
CHAPTER 24 

Credit Risk 
 

Practice Questions 
 

24.1 

From equation (24.2), the average hazard rate over the three years is 

0 0050 (1 0 3) 0 0071       or 0.71% per year.  

 

24.2 

From equation (24.2), the average hazard rate over the five years is 0 0060 (1 0 3) 0 0086       

or 0.86% per year. Using the results in the previous question, the hazard rate is 0.71% per 

year for the first three years and  
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    
   

or 1.07% per year in years 4 and 5.  

 

24.3 
Real-world probabilities of default should be used for calculating credit value at risk. Risk-

neutral probabilities of default should be used for adjusting the price of a derivative for 

default.  

 

24.4 
The recovery rate for a bond is the value of the bond shortly after the issuer defaults as a 

percent of its face value.  

 

24.5 

The hazard rate, ( )h t  at time t  is defined so that ( )h t t  is the probability of default between 

times t  and t t   conditional on no default prior to time t . The unconditional default 

probability density ( )q t  is defined so that ( )q t t  is the probability of default between times t  

and t t   as seen at time zero.  

 

24.6 
The seven-year historical hazard rate for AAA-rated companies is 

 

− [ln(1 − 0.0051)]/7 = 0.00073 

 

or 0.073% per year. Similarly, the historical hazard rates for AA, A, BBB, BB, B, and CCC/C 

companies are 0.072%, 0.113%, 0.337%, 1.349%, 3.252%, 9.413% , respectively. The spread 

to compensate for default are 60% of these. In basis points, the spreads for AAA, AA, A, 

BBB, BB, B, and CCC/C companies are 4.4, 4.3, 6.8, 20.2, 80.9, 195.1, and 564.8. 

 

 

24.7 
Suppose company A goes bankrupt when it has a number of outstanding contracts with 

company B. Netting means that the contracts with a positive value to A are netted against 

those with a negative value in order to determine how much, if anything, company A owes 



company B. Company A is not allowed to “cherry pick” by keeping the positive-value 

contracts and defaulting on the negative-value contracts.  

The new transaction will increase the bank’s exposure to the counterparty if the contract 

tends to have a positive value whenever the existing contract has a positive value and a 

negative value whenever the existing contract has a negative value. However, if the new 

transaction tends to offset the existing transaction, it is likely to have the incremental effect of 

reducing credit risk.  

 

24.8 
When a bank is experiencing financial difficulties, its credit spread is likely to increase. This 

increases qi
* and DVA increases. This is a benefit to the bank: the fact that it is more likely to 

default means that its derivatives are worth less. 

 

24.9 
(a) In the Gaussian copula model for time to default, a credit loss is recognized only 

when a default occurs. In CreditMetrics, it is recognized when there is a credit 

downgrade as well as when there is a default.  

(b)  In the Gaussian copula model of time to default, the default correlation arises because 

the value of the factor M . This defines the default environment or average default 

rate in the economy. In CreditMetrics, a copula model is applied to credit ratings 

migration and this determines the joint probability of particular changes in the credit 

ratings of two companies.  

 

24.10 
When the claim amount is the no-default value, the loss for a corporate bond arising from a 

default at time t  is  

 ˆ( )(1 )v t R B
 

 

where ( )v t  is the discount factor for time t  and B  is the no-default value of the bond at time 

t . Suppose that the zero-coupon bonds comprising the corporate bond have no-default values 

at time t  of 1Z , 
2Z , …, 

nZ , respectively. The loss from the i th zero-coupon bond arising 

from a default at time t  is  

 ˆ( )(1 ) iv t R Z
 

 

The total loss from all the zero-coupon bonds is  

 

 ˆ ˆ( )(1 ) ( )(1 )
n

i

i

v t R Z v t R B  
 

 

This shows that the loss arising from a default at time t  is the same for the corporate bond as 

for the portfolio of its constituent zero-coupon bonds. It follows that the value of the 

corporate bond is the same as the value of its constituent zero-coupon bonds.  

When the claim amount is the face value plus accrued interest, the loss for a corporate bond 

arising from a default at time t  is  

 

 ˆ( ) ( ) [ ( )]v t B v t R L a t  
 

 

where L  is the face value and ( )a t  is the accrued interest at time t . In general, this is not the 



same as the loss from the sum of the losses on the constituent zero-coupon bonds.  

 

24.11 

Define Q  as the risk-free rate. The calculations are as follows: 

 
Time 

(yrs) 

Def. 

Prob. 

Recovery 

Amount ($) 

 

Risk-free 

Value ($) 

 

Loss Given 

Default ($) 

Discount 

Factor 

PV of Expected 

Loss ($) 

1.0 

 
Q  30 104.78 74.78 0.9704 72 57Q  

 

2.0 

 
Q  30 103.88 73.88 

 

0.9418 

 
69 58Q  

 

3.0 

 
Q  30 102.96 

 

72.96 

 

0.9139 

 
66 68Q  

4.0 

 
Q  30 102.00 

 

72.00 

 

0.8869 

 
63 86Q  

Total 

 

     272 69Q  

 

The bond pays a coupon of 2 every six months and has a continuously compounded yield of 

5% per year. Its market price is 96.19. The risk-free value of the bond is obtained by 

discounting the promised cash flows at 3%. It is 103.66. The total loss from defaults should 

therefore be equated to 103 66 96 19 7 46     . The value of Q  implied by the bond price is 

therefore given by 272 69 7 46Q   . or 0 0274Q   . The implied probability of default is 

2.74% per year.  

 

24.12 
The table for the first bond is as follows:   

 

 
Time 

(yrs) 

Def. 

Prob. 

Recovery 

Amount ($) 

 

Risk-free 

Value ($) 

 

Loss Given 

Default ($) 

Discount 

Factor 

PV of 

Expected 

Loss ($) 

0.5 

 
1Q  

 

40 103.01 

 

63.01 

 

0.9827 

 
161 92Q  

1.5 

 
1Q  

 

40 102.61 

 

62.61 0.9489 

 
159 41Q  

 

2.5 

 
1Q  40 102.20 

 

62.20 

 

0.9162 

 
156 98Q  

Total      
1178 31Q  

 

   

The market price of the bond is 98.35 and the risk-free value is 101.23. It follows that 1Q  is 

given by  

 
1178 31 101 23 98 35Q    

 
 

so that 
1 0 0161Q   .  



The table for the second bond is as follows: 

 

 

 
Time 

(yrs) 

Def. 

Prob. 

Recovery 

Amount ($) 

 

Risk-free 

Value ($) 

 

Loss 

Given 

Default 

($) 

Discount 

Factor 

PV of Expected 

Loss ($) 

0.5 

 
1Q  40 103.77 

 

63.77 

 

0.9827 

 
162 67Q  

1.5 
1Q  40 103.40 

 

63.40 

 

0.9489 

 
160 16Q  

2.5 

 
1Q  40 103.01 

 

63.01 

 

0.9162 

 
157 73Q  

3.5 

 
2Q  

 

40 102.61 

 

62.61 

 

0.8847 

 
255 39Q  

4.5 

 
2Q  40 102.20 

 

62.20 

 

0.8543 

 
253 13Q  

Total 

 

     
1 2180 56 108 53Q Q    

 

The market price of the bond is 96.24 and the risk-free value is 101.97. It follows that 

  

 
1 2180 56 108 53 101 97 96 24Q Q      

 
 

From which we get 2 0 0260Q   .  The bond prices therefore imply a probability of default of 

1.61% per year for the first three years and 2.60% for the next two years.  

 

24.13 

The statements in (a) and (b) are true. The statement in (c) is not. Suppose that Xv  and Yv  are 

the exposures to X and Y. The expected value of 
X Yv v  is the expected value of Xv  plus the 

expected value of Yv . The same is not true of 95% confidence limits.  

 

24.14 

Assume that defaults happen only at the end of the life of the forward contract. In a default-

free world, the forward contract is the combination of a long European call and a short 

European put where the strike price of the options equals the delivery price and the maturity 

of the options equals the maturity of the forward contract. If the no-default value of the 

contract is positive at maturity, the call has a positive value and the put is worth zero. The 

impact of defaults on the forward contract is the same as that on the call. If the no-default 

value of the contract is negative at maturity, the call has a zero value and the put has a 

positive value. In this case, defaults have no effect. Again, the impact of defaults on the 

forward contract is the same as that on the call. It follows that the contract has a value equal 

to a long position in a call that is subject to default risk and short position in a default-free 

put.  

 

24.15 
Suppose that the forward contract provides a payoff at time T . With our usual notation, the 



value of a long forward contract is rT

TS Ke . The credit exposure on a long forward 

contract is therefore max( 0)rT

TS Ke  ; that is, it is a call on the asset price with strike price 

rTKe . Similarly, the credit exposure on a short forward contract is max( 0)rT

TKe S   ; that 

is, it is a put on the asset price with strike price 
rTKe . The total credit exposure is, therefore, 

a straddle with strike price 
rTKe .  

 

 

24.16 

The credit risk on a matched pair of interest rate swaps is 
fixed floating| B B | . As maturity is 

approached, all bond prices tend to par and this tends to zero. The credit risk on a matched 

pair of currency swaps is 
foreign fixed| SB B |  where S  is the exchange rate. The expected value 

of this tends to increase as the swap maturity is approached because of the uncertainty in S .  

 

24.17 

As time passes, there is a tendency for the currency which has the lower interest rate to 

strengthen. This means that a swap where we are receiving this currency will tend to move in 

the money (i.e., have a positive value). Similarly, a swap where we are paying the currency 

will tend to move out of the money (i.e., have a negative value). From this, it follows that our 

expected exposure on the swap where we are receiving the low-interest currency is much 

greater than our expected exposure on the swap where we are receiving the high-interest 

currency. We should therefore look for counterparties with a low credit risk on the side of the 

swap where we are receiving the low-interest currency. On the other side of the swap, we are 

far less concerned about the creditworthiness of the counterparty.  

 

24.18 

No, put–call parity does not hold when there is default risk. Suppose c
 and p  are the no-

default prices of a European call and put with strike price K  and maturity T  on a non-

dividend-paying stock whose price is S , and that c  and p  are the corresponding values 

when there is default risk. The text shows that when we make the independence assumption 

(that is, we assume that the variables determining the no-default value of the option are 

independent of the variables determining default probabilities and recovery rates), 
[ ( ) ( )]y T y T Tc c e

    and [ ( ) ( )]y T y T Tp p e
   . The relationship  

 

 
( )y T Tc Ke p S

    
 

 

which holds in a no-default world therefore becomes  

 

 
( ) [ ( ) ( )]y T T y T y T Tc Ke p Se

    
 

 

when there is default risk. This is not the same as regular put–call parity. What is more, the 

relationship depends on the independence assumption and cannot be deduced from the same 

sort of simple no-arbitrage arguments that we used in Chapter 11 for the put–call parity 

relationship in a no-default world.  

 

24.19 
We can assume that the principal is paid and received at the end of the life of the swap 



without changing the swap’s value. Because the coupons on the bond are paid regardless of 

whether the bond defaults, the value of what one side pays is the default-free value of the 

bond. This is the current market value of the bond plus the present value of defaults.  The 

value of what the other side pays is the value of a floating rate bond plus the present value of 

the spreads. Hence, the current market value of the bond plus present value of cost of defaults 

equals value of floating rate bond plus present value of the spreads. We are told that the bond 

is worth par. The floating rate bond is also worth par. It follows that the present value of the 

cost of defaults equals the present value of the spread.  (Note that if the bond is not worth par, 

the asset swap is structured so that one side initially pays the difference between its value and 

par to the other side. This preserves our result that the present value of the spreads equals the 

present value of the cost of defaults.)  

 

24.20 

The value of the debt in Merton’s model is 
0 0V E  or   

 

 
2 0 1 0 2 0 1( ) ( ) ( ) ( )rT rTDe N d V N d V De N d V N d     

  
 

If the credit spread is s, this should equal 
( )r s TDe 

 so that  

 

 
( )

2 0 1( ) ( )r s T rTDe De N d V N d    
 

 

Substituting 
0

rTDe LV    

 
0 0 2 0 1( ) ( )sTLV e LV N d V N d   

 
 

or  

 
2 1( ) ( )sTLe LN d N d     

 

so that  

 
2 1ln[ ( ) ( ) ]s N d N d L T       

 

 

24.21 
When the default risk of the seller of the option is taken into account, the option value is the 

Black–Scholes price multiplied by
0 01 3 0 9704e     . Black–Scholes overprices the option by 

about 3%.  

 

24.22 
Right way risk describes the situation when a default by the counterparty is most likely to 

occur when the contract has a positive value to the counterparty. An example of right way 

risk would be when a counterparty’s future depends on the price of a commodity and it enters 

into a contract to partially hedging that exposure.  

Wrong way risk describes the situation when a default by the counterparty is most likely to 

occur when the contract has a negative value to the counterparty. An example of right way 

risk would be when a counterparty is a speculator and the contract has the same exposure as 

the rest of the counterparty’s portfolio.  

 

 

24.23 



 

Year Cumulative average hazard 

rate (%) 

Average hazard rate during 

year (%) 

1 0.77 0.77 

2 0.92 1.08 

3 1.08 1.38 

4 1.23 1.69 

5 1.33 1.77 

 

 

24.24  (Excel file) 
The market price of the bond is 105.51. The risk-free price is 108.40. The expected cost of 

defaults is therefore 2.89.  We need to find the hazard rate  that leads to the expected cost of 

defaults being 2.89. We need to make an assumption about how the probability of default  at 

a time is calculated from the hazard rate.  The following table shows the calculations: 

 
Time 

(yrs) 

Def. 

Prob. 

Recovery 

Amount ($) 

Risk-free 

Value ($) 

Loss Given 

Default ($) 

Discount 

Factor 

PV of Loss Given 

Default ($) 

0.5 1−e−0.5
 

45 110.57 65.57 0.9804 64.28 

1.0 e−0.5−e−1.0 45 109.21 64.21 0.9612 61.73 

1.5 e−1.0−e−1.5 45 107.83 62.83 0.9423 59.20 

2.0 e−1.5−e−2.0 45 106.41 61.41 0.9238 56.74 

2.5 e−2.0−e−2.5 45 104.97 59.97 0.9057 54.32 

3.0 e−2.5−e−3.0 45 103.50 58.50 0.8880 51.95 

 

Solver can be used to determine the value of  such that 

(1−e−0.5×e−1.0−e−0.5×e−1.5−e−1.0×e−2.0−e−1.5×

 e−2.5−e−2.0× e−3.0−e−2.5×

It is 1.70%. 

 

 

24.25 
Real world default probabilities are the true probabilities of defaults. They can be estimated 

from historical data. Risk-neutral default probabilities are the probabilities of defaults in a 

world where all market participants are risk neutral. They can be estimated from bond prices. 

Risk-neutral default probabilities are higher. This means that returns in the risk-neutral world 

are lower. From Table 24.4, the probability of a company moving from A to BBB or lower in 

one year is 5.74%. An estimate of the value of the derivative is therefore  

0.0574×$100×e-0.05×1 = $5.46. The approximation in this is that we are using the real-world 

probability of a downgrade. To value the derivative correctly, we should use the risk-neutral 

probability of a downgrade. Since the risk-neutral probability of a default is higher than the 

real-world probability, it seems likely that the same is true of a downgrade. This means that 

$5.46 is likely to be too low as an estimate of the value of the derivative.  

 

24.26 

In this case, 0 4E  , 0 60E   , 15D  , 0 06r   . Setting up the data in Excel, we can solve 

equations (24.3) and (24.4) by using the approach in footnote 10. The solution to the 



equations proves to be 
0 17 084V    and 0 1576V   . The probability of default is 

2( )N d  or 

15.61%. The market value of the debt is 17 084 4 13 084    . The present value of the 

promised payment on the debt is 
0 06 215 13 304e     . The expected loss on the debt is, 

therefore, (13 304 13 084) 13 304      or 1.65% of its no-default value. The expected recovery 

rate in the event of default is therefore (15 61 1 65) 15 61      or about 89%. The reason the 

recovery rate is so high is as follows. There is a default if the value of the assets moves from 

17.08 to below 15. A value for the assets significantly below 15 is unlikely. Conditional on a 

default, the expected value of the assets is, therefore, not a huge amount below 15. In 

practice, it is likely that companies manage to delay defaults until asset values are well below 

the face value of the debt.  

 

24.27 
From equation (24.10), the 99.5% worst case probability of default is  

 

 

1 1(0 01) 0 2 (0 995)
0 0946

0 8

N N
N

     
      

 

This gives the 99.5% credit VaR as 10 (1 0 4) 0 0946 0 568        millions of dollars or 

$568,000.  

 

24.28 (Excel file) 

The spreadsheet shows the answer is 5.73. 

 

24.29 (Excel file) 

In this case, we look at the exposure from the point of view of the counterparty. The exposure 

at time t is  

 
( ) max[ , 0]r T t

te K F    

The expected exposure at time t is therefore 

 ))(())(( 102

)( tdNFtdKNe tTr   

The spreadsheet shows that the DVA is 1.134.  

 

 

 


