
 

CHAPTER 26 

Exotic Options 
 

Practice Questions 
 

26.1 
A forward start option is an option that is paid for now but will start at some time in the 

future. The strike price is usually equal to the price of the asset at the time the option starts. A 

chooser option is an option where, at some time in the future, the holder chooses whether the 

option is a call or a put.  

 

26.2 

A floating lookback call provides a payoff of 
minTS S . A floating lookback put provides a 

payoff of max TS S . A combination of a floating lookback call and a floating lookback put 

therefore provides a payoff of 
max minS S .  

 

26.3 
No, it is never optimal to choose early. The resulting cash flows are the same regardless of 

when the choice is made. There is no point in the holder making a commitment earlier than 

necessary. This argument applies when the holder chooses between two American options 

providing the options cannot be exercised before the 2-year point. If the early exercise period 

starts as soon as the choice is made, the argument does not hold. For example, if the stock 

price fell to almost nothing in the first six months, the holder would choose a put option at 

this time and exercise it immediately.  

 

26.4 
The payoffs from c1, c2, c3, p1, p2, p3 are, respectively, as follows:  

  max( 0)S K    

 max( 0)TS S    

 max( 0)TS K    

 max( 0)K S    

 max( 0)TS S    

 max( 0)TK S    

The payoff from 
1 1c p  is always S K ; The payoff from 2 2c p  is always TS S ; The 

payoff from 3 3c p  is always 
TS K ; It follows that  

 
1 1 2 2 3 3c p c p c p      

or  

 
1 2 3 1 2 3c c c p p p      

 

26.5 

Substituting for c , put-call parity gives  

 2 1 2 1( ) ( )

1max( ) max
q T T r T T

c p p p S e Ke
    

 
 

      

 



 2 1 2 1( ) ( )

1max 0
q T T r T T

p S e Ke
    

 
 

     

This shows that the chooser option can be decomposed into:  

1.  A put option with strike price K and maturity 2T ; and  

2.  2 1( )q T T
e
   call options with strike price 2 1( )( )r q T T

Ke
    and maturity 

1T .  

 

26.6 

Consider the formula for doc  when H K   

 
2

do 0 1 1 0 0 1( ) ( ) ( ) ( )qT rT qTc S N x e Ke N x T S e H S N y        

 

 
2 2

0 1( ) ( )rTKe H S N y T      

Substituting H K  and noting that  

 

2

2

2r q 




  
  

we obtain 1 1x d  so that  

 
2 2 2

do 0 0 1 0 1( ) ( ) ( ) ( )qT rTc c S e H S N y Ke H S N y T           

The formula for dic  when H K  is  

 
2 2 2

di 0 0 0( ) ( ) ( ) ( )qT rTc S e H S N y Ke H S N y T          

Since 
do dic c c    

 
2 2 2

do 0 0 0( ) ( ) ( ) ( )qT rTc c S e H S N y Ke H S N y T           

From the formulas in the text 
1y y  when H K . The two expression for doc  are therefore 

equivalent when H K   

 

26.7 
The option is in the money only when the asset price is less than the strike price. However, in 

these circumstances the barrier has been hit and the option has ceased to exist.  

 

26.8 
The argument is similar to that given in Chapter 11 for a regular option on a non-dividend-

paying stock. Consider a portfolio consisting of the option and cash equal to the present value 

of the terminal strike price. The initial cash position is  

 
gT rTKe 

 

By time   ( 0 T  ), the cash grows to  

 
( ) ( )( )r T gT g r g TKe Ke e         

Since r g , this is less than gKe   and therefore is less than the amount required to exercise 

the option. It follows that, if the option is exercised early, the terminal value of the portfolio 

is less than 
TS . At time T  the cash balance is gTKe . This is exactly what is required to 

exercise the option. If the early exercise decision is delayed until time T , the terminal value 

of the portfolio is therefore  

 max[ ]gT

TS Ke  

This is at least as great as 
TS . It follows that early exercise cannot be optimal.  

 

26.9 
When the strike price of an option on a non-dividend-paying stock is defined as 10% greater 



that the stock price, the value of the option is proportional to the stock price. The same 

argument as that given in the text for forward start options shows that if 1t  is the time when 

the option starts and 
2t  is the time when it finishes, the option has the same value as an 

option starting today with a life of 2 1t t  and a strike price of 1.1 times the current stock 

price.  

 

26.10 
Assume that we start calculating averages from time zero. The relationship between 

( )A t t  and ( )A t  is  

 ( ) ( ) ( ) ( )A t t t t A t t S t t        

where ( )S t  is the stock price at time t  and terms of higher order than t  are ignored. If we 

continue to ignore terms of higher order than t , it follows that  

 ( ) ( ) 1 ( )
t t

A t t A t S t
t t

  
     

 
 

Taking limits as t  tends to zero  

 
( ) ( )

( )
S t A t

dA t dt
t


  

The process for ( )A t  has a stochastic drift and no dz  term. The process makes sense 

intuitively. Once some time has passed, the change in S  in the next small portion of time has 

only a second order effect on the average. If S  equals A  the average has no drift; if S A  

the average is drifting up; if S A  the average is drifting down.  

 

26.11 
In an Asian option, the payoff becomes more certain as time passes and the delta always 

approaches zero as the maturity date is approached. This makes delta hedging easy. Barrier 

options cause problems for delta hedgers when the asset price is close to the barrier because 

delta is discontinuous.  

 

26.12 
The value of the option is given by the formula in the text  

 2 1

0 1 0 2( ) ( )
q T q T

V e N d U e N d
 

  

where  

 

2

0 0 1 2
1

ln( ) ( 2)V U q q T
d

T





    
  

 2 1d d T   

and  

 
2 2

1 2 1 22        

In this case, 520,10 V , 16000 U , 1 0q  , 2 0q  , 1T  , and  

 
2 20 2 0 2 2 0 7 0 2 0 2 0 1549               

Because d1=−0.2536  and 
2 0 4086d    , the option price is  

 
54.61)4086.0(1600)2536.0(1520  NN  

  

or $61.54.  



 

26.13 
No. If the future’s price is above the spot price during the life of the option, it is possible that 

the spot price will hit the barrier when the futures price does not.  

 

26.14 
(a) The put–call relationship is  

 1

1

rT
cc K e pc c


    

where cc  is the price of the call on the call, pc  is the price of the put on the call, c  is 

the price today of the call into which the options can be exercised at time 
1T , and 

1K  

is the exercise price for cc  and pc . The proof is similar to that in Chapter 11 for the 

usual put–call parity relationship. Both sides of the equation represent the values of 

portfolios that will be worth 
1max( )c K  at time 

1T . Because  

 ( ) ( ) ( ) ( ) ( )M a b N a M a b N b M a b              

and  
 ( ) 1 ( )N x N x    

we obtain  

 2 2 1

1 2 2 1( ) ( )
qT rT rT

cc pc Se N b K e N b K e
  

     

Since  

 2 2

1 2 2( ) ( )
qT rT

c Se N b K e N b
 

   

put–call parity is consistent with the formulas.  

 

(b) The put–call relationship is  

 1

1

rT
cp K e pp p


    

where cp  is the price of the call on the put, pp  is the price of the put on the put, p  is 

the price today of the put into which the options can be exercised at time 
1T , and 

1K  

is the exercise price for cp  and pp . The proof is similar to that in Chapter 11 for the 

usual put–call parity relationship. Both sides of the equation represent the values of 

portfolios that will be worth 1max( )p K  at time 
1T . Because  

 ( ) ( ) ( ) ( ) ( )M a b N a M a b N b M a b              

and  
 ( ) 1 ( )N x N x    

it follows that  

 2 2 1

1 2 2 1( ) ( )
qT rT rT

cp pp Se N b K e N b K e
  

        

Because  

 2 2

1 2 2( ) ( )
qT rT

p Se N b K e N b
 

      

put–call parity is consistent with the formulas.  

 

26.15 
As we increase the frequency, we observe a more extreme minimum which increases the 

value of a floating lookback call.  

 

26.16 
As we increase the frequency with which the asset price is observed, the asset price becomes 

more likely to hit the barrier and the value of a down-and-out call goes down. For a similar 

reason the value of a down-and-in call goes up. The adjustment mentioned in the text, 



suggested by Broadie, Glasserman, and Kou, moves the barrier further out as the asset price 

is observed less frequently. This increases the price of a down-and-out option and reduces the 

price of a down-and-in option.  

 

26.17 
If the barrier is reached, the down-and-out option is worth nothing while the down-and-in 

option has the same value as a regular option. If the barrier is not reached, the down-and-in 

option is worth nothing while the down-and-out option has the same value as a regular 

option. This is why a down-and-out call option plus a down-and-in call option is worth the 

same as a regular option. A similar argument cannot be used for American options.  

 

26.18 

This is a cash-or-nothing call. The value is 0 08 0 5

2100 ( )N d e     where  

 

2

2

ln(960 1000) (0 08 0 03 0 2 2) 0 5
0 1826

0 2 0 5
d

         
   

  
 

Since 
2( ) 0 4276N d   ,  the value of the derivative is $41.08.  

 

26.19 
This is a regular call with a strike price of $20 that ceases to exist if the futures price hits $18. 

With the notation in the text 18H  , 20K  , 19S  , 0 05r   , 0 4   , 0 05q   , 

0 25T   . From this 0 5    and  

 

2ln[18 (19 20)]
0 5 0 4 0 25 0 69714

0 4 0 25
y

 
        

 
 

The value of a down-and-out call plus a down-and-in call equals the value of a regular call. 

Substituting into the formula given when H K  we get di 0 4638c   . The regular Black–

Scholes–Merton formula gives 1 0902c   . Hence, 
do 0 6264c   . (These answers can be 

checked with DerivaGem.)  

 

26.20 
DerivaGem shows that the value is 53.38. Note that the Minimum to date and Maximum to 

date should be set equal to the current value of the index for a new deal. (See material on 

DerivaGem at the end of the book.)  

 

26.21 
We can use the analytic approximation given in the text.  

 

0 05 0 5

1

( 1) 30
30 378

0 05 0 5

e
M

    
  

  
 

Also 
2 936 9M    so that 17 41%   . The option can be valued as a futures option with 

0 30 378F   , 30K  , 5r % , 17 41%   , and 0 5t   . The price is 1.637.  

 

26.22 
The price of a regular European call option is 7.116. The price of the down-and-out call 

option is 4.696. The price of the down-and-in call option is 2.419.  

The price of a regular European call is the sum of the prices of down-and-out and down-and-

in options.  

26.23 



When r q  in the expression for a floating lookback call in Section 26.11 1 3a a  and 

1 0 minln( )Y S S   so that the expression for a floating lookback call becomes  

 
0 1 min 2( ) ( )qT rTS e N a S e N a   

As q  approaches r  in Section 26.13, we get  

 
1 0M S  

 

 

2 2 2 2

0 0
2 4 2 2 4

2 2 1
Te S S T

M
T T

 

 


 

 
 

A proof of these results requires L’Hopital’s rule where to get the limit of 0/0 we differentiate 

the numerator and denominator. 

 

26.24 

In this case, DerivaGem shows that 
1( ) 0 1772Q K   ,

2( ) 1 1857Q K   , 3( ) 4 9123Q K   , 

4( ) 14 2374Q K   , 
5( ) 45 3738Q K   , 

6( ) 35 9243Q K   , 
7( ) 20 6883Q K   , 

8( ) 11 4135Q K   , 

9( ) 6 1043Q K   . ˆ( ) 0 0502E V   . The value of the variance swap is $0.51 million.  

 

26.25 

When q=0, w=r−2/2 so that 1=1 and 2=2r/2. This is consistent with the results for 

perpetual derivatives in Section 15.6.  

 

26.26 
The price of the option is 3.528.  

(a) The option price is a humped function of the stock price with the maximum option 

price occurring for a stock price of about $57. If you could choose the stock price 

there would be a trade off. High stock prices give a high probability that the option 

will be knocked out. Low stock prices give a low potential payoff. For a stock price 

less than $57, delta is positive (as it is for a regular call option); for a stock price 

greater than $57, delta is negative.  

(b) Delta increases up to a stock price of about 45 and then decreases. This shows that 

gamma can be positive or negative.  

(c) The option price is a humped function of the time to maturity with the maximum 

option price occurring for a time to maturity of 0.5 years. This is because too long a 

time to maturity means that the option has a high probability of being knocked out; 

too short a time to maturity means that the option has a low potential payoff. For a 

time to maturity less than 0.5 years, theta is negative (as it is for a regular call option); 

for a time to maturity greater than 0.5 years, the theta of the option is positive.  

(d) The option price is also a humped function of volatility with the maximum option 

price being obtained for a volatility of about 20%. This is because too high a volatility 

means that the option has a high probability of being knocked out; too low volatility 

means that the option has a low potential payoff. For volatilities less than 20%, vega 

is positive (as it is for a regular option); for volatilities above 20% vega is negative.  

 

26.27 
(a) Both approaches use a one call option with a strike price of 50 and a maturity of 0.75. 

In the first approach, the other 15 call options have strike prices of 60 and equally 

spaced times to maturity. In the second approach, the other 15 call options have strike 



prices of 60, but the spacing between the times to maturity decreases as the maturity 

of the barrier option is approached. The second approach to setting times to maturity 

produces a better hedge. This is because the chance of the barrier being hit at time t  is 

an increasing function of t . As t  increases, it therefore becomes more important to 

replicate the barrier at time t .  

(b) By using either trial and error or the Solver tool, we see that we come closest to 

matching the price of the barrier option when the maturities of the third and fourth 

options are changed from 0.25 and 0.5 to 0.39 and 0.65.  

(c) To calculate delta for the two 16-option hedge strategies, it is necessary to change the 

last argument of EPortfolio from 0 to 1 in cells L42 and X42. To calculate delta for 

the barrier option, it is necessary to change the last argument of BarrierOption in cell 

F12 from 0 to 1. To calculate gamma and vega, the arguments must be changed to 2 

and 3, respectively. The delta, gamma, and vega of the barrier option are –0.0221, –

0.0035, and –0.0254. The delta, gamma, and vega of the first 16-option portfolio are –

0.0262, –0.0045, and –0.1470. The delta, gamma, and vega of the second 16-option 

portfolio are –0.0199, –0.0037, and –0.1449. The second of the two 16-option 

portfolios provides Greek letters that are closest to the Greek letters of the barrier 

option. Interestingly, neither of the two portfolios does particularly well on vega.  

 

26.28 
A natural approach is to attempt to replicate the option with positions in:  

(a) A European call option with strike price 1.00 maturing in two years.  

(b) A European put option with strike price 0.80 maturing in two years.  

(c) A European put option with strike price 0.80 maturing in 1.5 years.  

(d) A European put option with strike price 0.80 maturing in 1.0 years.  

(e) A European put option with strike price 0.80 maturing in 0.5 years.  

The first option can be used to match the value of the down-and-out-call for 2t   and 

1 00S   . The others can be used to match it at the following ( )t S  points: (1.5, 0.80), (1.0, 

0.80), (0.5, 0.80), (0.0, 0.80). Following the procedure in the text, we find that the required 

positions in the options are as shown in the following table.  

 

Option Type Strike Price Maturity (yrs) Position 

Call 1.0 2.00 +1.0000 

Put 0.8 2.00 −0.1255 

Put 0.8 1.50 −0.1758 

Put 0.8 1.00 −0.0956 

Put 0.8 0.50 −0.0547 

 

The values of the options at the relevant (t,S) points are as follows: 

 

 Value 

initially 

Value at 

(1.5,0.8) 

Value at 

(1.0,0.8) 

Value at 

(0.5,0.8) 

Value at 

(0,0.8) 

Option (a) 0.0735 0.0071 0.0199 0.0313 0.0410 

Option (b) 0.0736 0.0568 0.0792 0.0953 0.1079 

Option (c) 0.0603  0.0568 0.0792 0.0953 

Option (d) 0.0440   0.0568 0.0792 

Option (e) 0.0231    0.0568 

 



The value of the portfolio initially is 0.0482. This is only a little less than the value of the 

down-and-out-option which is 0.0488. This example is different from the example in the text 

in a number of ways. Put options and call options are used in the replicating portfolio. The 

value of the replicating portfolio converges to the value of the option from below rather than 

from above. Also, even with relatively few options, the value of the replicating portfolio is 

close to the value of the down-and-out option.  

 

26.29 
In this case,  

M1 = (900e(0.05−0.03)×0.25 + 900e(0.05−0.03)×0.50 + 900e(0.05−0.03)×0.75  + 900e(0.05−0.03)×1)/4 = 917.07  

and a more complicated calculation involving 16 terms shows that M2=907,486.6 

so that the option can be valued as an option on futures where the futures price is 917.07 and 

volatility is 207.917/6.486,907ln(  or 27.58%. The value of the option is 103.13. 

DerivaGem gives the price as 86.77 (set option type =Asian). The higher price for the first 

option arises because the average is calculated from prices at times 0.25, 0.50, 0.75, and 1.00. 

The mean of these times is 0.625. By contrast, the corresponding mean when the price is 

observed continuously is 0.50. The later a price is observed the more uncertain it is and the 

more it contributes to the value of the option.  

 

26.30 
For the regular option, the theoretical price is about $240,000. For the average price option, 

the theoretical price is about 115,000. My 20 simulation runs (40 outcomes because of the 

antithetic calculations) gave results as shown in the following table.  

 

 Regular Call Ave Price Call 

Ave Hedging Cost 247,628 114,837 

SD Hedging Cost 17,833 12,123 

Ave Trading Vol (20 wks) 412,440 291,237 

Ave Trading Vol (last 10 wks) 187,074 51,658 

 

These results show that the standard deviation of using delta hedging for an average price 

option is lower than that for a regular option. However, using the criterion in Chapter 19 

(standard deviation divided by value of option) hedge performance is better for the regular 

option. Hedging the average price option requires less trading, particularly in the last 10 

weeks. This is because we become progressively more certain about the average price as the 

maturity of the option is approached.  

 

26.31 
The value of the option is 1093. It is necessary to change cells F20 and F46 to 0.67. Cells 

G20 to G39 and G46 to G65 must be changed to calculate delta of the compound option. 

Cells H20 to H39 and H46 to H65 must be changed to calculate gamma of the compound 

option. Cells I20 to I40 and I46 to I66 must be changed to calculate the Black–Scholes price 

of the call option expiring in 40 weeks. Similarly, cells J20 to J40 and J46 to J66 must be 

changed to calculate the delta of this option; cells K20 to K40 and K46 to K66 must be 

changed to calculate the gamma of the option. The payoffs in cells N9 and N10 must be 

calculated as MAX(I40-0.015,0)*100,000 and MAX(I66-0.015,0)*100,000. Delta plus 

gamma hedging works relatively poorly for the compound option. On 20 simulation runs the 

cost of writing and hedging the option ranged from 200 to 2,500.  

 



26.32 
a) The outperformance certificate is equivalent to a package consisting of: 

(i) A zero coupon bond that pays off S0 at time T. 

(ii) A long position in k  one-year European call options on the stock with a strike 

price equal to the current stock price.  

(iii)A short position in k  one-year European call options on the stock with a strike 

price equal to M.  

(iv) A short position in one European one-year put option on the stock with a strike 

price equal to the current stock price. 

 

 

b) In this case, the present value of the four parts of the package are:  

(i)        50e−0.05×1=47.56  

(ii)       1 5 5 0056 7 5084       

(iii)      −1.5×0.6339 = −0.9509   

(iv)       –4.5138  

The total of these is 47.56 +7.5084 – 0.9509−4.5138 = 49.6. This is less than the initial 

investment of 50.  
                         

26.33 

In this case, 
0 1022 55F    and DerivaGem shows that 

1( ) 0 0366Q K   , 2( ) 0 2858Q K   , 

3( ) 1 5822Q K   , 4( ) 6 3708Q K   , 
5( ) 30 3864Q K   , 

6( ) 16 9233Q K   , 
7( ) 4 8180Q K   , 

8( ) 0 8639Q K   , and 9 0 0863Q   . ˆ( ) 0 0661E V   . The value of the variance swap is $2.09 

million.  

 

26.34 

With the notation in the text, a regular call option with strike price K2 plus a binary call 

option that pays off K2 – K1 is a gap call option that pays off ST –K1 when ST > K2. 

 

26.35 

Suppose that there are n periods each of length  the risk-free interest rate is r, the dividend 

yield on the index is q, and the volatility of the index is . The value of the investment is  









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where Ri is the return in period i and as usual Ê  denotes expected value in a risk-neutral 

world. Because (assuming efficient markets) the returns in successive periods are 

independent, this is  
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where Si is the value of the index at the end of the ith period.  

From Black–Scholes–Merton, the risk-neutral expectation at time (i-1)of max(Si−Si-1, 0) is 
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The value of the investment is therefore, 
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