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This article assesses the small-sample properties of gen-
eralized method of moments (GMM) based Wald statistics.
The analysis is conducted assuming that the data-generating
process corresponds to (a) a simple vector white-noise pro-
cess and (b) the equilibrium business-cycle model consid-
ered by Burnside and Eichenbaum (1994). Our key findings
are that, in many of the cases that we examine, the small-
sample size of the Wald tests exceeds its asymptotic size.
In all cases, size increases uniformly with the dimensional-
ity of joint hypotheses. For tests involving even moderate
numbers of moment restrictions, the small-sample size of
the tests greatly exceeds its asymptotic size. Relying on
asymptotic distribution theory leads one to reject joint hy-
potheses far too often. We argue that the bulk (but not all)
of the problem is the difficulty in estimating the spectral-
density matrix of the GMM residuals, which is needed to
conduct inference in a GMM environment. In both of our
examples, imposing restrictions implied by the underlying
model being investigated or the null hypothesis being tested
on this spectral-density matrix leads to substantial improve-
ments in the small-sample properties of the Wald tests.

A common approach to evaluating quantitative equi-
librium business-cycle models is to compare model- and
nonmodel-based estimates of the second moments of ag-
gregate time series. No uniform method for making these
comparisons has emerged. Many authors in the real busi-
ness cycle (RBC) literature make these comparisons in a
way that abstracts from sampling uncertainty in estimates
of models’ structural parameters (e.g., Hansen 1985 or Kyd-
land and Prescott 1982). Other authors have estimated and
tested RBC models using full information maximum like-
lihood methods (e.g., Altug 1989; Christiano 1988; Leeper
and Sims 1994; McGratten, Rogerson, and Wright 1993).

An intermediate strategy is to simultaneously estimate
model parameters and second moments of the data using a
variant of Hansen’s (1982) GMM procedure. Christiano and
Eichenbaum (1992) showed how, in this framework, simple
Wald-type tests can be used to test models’ implications

for second moments of the data. Three advantages of this
approach are that (1) at the estimation stage of the analysis
one need not completely specify agents’ environments, (2)
it is easy to specify which aspects of the data one wishes
to concentrate on for diagnostic purposes, and (3) it is sub-
stantially less demanding from a computational point of
view than maximum likelihood approaches. The properties
of this procedure in small samples are not well understood.
This is disturbing in light of recent results in the literature
casting doubt on the extent to which asymptotic distribution
theory provides a good approximation to various aspects
of the small-sample behavior of GMM-based estimators.
See, for example, Burnside (1992), Christiano and den Haan
(1996), Ferson and Foerster (1991), Fuhrer, Moore, and
Schuh (1995), Kocherlakota (1990), Neely (1993), Tauchen
(1986), and West and Wilcox (1994).

In this article we address four basic questions concern-
ing the performance of GMM-based Wald statistics. First,
does the small-sample size of these tests closely approxi-
mate their asymptotic size? Second, do joint tests of several
restrictions perform as well or worse than tests of simple
hypotheses? Third, how can modeling assumptions, or re-
strictions imposed by hypotheses themselves, be used to
improve the performance of these tests? Fourth, what prac-
tical advice, if any, can be given to the practitioner?

We answer these questions under two assumptions about
the data-generating process. First, we assume that the true
process generating the macro time series is the equilibrium
business-cycle model developed by Burnside and Eichen-
baum (1994). This case is of interest for two reasons, (1)
the model generates time series that in several respects re-
semble U.S. data and (2) we can study issues of size and
inference in an applied context. Second, we assume that
the data-generating process corresponds to Gaussian vector
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white noise. Working with such a simple process allows us
to assess whether the findings that emerge with the more
complicated data-generating process also arise in simpler
environments. In addition we find it easier to build intu-
ition about our results in the simpler environment.

Our main findings can be summarized as follows. First,
there is some tendency for GMM-based Wald tests to over-
reject individual moment restrictions. Second, the small-
sample size of these tests increases uniformly as the dimen-
sion of joint tests increases. For even a moderate number
of restrictions, the small-sample size is dramatically larger
than the asymptotic size of the test. Indeed correcting for
the small-sample properties of the Wald test turns out to
have a substantive impact on inference about the empirical
performance of the equilibrium business-cycle model that
is being analyzed. Third, in our specific applications, the
bulk of the problem has to do with the difficulty in accu-
rately estimating the spectral-density matrix of the GMM
error terms. We investigate various nonparametric estima-
tors of this matrix that have been suggested in the literature.
Although there is some sensitivity to which nonparametric
estimator is used, these differences do not affect our basic
conclusions. Fourth, we argue that the size characteristics
of the Wald tests can be improved if the analyst imposes
restrictions that emerge from the model or the hypothesis
being tested when estimating the covariance matrix compo-
nent of the Wald statistic. Not only does such information
improve the size of simple tests, it significantly ameliorates
the problems associated with tests of joint hypotheses.

The remainder of this article is organized as follows.
Section 1 considers the case of the Gaussian white-noise-
generating process. Section 2 discusses the case in which
the data are generated from an equilibrium business-cycle
model. Section 3 contains some concluding remarks.

1. GAUSSIAN WHITE-NOISE DATA-GENERATING
PROCESS

In this section we consider the small-sample properties
of GMM-based Wald statistics within the confines of a very
simple statistical environment. In particular we suppose that
the data-generating process is a mean-zero, unit-variance
Gaussian white-noise process. There are several advantages
to working with such a simple process. First, we are able
to document that the basic problems that arise in the more
complex environment considered in Section 2 also arise
here. Second, developing intuition for the results is easier
in a simpler environment. Third, we can examine the effects
of imposing various assumptions about the data-generating
processes on our procedures. Fourth, we can compute all
relevant population moments exactly. Fifth, simulation is
straightforward, and the number of replications can be in-
creased to gain accuracy in our Monte Carlo experiments.

The remainder of this section is organized as follows.
Subsection 1.1 describes the data-generating process. Sub-
sections 1.2 and 1.3 discuss the hypothesis tests and differ-
ent experiments that we conducted. Finally, we report the
results of our Monte Carlo experiments in Subsection 1.4.
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1.1 The Data-Generating Process

We suppose that an econometrician has time series data
on J = 20 random variables X;;,7 = 1, ..., J, each of which
are iid N(0,1) and mutually independent. The econometri-
cian has T = 100 observations on X;,i = 1,...,J. To
assess the robustness of our results, we also conducted ex-
periments in which the data were independent first-order
moving average [MA(1)] processes with Gaussian innova-
tions and which were either positively or negatively seri-
ally correlated. In addition we redid our experiments as-
suming that the X, are mean-zero transformations of chi-
squared processes. These perturbations yielded results that
were qualitatively similar to those obtained in the Gaussian
white-noise case.

To simplify the analysis, we assume that the econometri-
cian knows that EX;, = 0 for all 4 and ¢. The econometri-
cian is interested in estimating and testing hypotheses about
the standard deviations, o;, of X;;,7 = 1,2,...,J. To esti-
mate o;, he or she uses a simple, exactly identified GMM
estimator based on the moment restriction

B(X2—-02)=0, i=12,...,J (1)

This leads to the GMM estimators
. 1/2
&i:<TZX§> : )
t=1

1.2 Hypothesis Testing

The econometrician estimates o; to conduct inference.
The hypotheses of interest pertain to the variability of the
series X;;. The specific hypotheses to be tested are of the
form Hy: 0y = 09 = -+ = op = 1, M < J. The specific
Wald statistic that we use to test Hyy is given by

WH =T — 1) A (AVrA) TA(6 - 1). (3)

Here A = (Inr Omxs-m) and Vp denotes a generic es-
timator of the asymptotic variance—covariance matrix of
VT(6 — ag), where o is the true value of the parameter
vector o = (01,02, ...,07) . Given well-behaved estimators
& and Vi, WM 5 32(M).

We consider several questions that arise in testing Hyy.
First, how does the choice of estimator Vp affect infer-
ence? We are particularly interested in assessing the small-
sample implications of using nonparametric estimators of
Vr and understanding the gains to imposing different types
of restrictions on V. Particularly important sources of re-
strictions are the economic theory being investigated and
the null hypothesis being tested. For example, intertempo-
ral consumption-based asset-pricing models typically imply
restrictions on the degree of serial correlation in the er-
ror terms that define Vr (e.g., see Eichenbaum and Hansen
1990 or Hansen and Singleton 1982). A different example
is provided in Section 2, where we can use the structural
model itself to generate an estimate of V. Because impos-
ing restrictions on Vi can often be computationally burden-
some and asymptotic inference is not affected, it is impor-
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tant to understand the nature of the small-sample gains in
doing so.

Second, how does the dimension of the test—that is, the
degrees of freedom M—affect the size of the test? This
question is important because, in many applications, the
model gives rise to many overidentifying restrictions. The
issue is what trade-offs are involved in simultaneously test-
ing more or fewer of these moment restrictions.

1.3 Alternative Covariance Matrix Estimators

In this section we discuss our estimators of the asymp-
totic covariance matrix of 6. The moment conditions used
to estimate o, (1), can be written in the form E[u(X;,0)] =
0. Here u(-,-) is the J x 1 vector valued function whose ith
element is given by (X2 — o2). Denoting the true value of
o by oo, the asymptotic covariance matrix of VT (6 — o)
is given by Vy = (D} S5 ' Dg)~1, where

Dy=E Ou(Xs, 09)
do’
and
So=Y_ Eu(X;,00)u(X,_;,00)".
j=—0oc

The corresponding estimator of Vj is given by Vp =
(D4S7 D)=, where D and St are consistent estima-
tors for Dy and Sg.

We consider several estimators of V. Each is defined in
terms of some estimators Dy and St. The different estima-
tors impose varying amounts of information at the econo-
metrician’s disposal. Some of this information is in the na-
ture of the maintained assumptions concerning the serial
and mutual independence properties of X;; and Gaussian-
ity. Other information derives from the null hypothesis be-
ing tested.

Initially we consider estimators of Sy that do not exploit
any of this information. Instead we estimate Sy using ver-
sions of the nonparametric estimator proposed by Newey
and West (1987). A general version of this estimator can be
written as

T-1

- J ¢
Sr= > k( B )Qj,
j==(T-1)

where
T
(1/T) Y w(Xy,6)u(Xe—j,6) for >0
R t=35+1
Q, =
T
(1/T) > w(Xerj,0)u(Xe,6) for j<0
t=—j+1
and

for |z| <1

0 otherwise.

1 -z
k(m):{ 2|

Here Br is a scalar that determines the bandwidth of the lag
window k(-). We consider three variants of this estimator:

1. S} uses bandwidth Br = 4.
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2. 5% uses By = 2.

3. S3 has Br chosen automatically using a procedure,
suggested by Andrews (1991), which is described in more
detail in an appendix available on request from the authors.

The next group of estimators that we consider uses ad-
ditional amounts of information about the underlying data-
generating process. The estimator S7. exploits the assump-
tion that the X;, are serially uncorrelated. This implies
that S4 has ijth element given by 1/T[> 1, (X7 — 67)
(X jzt - &JZ)]-

The estimator S3 imposes the mutual independence of
the X,;’s as well as their serial independence. This implies
that S2 is a diagonal matrix with dith element given by
YT L, (X2 - 62)7).

Our next estimator, S%, also exploits the fact that the X
are Gaussian. Because Gaussianity implies that E(X}) =
304, S8 is a diagonal matrix with 7ith element given by 267.

Our next two estimators impose additional restrictions
derived from the null hypothesis being tested. Under hy-
pothesis Hy,0; = 1 for i =1,..., M, but o; is unrestricted
fori= M+1,...,J. This suggests the estimator S7., which
is a diagonal matrix with iith element 2 for ¢ < M and 2?7;*
for i = M + 1,...,J, although these higher elements are
irrelevant to the test statistic.

Corresponding to each estimator of Sy just discussed
there is an estimator for V; given by

Vi = [DF(Sp) ™' Dr]

k = 1,2,...,7, where DL is a diagonal matrix with iith
element —24,. Because the null hypothesis can also be im-
posed on DL, we also consider the estimator

Vi = [DF(S7)™' D™,

where D2 is a diagonal matrix with iith element —2 for
i< M and —26; fori =M +1,...,J. Here the W statistic
reduces to Zf‘i 1 2(04 — 1)2. Note that, had we imposed o;
= 1 for all 7 in the computation of V7 and V,§, we would
have obtained numerically identical results for our test
statistics because all the matrices involved in the calculation
are diagonal.

1.4 Monte Carlo Experiments

Our experiments were conducted as follows. We
generated 10,000 sets of synthetic time series on
{X1t, Xo4, ..., X5:}1_,, each of length T = 100. On each
artificial dataset, we estimated the parameter vector o and
the different estimators of the variance—covariance matrix
and then calculated the Wald test statistic, W%/’ , that is rel-
evant for testing hypothesis Hys, M € {1,2,5,10,20}. This
allowed us to generate an empirical distribution function
for WM under the null hypothesis that Hys is true, corre-
sponding to the different estimators of V5.

Our results are summarized in Table 1, the columns of
which correspond to different specifications of M (which
also equals the degrees of freedom of the test). The rows
correspond to fixed asymptotic sizes of the tests, and the
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Table 1. Small-Sample Performance of Tests Using
Gaussian White-Noise Data
Small sample size (%)
-Asymptotic
size M=1 M=2 M=5 M= 10 M= 20
(a) Estimated St, Br = 4
1% 2.59 3.41 6.99 16.98 58.68
5% 7.49 9.25 15.61 30.92 73.37
10% 12.65 14.93 23.32 40.10 80.29
(b) Estimated St, Br = 2
1% 2.31 2.87 4.83 9.17 28.88
5% 6.90 8.26 12.22 19.91 45.62
10% 12.03 13.62 19.32 28.55 55.88
(c) Estimated St, Br by Andrews procedure
1% 2.27 2.91 4.71 9.06 26.64
5% 6.94 8.27 11.94 19.27 43.43
10% 11.98 13.50 19.04 27.87 53.83
(d) Estimated St, no lags
1% 2.15 2.73 417 6.67 17.31
5% 6.74 7.94 10.82 16.23 32.87
10% 11.79 13.22 17.43 24.10 42.51
(e) Estimated diagonal St, no lags
1% 215 2.67 3.33 3.88 4.71
5% 6.74 7.58 9.32 11.04 13.39
10% 11.79 13.04 15.50 17.56 21.20
(f) Gaussianity applied to (e)
1% 1.67 1.82 2.22 2.40 2.58
5% 5.94 6.08 7.20 7.72 8.53
10% 10.60 11.30 12.50 13.25 14.45
(g) Ho imposed on St in (f)
1% 1.46 1.67 2.03 210 210
5% 461 5.33 5.97 6.58 7.26
10% 9.34 9.55 10.47 11.70 12.05
(h) Ho imposed on St in (f) and on Dr
1% .96 .97 .99 .96 .92
5% 5.16 4.90 5.08 5.01 4.99
10% 10.14 10.13 10.20 10.11 9.99

entries in the table are the percentages of the 10,000 draws
in which the W statistic exceeded the relevant critical value
of the chi-squared distribution.

Several interesting results emerge here. Consider first
the distributions of the test statistics generated using
VA, V2, V2, and Vi [see panels (a)d) of Table 1]. First,
even for M = 1, the small-sample sizes of the tests exceed
their asymptotic sizes. This result is similar to that obtained
by Christiano and den Haan (1996) and Newey and West
(1993). Second, the small-sample size of each test rises uni-
formly with M. Indeed when we use the estimator V3, the
W statistic for hypothesis Hyq exceeds its asymptotic (1%,
5%, 10%) critical values (59%, 73%, 80%) of the time. For
even moderate sizes of M, relying on asymptotic distribu-
tion theory leads one to reject Hys far more often than is
warranted in small samples. It is true that, as the bandwidth
decreases, the small-sample performance of the Wald test
improves uniformly. But, as panel (d) indicates, even when
we impose the white-noise assumption (i.e., we use V), the
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small-sample performance of the large joint tests is dismal.
For example, with M = 20, tests with asymptotic size (1%,
5%, 10%) lead to rejection (17%, 33%, 43%) of the time in
samples of 100 observations.

The results generated using V2 (which exploits the as-
sumption that the X;; are mutually independent) are pre-
sented in panel (e) of Table 1. Comparing panel (e) to pan-
els (a)—(d), we see that the impact of imposing the inde-
pendence assumption is to move the small-sample sizes of
the tests substantially closer to their asymptotic values. Not
surprisingly, the impact of this restriction becomes larger as
M increases because there are more off-diagonal elements
being set to their population values. (In the case of M =1,
the two panels are identical.) With M = 20, the W statis-
tic for Hys exceeds its asymptotic (1%, 5%, 10%) critical
values (4.7%, 13.4%, 21.2%) of the time. This represents
a substantial improvement relative to the situation when
we do not impose the zero off-diagonal element restric-
tion. Even so, the Wald test still rejects too often in small
samples. Panel (f), which reports results based on Vg‘?, in-
dicates that imposing the Gaussianity assumption improves
the small performance of W/ even further. To the extent
that fourth moments are less accurately estimated than sec-
ond moments for Gaussian processes, this result is not sur-
prising.

Recall that the estimator V% exploits information from
the null hypothesis regarding o; in constructing ST.. The
results generated using V;{ are reported in panel (g) of Table
1. Comparing panels (f) and (g), we see that the net effect of
imposing these additional restrictions is to move the small-
sample size of the test even closer to its asymptotic size
(except for the 10% critical value for M = 1). For example,
with M = 20, the W statistic for Hys exceeds its asymptotic
(1%, 5%, 10%) critical values (2.1%, 7.3%, 12.1%) of the
time.

Panel (h) of Table 1 reports results based on V£, in which
we impose the null hypothesis on D as well as on St. Now
all of the anomalies associated with the small-sample dis-
tribution of the W statistic disappear. First, the degree to
which the small-sample sizes match their asymptotic sizes
is not affected by M. Second, the small-sample size of the
test statistic is extremely close to the corresponding asymp-
totic size. Indeed, this is true even when we fix the asymp-
totic size of the test at 1%. So, at least for the present
example, the parameter estimates appear to have a small-
sample distribution that is very well approximated by their
large-sample distribution. The anomalies associated with
the small-sample distribution of the W statistic seem to be
closely related to the small-sample distribution of St and,
to a much smaller extent, Dr. In Section 2 we investigate
the extent to which these conclusions continue to hold in a
more complex statistical environment.

2. A REAL-BUSINESS-CYCLE MODEL AS A
DATA-GENERATING PROCESS

In this section we consider the small-sample properties
of GMM-based Wald statistics, assuming that the data-
generating process is given by the business-cycle model de-
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veloped by Burnside and Eichenbaum (1994). The model is
briefly summarized in Subsection 2.1. Subsection 2.2 de-
scribes the way the model’s structural parameters were es-
timated. Subsection 2.3 discusses the hypothesis tests we
investigated. Subsection 2.4 presents estimates of the model
using aggregate U.S. data. In Subsection 2.5 we present the
results of our Monte Carlo experiments, which use the es-
timated model as the data-generating mechanism.

2.1 The Model

The model economy is populated by many infinitely-lived
individuals. To go to work, an individual must incur a fixed
cost of ¢ hours. Once at work, an individual stays for a fixed
shift length of f hours. The time ¢ instantaneous utility of
such a person is given by

In(Cy) + 01n(T — ¢ — Wi f). 4

Here T denotes the individual’s time endowment, C; de-
notes time-¢ privately purchased consumption, § > 0, and
W, denotes the time-¢ level of effort. The time-t instanta-
neous utility of a person who does not go to work is given
by In(Cy) + 61In(T).

‘Time-t output, Y3, is produced via the Cobb—Douglas pro-
duction function

Yy = (KUp)' = (N f W Xy)®, ®)

where 0 < a < 1, K, denotes the beginning of time-t capital
stock, U, represents the capital utilization rate, N, denotes
the number of individuals at work during time ¢, and X,
represents the time-t level of technology. We assume that
the time-t depreciation rate of capital, &, is given by

6 = 8U?, (6)

where 0 < 6 < 1 and ¢ > 1. The stock of capital evolves
according to

Kt+1 = (1 ha 6t)Kg + It, (7)

where I, denotes time-t¢ gross investment.

The level of technology, X:, evolves according to X; =
Xi—1exp(y + v;), where v, is a serially uncorrelated pro-
cess with mean 0 and standard deviation o,,. The aggregate
resource constraint is given by

Ci+L+G <Y, (8)

where G, denotes the time-¢ level of government consump-
tion. We assume that G evolves according to

Ge = Xig; - 9

Here g7 is the stationary component of government con-
sumption and g; = In(g;) evolves according to

9t = (1 = p) + pgs_1 + &, (10)

where 1 is a scalar, |p| < 1, and ¢; is a serially uncorrelated
process with mean O and standard deviation o..

In the presence of complete markets, the competitive
equilibrium of this economy corresponds to the solution
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of the social-planning problem

Ey Zﬁt[ln(ct) + ON:In(T — € —~ Wi f)

t=0
+6(1 — N)In(T)], (11)

subject to (5)—10) by choice of contingency plans for
{Cs, K¢1, Nep1, Uy, Wy: t > 0}. We obtain an approxi-
mate solution to this problem using King, Plosser, and Re-
belo’s (1988) log-linear solution procedure (see Burnside
1993 for details). Let k; = In(K;/X;—1),ht = In(H;), ¢, =
In(Cy/ X)), we = In(We),ue = In(Uy), 4 = In(Yy/X1), a0 =
In(Yy/N:X:),i: = In(l;/X¢),h? = In(HY), and af =
In(Y;/HY X;). Here H; and HY denote actual and observed
time-t hours of work.

We assume, as did Préscott (1986), that
In(HY) = In(Hy) + &, (12)

where &; is an iid random variable with mean O and variance
o?. The time-¢ state of the system is given by

&)

Define the vector of time-t endogenous variables f; as

se=(1 ke he v gt

ft = (Ct W U Yt az Z't h? a?)'
and the vector of time-¢ shocks as
E::t = (0 00 V¢ Et &,)/-

Our assumptions about the exogenous variables and the log-
linear approximation to the model imply that the evolution
of the system can be summarized as

St = MSt_l +§t

ft = HSt, (13)

where M and II are functions of the model’s underlying
structural parameters. See Burnside (1993) for details. We
take (13) to be the data-generating mechanism in our Monte
Carlo experiments.

2.2 Estimation

With certain exceptions, the parameters of the model were
estimated using a variant of the GMM procedure described
by Christiano and Eichenbaum (1992). We did not estimate
B3,T, ¢, and f. Instead we set 8 = 1.03-1/4 T = 1,369 hours
per quarter, and ¢ = 60 and chose f so that the nonstochas-
tic steady-state value of W; was 1. Rather than estimate
6, we estimated § = §U®, where U is the nonstochastic
steady-state value of U;. This seemed natural because the
log-linearized model depends only on § and not separately
on 6 or U. Evaluating the planner’s Euler equations for U;
and K, in nonstochastic steady state, we can solve for
the parameter ¢ as a function of the parameters 3,~, and
6:

_ Blexp(y) -1

?(8,7,6) = 5 +1.
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In the data, the series g; displays a time trend, so this
series was detrended using a linear time trend. To simplify
matters we did not include the time trend in the Monte
Carlo experiments. To compute the log-linear solution to
the model we need an estimate of g/y, the nonstochastic
steady-state value of G;/Y;. The parameter y [the mean of
the process g; = In(G:/X:)] is relevant only to the extent
that it helps us compute g/y. So rather than estimate p, we
chose to estimate g/y.

In light of these decisions, the vector of model parameters
to be estimated, denoted by ¥, is given by

=0 o b 7 oo g/y p 0o 05)

The hypotheses that we investigate involve various sec-
ond moments of the data. Because many of the relevant se-
ries exhibit marked trends, some stationary-inducing trans-
formation of the data must be applied. To facilitate compar-
isons with the RBC literature, we chose to process the data
using the Hodrick and Prescott (1980) filter. Consequently,
the second moments to be discussed pertain to those of
Hodrick and Prescott (HP) filtered data. We have redone all
of the experiments in this article with first-differenced data.
A subset of these is discussed later. For a detailed compar-
ison of some of the small-sample properties of GMM with
HP-filtered and first-differenced data, see Christiano and
den Haan (1996).

We focus on a set of second moments that have received
much attention in the RBC literature—the standard devi-
ation of output, o,; the standard deviations of consump-
tion, investment, and hours relative to the standard devi-
ation of output, o./0y,0;/0y, and or/0y, and the stan-
dard deviation of hours worked relative to the standard de-
viation of average productivity, ox/0,. We also consider
the dynamic correlations between average productivity and
hours, pi, = corrf(APLy, Hyyi),i = £1,+2,43,44, and
the dynamic correlations between average productivity and
output ph, = corr(APLy,Ysyi), 8 = —4,-3,-1,-1. The
contemporaneous correlations between these variables and
pfly,i =1,2,3,4, can be deduced from the other moments
that we consider. We denote the vector of diagnostic mo-
ments that must be estimated in ways not involving the
model by

-3

Uy = (oy 0c/0oy Oi/oy On/oy Oh/0a p;ﬁ Pan pz:h2

Par o P2h Pon Phn Pay Pay Pay Pay)

2.2.1 Moment Conditions Underlying the Estimator of
¥,. As discussed by Burnside and Eichenbaum (1994),
our estimator of ¥, is based on the following moment con-
ditions:

E {ag - % [Aln(HD))? +% Aln(H?)Aln(ﬁfg)} =0,

(14)
E[In(H?) - In(Nf)] =0, (15)
E[In(6;) — In(8)] = 0, (16)

299
C
shi-s( )
<[ - om0 Z - 1|} =0 a7
t+1
ElIn(XY) - n(X{,) =2 =0, (18)
E[ln(X?) —In(XY_))? — 02 — 230 =0,  (19)
E{In(Gy) - In(¥;) — In(g/9)] = 0, (20)
E[(¢? — pgd_1)9i-1] + p3oE =0, @1
and
E((g0 - pgd_1)%] — (1 + p*)pj0t —02=0. (22)

In Equation (14), H? and HY refer to our two measures of
hours worked, Hansen’s (1985) corrected measure of house-
hold hours and hours worked from the establishment survey
conducted by the Bureau of Labor Statistics. More details
concerning the data are provided in an appendix available
from the authors. Unlike Burnside and Eichenbaum (1994),
we abstract from issues concerning the observability of &
and K. In particular, we assume, for the purposes of our
Monte Carlo experiments, that the econometrician observes
these series directly. The variables N, representing the non-
stochastic steady-state value of Ny, and @3, a reduced-form
parameter, are functions of the underlying parameter vec-
tor, ¥, . Furthermore, X? represents a measurement-error-
corrupted signal of the level of technology that can be con-
structed given the data and a vector of parameters ;. Sim-
ilarly, ¢? is a signal of g; based on the error-ridden measure
of technology X?. See Burnside and Eichenbaum (1994)
for details.

2.2.2 Moment Conditions Underlying the Estimator of

¥,. Our estimator of ¥y is based on the following mo-
ment conditions:
E(y} —0y) =0
E[c — (0c/oy)yi) = 0
Efi? — (0i/0y)?yf] = 0
E[hi — (on/0y)*yi] =0
E[h} - (0n/0a)?af] =0

E

2
. Oh
athiyi — Pz,h ( e ) UZ/
Yy
i Oh
P [oanee =t (52 )3/
Y
747

where a lowercase variable—for example, z;—is the cycli-
cal component of In(Z;) as defined by the HP filter.

To define our joint estimator of ¥; and ¥, consider the
following generic representation of our moment conditions:

i=+1,... %4

i=1,...
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Table 2. Hypothesis Tests for the RBC Example

Included in test of

Test # Moment H1 H2 H3 H4
1 oy v Vv
2 oc/oy Vv v
3 oifoy i 4
4 onfoy Vi Vv
5 oh/oa Vv Vv
6 Pa v v
7 Pan v v
8 Pin v v
9 Pan v v

10 Pon v v
Al Pan Vv

12 P v v
13 Pan Vv v
14 Pan Vv v
15 Pay v v
16 Pay v v
17 Pay v v
18 Pay v v
19 pgy Vv

20 p;y Vv

21 pgy Vv

22 pgy Vv

23 pgy Vv

Elu,(®%)] = 0,¢ = 1,..., T, where ¢° is the true value of
(¥1%5) and u, is a vector-valued function of dimension
equal to the dimension of ¥°. Let

1 I
t=1
The GMM estimator, ¥, minimizes

Jr =Tgr(®) Yrgr(¥®),

gr(¥) =

(23)

where Y7 is a symmetric, positive definite weighting ma-
trix of dimension equal to the dimension of gr(¥). Because
our GMM estimator is exactly identified, ¥ is indepen-
dent of Y. We simply set Y7 equal to the identity matrix
in (23).

A consistent estimator of the variance—covariance matrix
of VT (¥r - ¥p) is given by V, = (D4.S7 D)=, where
D7 = 0gr(®7)/0%¥ and Sr is a consistent estimate of
So, 27 times the spectral-density matrix of u (¥O) at fre-
quency 0.

2.3 Hypothesis Testing

Suppose that we wish to assess the empirical plausibil-
ity of the model’s implications for a ¢ x 1 subset of v,
given by w. Let ®(¥) denote the value of w implied by the
model, given the structural parameters ¥;. Here ® denotes
the (nonlinear) mapping between the model’s structural pa-
rameters and the relevant population moments. Denote the
nonparametric estimate of w obtained without imposing re-
strictions from the model by I'(¥). The hypothesis that we
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investigate is of the form
Hp: F(¥°) = (%) — 1 (¥°%) =0. (24)

Christiano and Eichenbaum (1992) showed that a consistent
estimate of the asymptotic variance—covariance matrix of

VT[F(¥7) - F(¥°)] is
o[ 250 |

ow’

[ 0F(¥7)
VF'_[ oW’

and that the test statistic

Wr = TF(®r)' Vi F(¥r) (25)

is asymptotically distributed as a x? random variable with
q df. We consider two types of hypothesis tests. The first
type involves tests of individual moments of the data. The
test numbers and corresponding moments being tested are
summarized in Table 2. The second type of tests involves
Jjoint moment restrictions. Hypothesis H1 tests whether the
hypotheses incorporated into tests 1-5 hold simultaneously.
Hypotheses H2, H3, and H4 are similar to hypothesis H1
but pertain to different sets of moments, as indicated in
Table 2. Hypothesis H4 incorporates all nonredundant mo-
ments from tests 1-23.

To implement our hypothesis tests, we require an estima-
tor, St, of Sy. As in Section 1, our estimators are of the

form
T-1 _7 R
Sr= > k < Br ) %,
j==(T-1) T
where
T
(1/T) Y wa,_; for j>0
R t=j+1
Q; =

T
(1/T) > deysay for j<o.
t=—j+1

The kernel function k varies depending on the estimator, By
is the bandwidth, and 4; = u,(¥r). Our baseline results are
generated using the Bartlett kernel function

1—|z|
k(x) z{ 0

and Andrews’s (1991) automatic selection procedure for
Br. In an available appendix, we discuss the other esti-
mators of .Sy that we considered. As it turns out, our basic
results are robust across these different estimators of So.
The bandwidth selection procedure that we used can be
described as follows. Andrews (1991) provided an expres-
sion for the optimal bandwidth corresponding to a given
kernel, a process w;, and a set of weights on the differ-
ent elements of Sy. The bandwidth is optimal in the sense
that it leads to minimum mean squared error estimates of
a weighted inner product of the elements of S;. Andrews’s
(1991) procedure simplified the dependence of the optimal
bandwidth on the entire spectral density of u; by assuming

for |z|<1

otherwise
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Table 3. Model Parameters: Estimates and Standard Errors

Parameter Estimate Std. error
0 3.5955 (.0377)
a 6422 (.0193)
s 0208 (.0002)
5 .0038 (.0012)
oy .0088 (.0002)
gly 1763 (.0022)
go 1.7885 (.0809)
a1 —.0019 (.0003)

p .9456 (.0299)
oc .0152 (.0012)
o¢ .0088 (.0011)

NOTE: Al standard errors shown in this table are based on estimates of Sy computed using the
Bartlett window suggested by Newey and West (1987} and the automatic bandwidth selection
procedure suggested by Andrews (1991).

a simple parametric model for the error term. The choice
of model does not affect the consistency of Sr. The model
that we use corresponds to the simplest example of An-
drews (1991). Specifically, we treat the elements of u; as
independent first-order autoregressive [AR(1)] scalar pro-
cesses. No weight is given to the off-diagonal elements of
So. Under these circumstances, the bandwidth selected will
depend on the sample size, T', the weights, and coefficient
estimates obtained by fitting AR(1) processes to the ele-
ments of u;(¥r). Roughly speaking, the more persistent
the errors, the greater the bandwidth.

In the standard case, equal weight is placed on all of
the error terms. With this procedure the median bandwidth
across the Monte Carlo draws was 40.1. Moreover, the test
statistics had extremely poor small-sample properties. For
example, for hypothesis H4, the W statistics exceeded their
(1%, 5%, 10%) critical values in (99.9%, 100%, 100%) of
the Monte Carlo draws. Further details are given in an
appendix available on request. Andrews (1991) suggested
putting zero weight on the error terms corresponding to
constant regressors in regression models. Presumably, this
is motivated by the fact that the covariance properties of
those error terms are qualitatively dissimilar to the covari-
ance properties of the error terms corresponding to noncon-
stant regressors. Pursuing this logic, we implemented the
Andrews procedure in our context by placing zero weight

n (15), (16), and (20) along with unit weight on the other

error terms. This constituted our baseline method and led to
test statistics with much better small-sample properties. For
example, the resulting median bandwidth across the differ-
ent Monte Carlo draws was 2.78 and the W statistics for
H4 exceeded their (1%, 5%, 10%) critical values in (36.7%,
50.7%, 57.6%) of the Monte Carlo draws. Further details
of our baseline results follow.

24 Parameter Estimates and Some Results Based on
Asymptotic Theory

Table 3 reports our point estimates of ¥, along with
corresponding standard errors. The dataset used to gen-
erate these estimates is described in an available ap-
pendix. With the exception of the standard deviation of
technology, o,, and 6, these point estimates are very
similar to those used in the RBC literature. Table 4
presents the nonmodel- and model-based estimates of
{04,0c/0y,0i/0y,0n/0y; Oh/Ta}- Numbers in parentheses
are the standard errors of the corresponding point estimates.
Numbers in parentheses in the column labeled W are the
asymptotic probability values of the W statistics for testing
whether the individual model and data population moments
are the same. Notice that we cannot reject any of the in-
dividual hypotheses in question. Burnside and Eichenbaum
(1994) stressed that, although the propagation mechanisms
in their model are quite different, many of the second-
moment implications are similar to those of the prototypical
RBC model.

Figures 1 and 2 summarize the model’s implications
for the dynamic correlations between hours worked and
average productivity, as well as the dynamic correla-
tions between average productivity and output. The dot-
ted lines in row 1 correspond to the nonmodel-based es-
timates of {p%,,i = 0,+1,42,+3,+4}, and {pty,i = 0,
+1,£2,+3,+4}, and the solid lines denote the moments
implied by the model. The solid lines in row 2 graph the
differences between the model- and nonmodel-based es-
timates, and the dotted lines depict an asymptotic two-
standard-error band for the differences. According to these
figures, the model does quite well at accounting for the
individual dynamic correlations between average produc-
tivity and output, as well as average productivity and hours

Table 4. Tests of the Models

HP-filtered data

First differences

Moment U.S. data Model w U.S. data Model w
oy .0192 .0167 1.614 0105 0114 1.018
(.0018) (.0013) (.204) (.0008) (.0009) (.313)

ocfoy .0437 .0480 2.005 .588 .0455 11.29
(0.029) (.009) (157) (.010) (.038) (.001)
oifoy 2.224 2.244 .044 2.229 1.930 4416
(.068) (.072) (.835) (.086) (.115) (.036)
onfoy .859 795 .990 1.403 1.297 .593
(.069) (.051) (.320) (:134) (.146) (.441)
oh/Ca 1.221 1.033 2.258 916 .979 1.167
(.115) (:037) (.133) (.020) (.057) (.280)

NOTE: Numbers under the heading “U.S. data” are second moments of U.S. data. Numbers under the hea
implications tor the corresponding moments as functions of ¥,. Standard errors for each are in parenthese:

corresponding W statistics are in parentheses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ding “Model” are the model's
s. The p values for the



302
C
9
P
@
®
C
C
@]
&)
®
(8]
-
®
C
®©
Yo
o
S_04f T
08— =3 0 2 4

|
Figure 1. Dynamic Correlations Between Average Productivity and
Hours Worked. The data are HP filtered. The figure indicates the cor-
relation between APL; (average productivity) and H,; (hours worked).
In the Correlation panel, the solid line indicates model-predicted correla-
tions, and the dashed line indicates sample correlations. In the Difference
panel, the solid line represents the difference between the model and

sample correlations, and the dashed lines represent a two-standard-error
band around the difference.

worked. Burnside and Eichenbaum, (1994) argued that this
reflects two features of their model, factor hoarding and
their model of measurement error in hours-worked data.
We now turn to our joint hypotheses. Columns 1 and 2
of Table 5 report the W statistics for hypotheses {H1, H2,
H3, H4} and the corresponding asymptotic probability val-
ues. Notice that hypotheses H2, H3, and H4 are all rejected
at very low significance levels. To us the strength of these
rejections seems at variance with the results of testing the
individual components of these hypotheses. One way to rec-
oncile these results is to invoke the pattern of covariances
in question. In light of the results in Section 1, however,
these strong rejections may simply reflect the small-sample
properties of GMM-based Wald statistics as applied to hy-
potheses involving joint moment restrictions. With this as
motivation, we turn to the Monte Carlo experiments.

2.5 Monte Carlo Experiments

One natural way to generate artificial datasets for Monte
Carlo studies is to bootstrap. Given the type of hypothesis
tests we are investigating, what we would need to boot-
strap are estimated innovations to technology, government
purchases, and the measurement error in hours worked. Be-
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cause we estimate the model via GMM and our model is
stochastically singular in the observables, we do not have
unique estimates of these three variables. Furthermore, we
have no measure of the measurement error in hours worked
whose variance necessarily corresponds to our estimate of
ag. Consequently, we chose not to bootstrap.

Instead, to generate data for our Monte Carlo experi-
ments, we proceeded as follows. Given the estimated value
of ¥, we generated artificial time series according to the
following rules: C, = exp(¢;) Xy, Y: = exp(y:) X, Ky = exp
(k) X1, Gy = exp(ge) Xe, Iy = explis) Xt, Hy = fexp(ny),
and &; = dexp(opus). Here ¢, yy, ke, ur, e, and 4, are given
by (13). The variables X, and g; were generated according
to the laws of motion specified in Section 2.1. One thou-
sand artificial time series datasets, each of length 113, were
generated, assuming that the stochastic elements of &, were
Gaussian white noise. We repeated our experiments, dou-
bling the series length to 226. Although the small-sample
properties of the test statistics discussed later improved,
none of our qualitative conclusions were affected.

To assess the robustness of our results to distributional
assumptions, we redid a subset of our Monte Carlo exper-
iments generating the stochastic elements of €; as follows.

0.8

o
IN

Correlation
o
(am]

N

o
[os)

o
~

Difference
o
o

Figure 2. Dynamic Correlations Between Average Productivity and
Output. The data are HP filtered. The figure indicates the correlation
between APL; (average productivity) and Y;,; (output). In the Corre-
lation panel, the solid line indicates model-predicted correlations, and
the dashed line indicates sample correlations. In the Difference panel,
the solid line represents the difference between the model and sample
correlations, and the dashed lines represent a two-standard-error band
around the difference.
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Table 5. Small-Sample Performance of the Joint Tests

Test performed using U.S. data

Size (%) of tests

Hypothesis w p value MC p value 10% 5% 1%
HP-filtered data
H1 6.64 25 .48 31.7 23.0 11.9
H2 43.7 .00 .01 23.6 16.5 7.6
H3 355 .00 .01 20.2 13.3 6.5
H4 66.3 .00 .06 57.6 50.7 36.7
First-differenced data
H1 16.0 .01 .02 12.0 7.6 2.2
H2 30.1 .00 .01 15.6 11.3 5.2
H3 459 .00 .00 135 9.6 3.9
H4 63.5 .00 .02 37.9 29.8 18.1

NOTE: The numbers under the heading “p value” are the p values obtained when the W statistics for H1, H2, H3, and H4 are compared
to x2 distributions with 5, 9, 9, and 17 df, respectively. The numbers under the heading "MC p value” are obtained by comparing these
statistics to the distribution of the W statistics generated by our Monte Carlo experiments. The numbers under the heading “Size of tests”
indicate the frequency (in %) with which the W statistics from our Monte Carlo experiments exceed the 10%, 5%, and 1% critical values

of the relevant x2 distributions.

First, we constructed a vector of disturbances whose el-
ements were realizations from a chi-squared distribution
with 1 df. We then subtracted one from each of these re-
alizations. Finally, we scaled the random variables so that
they had standard deviations equal to the values assumed
in our baseline experiments. The reason that these distur-
bances are of interest is that they are skewed (to the right)
and leptokurtic relative to Gaussian white noise. In no case
were our results sensitive to this perturbation.

With one exception, all of the moment conditions un-
derlying our estimator of ¥; hold exactly for the artifi-
cial data-generating process. The exception is the planner’s
Euler equation for K;,;, Equation (17), discussed in the
Appendix. To deal with this problem, we computed the ex-
pectation in Equation (17) for the true log-linearized model.
As it turns out, at these parameter values the error is ap-
proximately equal to 2 x 107°. To correct for possible bias,
we implemented our Monte Carlos, centering Equation (17)
around 2 x 1075 rather than 0. As it turns out, this bias cor-
rection had virtually no impact on our results.

We begin by reporting the small-sample behavior of the
W statistics for hypotheses H1, H2, H3, and H4. The third
numerical column of Table 5 reports the fraction of the
Monte Carlo draws in which the W statistics for these hy-
potheses were greater than or equal to the corresponding W
statistic obtained using U.S. data (see col W). We refer to
this fraction as the Monte Carlo probability. For hypothesis
H1, H2, and H3, the asymptotic and Monte Carlo probabili-
ties are reasonably similar. For hypothesis H4, however, the
Monte Carlo probability is much larger than the asymptotic
probability (.06 versus .00). According to standard asymp-
totic distribution theory, the W statistic that we obtained for
hypothesis H4 would be very unlikely if the model were
specified correctly. But according to the small-sample re-
sults, one would obtain a W statistic this large or larger
roughly 6% of the time.

A complementary way to assess the small-sample proper-
ties of the Wald tests is to consider the fraction of the Monte
Carlo draws in which the W statistics exceed the 1%, 5%,

ght owner. Further reproductio

and 10% critical values of the relevant chi-squared distribu-
tions. These are displayed in the last three columns of Table
5. Notice that the small-sample sizes of the test statistics
for hypotheses H1 and H4 greatly exceed their asymptotic
size. This tendency is particularly dramatic in the case of
H4, in which the W statistics exceed their asymptotic 1%,
5%, and 10% critical values 37%, 51%, and 58% of the
time.

Before analyzing this finding, we briefly discuss the size
of the test statistics applied to the individual moments that
make up joint hypotheses H1, H2, H3, and H4. Our results
are displayed in Figure 3. The height of each bar graph in
panels (a), (b), and (c) denotes the fraction of the Monte
Carlo draws in which the W statistic for a given hypoth-
esis exceeded the 10%, 5%, and 1% critical values of the
asymptotic chi-squared distribution.

According to Figure 3, the small-sample sizes of the test
statistics for hypotheses 1 and 4-23 are moderately higher
than their asymptotic sizes. The small-sample sizes of the
test statistics associated with o./o, and o;/0, are substan-
tially larger than their asymptotic sizes. This is consistent
with our finding that Wald tests of hypotheses H1 and H4
overreject in small samples. These effects do not, however,
seem large enough to explain the extent to which the Wald
test overrejects H1 and H4.

Viewed overall, the outstanding feature of our experi-
ments is the excessive small-sample size of the Wald test
of hypothesis H4. Inference based on the asymptotic dis-
tribution of the W statistic leads to a grossly overly criti-
cal assessment of the model’s performance. In an available
appendix we show that this conclusion is robust to vari-
ous perturbations. First, we consider the effects of different
bandwidths when constructing St. These were chosen both
on an a priori basis and using the Newey and West (1993)
automatic bandwidth procedure. Second, we consider dif-
ferent estimators of Sy that correspond to different lag win-
dows. Third, we discuss the impact of using a small-sample
correction suggested by Andrews (1991).

n prohibited without permission.
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Figure 3. Small-Sample Size of the Wald Tests for the RBC Exam-
ple With HP-Filtered Data. Each bar in the figure represents the small-
sample size measured in percent of the W test whose number is indi-
cated on the x axis: (a) Tests with 10% asymptotic size, (b) tests with
5% asymptotic size, (c) tests with 1% asymptotic size.

The previous results pertain to tests of the model’s impli-
cations regarding the moments of HP-filtered time series. It
is of interest to see whether our qualitative results are robust
to testing the model’s implications for moments of first-
differenced data. Table 4 presents the nonmodel- and model-
based estimates of {0y, 0./0y,0:/0y,01/0y,0n/0.}, Where
o; denotes the standard deviation of the log first-difference
of variable 7. Notice that the model’s performance deteri-
orates with respect to o./o, and o;/0, relative to the HP-
filter results.

Figure 4 is the analog to Figure 3 for the case in which
tests refer to moments of first-differenced data. Table 5 re-
ports the Monte Carlo probability values and small-sample
sizes of the test statistics pertaining to hypotheses H1-H4.
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The key features of these results are as follows. First, Fig-
ure 4 indicates that the small-sample size of a substantial
fraction of the Wald statistics for individual moment tests
is actually smaller than the corresponding asymptotic size.
Second, according to Figure 4 and Table 5, for the joint
tests H2, H3, and H4, it is still the case that the small-
sample size substantially exceeds the asymptotic size. This
is particularly marked for hypothesis H4 in which the W
statistics exceed their 1%, 5%, and 10% critical values in
18.1%, 29.8%, and 37.9% of the Monte Carlo runs. Overall,
we view our basic qualitative results, at least as they pertain
to the small-sample size of the joint tests, as being robust
to whether the tests pertain to moments of HP-filtered or
first-differenced data.

{a)
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Figure 4. Small-Sample Size of the Wald Tests for the RBC Exam-
ple With First-Differenced Data. Each bar in the figure represents the
small-sample size measured in percent of the W test whose number is
indicated on the x axis: (a) Tests with 10% asymptotic size, (b) tests with
5% asymptotic size, (c) tests with 1% asymptotic size.
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Figure 5. Small-Sample Size of the Wald Tests for the RBC Exam-
ple With HP-Filtered Data. Each bar in the figure represents the small-
sample size measured in percent of the W test whose number is indi-
cated on the x axis: (a) Tests with 10% asymptotic size, (b) tests with
5% asymptotic size, (c) tests with 1% asymptotic size.

In the remainder of this section, we discuss the factors un-
derlying the excessive small-sample size of our Wald tests,
with particular reference to hypothesis H4. The key ques-
tion is why is the small-sample distribution of W so dif-
ferent from estimates of its asymptotic distribution? We
consider two basic explanations:

1. The small-sample distribution of VT F(¥7) is differ-
ent from its large-sample distribution. This could happen
either because of bias in F(¥r), because the small-sample
covariance matrix of VT F(¥r) is not equal to its large-
sample analog, or because VT F(¥r) is correlated with es-
timates of its large-sample covariance matrix.
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2. A second possibility is that the small- and large-
sample distributions of vTF(¥r) are the same, but it is
difficult to estimate the latter in small samples.

In what follows we present evidence that the second ex-
planation is more relevant in our context. Specifically, we
argue that the basic problem is difficulty in estimating the
spectral-density matrix of the GMM residuals, So.

We begin by assessing the possible impact of bias in
F(® 1) on the distribution of W. To this end we considered
the small-sample distribution of the modified Wald statistic
Wr = T(F, — F)'V5} (Fi — F). Note that Wr is implic-
itly indexed by k. Here F denotes the value of F in the
kth Monte Carlo run, k¥ = 1,...,1,000, F is the average
value of Fj across the 1,000 Monte Carlo runs, and Vpy is
the estimated value of the asymptotic covariance matrix of
VTF(®7) using data from the kth Monte Carlo run. The
estimator underlying Vi is the one discussed in Section
2.3. For any given Monte Carlo run, the only difference be-
tween Wr and the original Wald statistic is the presence of
the bias correction term F'. Our major finding here was that
the distributions of the modified and original Wald statis-
tics across the Monte Carlo runs were very similar. We
concluded that bias in F(¥r) is not the problem.

We now turn to a series of exercises designed to shed
light on the way our original estimator of Vy has an impact
on the small-sample properties of the W statistics. Consider
the test statistic Wy = TF[ Vg 1 Fy., where

1 1,000
= - F, - F
VF 1 000 kZZI Fk F)( k )

Wr is implicitly indexed by k. The weighting matrix Ve
is an estimate of the small-sample covariance matrix of
VTF(¥7) corresponding to the sample covariance matrix
of the F}’s across the Monte Carlo runs. Figure 5 reports
the fraction of the time in the Monte Carlo runs that the
W statistics exceeded the 1%, 5%, and 10% critical val-
ues of the relevant chi-squared distributions. The key thing
to note is that, although the small-sample properties of the
W statistics are not in perfect accord with their asymp-
totic behavior, they are much better than those of the 14%
statistics. For example, the W statistics for H4 exceed their
asymptotic (1%, 5%, 10%) critical values in (4.5%, 9.3%,
14.7%) of Monte Carlo draws. (Recall that analog percent-
ages for the W statistics are 37%, 51%, and 58%). More-
over, for hypotheses involving only one moment restriction,
the small-sample sizes of the W statistics are quite close to
their asymptotic sizes.

Why do the W statistics have much better small-sample
properties than the W statistics? One possible reason is that
the covariance matrix Vp that is used to construct W is held
fixed across the different Monte Carlo runs. So, by construc-
tion, the numerator and denominator terms in W are uncor-
related with each other. Although this is true asymptotically
for the W statistics, it need not be true in small samples.
To assess the plausibility of this explanation, we constructed
an alternative version of W, which randomly combines nu-
merator and denominator terms from different Monte Carlo
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runs: Wy = TF! VElei- Consistent with our previous no-
tation, F; denotes the value of F in the ith Monte Carlo
run, and Vf; is the estimated value of the asymptotic co-
variance matrix of vTF(®r) in the jth Monte Carlo run.
By choosing i and j to be independently and randomly se-
lected numbers between 1 and 1,000, we randomly match
F;’s and Vg;’s from different Monte Carlo datasets. This
eliminates any correlation between numerator and denomi-
nator terms in . We anticipated that this would lead to a
substantial improvement in the small-sample properties of
the test statistic. But, to our surprise, we found that the dis-
tributions of W and W across the Monte Carlo runs were
very similar. So, at least in our application, the poor small-
sample properties of the W statistic cannot be attributed to
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Figure 6. Small-Sample Size of the Wald Tests for the RBC Exam-
ple With HP-Filtered Data. Each bar in the figure represents the small-
sample size measured in percent of the VW test whose number is indi-
cated on the x axis: (a) Tests with 10% asymptotic size, (b) tests with
5% asymptotic size, (c) tests with 1% asymptotic size.
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correlation between the constituent numerator and denom-
inator terms.

Evidently, the source of the problem has to do with the
small-sample distribution of V-, our estimator of the co-
variance matrix of v/T(¥s — ®°). Recall that

In constructing W, we set Vg = (D4S7'Dr)~L. In our
next experiment we considered the behavior of the Wald
statistic, Wr, obtained using

Lo
Vg = —— Ve — B (Upy — Y
Ve 1.000 kz::l (Org (P ry )

in place of V. The estimator Vg corresponds to the sam-
ple covariance matrix of v/Z(®¥7; — ¥) across the Monte
Carlo runs. Our key finding here is that the small-sample
distributions of the W and W statistics are very similar.
For example the W statistics for H4 exceeded their asymp-
totic (1%, 5%, 10%) critical values in (3.7%, 8.3%, 13.6%)
of the Monte Carlo draws. We conclude that the problem
with the W statistic has to do with Vi, rather than with
OF (¥r)/0W'.

We can narrow the problem down even further by in-
vestigating the behavior of the constituent elements of Vy.
Specifically we considered the small-sample behavior of the
Wald statistic, WT, constructed by replacing Sy with the es-
timate of the small-sample covariance of VTgr(®°) given
by

B T 1,000
S= Tom5 2 {lore(®%) — 5(T0)][gri(¥°) - g(wO)]'}.
’ k=1

Here g7, (®°) is the value of g,(¥°) emerging from the
kth Monte Carlo run and g(®°) is the average value of
g7+ (¥°) across the Monte Carlo runs. Figure 6 reports the
fraction of the Monte Carlo runs in which the W statistics
exceeded the 1%, 5%, and 10% critical values of the rele-
vant chi-squared distributions. Notice how similar these are
to the analog results for the W statistics. For example, the
W statistics for H4 exceed their asymptotic (1%, 5%, 10%)
critical values in (3.9%, 7.5%, 12%) of the Monte Carlo
runs.

This result strongly suggests that the key factor under-
lying the poor small-sample properties of the original W
statistics is the small-sample properties of S, our original
estimator of Sy. The question is whether the problem is
that we cannot accurately estimate Sy in small samples or
that Sy does not correspond to the small-sample covariance
matrix of VT gz (W0).

To get at this issue we redid our Monte Carlo experi-
ments using the population value of Sy, So, that is implied
by the parameters governing the data-generating process.
Specifically, on each of the 1,000 datasets, we estimated the
parameters of the model but formed the W statistic using
the fixed matrix Sy. We found that the empirical distribu-
tion of the resulting Wald statistics was extremely similar
to that of W. For example the new Wald statistics for H4
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exceed their asymptotic (1%, 5%, 10%) critical values (4%,
8%, 11%) of the time. Recall that the corresponding val-
ues of W exceeded their asymptotic (1%, 5%, 10%) critical
values (3.9%, 7.5%, 12%) of the time. Recall also that in
our baseline case the W statistics exceeded their asymptotic
(1%, 5%, 10%) critical values (37%, 51%, 58%) of the time.
Evidently, the fact that we must estimate Sy accounts for
a substantial part of the difficulties with the small-sample
properties of our original Wald statistics. Note, though, that
even when Sy is known, relying on asymptotic distribution
theory would still lead us to reject hypothesis H4 too often.
But with Sy known the small-sample sizes of the individual
hypotheses are quite close to their asymptotic size.

We conclude that sampling error in St plays a substan-
tial role in the excessive small-sample size of Wald tests
involving multiple moment conditions. This suggests an al-
ternative way to estimate St. Specifically, the econometri-
cian could calculate the implied population value of St for
any given set of parameter estimates when estimating the
model. The obvious drawback to this procedure is that, for
nontrivial models, it is computationally quite burdensome.

3. CONCLUSION

This article examined the small-sample properties of
GMM-based Wald statistics. For the data-generating pro-
cesses considered, we found that the small-sample size of
these tests tended to exceed its asymptotic size. The prob-
lem became dramatically worse as the dimensionality of the
joint tests being considered increased. We offered evidence
that the bulk of the problem has to do with difficulty in es-
timating the spectral-density matrix of the GMM residuals
that is needed to conduct inference. Our results lead us to
be very skeptical that the problem can be resolved by us-
ing any of the alternative nonparametric estimators of this
matrix that have been discussed in the literature. Instead
we advocate using estimators that impose as much a priori
information as possible. Two important sources of such in-
formation are the economic theory being investigated and
the null hypothesis being tested.
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APPENDIX: THE EULER EQUATION FOR CAPITAL
IN THE RBC EXAMPLE

In this appendix we discuss our procedure for ensur-
ing that the Euler equation for capital holds exactly for the
data-generating process underlying our Monte Carlo exper-
iments. The Euler equation for K;.1 does not hold exactly
for our linearized representation of the model. This equa-
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tion is given by

E{l"ﬂ<0i1>

. [(1 _a)1— )

Yii

— =0. (A.l
Ki +1]} (A-D

As a result, when we estimate the model using artificially
generated time series from the linearized model, it is im-
portant to adjust this moment restriction appropriately. We
compute the expectation in Equation (A.1) for our linearized
model (it is approximately 2x 10~°) evaluated at the param-
eter values we use to generate the artificial data. We then
center the moment restriction around that value rather than
0. This expectation, denote by &, is computed as follows:

E{l”ﬁ<c(i1 H]}
E{1 - Bexple — cee1)[(1—a)(1 = ¢71)

x exp(ye+1 — key1) + exp(—y — Ut+1>]}~

Y

KH—l

)0 -aa-e

il

Let sy = (1 ks Ny vy gt ét), and St+1 = (S;_H S,t)/'
Any variable in the linearized model, say z, determined
at time ¢ is given as a function 7’,s;, for some vector 7,
determined by the solution to the model. Therefore, we can
write the Euler equation error simply as

e =E{1-B[(1 —a)(1 — ¢~ )exp(n5ee1)

+ exp(—7y)exp(p25t+1)]}
where

() ()

In our simulations we assume that the innovations to the ex-
ogenous variables are normally distributed. In this case the
properties of lognormal random variables can be exploited
to show that

—Te 4 Ty

Te — Tk

c=1-g|-a)i- 6 exp 45 + 5 MQFSM)

1
+exp<—7 +uEs + 5 uéFsuz)] ,

where E3 and T, are the mean and unconditional covariance
matrix of 3,4;. These are both computable as a by-product
of the solution method.

[Received May 1994. Revised December 1995.]
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