
 

CHAPTER 19 

The Greek Letters 
 

Short Concept Questions 

 
19.1  Suppose the strike price is 10.00. The option writer aims to be fully covered whenever 

the option is in the money and naked whenever it is out of the money. The option writer 

attempts to achieve this by buying the assets underlying the option as soon as the asset price 

reaches 10.00 from below and selling as soon as the asset price reaches 10.00 from above. 

The trouble with this scheme is that it assumes that when the asset price moves from 9.99 to 

10.00, the next move will be to a price above 10.00. (In practice, the next move might be 

back to 9.99.) Similarly, it assumes that when the asset price moves from 10.01 to 10.00, the 

next move will be to a price below 10.00. (In practice, the next move might be back to 

10.01.) The scheme can be implemented by buying at 10.01 and selling at 9.99. However, it 

is not a good hedge. The cost of the trading strategy is zero if the asset price never reaches 

10.00 and can be quite high if it reaches 10.00 many times. A good hedge has the property 

that its cost is always very close the value of the option. 

 
19.2  A delta of 0.7 means that, when the price of the stock increases by a small amount, the 

price of the option increases by 70% of this amount. Similarly, when the price of the stock 

decreases by a small amount, the price of the option decreases by 70% of this amount.  

 

19.3  N(d1) 

 

19.4  When the price rises, the delta of the option rises and you have to buy more shares to 

remain hedged. Similarly, when the price falls, the delta of the option falls and you have to 

sell shares to remain hedged.   

 
19.5  A theta of 0 1   means that if t  units of time pass with no change in either the stock 

price or its volatility, the value of the option declines by 0 1 t  . A trader who feels that 

neither the stock price nor its implied volatility will change should write an option with as 

high a negative theta as possible. Relatively short-life at-the-money options have the most 

negative thetas.  

 

19.6  The gamma of an option position is the rate of change of the delta of the position with 

respect to the asset price. For example, a gamma of 0.1 would indicate that when the asset 

price increases by a certain small amount, delta increases by 0.1 of this amount. When the 

gamma of an option writer’s position is large and negative and the delta is zero, the option 

writer will lose significant amounts of money if there is a large movement (either an increase 

or a decrease) in the asset price.  

 

19.7  See equation (19.4). 

 

19.8  Vega is the rate of change of an option price with respect to its implied volatility. If an 

increase in the implied volatility from 20% to 21% caused a price increase of $0.50, vega 

would be 0.50 ($ per %). 

 

19.9   For a forward delta is 1 while for a futures it is erT. 



 

19.10 Portfolio insurance involves creating a put option synthetically. It assumes that as soon 

as a portfolio’s value declines by a small amount, the portfolio manager’s position is 

rebalanced by either (a) selling part of the portfolio, or (b) selling index futures. On October 

19, 1987, the market declined so quickly that the sort of rebalancing anticipated in portfolio 

insurance schemes could not be accomplished. 

 

 

Practice Questions 

 
19.11 

A short position in 1,000 options has a delta of 700  and can be made delta neutral with the 

purchase of 700 shares.  

 

19.12 

In this case, 
0S K , 0 1r   , 0 25   , and 0 5T   . Also,  
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The delta of the option is 1( )N d  or 0.64.  

 

19.13 
To hedge an option position, it is necessary to create the opposite option position 

synthetically. For example, to hedge a long position in a put, it is necessary to create a short 

position in a put synthetically. It follows that the procedure for creating an option position 

synthetically is the reverse of the procedure for hedging the option position.  

 

19.14 

The strategy costs the trader 0 10  each time the stock is bought or sold. The total expected 

cost of the strategy, in present value terms, must be $4. This means that the expected number 

of times the stock will be bought or sold is approximately 40. The expected number of times 

it will be bought is approximately 20 and the expected number of times it will be sold is also 

approximately 20. The buy and sell transactions can take place at any time during the life of 

the option. The above numbers are therefore only approximately correct because of the 

effects of discounting. Also, the estimate is of the number of times the stock is bought or sold 

in the risk-neutral world, not the real world.  

 

19.15 

The holding of the stock at any given time must be N(d1). Hence, the stock is bought just after 

the price has risen and sold just after the price has fallen. (This is the buy high sell low 

strategy referred to in the text.) In the first scenario, the stock is continually bought. In the 

second scenario, the stock is bought, sold, bought again, sold again, etc. The final holding is 

the same in both scenarios. The buy, sell, buy, sell... situation clearly leads to higher costs 

than the buy, buy, buy... situation. This problem emphasizes one disadvantage of creating 

options synthetically. Whereas the cost of an option that is purchased is known up front and 

depends on the forecasted volatility, the cost of an option that is created synthetically is not 

known up front and depends on the volatility actually encountered.  

 

 



19.16 

The delta of a European futures call option is usually defined as the rate of change of the 

option price with respect to the futures price (not the spot price). It is  

 
1( )rTe N d

 

In this case, 0 8F  , 8K  , 0 12r   , 0 18  , 0 6667T     
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1( ) 0 5293N d    and the delta of the option is  

 
0 12 0 6667 0 5293 0 4886e         

The delta of a short position in 1,000 futures options is therefore 488 6  .  

 

19.17 

In order to answer this problem, it is important to distinguish between the rate of change of 

the option with respect to the futures price and the rate of change of its price with respect to 

the spot price.  

The former will be referred to as the futures delta; the latter will be referred to as the spot 

delta. The futures delta of a nine-month futures contract to buy one ounce of silver is by 

definition 1.0. Hence, from the answer to Problem 19.16, a long position in nine-month 

futures on 488.6 ounces is necessary to hedge the option position.  

The spot delta of a nine-month futures contract is 0 12 0 75 1 094e       assuming no storage costs. 

(This is because silver can be treated in the same way as a non-dividend-paying stock when 

there are no storage costs. 
0 0

rTF S e  so that the spot delta is the futures delta times rTe ) 

Hence, the spot delta of the option position is 488 6 1 094 534 6       . Thus, a long position 

in 534.6 ounces of silver is necessary to hedge the option position.  

The spot delta of a one-year silver futures contract to buy one ounce of silver is 
0 12 1 1275e    . Hence, a long position in 0 12 534 6 474 1e       ounces of one-year silver 

futures is necessary to hedge the option position.  

 

19.18 

A long position in either a put or a call option has a positive gamma. From Figure 19.8, when 

gamma is positive, the hedger gains from a large change in the stock price and loses from a 

small change in the stock price. Hence the hedger will fare better in case (b).  

 

19.19 

A short position in either a put or a call option has a negative gamma. From Figure 19.8, 

when gamma is negative, the hedger gains from a small change in the stock price and loses 

from a large change in the stock price. Hence, the hedger will fare better in case (a).  

 

19.20 

In this case, 
0 0 80S   , 0 81K   , 0 08r   , 0 05fr   , 0 15  , 0 5833T     
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N(d1)=0.5405; N(d2)=0.4948 

 



The delta of one call option is 
0 05 0 5833
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so that the gamma of one call option is  
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The vega of one call option is  
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The theta of one call option is  
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The rho of one call option is  
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Delta can be interpreted as meaning that, when the spot price increases by a small amount 

(measured in cents), the value of an option to buy one yen increases by 0.525 times that 

amount. Gamma can be interpreted as meaning that, when the spot price increases by a small 

amount (measured in cents), the delta increases by 4.206 times that amount. Vega can be 

interpreted as meaning that, when the volatility (measured in decimal form) increases by a 

small amount, the option’s value increases by 0.2355 times that amount. When volatility 

increases by 1% (= 0.01), the option price increases by 0.002355. Theta can be interpreted as 

meaning that, when a small amount of time (measured in years) passes, the option’s value 

decreases by 0.0399 times that amount. In particular, when one calendar day passes, it 

decreases by 0 0399 365 0 000109    . Finally, rho can be interpreted as meaning that, when 

the interest rate (measured in decimal form) increases by a small amount, the option’s value 

increases by 0.2231 times that amount. When the interest rate increases by 1% (= 0.01), the 

options value increases by 0.002231.  

 

19.21 

Assume that 0S , K , r ,  , T , q  are the parameters for the option held and 0S , K , r ,  , 

T  , q  are the parameters for another option. Suppose that 1d  has its usual meaning and is 

calculated on the basis of the first set of parameters while 
1d   is the value of 1d  calculated on 

the basis of the second set of parameters. Suppose further that w  of the second option are 

held for each of the first option held. The gamma of the portfolio is:  
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where   is the number of the first option held.  



Since we require gamma to be zero,  
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The vega of the portfolio is  
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Since we require vega to be zero,  
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Equating the two expressions for w  

 T T   

Hence, the maturity of the option held must equal the maturity of the option used for hedging.  

 

19.22 

The fund is worth $300,000 times the value of the index. When the value of the portfolio falls 

by 5% (to $342 million), the value of the index also falls by 5% to 1140. The fund manager 

therefore requires European put options on 300,000 times the index with exercise price 1140.  

 

a) 0 1200S  , 1140K  , 0 06r   , 0 30  , 0 50T    and 0 03q   . Hence,  
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1 2( ) 0 6622 ( ) 0 5818N d N d      

 

 
1 2( ) 0 3378 ( ) 0 4182N d N d        

The value of one put option is  
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The total cost of the insurance is therefore,  
 300 000 63 40 19 020 000$       

 

b) From put–call parity  
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or,  
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This shows that a put option can be created by selling (or shorting) qTe  of the index, 

buying a call option and investing the remainder at the risk-free rate of interest. Applying 

this to the situation under consideration, the fund manager should:  



1. Sell
0 03 0 5360 354 64e $        million of stock.  

2. Buy call options on 300,000 times the index with exercise price 1140 and 

maturity in six months.  

3. Invest the remaining cash at the risk-free interest rate of 6% per annum.  

This strategy gives the same result as buying put options directly.  

c) The delta of one put option is  
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This indicates that 33.27% of the portfolio (i.e., $119.77 million) should be initially sold 

and invested in risk-free securities.  

d) The delta of a nine-month index futures contract is  

 
( ) 0 03 0 75 1 023r q Te e       

 

The spot short position required is  
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times the index. Hence, a short position in  
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futures contracts is required.  

 

19.23 

When the value of the portfolio goes down 5% in six months, the total return from the 

portfolio, including dividends, in the six months is  

 5 2 3%     

that is, 6%  per annum. This is 12% per annum less than the risk-free interest rate. Since the 

portfolio has a beta of 1.5, we would expect the market to provide a return of 8% per annum 

less than the risk-free interest rate; that is, we would expect the market to provide a return of 

2%  per annum. Since dividends on the market index are 3% per annum, we would expect 

the market index to have dropped at the rate of 5% per annum or 2.5% per six months; that is, 

we would expect the market to have dropped to 1170. A total of 450 000 (1 5 300 000)      

put options on the index with exercise price 1170 and exercise date in six months are 

therefore required.  

 

a) 0 1200S  , 1170K  , 0 06r   , 0 3  , 0 5T    and 0 03q   . Hence,  
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The value of one put option is  
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The total cost of the insurance is therefore,  
 450 000 76 28 34 326 000$       

Note that this is significantly greater than the cost of the insurance in Problem 19.22.  

 

b) As in Problem 19.22, the fund manager can 1) sell $354.64 million of stock, 2) buy call 

options on 450,000 times the index with exercise price 1170 and exercise date in six 

months, and 3) invest the remaining cash at the risk-free interest rate.  

 

c) The portfolio is 50% more volatile than the index. When the insurance is considered as an 

option on the portfolio, the parameters are as follows: 0 360S  , 342K  , 0 06r   , 

0 45  , 0 5T    and 0 04q     

 
 2

1

ln(360 342) 0 06 0 04 0 45 2 0 5
0 3517

0 45 0 5
d

         
  

 
 

 

 
1( ) 0 6374N d    

The delta of the option is  
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This indicates that 35.5% of the portfolio (i.e., $127.8 million) should be sold and 

invested in riskless securities.  

 

d) We now return to the situation considered in (a) where put options on the index are 

required. The delta of each put option is  
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The delta of the total position required in put options is 450 000 0 3779 170 000       . 

The delta of a nine month index futures is (see Problem 19.22) 1.023. Hence, a short 

position in  
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index futures contracts.  

 

19.24 

a) For a call option on a non-dividend-paying stock,  
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Hence, the left-hand side of equation (19.4) is:  
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b) For a put option on a non-dividend-paying stock,  
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Hence, the left-hand side of equation (19.4) is:  
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c) For a portfolio of options,  ,  ,   and   are the sums of their values for the 

individual options in the portfolio. It follows that equation (19.4) is true for any 

portfolio of European put and call options.  

 

19.25 

A currency is analogous to a stock paying a continuous dividend yield at rate 
fr . The 

differential equation for a portfolio of derivatives dependent on a currency is (see equation 

17.6)  
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Hence,  
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Similarly, for a portfolio of derivatives dependent on a futures price, F (see equation 18.6)  
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19.26 

We can regard the position of all portfolio insurers taken together as a single put option. The 

three known parameters of the option, before the 23% decline, are 0 70S  , 66 5K   , 1T  . 



Other parameters can be estimated as 0 06r   , 0 25   and 0 03q   . Then:  
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The delta of the option is  
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This shows that 31.67% or $22.17 billion of assets should have been sold before the decline. 

These numbers can also be produced from DerivaGem by selecting Underlying Type and 

Index and Option Type as Black–Scholes European.  

After the decline, 
0 53 9S   , 66 5K   , 1T  , 0 06r   , 0 25   and 0 03q   .  
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The delta of the option has dropped to  
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This shows that cumulatively 70.28% of the assets originally held should be sold. An 

additional 38.61% of the original portfolio should be sold. The sales measured at pre-crash 

prices are about $27.0 billion. At post-crash prices, they are about $20.8 billion.  

 

19.27 

With our usual notation, the value of a forward contract on the asset is 
0

qT rTS e Ke  . When 

there is a small change, S , in 0S  the value of the forward contract changes by qTe S  . The 

delta of the forward contract is therefore qTe . The futures price is ( )

0

r q TS e  . When there is a 

small change, S , in 0S  the futures price changes by ( )r q TSe  . Given the daily settlement 

procedures in futures contracts, this is also the immediate change in the wealth of the holder 

of the futures contract. The delta of the futures contract is therefore ( )r q Te  . We conclude that 

the deltas of a futures and forward contract are not the same. The delta of the futures is 

greater than the delta of the corresponding forward by a factor of rTe . (Business Snapshot 5.2 

is related to this question.) 

 

19.28 
The delta indicates that when the value of the exchange rate increases by $0.01, the value of 

the bank’s position increases by 0 01 30 000 $300    . The gamma indicates that when the 

exchange rate increases by $0.01, the delta of the portfolio decreases by 0 01 80 000 800    . 

For delta neutrality, 30,000 CAD should be shorted. When the exchange rate moves up to 

0.93, we expect the delta of the portfolio to decrease by (0 93 0 90) 80 000 2 400        so that 

it becomes 27,600. To maintain delta neutrality, it is therefore necessary for the bank to 

unwind its short position 2,400 CAD so that a net 27,600 have been shorted. As shown in the 

text (see Figure 19.8), when a portfolio is delta neutral and has a negative gamma, a loss is 

experienced when there is a large movement in the underlying asset price. We can conclude 

that the bank is likely to have lost money.  



 

19.29 

(a) For a non-dividend paying stock, put–call parity gives at a general time t :  

 
( )r T tp S c Ke     

 

        Differentiating with respect to S :  

 1
p c

S S

 
 

 
 

        or  

 1
p c

S S

 
 

 
 

This shows that the delta of a European put equals the delta of the corresponding                    

European call less 1.0.  

 

(b) Differentiating with respect to S  again  

 

2 2

2 2

p c

S S

 


 
 

Hence, the gamma of a European put equals the gamma of a European call.  

 

(c)   Differentiating the put–call parity relationship with respect to    

 
p c

 

 


 
 

showing that the vega of a European put equals the vega of a European call.  

 

(d)  Differentiating the put–call parity relationship with respect to t  

 
( )r T tp c

rKe
t t

  
 

 
 

This is in agreement with the thetas of European calls and puts given in Section 19.5 

since 
2 2( ) 1 ( )N d N d   .  

 
19.30 

The delta of the portfolio is  
 1 000 0 50 500 0 80 2 000 ( 0 40) 500 0 70 450                  

The gamma of the portfolio is  
 1 000 2 2 500 0 6 2 000 1 3 500 1 8 6 000                  

The vega of the portfolio is  
 1 000 1 8 500 0 2 2 000 0 7 500 1 4 4 000                  

 

(a) A long position in 4,000 traded options will give a gamma-neutral portfolio since the long 

position has a gamma of 4 000 1 5 6 000      . The delta of the whole portfolio (including 

traded options) is then:  
 4 000 0 6 450 1 950       

Hence, in addition to the 4,000 traded options, a short position of 1,950 in sterling is 

necessary so that the portfolio is both gamma and delta neutral.  

(b) A long position in 5,000 traded options will give a vega-neutral portfolio since the long 

position has a vega of 5 000 0 8 4 000      . The delta of the whole portfolio (including 

traded options) is then  



 5 000 0 6 450 2 550       

Hence, in addition to the 5,000 traded options, a short position of 2,550 in sterling is 

necessary so that the portfolio is both vega and delta neutral.  

 

19.31 

Let 1w  be the position in the first traded option and 
2w  be the position in the second traded 

option. We require:  

 
1 26 000 1 5 0 5w w      

 

 
1 24 000 0 8 0 6w w      

The solution to these equations can easily be seen to be 
1 3 200w   , 

2 2 400w   . The whole 

portfolio then has a delta of  
 450 3 200 0 6 2 400 0 1 1 710            

 

Therefore, the portfolio can be made delta, gamma and vega neutral by taking a long position 

in 3,200 of the first traded option, a long position in 2,400 of the second traded option, and a 

short position of 1,710 in sterling.   

 

 

19.32 

The product provides a six-month return equal to  
 max (0 0 4 )R   

where R  is the return on the index. Suppose that 0S  is the current value of the index and 
TS  

is the value in six months.  

When an amount A  is invested, the return received at the end of six months is:  

 

0

0

0

0

max (0 0 4 )

0 4
max (0 )

T

T

S S
A

S

A
S S

S


 


  

 

This is 00 4A S   of at-the-money European call options on the index. With the usual 

notation, they have value:  

 
0 1 0 2

0

1 2

0 4
[ ( ) ( )]

0 4 [ ( ) ( )]

qT rT

qT rT

A
S e N d S e N d

S

A e N d e N d

 

 




  

 

In this case, 0 08r   , 0 25  , 0 50T    and 0 03q     

 

 2

1

2 1

0 08 0 03 0 25 2 0 50
0 2298

0 25 0 50

0 25 0 50 0 0530

d

d d

      
  

 

     

 

 

 
1 2( ) 0 5909 ( ) 0 5212N d N d      

The value of the European call options being offered is  

 

0 03 0 5 0 08 0 50 4 ( 0 5909 0 5212)

0 0325

A e e

A

            

 
 

This is the present value of the payoff from the product. If an investor buys the product, the 



investor avoids having to pay 0 0325A  at time zero for the underlying option. The cash flows 

to the investor are therefore,  

Time 0:−A+0.0325A=−0.9675A  

After six months: A   

The return with continuous compounding is 2ln(1 0 9675) 0 066     or 6.6% per annum. The 

product is therefore slightly less attractive than a risk-free investment.  

 

19.33 
(a) 

 
2
1 2

1( )
2

dF
FN d e



    

 

 
2 2
1 1( 2) 2

2 1( ) ( )
2

d d T TK
KN d KN d T e  



         

Because 
2

1 ln( ) 2d T F K T     ,  the second equation reduces to  

 
2 2
1 1( 2) ( ) 2

2( )
2 2

d ln F K dK F
KN d e e

 

         

The result follows.  

 

(b) 

 1 2
1 1 2( ) ( ) ( )rT rT rTd dc

e N d e FN d e KN d
F F F

   
   

  
 

Because  

 
1 2d d

F F

 


 
 

it follows from the result in (a) that  

 1( )rTc
e N d

F




  
 

(c) 

 
1 2

1 2( ) ( )rT rTd dc
e FN d e KN d

  

  
  

  
 

Because 1 2d d T    

 
1 2d d

T
 

 
 

 
 

From the result in (a), it follows that  

 1( )rTc
e FN d T






  
 

(d) 

Rho is given by  

 1 2[ ( ) ( )]]rTc
Te FN d KN d

r


  


 

or cT .  

 

Because q r  in the case of a futures option there are two components to rho. One arises 



from differentiation with respect to r , the other from differentiation with respect to q .  

 

19.34 

For the option considered in Section 19.1, 0 49S  , 50K  , 0 05r   , 0 20  , and 

20 52T   . DerivaGem shows that 0 011795 365 4 305        , 0 5216   , 

0 065544   , 2 4005   . The left hand side of equation (19.4)  

 
2 21

4 305 0 05 49 0 5216 0 2 49 0 065544 0 120
2

                

The right hand side is  

 0 05 2 4005 0 120      

This shows that the result in equation (19.4) is satisfied.  

 


