12 155 .036 —.044
(016) (.048) (.004)
IV* 145 .068 .001
(.024) (.071) (.006)

NOTE:

The table presents estimates of V4, V12, and IV*,

computed according to (2.3) and (2.13). The vector ﬁ?, [de-

fined above (2.12)] was the set of lags that maximized the Schwarz criterion, where the following four sets were considered:
Hi1.S—1.Hi—2: Hi_1.S_1. Hi_2, Spp: Hr_1, Sy, Hi_2, St—2. Hi_3, Stz Hi—1,S1—2, H_2, Si—2, Hi_3, St—3, Hi_a,
S;_4- Ali four also included intercept and trend. Columns (5)—(7) are as described in Table 4 and are estimated from the two-stage least

squares residuals.

that ensured consistency }. Even here there was evidence of
missizing for one hypothesis test: The nominal .05 ¢ tests
on 33 had an actual size of .007. (The comparable figures
for 3; and B, were .048 and .048.) It seems that for test
statistics the asymptotic approximation may work poorly
even for samples that are very large relative to those of
most economic time series.

Table 9 indicates that .J tests are approximately correctly
sized for IV4, poorly sized for IV12.

4. EMPIRICAL EXAMPLE

Here, we apply the IV4, IV12, and IV* estimators to ag-
gregate inventories and sales of nondurables-manufacturing
industries, monthly, seasonally adjusted. After accounting
for lags and leads, the sample was 1967:3-1992:10. In ap-
plying IV*, we used the procedure described in Section 1,
including use of the Schwarz criterion, which happened to
choose Ry = (H¢_1,S;—1,H;—2,S;—3)". Our aim is not to
provide a reinterpretation or even a refinement of the exist-
ing inventory literature but merely to underscore the ease
with which the IV* estimator can be applied.

The first row of Table 10 has the IV4 estimates. The es-
timates of the MA parameter yield an implied larger root
of .42, about the same size as that for DGP B (see Table
4). Accordingly, dramatic efficiency gains in going to either
IV12 or IV* are not to be expected. Lines 2 and 3 bear out
this expectation. Although the ¢ statistic on 3; becomes no-
ticeably larger, that on /3, falls and that on 35 falls for IV*,
rises for IV12. On transforming the estimates of the 3;’s
to the underlying economic parameters, we find that two of
the four underlying parameters are positive for IV4, three
of four for IV12 and IV*. Some (but not all) investigators
have argued that all four underlying parameters should be
positive. See the Appendix for details and discussion.

5. CONCLUSIONS

This article has compared several estimators of a dy-
namic linear model. For all of our estimators, the asymp-
totic theory characterizes the distribution of parameter esti-
mates tolerably well. But test statistics occasionally are. very
poorly sized. The recommended estimator would seem to
be the one that is most efficient. This is the estimator sug-

gested by Hansen (1985), which for three of our four DGP’s
yielded substantial asymptotic and finite-sample benefits
relative to conventional IV estimators.

Because earlier, related work has found sensitivity of re-
sults to choice of DGP’s, one priority for future work in-
cludes experimentation with additional DGP’s. Other pri-
orities include development of alternative methods of com-
puting test statistics and of refined asymptotics to better
characterize finite-sample distributions.
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APPENDIX: SPECIFICATION AND SOLUTION
OF THE MODEL

The model and DGP’s were also used by West and Wilcox
(1994), so some of the prose in this Appendix and in Sec-
tion 1 and some of the entries in the tables are also found
in that article.

The model underlying (1.1) follows Holt, Modigliani,
Muth, and Simon (1960). A representative firm maximizes
the expected present discounted value of future cash flows,
with a cost function that includes linear and quadratic costs
of production and of changing production and holding in-
ventories. As in (1.1), let S; be real sales, Q; real produc-
tion, H, real end-of-period inventories, b a discount factor,
0 < b < 1, E; mathematical expectations conditional on
information known at time ¢, assumed equivalent to linear
projections; also let C; be real costs, p; real price, and u; a
cost shock that is observable to the firm but unobservable
to the econometrician. The objective function is

T

max Tlgnoo Ey Z;) b/ (pe+5Sets — Cesg)s
]:
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where

Qt+j = St4j + Heyj — Heyj1

and
Cevj = 5aoAQ7,; + 5a1Q7,,
+ .5ag(Hytj—1 — (L33t+j)2 + Hipjusy
+ linear terms + (linear x trend) terms.

The a;’s are the parameters of interests. Omission of shocks
that shift the marginal cost of production or of changing
production (i.e., terms of the form shock x Q.4 ; or shock
x AQ:+;) is for notational economy and without economic
substance. An optimizing firm will not be able to cut costs
by increasing production by one unit this period, storing the
unit in inventory, and producing one less unit next period,
holding revenue unchanged throughout. Formally, differen-
tiating (1.1) with respect to H; gives

Ei{ao(AQ: — 2b6AQ111 + b*AQ:42)
+ a1(Q: — bQ¢+1) + baz(He — a3Si11)
+ deterministic terms + u;} = 0,

where the deterministic terms result from the linear and
(linear x trend) terms in the cost function. .

Let ¢ = ag(1 + 4b + b%) + a1(1 + b) + baz. Then (1.1)
follows from the preceding equation with 3; = ag/c, 82 =
a1/c, and B3 = bagas/c. The values of the a;’s in each DGP
are as follows (see the text for a reference to an empirical
paper that suggests such values): A: ap = 1.,a47 = .1,a3 =
Jd,a3=.1;Biap=1.,a; = —2.0,a2 =6.,a3 =1.0;C:ag =
l.,a; = .1,a2 = 2.,a3 = .1; D: ag = 1.,a; = —.5,a2 =
.1, az = 9.

The reduced-form parameters in (1.2b) relate to the un-
derlying cost parameters as follows: Let A; and \; be the
two smallest (in modulus) roots of

A — b7 2a5 [bay + 2a0b(1 + b)] A3
+ b 2ay [ag(1 + 4b + b?) + a; (1 + b) + baz]A?
— b %ag ay + 2a0(L + DA+ 72 =0.

Define the scalars pq, p2, w1, we, w3, and wy, the (1 x 2)
vector €', and the (2 x 2) matrices ® and D as

p1 = A1+ A2, p2 = —A1)2, wy = b?pg,
wy = —pa[b® + 2b + b(ay /ag) + (bazas/ao)],

ws = p2[2b+ 14+ ((11/0.0)], W4 = —pP2,

. _(H ¢
e =(1 0), <I>—<11 02>,

D =[I—-bp® — bp®?| L.
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Then

(71’1,7'('2)/ = e’D(w1<1>3 + ’IU2<I)2 + ws® + UMI)

ent = (p2/ao)us + (m2/d2)ese

With regard to the empirical results discussed in Section
4, for each estimator, at least one of ag,a;, or az must be
positive by construction. The parameter estimates that were
positive for both IV* and IV4 were the costs of production
a; and of changing production ao. The inventory holding
cost estimate ay was positive for IV* as well. The estimate
of the parameter a3 that determines the target inventory—
sales ratio was negative. Because the simulations found it
particularly difficult to get a reliable estimate of 33, it may
be noteworthy that the two parameter estimates that were
positive may be inferred from the estimates of 3, and [z,
without use of the estimate of (33, but the estimates that
were negative relied in part on the estimate of 3.

[Received April 1994. Revised March 1995.]
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