
   

CHAPTER 4 

Interest Rates 
 

 

Practice Questions 

 
4.1 
The rate with continuous compounding is  
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or 6.94% per annum. 

  

(a) The rate with annual compounding is  
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or 7.19% per annum.  

 

4.2 

Suppose the bond has a face value of $100. Its price is obtained by discounting the cash flows 

at 5.2%. The price is  
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If the 18-month zero rate is R , we must have  
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which  gives R=5.204%. 

 

 

4.3 
(a) With annual compounding, the return is  
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or 10% per annum. 

  

(b) With semi-annual compounding, the return is R  where  
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i.e.,  

 1 1 1 1 0488
2

R
      



so that 0 0976R   . The percentage return is therefore 9.76% per annum. 

  

(c) With monthly compounding, the return is R  where  
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so that 0 0957R   . The percentage return is therefore 9.57% per annum. 

  

(d) With continuous compounding, the return is R  where:  

 1000 1100Re   

  i.e.,  

 1 1Re    

 so that ln1 1 0 0953R     . The percentage return is therefore 9.53% per annum.  

 

4.4 
The forward rates with continuous compounding are as follows,  

 

Qtr 2 3.4% 

Qtr 3 3.8% 

Qtr 4 3.8% 

Qtr 5 4.0% 

Qtr 6 4.2% 

 

4.5 
The value of the FRA is  

 

1,000,000×0.25×(0.045−0.040) 𝑒–0.036×1.25 = 1,195 
 

or $1,195. 

 

4.6 

When the term structure is upward sloping, c a b  . When it is downward sloping, 

b a c  .  

 

4.7 
Duration provides information about the effect of a small parallel shift in the yield curve on 

the value of a bond portfolio. The percentage decrease in the value of the portfolio equals the 

duration of the portfolio multiplied by the amount by which interest rates are increased in the 

small parallel shift. The duration measure has the following limitation. It applies only to 

parallel shifts in the yield curve that are small.  

 

4.8 

The rate of interest is R  where:  
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i.e.,  
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 0 0797   

The rate of interest is therefore 7.97% per annum.  

 

4.9 

The equivalent rate of interest with quarterly compounding is R  where  
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or  
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The amount of interest paid each quarter is therefore:  
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or $100.50.  

 

 

4.10 

The bond pays $2 in 6, 12, 18, and 24 months, and $102 in 30 months. The cash price is  
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4.11 

The bond pays $4 in 6, 12, 18, 24, and 30 months, and $104 in 36 months. The bond yield is 

the value of y  that solves  
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Using the Solver or Goal Seek tool in Excel, 0 06407y    or 6.407%.  

 

4.12 

Using the notation in the text, 2m  , 0 07 2 0 8694d e     . Also  
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The formula in the text gives the par yield as 
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 To verify that this is correct, we calculate the value of a bond that pays a coupon of 7.0741% 

per year (that is 3.5370 every six months). The value is  
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verifying that 7.0741% is the par yield.  

 

4.13 

The forward rates with continuous compounding are as follows:  

Year 2:  4.0% 

Year 3:  5.1% 

Year 4:  5.7% 

Year 5:  5.7% 



 

4.14 
Taking a long position in two of the 4% coupon bonds and a short position in one of the 8% 

coupon bonds leads to the following cash flows  

 
Year 0 90 2 80 70

Year 10 200 100 100
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because the coupons cancel out. $100 in 10 years time is equivalent to $70 today. The 10-

year rate, R , (continuously compounded) is therefore given by  
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The rate is  
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or 3.57% per annum.  

 

 

4.15 

If long-term rates were simply a reflection of expected future short-term rates, we would 

expect the term structure to be downward sloping as often as it is upward sloping. (This is 

based on the assumption that half of the time investors expect rates to increase and half of the 

time investors expect rates to decrease). Liquidity preference theory argues that long term 

rates are high relative to expected future short-term rates. This means that the term structure 

should be upward sloping more often than it is downward sloping.  

 

4.16 

The par yield is the yield on a coupon-bearing bond. The zero rate is the yield on a zero-

coupon bond. When the yield curve is upward sloping, the yield on an N-year coupon-bearing 

bond is less than the yield on an N-year zero-coupon bond. This is because the coupons are 

discounted at a lower rate than the N-year rate and drag the yield down below this rate. 

Similarly, when the yield curve is downward sloping, the yield on an N-year coupon bearing 

bond is higher than the yield on an N-year zero-coupon bond.  

 

4.17 
A repo is a contract where an investment dealer who owns securities agrees to sell them to 

another company now and buy them back later at a slightly higher price. The other company 

is providing a loan to the investment dealer. This loan involves very little credit risk. If the 

borrower does not honor the agreement, the lending company simply keeps the securities. If 

the lending company does not keep to its side of the agreement, the original owner of the 

securities keeps the cash.  

 

4.18 

a) The bond’s price is  
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b) The bond’s duration is  
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c) Since, with the notation in the chapter  
 B BD y     

the effect on the bond’s price of a 0.2% decrease in its yield is  

 103.05 4 3235 0 002 0 89       

The bond’s price should increase from 103.05 to 103.94. 

 

d) With a 6.8% yield the bond’s price is  
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This is close to the answer in (c).  

 

4.19 

The 6-month Treasury bill provides a return of 6 94 6 383%    in six months. This is 

2 6 383 12 766%     per annum with semiannual compounding or 2ln(1 06383) 12 38%    

per annum with continuous compounding. The 12-month rate is 11 89 12 360%    with 

annual compounding or ln(1 1236) 11 65%    with continuous compounding.  

For the 1 1
2  year bond, we must have  
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or 11.5%. For the 2-year bond, we must have  
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where R  is the 2-year zero rate. It follows that  
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or 11.3%.  

 

4.20 

The first exchange of payments is known. Each subsequent exchange of payments is an FRA 

where interest at 5% is exchanged for interest at LIBOR on a principal of $100 million. 

Interest rate swaps are discussed further in Chapter 7.  

 
4.21 

We must solve 1.11 = (1 + R/n)n where R is the required rate and the number of times per 

year the rate is compounded. The answers are: a) 10.71%, b) 10.57%, c) 10.48%, d) 10.45%, 

e) 10.44% 

 

4.22 

The bond’s theoretical price is  

20×e-0.02×0.5+20×e-0.023×1+20×e-0.027×1.5+1020×e-0.032×2 = 1015.32 

The bond’s yield assuming that it sells for its theoretical price is obtained by solving 

20×e-y×0.5+20×e-y×1+20×e-y×1.5+1020×e-y×2 = 1015.32 

It is 3.18%. 

 

 



4.23 (Excel file) 

The answer (with continuous compounding) is 4.07%. 

 

4.24 

2.5% is paid every six months. 

a) With annual compounding, the rate is 21 025 1 0 050625     or 5.0625%  

b) With monthly compounding, the rate is 
1 612 (1 025 1) 0 04949      or 4.949%.  

c) With continuous compounding, the rate is 2 ln1 025 0 04939    or 4.939%.  

 

4.25 

The duration of Portfolio A is  
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Since this is also the duration of Portfolio B, the two portfolios do have the same 

duration.  

 

a) The value of Portfolio A is  
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When yields increase by 10 basis points, its value becomes  
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The percentage decrease in value is  
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The value of Portfolio B is  
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When yields increase by 10 basis points, its value becomes  
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The percentage changes in the values of the two portfolios for a 10 basis point 

increase in yields are therefore the same.  

 

b) When yields increase by 5%, the value of Portfolio A becomes  
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and the value of Portfolio B becomes  
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The percentage reductions in the values of the two portfolios are:  
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Since the percentage decline in value of Portfolio A is less than that of Portfolio B, 

Portfolio A has a greater convexity.  

 

 



4.26 

In the Bond Price worksheet, we input a principal of 100, a life of 2 years, a coupon rate of 

6% and semiannual settlement. The yield curve data from Table 4.2 is also input. The bond 

price is 98.38506. The DV01 is −0.018819. When the term structure rates are increased to 

5.01, 5.81, 6.41, and 6.81, the bond price decreases to 98.36625. This is a reduction of 

0.01881 which corresponds to the DV01. (The DV01 is actually calculated in DerivaGem by 

averaging the impact of a one-basis-point increase and a one-basis-point decrease.). The bond 

duration satisfies 
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In this case, B = −0.01882, B = 98.38506, and y = 0.0001 so that the duration is   

10,000 × 0.01882/98.38506 = 1.91 years.  

 

The impact of increasing all rates by 2% is to reduce the bond price by 3.691 to 94.694. The 

effect on price predicted by the DV01 is 200 × −0.01881 or −3.7638. The gamma is 0.036931 

per % per %.  In this case, the change is 2%. From equation (4.18), the convexity correction 

gamma is therefore 

   0.5 × 0.036931 × 22= 0.0739 

The price change estimated using DV01 and gamma is therefore −3.7638 + 0.0739 = 3.690 

which is very close to the actual change. 

 

The gamma  is 0.036931 per % per %. Because 1% is 0.01, gamma is 10,000 × 0.036931. 

The convexity is gamma divided the bond price.  This is 10,000 × 0.036931/98.38506 = 3.75.  

 

 

 


