
 

CHAPTER 15 

The Black-Scholes-Merton Model 
 

Practice Questions 

 
15.1 
The Black–Scholes–Merton option pricing model assumes that the probability distribution of 

the stock price in 1 year (or at any other future time) is lognormal. It assumes that the 

continuously compounded rate of return on the stock during the year is normally distributed.  

 

 

 

15.2 

The standard deviation of the percentage price change in time t  is t   where   is the 

volatility. In this problem, 0 3    and, assuming 252 trading days in one year, 

1 252 0 004t      so that 0 3 0 004 0 019t        or 1.9%.  

 

15.3 

In this case, 0 50S  , 50K  , 0 1r   , 0 3   , 0 25T   , and  
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The European put price is  

 
0 1 0 2550 ( 0 0917) 50 ( 0 2417)N e N         

 

 
0 1 0 2550 0 4634 50 0 4045 2 37e            

or $2.37.  

 

15.4 
In this case, we must subtract the present value of the dividend from the stock price before 

using Black–Scholes–Merton. Hence, the appropriate value of 0S  is  

 
0 1667 0 1

0 50 1 50 48 52S e         

As before, 50K  , 0 1r   , 0 3   , and 0 25T   . In this case,  
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The European put price is  

 
0 1 0 2550 (0 1086) 48 52 ( 0 0414)N e N         

 

 
0 1 0 2550 0 5432 48 52 0 4835 3 03e             

or $3.03.  

 

 

 



15.5 

In this case, 0 15   and 0 25  . From equation (15.7), the probability distribution for the 

rate of return over a two-year period with continuous compounding is  
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that is, 

 
)03125.0,11875.0(  

  

The expected value of the return is 11.875% per annum and the standard deviation is 17.7% 

per annum.  

 

 

 

15.6 

a) The required probability is the probability of the stock price being above $40 in six 

months. Suppose that the stock price in six months is 
TS   
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that is, 

 2247.0,687.3~ln TS  

  

Since ln 40 3 689  , we require the probability of ln(ST)>3.689. This is  
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Since N(0.008) = 0.5032, the required probability is 0.4968.  

b) In this case, the required probability is the probability of the stock price being less 

than $40 in six months time. It is  

 1 0 4968 0 5032     

 

15.7 

From equation (15.3), 
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95% confidence intervals for ln TS  are therefore,  
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95% confidence intervals for 
TS  are therefore,  
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that is, 
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15.8 

This problem relates to the material in Section 15.3 and Business Snapshot 15.1. The 

statement is misleading in that a certain sum of money, say $1,000, when invested for 10 

years in the fund would have realized a return (with annual compounding) of less than 20% 

per annum.  

The average of the returns realized in each year is always greater than the return per annum 

(with annual compounding) realized over 10 years. The first is an arithmetic average of the 

returns in each year; the second is a geometric average of these returns.  

 

15.9 

a)  At time t, the expected value of ln ST  is from equation (15.3), 

   
2ln ( / 2)( )S T t     

     In a risk-neutral world, the expected value of  ln ST is therefore,  
2ln ( / 2)( )S r T t    

      Using risk-neutral valuation, the value of the derivative at time t is  
( ) 2[ln ( / 2)( )]r T te S r T t      

 

b) If 
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The left-hand side of the Black–Scholes–Merton differential equation is 
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Hence, the differential equation is satisfied.  

 

 

15.10 

If ( ) ( ) nG S t h t T S    then n

tG t h S    , 1nG S hnS     , and 2 2 2( 1) nG S hn n S       

where 
th h t    . Substituting into the Black–Scholes–Merton differential equation, we 

obtain  
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The derivative is worth nS  when t T . The boundary condition for this differential equation 

is therefore ( ) 1h T T    



The equation  

 
2[0 5 ( 1) ( 1)]( )( ) n n r n T th t T e        

satisfies the boundary condition since it collapses to 1h   when t T . It can also be shown 

that it satisfies the differential equation in (a). Alternatively, we can solve the differential 

equation in (a) directly. The differential equation can be written  
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The solution to this is  
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15.11 

In this case, 0 52S  , 50K  , 0 12r   , 0 30   and 0 25T   .  
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The price of the European call is  

 
0 12 0 2552 (0 5365) 50 (0 3865)N e N       

 
0 0352 0 7042 50 0 6504e        

 5 06   

or $5.06.  

 

15.12 

In this case, 0 69S  , 70K  , 0 05r   , 0 35   and 0 5T   .  
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The price of the European put is  

 
0 05 0 570 (0 0809) 69 ( 0 1666)e N N         

 
0 02570 0 5323 69 0 4338e        

 6 40   

or $6.40.  

 

15.13 

Using the notation of Section 15.12, 1 2 1D D  , 2( ) 0 1 0 1667(1 ) 65(1 ) 1 07
r T t

K e e
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It is never optimal to exercise the call option early. DerivaGem shows that the value of the 



option is 10 94 .  

 

15.14 

In the case, 2 5c   , 0 15S  , 13K  , 0 25T   , 0 05r   . The implied volatility must be 

calculated using an iterative procedure.  

A volatility of 0.2 (or 20% per annum) gives 2 20c   . A volatility of 0.3 gives 2 32c   . A 

volatility of 0.4 gives 2 507c   . A volatility of 0.39 gives 2 487c   . By interpolation, the 

implied volatility is about 0.396 or 39.6% per annum.  

The implied volatility can also be calculated using DerivaGem. Select equity as the 

Underlying Type in the first worksheet. Select Black–Scholes European as the Option Type. 

Input stock price as 15, the risk-free rate as 5%, time to exercise as 0.25, and exercise price as 

13. Leave the dividend table blank because we are assuming no dividends. Select the button 

corresponding to call. Select the implied volatility button. Input the Price as 2.5 in the second 

half of the option data table. Hit the Enter key and click on calculate. DerivaGem will show 

the volatility of the option as 39.64%.  

 

15.15 

(a) Since ( )N x  is the cumulative probability that a variable with a standardized normal 

distribution will be less than x , ( )N x  is the probability density function for a 

standardized normal distribution, that is,  
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(b)  1 2( ) ( )N d N d T t     
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Because  
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it follows that  
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As a result,  
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which is the required result.  

 

       (c) 
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Hence,  



 1 1d

S S T t




 
 

Similarly,  

 

2

2
2

ln ln ( )( )S K r T t
d

T t





   



 

and  

 2 1d

S S T t




 
 

Therefore, 

 1 2d d

S S

 


 
 

 

(d) 
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From (b),  

 
( )

1 2( ) ( )r T tSN d Ke N d    

Hence,  

 
( ) 1 2

2 1( ) ( )r T t d dc
rKe N d SN d

t t t

     
    

   
 

Since  

 1 2d d T t    

 

 
1 2 ( )

d d
T t

t t t


  
  

  
 

 

 
2 T t


 


 

Hence,  

 
( )

2 1( ) ( )
2

r T tc
rKe N d SN d

t T t

 
  

   
 

(e)     From differentiating the Black–Scholes–Merton formula for a call price, we obtain  
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From the results in (b) and (c), it follows that  
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(f) Differentiating the result in (e) and using the result in (c), we obtain  
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 From the results in d) and e)  
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This shows that the Black–Scholes–Merton formula for a call option does indeed 

satisfy the Black–Scholes–Merton differential equation.  

 

(g) Consider what happens in the formula for c  in part (d) as t  approaches T . If S K , 

1d  and 2d  tend to infinity and 1( )N d  and 
2( )N d  tend to 1. If S K , 1d  and 2d  tend 

to minus infinity and 1( )N d
 
and 

2( )N d  tend to zero. It follows that the formula for c  

tends to max( 0)S K  .  

 

15.16 

The Black–Scholes–Merton formula for a European call option is  

 
0 1 2( ) ( )rTc S N d Ke N d   

so that  
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The Black–Scholes–Merton formula for a European put option is  
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This shows that the put–call parity result  
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15.17 

Using DerivaGem, we obtain the following table of implied volatilities:  

 
Stock Price Maturity = 3 months Maturity = 6 months Maturity = 12 months 



45 37.78 34.99 34.02 

50 34.15 32.78 32.03 

55 31.98 30.77 30.45 

 

To calculate the first number, select equity as the Underlying Type in the first worksheet. 

Select Black–Scholes European as the Option Type. Input stock price as 50, the risk-free rate 

as 5%, time to exercise as 0.25, and exercise price as 45. Leave the dividend table blank 

because we are assuming no dividends. Select the button corresponding to call. Select the 

implied volatility button. Input the Price as 7.0 in the second half of the option data table. Hit 

the Enter key and click on calculate. DerivaGem will show the volatility of the option as 

37.78%. Change the strike price and time to exercise and recompute to calculate the rest of 

the numbers in the table.  

The option prices are not exactly consistent with Black–Scholes–Merton. If they were, the 

implied volatilities would be all the same. We usually find in practice that low strike price 

options on a stock have higher implied volatilities than high strike price options on the same 

stock. This phenomenon is discussed in Chapter 20.  

 

15.18 

Black’s approach in effect assumes that the holder of option must decide at time zero whether 

it is a European option maturing at time 
nt  (the final ex-dividend date) or a European option 

maturing at time T . In fact, the holder of the option has more flexibility than this. The holder 

can choose to exercise at time 
nt  if the stock price at that time is above some level but not 

otherwise. Furthermore, if the option is not exercised at time 
nt , it can still be exercised at 

time T .  

It appears that Black’s approach should understate the true option value. This is because the 

holder of the option has more alternative strategies for deciding when to exercise the option 

than the two strategies implicitly assumed by the approach. These alternative strategies add 

value to the option.  

However, this is not the whole story! The standard approach to valuing either an American or 

a European option on a stock paying a single dividend applies the volatility to the stock price 

less the present value of the dividend. (The procedure for valuing an American option is 

explained in Chapter 21.) Black’s approach when considering exercise just prior to the 

dividend date applies the volatility to the stock price itself. Black’s approach therefore 

assumes more stock price variability than the standard approach in some of its calculations. 

In some circumstances, it can give a higher price than the standard approach.  

 

15.19 
With the notation in the text  
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It follows from the conditions established in Section 15.12 that the option should never be 

exercised early.  

The present value of the dividends is  

 
0 3333 0 08 0 8333 0 081 5 1 5 2 864e e             

The option can be valued using the European pricing formula with:  
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1 2( ) 0 4783 ( ) 0 3692N d N d      

and the call price is  

 
0 08 1 2547 136 0 4783 55 0 3692 4 17e            

or $4.17.  

 

15.20 

The probability that the call option will be exercised is the probability that TS K  where 
TS  

is the stock price at time T . In a risk neutral world  

 TTrSST

22

0 ,)2/(ln~ln    

The probability that TS K  is the same as the probability that ln lnTS K . This is  
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 2( )N d  

 

The expected value at time T  in a risk neutral world of a derivative security which pays off 

$100 when TS K  is therefore  

 2100 ( )N d  

From risk neutral valuation, the value of the security at time zero is  

 
2100 ( )rTe N d

 

 

15.21 
If the perpetual American put is exercised when S=H, it provides a payoff of (K−H). We 

obtain its value, by setting Q=K−H in equation (15.17), as 
22 /2/2
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dV/dH is zero when 
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rK
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and, for this value of H, d2V/dH2 is negative indicating that it gives the maximum value of V. 

 

The value of the perpetual American put is maximized if it is exercised when S equals this 

value of H. Hence the value of the perpetual American put is   
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when H=2rK/(2r+2). The value is 
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This is consistent with the more general result produced in Chapter 26 for the case where the 

stock provides a dividend yield. 

 

15.22 
The answer is no. If markets are efficient, they have already taken potential dilution into 

account in determining the stock price. This argument is explained in Business Snapshot 

15.3.  

 
15.23 

The Black–Scholes–Merton price of the option is given by setting 0 50S  , 50K  , 

0 05r   , 0 25   , and 5T  . It is 16.252. From an analysis similar to that in Section 

15.10, the cost to the company of the options is  

 
10

16 252 12 5
10 3

   


 

or about $12.5 per option. The total cost is therefore 3 million times this or $37.5 million. If 

the market perceives no benefits from the options, the stock price will fall by $3.75.  

 
15.24 

  

(a) 0. %13.125218   

(b) 0. %50.25218   

(c) 0. %20.51218   



 

15.25 

In this case, 0 50S  , 0 18   and 0 30  . The probability distribution of the stock price 

in two years, 
TS , is lognormal and is, from equation (15.3), given by:  









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






 23.0,2

2

09.0
18.050ln~ln 2TS  

  

that is 

)42.0,18.4(~ln 2TS  

  

The mean stock price is from equation (15.4)  

 
0 18 2 0 3650 50 71 67e e      

and the standard deviation is from equation (15.5) 

 
0 18 2 0 09 250 1 31 83e e        

95% confidence intervals for ln TS  are:  

 4 18 1 96 0 42 and 4 18 1 96 0 42           

that is 
 3 35 and 5 01   

These correspond to 95% confidence limits for 
TS  of  

 
3 35 5 01ande e 

 

that is 
 28 52 and 150 44   

 

15.26  (Excel file) 

The calculations are shown in the table below:  

 
20 09471 0 01145i iu u      

and an estimate of standard deviation of weekly returns is:  

 

20 01145 0 09471
0 02884

13 14 13

 
  


 

The volatility per annum is therefore 0 02884 52 0 2079    or 20.79%. The standard error of 

this estimate is  

 
0 2079

0 0393
2 14


 


 

or 3.9% per annum.  

 

 

Week Closing Stock Price 

($) 

Price Relative 

1i iS S    

Weekly Return 

1ln( )i i iu S S    

1 30.2   

2 32.0 1.05960 0.05789 

3 31.1 0.97188 –0.02853 

4 30.1 0.96785 –0.03268 

5 30.2 1.00332 0.00332 

6 30.3 1.00331 0.00331 

7 30.6 1.00990 0.00985 



8 33.0 1.07843 0.07551 

9 32.9 0.99697 –0.00303 

10 33.0 1.00304 0.00303 

11 33.5 1.01515 0.01504 

12 33.5 1.00000 0.00000 

13 33.7 1.00597 0.00595 

14 33.5 0.99407 –0.00595 

15 33.2 0.99104 –0.00900 

 

 

15.27 
The easiest way of proving this is to note that 

max(V−K, 0) – max(K−V, 0) = V−K 

so that 

E[max(K−V, 0)] = E[max(V−K, 0)]−E(V)+K 

                                  = E(V)N(d1) – KN(d2) − E(V) + K 

 

Because 1−N(d2) = N(−d2) and 1−N(d1) = N(−d1), this immediately gives the required result. 

(It can also be proved in the same way as the first result is proved in the appendix.) 

Because 

 0,max(ˆ
T

rT SKEep    

and 

rT

T eSSE 0)(ˆ   

The Black–Scholes–Merton pricing formula for a put option follows. 

 


