
  

CHAPTER 21 

Basic Numerical Procedures 
 

Practice Questions 

 
21.1 
Delta, gamma, and theta can be determined from a single binomial tree. Vega is determined 

by making a small change to the volatility and recomputing the option price using a new tree. 

Rho is calculated by making a small change to the interest rate and recomputing the option 

price using a new tree.  

 

21.2 

In this case, 0 60S  , 60K  , 0 1r   , 0 45   , 0 25T   , and 0 0833t   . Also  
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The output from DerivaGem for this example is shown in Figure S21.1. The calculated price 

of the option is $5.16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S21.1:  Tree for Problem 21.2 

21.3 
The control variate technique is implemented by:  

1. Valuing an American option using a binomial tree in the usual way ( )Af .  

2. Valuing the European option with the same parameters as the American option using 

the same tree ( )Ef .  

3. Valuing the European option using Black–Scholes–Merton (= fBSM ). The price of the 

American option is estimated as fA + fBSM − fE.  

Growth factor per step, a = 1.0084

Probability of up move, p = 0.4997

Up step size, u = 1.1387 88.59328

Down step size, d = 0.8782 0

77.80084

0

68.32313 68.32313

1.79934 0

60 60

5.162781 3.626534

52.69079 52.69079

8.608382 7.309206

46.272

13.728

40.63514

19.36486

Node Time: 

0.0000 0.0833 0.1667 0.2500



 

21.4 

In this case, 
0 198F  , 200K  , 0 08r   , 0 3   , 0 75T   , and t = 0.25. Also,  
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The output from DerivaGem for this example is shown in Figure S21.2. The calculated price 

of the option is 20.34 cents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S21.2:  Tree for Problem 21.4 

 

21.5 
A binomial tree cannot be used in the way described in this chapter. This is an example of 

what is known as a history-dependent option. The payoff depends on the path followed by the 

stock price as well as its final value. The option cannot be valued by starting at the end of the 

tree and working backward since the payoff at the final branches is not known 

unambiguously. Chapter 27 describes an extension of the binomial tree approach that can be 

used to handle options where the payoff depends on the average value of the stock price.  

 

21.6 

Suppose a dividend equal to D  is paid during a certain time interval. If S  is the stock price 

at the beginning of the time interval, it will be either Su D  or Sd D  at the end of the time 

interval. At the end of the next time interval, it will be one of ( )Su D u , ( )Su D d , 

( )Sd D u  and ( )Sd D d . Since ( )Su D d  does not equal (Sd-D)u, the tree does not 

recombine. If S  is equal to the stock price less the present value of future dividends, this 

problem is avoided.  

 

21.7 
With the usual notation,  

Growth factor per step, a = 1.0000

Probability of up move, p = 0.4626

Up step size, u = 1.1618 310.5258

Down step size, d = 0.8607 110.5258

267.272

67.27204

230.0432 230.0432

37.67771 30.04318

198 198

20.33708 13.6219

170.4202 170.4202

6.176314 0

146.682

0

126.2504

0

Node Time: 

0.0000 0.2500 0.5000 0.7500
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If a d  or a u , one of the two probabilities is negative. This happens when  

 
( )r q t te e      

or  

 
( )r q t te e    

This in turn happens when ( )q r t     or ( )r q t    . Hence, negative probabilities 

occur when  

 ( )| r q t |     

This is the condition in footnote 8.  

 

21.8 
In Table 21.1, cells A1, A2, A3,..., A100 are random numbers between 0 and 1 defining how 

far to the right in the square the dart lands. Cells B1, B2, B3,...,B100 are random numbers 

between 0 and 1 defining how high up in the square the dart lands. For stratified sampling, 

we could choose equally spaced values for the A’s and the B’s and consider every possible 

combination. To generate 100 samples, we need ten equally spaced values for the A’s and the 

B’s so that there are 10 10 100   combinations. The equally spaced values should be 0.05, 

0.15, 0.25,..., 0.95. We could therefore set the A’s and B’s as follows:  

 A1 A2 A3 A10 0 05        

 

 A11 A12 A13 A20 0 15        

 
   

 
   

 

 A91 A92 A93 A100 0 95        

and  

 B1 B11 B21 B91 0 05        

 

 B2 B12 B22 B92 0 15        

 
   

 
   

 

 B10 B20 B30 B100 0 95        

 

We get a value for   equal to 3.2, which is closer to the true value than the value of 3.04 

obtained with random sampling in Table 21.1. Because samples are not random, we cannot 

easily calculate a standard error of the estimate.  

 

21.9 
In Monte Carlo simulation, sample values for the derivative security in a risk-neutral world 

are obtained by simulating paths for the underlying variables. On each simulation run, values 



for the underlying variables are first determined at time t , then at time 2 t , then at time 

3 t , etc. At time ( 0 1 2 )i t i …    , it is not possible to determine whether early exercise is 

optimal since the range of paths which might occur after time i t  have not been investigated. 

In short, Monte Carlo simulation works by moving forward from time t  to time T . Other 

numerical procedures which accommodate early exercise work by moving backwards from 

time T  to time t .  

 

21.10 

In this case, 0 50S  , 49K  , 0 05r   , 0 30  , 0 75T   , and t = 0.25. Also,  
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The output from DerivaGem for this example is shown in Figure S21.3. The calculated price 

of the option is $4.29. Using 100 steps, the price obtained is $3.91.  

 

 

 

 
Bolded values are a result of exercise

Growth factor per step, a = 1.0126

Probability of up move, p = 0.5043

Up step size, u = 1.1618 78.41561

Down step size, d = 0.8607 0

67.49294

0

58.09171 58.09171

1.429187 0

50 50

4.289225 2.91968

43.0354 43.0354

7.308214 5.964601

37.04091

11.95909

31.88141

17.11859

Node Time: 

0.0000 0.2500 0.5000 0.7500

 
Figure S21.3:  Tree for Problem 21.10 

 

21.11 

In this case, 0 400F  , 420K  , 0 06r   , 0 35  , 0 75T   , and 0 25t   . Also,  
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The output from DerivaGem for this example is shown in Figure S21.4. The calculated price 

of the option is 42.07 cents. Using 100 time steps, the price obtained is 38.64. The option’s 

delta is calculated from the tree is  
 (79 971 11 419) (476 498 335 783) 0 487          

When 100 steps are used the estimate of the option’s delta is 0.483.  

 

 

 
At each node:

 Upper value = Underlying Asset Price

 Lower value = Option Price

Bolded values are a result of exercise

Growth factor per step, a = 1.0000

Probability of up move, p = 0.4564

Up step size, u = 1.1912 676.1835

Down step size, d = 0.8395 256.1835

567.627

147.627

476.4985 476.4985

79.971 56.49849

400 400

42.06767 25.39985

335.7828 335.7828

11.41894 0

281.8752

0

236.6221

0

Node Time: 

0.0000 0.2500 0.5000 0.7500

 
 

 

Figure S21.4:  Tree for Problem 21.11 

 

21.12 

In this case, the present value of the dividend is 0 03 0 1252 1 9925e       . We first build a tree for 

0 20 1 9925 18 0075S      , 20K  , 0 03r   , 0 25  , and 0 25T    with 0 08333t   . 

This gives Figure S21.5. For nodes between times 0 and 1.5 months, we then add the present 

value of the dividend to the stock price. The result is the tree in Figure S21.6. The price of the 

option calculated from the tree is 0.674. When 100 steps are used, the price obtained is 0.690.  

 

 



Tree shows stock prices less PV of dividend at 0.125 years

Growth factor per step, a = 1.0025

Probability of up move, p = 0.4993

Up step size, u = 1.0748 22.36047

Down step size, d = 0.9304

20.8036

19.35512 19.35512

18.0075 18.0075

16.75371 16.75371

15.58721

14.50193

Node Time: 

0.0000 0.0833 0.1667 0.2500

 
 

Figure S21.5:  First Tree for Problem 21.12 

 

 

 
At each node:

 Upper value = Underlying Asset Price

 Lower value = Option Price

Bolded values are a result of exercise

Probability of up move, p = 0.4993

22.36045

2.360453

20.80358

1.175614

21.35261 19.35511

1.352609 0

20 18.00749

0.673662 0

18.7512 16.75369

0 0

15.5872

0

14.50192

0

Node Time: 

0.0000 0.0833 0.1667 0.2500

 
 

Figure S21.6:  Final Tree for Problem 21.12 

 

21.13 

In this case, 0 20S  , 18K  , 0 15r   , 0 40  , 1T  , and 0 25t   . The parameters for 

the tree are:  
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The tree produced by DerivaGem for the American option is shown in Figure S21.7. The 

estimated value of the American option is $1.29.  

 

 

 
At each node:

 Upper value = Underlying Asset Price

 Lower value = Option Price

Bolded values are a result of exercise

Growth factor per step, a = 1.0382 44.51082

Probability of up move, p = 0.5451 0

Up step size, u = 1.2214 36.44238

Down step size, d = 0.8187 0

29.83649 29.83649

0 0

24.42806 24.42806

0.386502 0

20 20 20

1.287861 0.882034 0

16.37462 16.37462

2.475954 2.012886

13.4064 13.4064

4.593599 4.593599

10.97623

7.023767

8.986579

9.013421

Node Time: 

0.0000 0.2500 0.5000 0.7500 1.0000

 
Figure S21.7:  Tree to evaluate American option for Problem 21.13 

 

 
At each node:

 Upper value = Underlying Asset Price

 Lower value = Option Price

Bolded values are a result of exercise

Growth factor per step, a = 1.0382 44.51082

Probability of up move, p = 0.5451 0

Up step size, u = 1.2214 36.44238

Down step size, d = 0.8187 0

29.83649 29.83649

0 0

24.42806 24.42806

0.386502 0

20 20 20

1.143973 0.882034 0

16.37462 16.37462

2.147587 2.012886

13.4064 13.4064

3.844233 4.593599

10.97623

6.361267

8.986579

9.013421

Node Time: 

0.0000 0.2500 0.5000 0.7500 1.0000

 
 

Figure S21.8:  Tree to evaluate European option in Problem 21.13 



 

As shown in Figure S21.8, the same tree can be used to value a European put option with the 

same parameters. The estimated value of the European option is $1.14. The option parameters 

are 0 20S  , 18K  , 0 15r   , 0 40   and 1T    
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1 2( ) 0 2009 ( ) 0 3306N d N d        

The true European put price is therefore,  

 
0 1518 0 3306 20 0 2009 1 10e          

This can also be obtained from DerivaGem. The control variate estimate of the American put 

price is therefore 1.29 + 1.10 − 1.14 = $1.25.  

 

21.14 

In this case, 0 484S  , 480K  , 0 10r   , 0 25   0 03q   , 0 1667T   , and 0 04167t     
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The tree produced by DerivaGem is shown in the Figure S21.9. The estimated price of the 

option is $14.93.  

 

 

 

 
At each node:

 Upper value = Underlying Asset Price

 Lower value = Option Price

Bolded values are a result of exercise

Growth factor per step, a = 1.0029 593.602

Probability of up move, p = 0.5159 0

Up step size, u = 1.0524 564.0698

Down step size, d = 0.9502 0

536.0069 536.0069

0 0

509.3401 509.3401

4.814811 0

484 484 484

14.93323 9.986432 0

459.9206 459.9206

25.84303 20.71293

437.0392 437.0392

42.96083 42.96083

415.2961

64.70388

394.6348

85.36521

Node Time: 

0.0000 0.0417 0.0833 0.1250 0.1667

 
 

Figure S21.9:  Tree to evaluate option in Problem 21.14 



 

21.15 

First the delta of the American option is estimated in the usual way from the tree. Denote this 

by 
A

 . Then the delta of a European option which has the same parameters as the American 

option is calculated in the same way using the same tree. Denote this by 
B

 . Finally the true 

European delta, B , is calculated using the formulas in Chapter 19. The control variate 

estimate of delta is then:  

 
A B B

   
 

 

21.16. 
In this case, a simulation requires two sets of samples from standardized normal distributions. 

The first is to generate the volatility movements. The second is to generate the stock price 

movements once the volatility movements are known. The control variate technique involves 

carrying out a second simulation on the assumption that the volatility is constant. The same 

random number stream is used to generate stock price movements as in the first simulation. 

An improved estimate of the option price is  

 
A B Bf f f    

where 
Af   is the option value from the first simulation (when the volatility is stochastic), 

Bf
  

is the option value from the second simulation (when the volatility is constant) and 
Bf  is the 

true Black–Scholes–Merton value when the volatility is constant.  

To use the antithetic variable technique, two sets of samples from standardized normal 

distributions must be used for each of volatility and stock price. Denote the volatility samples 

by 1{V }  and 
2{V }  and the stock price samples by 1{S }  and 2{S } . 1{V }  is antithetic to 

2{V }  

and 1{S }  is antithetic to 2{S } . Thus, if  

 
1 0 83 0 41 0 21{V } …        

then  

 
2 0 83 0 41 0 21{V } …        

Similarly for 1{S }  and 2{S } .  

An efficient way of proceeding is to carry out six simulations in parallel:  

Simulation 1: Use 1{S }  with volatility constant  

Simulation 2: Use 2{S }  with volatility constant  

Simulation 3: Use 1{S }  and 1{V }   

Simulation 4: Use 1{S }  and 
2{V }   

Simulation 5: Use 2{S }  and 1{V }   

Simulation 6: Use 2{S }  and 
2{V }   

If if  is the option price from simulation i , simulations 3 and 4 provide an estimate 

3 40 5( )f f   for the option price. When the control variate technique is used, we combine this 

estimate with the result of simulation 1 to obtain 
3 4 10 5( ) Bf f f f     as an estimate of the 

price where 
Bf  is, as above, the Black–Scholes–Merton option price. Similarly, simulations 

2, 5 and 6 provide an estimate 
5 6 20 5( ) Bf f f f    . Overall the best estimate is:  

 
3 4 1 5 6 20 5[0 5( ) 0 5( ) ]B Bf f f f f f f f         

 
21.17 
For an American call option on a currency,  
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With the notation in the text, this becomes  
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for 1 2j …   1M   and 0 1i …   1N  . Rearranging terms, we obtain  

 
1 1 1j i j j ij j i j i ja f b f c f f         

where  
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Equations (21.28), (21.29) and (21.30) become  
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21.18 
We consider stock prices of $0, $4, $8, $12, $16, $20, $24, $28, $32, $36 and $40. Using 

equation (21.34) with 0 10r   , 0 0833t   , 4S  , 0 30   , 21K  , 0 3333T    we 

obtain the grid shown below. The option price is $1.56.  

 

 

 

 

 

Stock Price  Time to Maturity (Months) 

($) 4 3 2 1 0 

40 0.00 0.00 0.00 0.00 0.00 

36 0.00 0.00 0.00 0.00 0.00 

32 0.01 0.00 0.00 0.00 0.00 

28 0.07 0.04 0.02 0.00 0.00 

24 0.38 0.30 0.21 0.11 0.00 

20 1.56 1.44 1.31 1.17 1.00 

16 5.00 5.00 5.00 5.00 5.00 

12 9.00 9.00 9.00 9.00 9.00 

8 13.00 13.00 13.00 13.00 13.00 

4 17.00 17.00 17.00 17.00 17.00 

0 21.00 21.00 21.00 21.00 21.00 

 

21.19 

In this case, 0 25t    and 0 4    so that  

 
0 4 0 25 1 2214u e      

 
1

0 8187d
u

    



The futures prices provide estimates of the growth rate in copper in a risk-neutral world. 

During the first three months, this growth rate (with continuous compounding) is  

 
0 59

4ln 6 72 per annum
0 60

%


  


 

The parameter p  for the first three months is therefore,  
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The growth rate in copper is equal to  13.79%,  21.63% and  30.78% in the following 

three quarters. Therefore, the parameter p  for the second three months is  
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For the third quarter, it is  
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For the final quarter, it is  
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The tree for the movements in copper prices in a risk-neutral world is shown in Figure 

S21.10. The value of the option is $0.062. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S21.10:  Tree to value option in Problem 21.19: At each node, 

upper number is price of copper and lower number is option price. 

 

 

21.20 
In this problem, we use exactly the same tree for copper prices as in Problem 21.19. 

However, the values of the derivative are different. On the final nodes, the values of the 

derivative equal the square of the price of copper. On other nodes, they are calculated in the 

usual way. The current value of the security is $0.275 (see Figure S21.11).  

 

1.335

0.735

1.093

0.493

0.895 0.895

0.295 0.295

0.733 0.733

0.133 0.133

0.600 0.600 0.600

0.062 0.042 0.000

0.491 0.491

0.015 0.000

0.402 0.402

0.000 0.000

0.329

0.000

0.270

0.000



1.335
1.783

1.093
1.047

0.895 0.895
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Node Time: 
0.0000 0.2500 0.5000 0.7500 1.0000

 
Figure S21.11:  Tree to value derivative in Problem 21.20. At each 

node, upper number is price of copper and lower number is derivative’s price. 

 

21.21 

Define tS  as the current asset price, maxS  as the highest asset price considered and 
minS  as the 

lowest asset price considered. (In the example in the text 
min 0S  ). Let  

 
max min

1 2andt tS S S S
Q Q

S S

 
 

 
 

and let N  be the number of time intervals considered. From the triangular structure of the 

calculations in the explicit version of the finite difference method, we can see that the values 

assumed for the derivative security at 
minS S  and maxS S  affect the derivative’s value if  

 
1 2max( )N Q Q   

 

21.22 
The following changes could be made. Set LI as  

= NORMSINV(RAND()) 

A1 as  

=$C$*EXP(($E$2-$F$2*$F$2/2)*$G$2+$F$2*L2*SQRT($G$2)) 

H1 as  

=$C$*EXP(($E$2-$F$2*$F$2/2)*$G$2-$F$2*L2*SQRT($G$2)) 

I1 as  

= EXP(-$E$2*$G$2)*MAX(H1-$D$2,0) 

and J1 as  

=0.5*(B1+J1) 

Other entries in columns L, A, H, and I are defined similarly. The estimate of the value of the 

option is the average of the values in the J column.  

 

21.23 
The basic approach is similar to that described in Section 21.8. The only difference is the 

boundary conditions. For a sufficiently small value of the stock price, 
minS , it can be assumed 

that conversion will never take place and the convertible can be valued as a straight bond. 

The highest stock price which needs to be considered, maxS , is $18. When this is reached, the 



value of the convertible bond is $36. At maturity, the convertible is worth the greater of 2 TS  

and $25 where 
TS  is the stock price.  

The convertible can be valued by working backwards through the grid using either the 

explicit or the implicit finite difference method in conjunction with the boundary conditions. 

In formulas (21.25) and (21.32), the present value of the income on the convertible between 

time t i t   and ( 1)t i t    discounted to time t i t   must be added to the right-hand side. 

Chapter 27 considers the pricing of convertibles in more detail.  

 

21.24 

Suppose 1x , 2x , and 3x  are random samples from three independent normal distributions. 

Random samples with the required correlation structure are 1 , 2 , 3  where  

 
1 1x   

 

 
2

2 12 1 2 121x x      

and  

 
3 1 1 2 2 3 3x x x       

where  

 
1 13   

 

 
2

1 12 2 12 231        

and  

 
2 2 2

1 2 3 1      

This means that  

 
1 13   

 

 
23 13 12

2
2

121

  








 

 

 
2 2

3 1 21      

 

 

21.25 
The tree is shown in Figure S21.12. The value of the option is estimated as 0.0207 and its 

delta is estimated as  

 
0 006221 0 041153

0 373
0 858142 0 764559

  
  

  
 

 

 

 



At each node:

 Upper value = Underlying Asset Price

 Lower value = Option Price

Shaded Values are as a  Result of Early Exercise

Strike price = 0.8

Discount factor per step = 0.9802

Time step, dt = 0.3333 years, 121.67 days

Growth factor per step, a = 1.0101

Probability of up move, p = 0.5726

Up step size, u = 1.0594 0.963179

Down step size, d = 0.9439 0

0.909145

0

0.858142 0.858142

0.006221 0

0.81 0.81

0.020734 0.014849

0.764559 0.764559

0.041153 0.035441

0.721667

0.078333

0.681182

0.118818

Node Time: 

0.0000 0.3333 0.6667 1.0000

 
 

Figure S21.12:  Tree for Problem 21.25 

 

21.26 

In this case, 
0 8 5F   , 9K  , 0 12r   , 1T  , 0 25  , and 0 25t   . The parameters for 

the tree are  

 

0 25 0 25 1 1331

1
0 8825

1

1 0 8825
0 469

1 1331 0 8825

tu e e

d
u

a

a d
p

u d

     

  



  
   

   



 

The tree output by DerivaGem for the American option is shown in Figure S21.13. The 

estimated value of the option is $0.596. The tree produced by DerivaGem for the European 

version of the option is shown in Figure S21.14. The estimated value of the option is $0.586. 

The Black–Scholes–Merton price of the option is $0.570. The control variate estimate of the 

price of the option is therefore,  

 0 596 0 570 0 586 0 580        

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S21.13:  Tree for American option in Problem 21.26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S21.14:  Tree for European option in Problem 21.26 

 

 

21.27 
(a) For the binomial model in Section 21.4, there are two equally likely changes in the 

At each node:

 Upper value = Underlying Asset Price

 Lower value = Option Price

Shaded values are a result of early exercise.

Strike price = 9

Discount factor per step = 0.9704

Time step, dt = 0.2500 years, 91.25 days

Growth factor per step, a = 1.0000 14.01413

Probability of up move, p = 0.4688 5.014131

Up step size, u = 1.1331 12.36743

Down step size, d = 0.8825 3.367427

10.91422 10.91422

1.980892 1.914216

9.631762 9.631762

1.105413 0.870845

8.5 8.5 8.5

0.595805 0.396179 0

7.501224 7.501224

0.180236 0

6.619807 6.619807

0 0

5.841959

0

5.155511

0

Node Time: 

0.0000 0.2500 0.5000 0.7500 1.0000

At each node:

 Upper value = Underlying Asset Price

 Lower value = Option Price

Shaded values are a result of early exercise.

Strike price = 9

Discount factor per step = 0.9704

Time step, dt = 0.2500 years, 91.25 days

Growth factor per step, a = 1.0000 14.01413

Probability of up move, p = 0.4688 5.014131

Up step size, u = 1.1331 12.36743

Down step size, d = 0.8825 3.267905

10.91422 10.91422

1.935616 1.914216

9.631762 9.631762

1.084815 0.870845

8.5 8.5 8.5

0.586434 0.396179 0

7.501224 7.501224

0.180236 0

6.619807 6.619807

0 0

5.841959

0

5.155511

0

Node Time: 

0.0000 0.2500 0.5000 0.7500 1.0000



logarithm of the stock price in a time step of length t . These are 2( 2)r t t       

and 2( 2)r t t      . The expected change in the logarithm of the stock price is  

  
2 2 20 5[( 2) ] 0 5[( 2) ] ( 2)r t t r t t r t                      

 This is correct. The variance of the change in the logarithm of the stock price is  

  
2 2 20 5 0 5t t t          

 This is correct.  

(b) For the trinomial tree model in Section 21.4, the change in the logarithm of the stock 

price in a time step of length t  is 3 t  , 0, and 3 t   with probabilities  
2 2

2 2

1 2 1

12 2 6 3 12 2 6

t t
r r

 

 

    
         

   
 

 The expected change is  
2

2
r t

 
  

 
 

 It variance is 2 t   plus a term of order 
2( )t . These are correct.  

(c) To get the expected change in the logarithm of the stock price in time t  correct, we 

require  
21 2 1

(ln ) (ln ) (ln )
6 3 6 2

u m d r t
 

     
 

 

 The relationship 2m ud  implies ln 0 5(ln ln )m u d    so that the requirement becomes  

2

ln
2

m r t
 

   
 

 

 or  
2( )r tm e    

 The expected change in ln S  is ln m . To get the variance of the change in the logarithm 

of the stock price in time t  correct, we require  

2 2 21 1
(ln ln ) (ln ln )

6 6
u m d m t      

 Because ln ln (ln ln )u m d m     it follows that  

ln ln 3u m t    

ln ln 3d m t    

 These results imply that  
2( )r tm e    

2( ) 3r t tu e       
2( ) 3r t td e       

21.28 (Excel file) 

The results, produced by making small modifications to Sample Application A, are shown in 

Figure S21.15. 
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Figure S21.15:  Convergence Charts for Problem 21.28 

 

21.29 

From Figure 21.5, delta is (33.64−6.13)/(327.14−275.11) = 0.5288. This is the rate of change 

of the option price with respect to the futures price. Gamma is 

009.0
)29.25273.356(5.0

)29.252300/()090.12()30073.356/()90.1273.56(





 

This is the rate of change of delta with respect to the futures price. Theta is  

 (12.9−19.16)/0.16667=−37.59 per year or −0.1029 per calendar day. 

 

21.30 

Without early exercise, the option is worth 0.2535 at the lowest node at the 9 month point. 

With early exercise, it is worth 0.2552. The gain from early exercise is therefore 0.0017.  

 


