
 

CHAPTER 33 

Modeling Forward Rates 
 

Practice Questions 
 

33.1 

In a Markov model, the expected change and volatility of the short rate at time t  depend only 

on the value of the short rate at time t . In a non-Markov model, they depend on the history of 

the short rate prior to time t .  

 

33.2 
Equation (33.1) becomes  
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From equation (33.2)  
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Putting 1T T  and 
2T T t   and taking limits as t  tends to zero, this becomes  

 
( ) ( )

( ) ( ) ( )k t k t
k t k

k k

v t T v t T
dF t T v t T dt dz t

T T

        
           

   

Using ( ) 0k tv t t     
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The result in equation (33.6) follows by substituting  
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33.3 

Using the notation in Section 33.1, when s  is constant,  

 ( ) ( ) 0T TTv t T s v t T     

Integrating ( )Tv t T   

 ( ) ( )v t T sT t    

for some function  . Using the fact that ( ) 0v T T  , we must have  

 ( ) ( )v t T s T t    

Using the notation from Chapter 32, in Ho–Lee ( )( ) ( ) r T tP t T A t T e    . The standard 

deviation of the short rate is constant. It follows from Itô’s lemma that the standard deviation 

of the bond price is a constant times the bond price times T t . The volatility of the bond 



price is therefore constant times T t . This shows that Ho–Lee is consistent with a constant 

s .  

 

33.4 

Using the notation in Section 33.1, when ( )( ) ( ) a T t

Tv t T s t T e        
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for some function  . Using the fact that ( ) 0v T T  , we must have  
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Using the notation from Chapter 32, in Hull–White ( )( ) ( ) rB t TP t T A t T e    . The standard 

deviation of the short rate is constant,  . It follows from Itô’s lemma that the standard 

deviation of the bond price is ( ) ( )P t T B t T   . The volatility of the bond price is therefore 

( )B t T  . This shows that Hull–White is consistent with ( )( ) a T ts t T e    .  

 

33.5 
BGM is a similar model to HJM. It has the advantage over HJM that it involves forward rates 

that are readily observable. HJM involves instantaneous forward rates.  

 

33.6 
A ratchet cap tends to provide relatively low payoffs if a high (low) interest rate at one reset 

date is followed by a high (low) interest rate at the next reset date. High payoffs occur when a 

low interest rate is followed by a high interest rate. As the number of factors increase, the 

correlation between successive forward rates declines and there is a greater chance that a low 

interest rate will be followed by a high interest rate.  

 

 

33.7 
Equation (33.10) can be written  
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As i  tends to zero, ( ) ( )i it F t  becomes the standard deviation of the instantaneous it -

maturity forward rate at time t . Using the notation of Section 33.1, this is ( )i ts t t  . As i  

tends to zero  
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Equation (33.10) therefore becomes  
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This is the HJM result.  

 



33.8 
In a ratchet cap, the cap rate equals the previous reset rate, R , plus a spread. In the notation 

of the text it is 
jR s . In a sticky cap, the cap rate equal the previous capped rate plus a 

spread. In the notation of the text, it is min( )j jR K s  . The cap rate in a ratchet cap is 

always at least as great as that in a sticky cap. Since the value of a cap is a decreasing 

function of the cap rate, it follows that a sticky cap is more expensive.  

 

33.9 
When prepayments increase, the principal is received sooner. This increases the value of a 

PO. When prepayments increase, less interest is received. This decreases the value of an IO.  

 

33.10 
A bond yield is the discount rate that causes the bond’s price to equal the market price. The 

same discount rate is used for all maturities. An OAS is the parallel shift to the Treasury zero 

curve that causes the price of an instrument such as a mortgage-backed security to equal its 

market price.  

 

33.11 

When there are p  factors, equation (33.7) becomes  
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Equation (33.8) becomes  
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Equation coefficients of 
qdz  in  
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Equation (33.9) therefore becomes  
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Equation (33.15) follows.  

 

33.12 
From the equations in the text  
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and  
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(We employ the convention that empty sums equal zero and empty products equal one.) 

Equivalently  
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or  
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so that  
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From Ito’s lemma, the q th component of the volatility of ( )s t  is  
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The variance rate of ( )s t  is therefore,  
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33.13. 
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Equating coefficients of 
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If we assume that ( ) (0)j m j mG t G   for the purposes of calculating the swap volatility, we see 

from equation (33.17) that the volatility becomes  
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This is equation (33.19).  

 

 

33.14 
The two types of flexi caps mentioned are more difficult to value than the flexi cap 

considered in Section 33.2. There are two reasons for this.  



(i) They are American-style. (The holder gets to choose whether a caplet is exercised.) 

This makes the use of Monte Carlo simulation difficult.  

(ii) They are path dependent. In (a) the decision on whether to exercise a caplet is liable 

to depend on the number of caplets exercised so far. In (b) the exercise of a caplet is 

liable to depend on a decision taken some time earlier.  

In practice, flexi caps are sometimes valued using a one-factor model of the short rate in 

conjunction with the techniques described in Section 27.5 for handling path-dependent 

derivatives.  

The flexi cap in (b) is worth more than the flexi cap considered in Section 33.2. This is 

because the holder of the flexi cap in (b) has all the options of the holder of the flexi cap in 

the text and more. Similarly, the flexi cap in (a) is worth more than the flexi cap in (b). This 

is because the holder of the flexi cap in (a) has all the options of the holder of the flexi cap in 

(b) and more. We therefore expect the flexi cap in (a) to be the most expensive and the flexi 

cap considered in Section 33.2 to be the least expensive.  

 


