
CHAPTER 27 

More on Models and Numerical Procedures 
 

Practice Questions 
 

27.1 
It follows immediately from the equations in Section 27.1 that  
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in all cases.  

 

27.2 

In this case, = 0.3×1.5=0.45. The variable fn is the Black–Scholes–Merton price when the 

variance rate is 0.252+0.25n = 0.0625+0.25n and the risk-free rate is −0.1+n×ln(1.5)=-

0.1+0.4055n. A spreadsheet can be constructed to value the option using the first (say) 20 terms 

in the Merton expansion.  
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The result is 5.47 which is also the price given by DerivaGem. 

 

27.3 

With the notation in the text the value of a call option, c  is  
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where nc  is the Black–Scholes–Merton price of a call option where the variance rate is  
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and the risk-free rate is  
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where ln(1 )k   . Similarly, the value of a put option p  is  
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where 
np  is the Black–Scholes–Merton price of a put option with this variance rate and risk-free 

rate. It follows that  
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From put–call parity  
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Because  

 (1 )n ne k  
 

it follows that  
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Using (1 )k     this becomes  
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From the expansion of the exponential function, we get  

 

0

( )n
T

n

T
e

n

 






  

 

0

( )n
T

n

T
e

n

 










 
Hence,  
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showing that put–call parity holds.  

 

27.4 
The average variance rate is  
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The volatility used should be 0 0509 0 2256    or 22.56%.  

 

27.5 
In a risk-neutral world, the process for the asset price exclusive of jumps is  
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In this case, 1k    so that the process is  
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The asset behaves like a stock paying a dividend yield of q  . This shows that, conditional on 

no jumps, call price  
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There is a probability of Te   that there will be no jumps and a probability of 1 Te   that there 



will be one or more jumps so that the final asset price is zero. It follows that there is a probability 

of Te   that the value of the call is given by the above equation and 1 Te   that it will be zero. 

Because jumps have no systematic risk, it follows that the value of the call option is  
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This is the required result. The value of a call option is an increasing function of the risk-free 

interest rate (see Chapter 11). It follows that the possibility of jumps increases the value of the 

call option in this case.  

 

27.6   

Suppose that 1S  is the stock price at time 1t  and 
TS  is the stock price at time T. From equation 

(15.3), it follows that in a risk- neutral world:  
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Since the sum of two independent normal distributions is normal with mean equal to the 

sum of the means and variance equal to the sum of the variances,  
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(a) Because  

 1 1 2 2r t r t rT   

and  
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(b) If i  and ir  are the volatility and risk-free interest rate during the i th subinterval 

( 1 2 3)i    , an argument similar to that in (a) shows that:  
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where 1t , 
2t  and 3t  are the lengths of the three subintervals. It follows that the result in 

(b) is still true. 

  

(c)  The result in (b) remains true as the time between time zero and time T  is divided into 

more subintervals, each having its own risk-free interest rate and volatility. In the limit, it 

follows that, if r  and   are known functions of time, the stock price distribution at time 

T  is the same as that for a stock with a constant interest rate and variance rate with the 

constant interest rate equal to the average interest rate and the constant variance rate 

equal to the average variance rate.  

 

27.7 
The equations are:  
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where 1 and 2 are samples from a standard normal distribution with a correlation equal to the 

correlation between S and V. 

 

27.8 
The IVF model is designed to match the volatility surface today. There is no guarantee that the 

volatility surface given by the model at future times will reflect the true evolution of the 

volatility surface.  

 

27.9 
The IVF model ensures that the risk-neutral probability distribution of the asset price at any 

future time conditional on its value today is correct (or at least consistent with the market prices 

of options). When a derivative’s payoff depends on the value of the asset at only one time the 

IVF model therefore calculates the expected payoff from the asset correctly.  

 

27.10 

In this case, 
0 1 6S   , 0 05r   , 0 08fr   , 0 15   , 1 5T   , 0 5t   . This means that  
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Figure S27.1:  Binomial tree for Problem 27.10 

 

The tree is shown in Figure S27.1. At each node, the upper number is the exchange rate, the 

middle number(s) are the minimum exchange rate(s) so far, and the lower number(s) are the 

value(s) of the option. The tree shows that the value of the option today is 0.131.  

 

 

27.11 

As v  tends to zero, the value of g  becomes T  with certainty. This can be demonstrated using 

the GAMMADIST function in Excel. By using a series expansion for the ln  function, we see 

that   becomes T . In the limit, the distribution of ln TS  therefore has a mean of 

0ln ( )S r q T   and a standard deviation of T  so that the model becomes geometric 

Brownian motion.  

 

27.12 

In this case, 0 40S  , 40K  , 0 1r   , 0 35   , 0 25T   , 0 08333t   . This means that  
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 40 S  
 

where S  denotes the geometric average. The tree is shown in Figure S27.2. At each node, the 

upper number is the stock price, the middle number(s) are the geometric average(s), and the 

lower number(s) are the value(s) of the option. The geometric averages are calculated using the 

first, the last and all intermediate stock prices on the path. The tree shows that the value of the 

option today is $1.40.  
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Figure S27.2:  Binomial tree for Problem 27.12 

 

27.13 
As mentioned in Section 27.5, for the procedure to work it must be possible to calculate the 

value of the path function at time t    from the value of the path function at time   and the 

value of the underlying asset at time t   . When aveS  is calculated from time zero until the end 

of the life of the option (as in the example considered in Section 27.5), this condition is satisfied. 

When it is calculated over the last three months, it is not satisfied. This is because, in order to 



update the average with a new observation on S , it is necessary to know the observation on S  

from three months ago that is now no longer part of the average calculation.  

 

27.14 
We consider the situation where the average at node X is 53.83. If there is an up movement to 

node Y, the new average becomes:  
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Interpolating, the value of the option at node Y when the average is 53.97 is  
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Similarly, if there is a down movement the new average will be  
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In this case, the option price is 4.416. The option price at node X when the average is 53.83 is 

therefore:  
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27.15 

Under the least squares approach, we exercise at time 1t   in paths 4, 6, 7, and 8. We exercise at 

time 2t   for none of the paths. We exercise at time 3t   for path 3. Under the exercise 

boundary parameterization approach, we exercise at time 1t   for paths 6 and 8. We exercise at 

time 2t   for path 7. We exercise at time 3t   for paths 3 and 4. For the paths sampled, the 

exercise boundary parameterization approach gives a higher value for the option. However, it 

may be biased upward. As mentioned in the text, once the early exercise boundary has been 

determined in the exercise boundary parameterization approach, a new Monte Carlo simulation 

should be carried out.  

 

 

27.16 
If the average variance rate is 0.06, the value of the option is given by Black–Scholes with a 

volatility of 0 06 24 495%   ; it is 12.460. If the average variance rate is 0.09, the value of the 

option is given by Black-Scholes with a volatility of 0 09 30 000%   ; it is 14.655. If the 

average variance rate is 0.12, the value of the option is given by Black–Scholes–Merton with a 

volatility of 0 12 34 641%   ; it is 16.506. The value of the option is the Black–Scholes–

Merton price integrated over the probability distribution of the average variance rate. It is  
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27.17 

Suppose that there are two horizontal barriers, 1H  and 2H , with 1 2H H  and that the underlying 

stock price follows geometric Brownian motion. In a trinomial tree, there are three possible 

movements in the asset’s price at each node: up by a proportional amount u ; stay the same; and 

down by a proportional amount d  where 1d u  . We can always choose u  so that nodes lie on 

both barriers. The condition that must be satisfied by u  is  
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for some integer N .  

When discussing trinomial trees in Section 21.4, the value suggested for u  was 3 te   so that 

ln 3u t  . In the situation considered here, a good rule is to choose ln u  as close as possible 

to this value, consistent with the condition given above. This means that we set  
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and int( )x  is the integral part of x . This means that nodes are at values of the stock price equal 

to 1H , 1H u , 2

1H u , …, 
1 2

NH u H   

Normally, the trinomial stock price tree is constructed so that the central node is the initial stock 

price. In this case, it is unlikely that the current stock price happens to be 
1

iH u  for some i . To 

deal with this, the first trinomial movement should be from the initial stock price to 1

1

iH u  , 
1

iH u  

and 1

1

iH u   where i  is chosen so that 
1

iH u  is closest to the current stock price. The probabilities 

on all branches of the tree are chosen, as usual, to match the first two moments of the stochastic 

process followed by the asset price. The approach works well except when the initial asset price 

is close to a barrier.  

 

27.18 

In this case, 0 5t   , 0 03   , 0 25   , 0 06r    and 0q   so that u=1.1934, d=0.8380, 

1 0305a   , pu = 0.5767, pd = 0.4084, and the probability on default branches is 0.0149. This 

leads to the tree shown in Figure S27.3. The bond is called at nodes B and D and this forces 

exercise. Without the call the value at node D would be 142.92, the value at node B would be 

122.87, and the value at node A would be 108.29. The value of the call option to the bond issuer 

is therefore  108.29 −106.31 = 1.98.  



 
 

Figure S27.3:  Tree for Problem 27.18 

 

 

27.19 

Using three-month time steps, the tree parameters are t=0.25, 1 1052u   , 0 9048d   , 

1 0050a   , 0 5000p   . The tree is shown in Figure S27.4. The alternative minimum values of 

the stock price are shown in the middle box at each node. The value of the floating lookback 

option is 40.47.) DerivaGem shows that the value given by the analytic formula is 53.38. This is 

higher than the value given by the tree because the tree assumes that the stock price is observed 

only three times when the minimum is calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S27.4:  Tree for Problem 27.19 
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27.20 

We construct a tree for ( ) ( ) ( )Y t G t S t   where ( )G t  is the minimum value of the index to date 

and ( )S t  is the value of the index at time t . The tree is shown in Figure S27.5. It values the 

option in units of the stock index. This means that we value an instrument that pays off 1 ( )Y t . 

The tree shows that the value of the option is 0.1012 units of the stock index or 400×0.1012 or 

40.47 dollars, as given by Figure S27.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S27.5    Tree for Problem 27.20 

 

27.21 
(a) The six-month call option with a strike price of 1.05 should be valued with a volatility of 

13.4% and is worth 0.01829. The call option with a strike price of 1.10 should be valued 

with a volatility of 14.3% and is worth 0.00959. The bull spread is therefore worth 

0 01829 0 00959 0 00870     .  

 

(b) We now ask what volatility, if used to value both options, gives this price. Using the 

DerivaGem Application Builder in conjunction with Goal Seek, we find that the answer 

is 11.42%.  

 

(c) Yes, this does support the contention at the beginning of the chapter that the correct 

volatility for valuing exotic options can be counterintuitive. We might reasonably expect 

the volatility to be between 13.4% (the volatility used to value the first option) and 

14.3%  (the volatility used to value the second option). 11.42% is well outside this range. 

The reason why the volatility is relatively low is as follows. The option provides the 

same payoff as a regular option with a 1.05 strike price when the asset price is between 

1.05 and 1.10 and a lower payoff when the asset price is over 1.10. The implied 

probability distribution of the asset price (see Figure 20.2) is less heavy than the 

lognormal distribution in the 1.05 to 1.10 range and heavier than the lognormal 

distribution in the 1 10   range. This means that using a volatility of 13.4% (which is 

the implied volatility of a regular option with a strike price of 1.05) will give a price that 

is too high. 
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(d) The bull spread provides a payoff at only one time. It is therefore correctly valued by the 

IVF model.  

 

27.22 
Consider first the least squares approach. At the two-year point, the option is in the money for 

paths 1, 3, 4, 6, and 7. The five observations on S  are 1.08, 1.07, 0.97, 0.77, and 0.84. The five 

continuation values are 0, 0 060 10e  , 0 060 21e  , 0 060 23e  , 0 060 12e  . The best fit continuation 

value is  
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The best fit continuation values for the five paths are 0.0495, 0.0605, 0.1454, 0.1785, and 

0.1876. These show that the option should be exercised for paths 1, 4, 6, and 7 at the two-year 

point.  

There are six paths at the one-year point for which the option is in the money. These are paths 1, 

4, 5, 6, 7, and 8. The six observations on S  are 1.09, 0.93, 1.11, 0.76, 0.92, and 0.88. The six 

continuation values are 0 060 05e  , 0 060 16e  , 0, 0 060 36e  , 0 060 29e  , and 0. The best fit 

continuation value is  

 

 
22 055 3 317 1 341S S      

The best fit continuation values for the six paths are 0.0327, 0.1301, 0.0253, 0.3088, 0.1385, and 

0.1746. These show that the option should be exercised at the one-year point for paths 1, 4, 6, 7, 

and 8. The value of the option if not exercised at time zero is therefore  
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or 0.136. Exercising at time zero would yield 0.13. The option should therefore not be exercised 

at time zero and its value is 0.136.  

Consider next the exercise boundary parameterization approach. At time two years, it is 

optimal to exercise when the stock price is 0.84 or below. At time one year, it is optimal to 

exercise whenever the option is in the money. The value of the option assuming no early exercise 

at time zero is therefore  
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or  0.139. Exercising at time zero would yield 0.13. The option should therefore not be exercised 

at time zero. The value at time zero is 0.139. However, this tends to be high. As explained in the 

text, we should use one Monte Carlo simulation to determine the early exercise boundary. We 

should then carry out a new Monte Carlo simulation using the early exercise boundary to value 

the option.  

 

27.23 (Excel file) 
See Excel file. The results show that the SABR model can fit a wide variety of smiles. 



 

 

 

27.24 

(a) In this case, 1t  , 0 02 0 7 0 02857       , 0 25   , 0 05r   , 0q  , u=1.2840, 

d=0.7788, 1 0513a   , pu = 0.5827, pd = 0.3891, and the probability of a default is 0.0282. The 

calculations are shown in Figure S27.6. The values at the nodes include the value of the coupon 

paid just before the node is reached. The value of the convertible is 108.33.  

(b) The value if there is no conversion calculated from the same tree is  94.08. The value of the 

conversion option is therefore 14.25.  

(c) If it is called at node D just before the coupon payment the bond is converted but the coupon 

payment is not received, this reduces the value at the node to 144.26. Calling at node B will lead 

to conversion reducing the value to $115.36. The value of the bond at node A is then 102.20.  

(d) A dividend payment would affect the way the tree is constructed as described in Chapter 21.  

 
 

 

Figure S27.6:  Tree for Problem 27.24 

 

27.25 

Suppose that U is the value if there is an up movement and D is the value if there is a down 

movement. Because the value is zero in the event of a default, the text shows that the value at a 

node is  
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which proves the result.
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G 
52.93 

D 105.00 
41.22 

B 149.26 H 
32.10 32.10 

A 126.62 E 105.00 
25.00 25.00 

108.33 C 102.87 I 
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100.90 F 105.00 
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