
 

CHAPTER 23 

Estimating Volatilities and Correlations 
 

Practice Questions 

 
23.1 

Define iu  as 
1 1( )i i iS S S   , where iS  is value of a market variable on day i . In the EWMA 

model, the variance rate of the market variable (i.e., the square of its volatility) calculated for 

day n  is a weighted average of the 2

n iu 
’s ( 1 2 3i …    ). For some constant   ( 0 1  ), the 

weight given to 2

1n iu  
 is   times the weight given to 2

n iu 
. The volatility estimated for day 

n , 
n , is related to the volatility estimated for day 1n , 

1n 
, by  

 
2 2 2

1 1(1 )n n nu       

This formula shows that the EWMA model has one very attractive property. To calculate the 

volatility estimate for day n , it is sufficient to know the volatility estimate for day 1n  and 

1nu  .  

 

23.2 

The EWMA model produces a forecast of the daily variance rate for day n  which is a 

weighted average of (i) the forecast for day 1n , and (ii) the square of the proportional 

change on day 1n . The GARCH (1,1) model produces a forecast of the daily variance for 

day n  which is a weighted average of (i) the forecast for day 1n , (ii) the square of the 

proportional change on day 1n , and (iii) a long run average variance rate. GARCH (1,1) 

adapts the EWMA model by giving some weight to a long run average variance rate. 

Whereas the EWMA has no mean reversion, GARCH (1,1) is consistent with a mean-

reverting variance rate model.  

 

23.3 

In this case, 
1 0 015n     and 0 5 30 0 01667nu      , so that equation (23.7) gives  

 
2 2 20 94 0 015 0 06 0 01667 0 0002281n            

The volatility estimate on day n  is therefore 0 0002281 0 015103    or 1.5103%.  

 

23.4 

Reducing   from 0.95 to 0.85 means that more weight is put on recent observations of 2

iu  

and less weight is given to older observations. Volatilities calculated with 0 85    will react 

more quickly to new information and will “bounce around” much more than volatilities 

calculated with 0 95   .  

 

23.5 

The volatility per day is 30 252 1 89%   . There is a 99% chance that a normally 

distributed variable will be within 2.57 standard deviations. We are therefore 99% confident 

that the daily change will be less than 2 57 1 89 4 86%     .  

 

 

 



23.6 

The weight given to the long-run average variance rate is 1     and the long-run average 

variance rate is (1 )     . Increasing   increases the long-run average variance rate; 

increasing   increases the weight given to the most recent data item, reduces the weight 

given to the long-run average variance rate, and increases the level of the long-run average 

variance rate. Increasing   increases the weight given to the previous variance estimate, 

reduces the weight given to the long-run average variance rate, and increases the level of the 

long-run average variance rate.  

 

23.7 

The proportional daily change is 0 005 1 5000 0 003333       . The current daily variance 

estimate is 20 006 0 000036   . The new daily variance estimate is  

 
20 9 0 000036 0 1 0 003333 0 000033511          

The new volatility is the square root of this. It is 0.00579 or 0.579%.  

 

23.8 
With the usual notation  un–1 = 20/3040 = 0.006579   so that the new variance is 

 

0.000002 + 0.06 × 0.0065792 + 0.92 × 0.012 = 0.00009660 
 

so that n = 0.00983. The new volatility estimate is therefore 0.983% per day.  

 

23.9 
(a) The volatilities and correlation imply that the current estimate of the covariance is 

0 25 0 016 0 025 0 0001       .  

(b) If the prices of the assets at close of trading are $20.5 and $40.5, the proportional 

changes are 0 5 20 0 025     and 0 5 40 0 0125    . The new covariance estimate is  

 0 95 0 0001 0 05 0 025 0 0125 0 0001106            

The new variance estimate for asset A is  

 
2 20 95 0 016 0 05 0 025 0 00027445          

so that the new volatility is 0.0166. The new variance estimate for asset B is  

 
2 20 95 0 025 0 05 0 0125 0 000601562          

so that the new volatility is 0.0245. The new correlation estimate is  

 
0 0001106

0 272
0 0166 0 0245


 

  
 

 

23.10 

The long-run average variance rate is (1     ) or 0 000004 0 03 0 0001333     . The 

long-run average volatility is 0 0001333  or 1.155%. The equation describing the way the 

variance rate reverts to its long-run average is equation (23.13)  

 
2 2[ ] ( ) ( )k

n k L n LE V V         

In this case,  

 
2 2[ ] 0 0001333 0 97 ( 0 0001333)k

n k nE          

If the current volatility is 20% per year, 0 2 252 0 0126n      . The expected variance 

rate in 20 days is  

 
20 20 0001333 0 97 (0 0126 0 0001333) 0 0001471         



The expected volatility in 20 days is therefore 0 0001471 0 0121    or 1.21% per day.  

 

23.11 

Using the notation in the text 
1 0 01u n      and 

1 0 012v n      and the most recent estimate of 

the covariance between the asset returns is 1 0 01 0 012 0 50 0 00006covn         . The 

variable 
1 1 30 0 03333nu       and the variable 

1 1 50 0 02nv      . The new estimate of the 

covariance, covn , is  

 0 000001 0 04 0 03333 0 02 0 94 0 00006 0 0000841              

The new estimate of the variance of the first asset, 
2

u n   is  

 
2 20 000003 0 04 0 03333 0 94 0 01 0 0001414            

so that 0 0001414 0 01189u n       or 1.189%. The new estimate of the variance of the 

second asset, 
2

v n   is  

 
2 20 000003 0 04 0 02 0 94 0 012 0 0001544            

so that 0 0001544 0 01242v n       or 1.242%. The new estimate of the correlation between 

the assets is therefore 0.0000841/(0.01189 × 0.01242) = 0.569.  

 

23.12 
The FTSE expressed in dollars is XY  where X  is the FTSE expressed in sterling and Y  is 

the exchange rate (value of one pound in dollars). Define ix  as the proportional change in X  

on day i  and iy  as the proportional change in Y  on day i . The proportional change in XY  is 

approximately i ix y . The standard deviation of ix  is 0.018 and the standard deviation of iy  

is 0.009. The correlation between the two is 0.4. The variance of i ix y  is therefore  

 
2 20 018 0 009 2 0 018 0 009 0 4 0 0005346             

so that the volatility of i ix y  is 0.0231 or 2.31%. This is the volatility of the FTSE 

expressed in dollars. Note that it is greater than the volatility of the FTSE expressed in 

sterling. This is the impact of the positive correlation. When the FTSE increases, the value of 

sterling measured in dollars also tends to increase. This creates an even bigger increase in the 

value of FTSE measured in dollars. Similarly, for a decrease in the FTSE.  

 

23.13 

Continuing with the notation in Problem 23.12, define 
iz  as the proportional change in the 

value of the S&P 500 on day i . The covariance between ix  and 
iz  is 

0 7 0 018 0 016 0 0002016       . The covariance between iy  and 
iz  is 

0 3 0 009 0 016 0 0000432       . The covariance between  and 
iz  equals the covariance 

between ix  and 
iz  plus the covariance between i ix y iy  and 

iz . It is  

 0 0002016 0 0000432 0 0002448      

The correlation between i ix y  and 
iz  is  

 
0 0002448

0 662
0 016 0 0231


 

  
 

Note that the volatility of the S&P 500 drops out in this calculation.  

 

 



23.14 

 
2 2 2

1 1n L n nV u        

so that  
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The variable 2

1nu 
 has a mean of 2

1n 
 and a variance of  

 
4 2 2 4

1 1 1( ) [ ( )] 2n n nE u E u      

The standard deviation of 2

1nu 
 is 

2

12 n  .   

We can write 2 2

1n nV       and 2

1nV   . Substituting for 2

1nu  into the equation for 
2 2

1n n   , we get  

( )LV a V V Z     

 

where Z is a variable with mean zero and standard deviation 2V . This equation defines 

the change in the variance over one day. It is consistent with the stochastic process 

( ) 2LdV a V V dt Vdz     

or 

( )LdV a V V dt Vdz    

when time is measured in days.  

 

Discretizing the process, we obtain 

 

( )LV a V V t V t      
 

 

where  is a random sample from a standard normal distribution.  

 

Note that we are not assuming Z is normally distributed. It is the sum of many small changes 

.V t    

 

When time is measured in years,  

 

 ( )252 252LV a V V t V t        

and the process for V  is  

 252 ( ) 252LdV a V V dt V dz    

 

23.15 See Excel file 

The worksheet monitors variances and covariances using EWMA setting initial values equal 

to the value calculated in the usual way from data. VaR is $302,459 while ES is $346,516. 

 

23.16 

The parameter  is in cell N3 of the EWMA worksheet for the previous problem is changed 

to 0.97. VaR increases to $393,300 and ES increases to $450,590. 

 

 



 

23.17 

The proportional change in the price of gold is 4 600 0 00667     . Using the EWMA 

model, the variance is updated to  

 
2 20 94 0 013 0 06 0 00667 0 00016153          

so that the new daily volatility is 0 00016153 0 01271    or 1.271% per day. Using GARCH 

(1,1), the variance is updated to  

 
2 20 000002 0 94 0 013 0 04 0 00667 0 00016264            

so that the new daily volatility is 0 00016264 0 1275    or 1.275% per day.  

 

23.18 
The proportional change in the price of silver is zero. Using the EWMA model, the variance 

is updated to  

 
20 94 0 015 0 06 0 0 0002115         

so that the new daily volatility is 0 0002115 0 01454    or 1.454% per day. Using GARCH 

(1,1), the variance is updated to  

 
20 000002 0 94 0 015 0 04 0 0 0002135           

so that the new daily volatility is 0 0002135 0 01461    or 1.461% per day. The initial 

covariance is 0 8 0 013 0 015 0 000156       .  Using EWMA, the covariance is updated to  

 0 94 0 000156 0 06 0 0 00014664         

so that the new correlation is 0 00014664 (0 01454 0 01271) 0 7934       . Using GARCH 

(1,1), the covariance is updated to  

 0 000002 0 94 0 000156 0 04 0 0 00014864           

so that the new correlation is 0 00014864 (0 01461 0 01275) 0 7977       .  

For a given   and  , the   parameter defines the long run average value of a variance or a 

covariance. There is no reason why we should expect the long run average daily variance for 

gold and silver should be the same. There is also no reason why we should expect the long 

run average covariance between gold and silver to be the same as the long run average 

variance of gold or the long run average variance of silver. In practice, therefore, we are 

likely to want to allow   in a GARCH(1,1) model to vary from market variable to market 

variable. (Some instructors may want to use this problem as a lead in to multivariate GARCH 

models.)  

 

23.19 (Excel file) 

In the spreadsheet, the first 25 observations on (vi-)
2 are ignored so that the results are not 

unduly influenced by the choice of starting values. The best values of for EUR, CAD, GBP 

and JPY were found to be 0.947, 0.898, 0.950, and 0.984, respectively. The best values of  

for S&P500, NASDAQ, FTSE100, and Nikkei225 were found to be 0.874, 0.901, 0.904, 

and 0.953, respectively.  

 

23.20 (Excel file) 

As the spreadsheets show, the optimal value of  in the EWMA model is 0.958 and the log 

likelihood objective function is 11,806.4767. In the GARCH (1,1) model, the optimal values 

of , , and  are 0.0000001330, 0.04447, and0.95343, respectively. The long-run average 

daily volatility is 0.7954% and the log likelihood objective function is 11,811.1955. 

 

 


