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Abstract 
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on options on the S&P 500 index to derive a relationship between the expected change in implied 
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remaining life of the option. This model provides an improvement of 10.72% compared with a 

simpler analytic model. We then enhance the model with an additional feature: the level of the 

VIX index prior to the change being observed. This produces a further improvement of 62.12% 

and shows that the expected response of the volatility surface to movements in the index is quite 

different in high and low volatility environments.  
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A Neural Network Approach to Understanding Implied Volatility 

Movements 

 

1. Introduction 

It is well established that there is a negative relationship between an equity’s volatility and its 

price. Black (1976), Christie (1982), Cheung and Ng (1992) and Duffee (1995) demonstrate 

this using linear regressions of return on subsequent changes in volatility for individual stocks 

and stock portfolios.  Other authors have documented that the negative relationship extends to 

implied volatilities as well as physical volatilities. Cont and da Fonseca (2002), for example, 

who carried out a principal components analysis of volatility surface movements, find that 

shifts in the level of implied volatilities are negatively correlated with the return on the 

underlying asset. Poulsen et al (2009) find that for both U.S. and European markets the 

correlation between returns and at-the-money implied volatilities is highly negative, about 

−0.85.  

The reason for the negative relationship has been the subject of much research. Black (1976) 

suggested a leverage argument. As the equity price moves up (down), leverage decreases 

(increases) and as a result volatility decreases (increases). In the alternative volatility feedback 

effect hypothesis, the causality is the other way round. When there is an increase (decrease) in 

volatility, the required rate of return increases (decreases) causing the stock price to decline 

(increase). The two competing explanations have been explored by a number of authors 

including French et al (1987), Campbell and Hentschel (1992), Bekaert and Wu (2000), 

Bollerslev et al (2006), Hens and Steude (2009), and Hasanhodzic and Lo (2013). On balance, 

the empirical evidence appears to favor the volatility feedback effect. For example, the 

negative relationship seems to hold even when the equity is issued by a company that has very 

little debt in its capital structure.  

Changes in equity prices do not lead to all implied volatilities changing by the same amount. 

In this paper we use machine learning to produce a model of the dependence of the volatility 

surface on return for an equity index. We first use a three-feature neural network model to 
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explore the relationship between the change in the implied volatility of an option on the S&P 

500 index and: 

a) the daily return of the index; 

b) the moneyness of the option; and  

c) the option’s time to maturity 

We will refer to this as the ‘three-feature model.’ We then add a market sentiment indicator, 

the VIX index, to create a more elaborate model, which we will refer to as the ‘four-feature 

model.’ Our results are based on about two million daily observations on call options on the 

S&P 500 between 2010 and 2017 from OptionMetrics. 

Our measure of moneyness is the delta calculated from the practitioner Black-Scholes model. 

The practitioner Black-Scholes model is a model where the volatility parameter in the Black-

Scholes formula is replaced by the implied volatility. The practitioner delta for a European 

option on an index is therefore 

δBS = 𝑒−𝑞𝑇𝑁(
ln⁡(𝑆 𝐾) + (𝑟 − 𝑞 + σimp

2 2⁄ )𝑇⁄

σimp√𝑇
) 

where N is the cumulative standard normal distribution function, S is the index level, K is the 

strike price, T is the time to maturity, r is the risk-free rate, q is the dividend yield and σimp⁡ is 

the implied volatility of the option.1 

The practitioner Black-Scholes delta is a measure of moneyness widely used by practitioners. 

Indeed, practitioners often define at-the-money call options as options where δBS = 0.5 and at-

the-money put options as options where δBS  = − 0.5. For call options, δBS  is close to zero for 

deep out-of-the-money options and close to 1.0 for deep-in-the-money options. For put 

options, δBS  is close to zero for deep out-of-the-money options and close to −1.0 for deep-in-

the-money options. 

 

                                                           
1 The practitioner gamma and vega are defined similarly by setting the volatility parameter equal to the implied 
volatility of the option under consideration. 
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Developing an empirical model for the relationship between volatility surface movements and 

equity returns is important for a number of reasons. It can be used to test the extent to which a 

particular stochastic volatility model is consistent with market data. This can be done by 

determining numerically the relationship between volatility surface movements and the 

features listed above for the stochastic volatility model under consideration and then 

comparing it with the empirically determined relationship.  An empirical model has the 

potential to provide useful information for a trader who has to quote implied volatilities in a 

market where equity prices are moving fast. It can also be used to estimate a minimum 

variance delta for hedging. This is a hedge ratio that takes account of expected volatility 

changes as well as the change in the underlying asset price. The minimum variance delta is 

δBS + 𝑣BS
𝜕σimp

𝜕𝑆
 

where 𝑣BS is the practitioner vega and 𝜕𝜎imp 𝜕𝑆⁄  is estimated from empirical results.  

Other research which uses machine learning for modeling volatility changes is Nian et al 

(2018). This focuses on minimum variance delta estimates and shows that machine learning 

can lead to hedging improvements. Our research is more general. We are concerned with 

understanding movements in the whole volatility surface. 

Our objective is to use machine learning tools to estimate the function F in the relationship  

imp BS( ) , , ,
 

   
 

S
E F T V

S
 

where E denotes expected value, imp is an option’s implied volatility, S is the S&P 500 index, 

BS is the option’s moneyness measure just mentioned, T is the option’s time to maturity, and 

V is the level of the VIX index (observed immediately prior to the changes in the implied 

volatility and the index).  Our research provides an application of multi-layer neural networks 

in finance.2  As explained below, a multi-layer neural network is a useful tool for estimating 

complex non-linear functions when a large amount of data is available. 

                                                           
2 Tests of the use of artificial neural networks for option pricing are provided by Hutchison et al (1994) and Cucklin 
and Das (2017).  
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Hull and White (2017) in considering minimum variance delta estimates propose the 

following analytic model: 

2
BS BS

imp( )
a b cS

E
S T

   
   

where a, b, and c are parameters. In this model the expected change in the implied volatility is 

linearly dependent on the return on the index, inversely proportional to the square root of the 

time to maturity and quadratic in the practitioner Black-Scholes delta. The parameters a, b, 

and c are estimated from data. This model was found to produce results that compared 

favorably with more elaborate stochastic volatility models, and we use it as a benchmark. We 

find that a three-feature neural network model produces a 10.72% improvement over this 

model. Adding the VIX index as a fourth feature produces a further improvement of 62.12%.   

The organization of the paper is as follows. Section 2 describes the nature of neural networks. 

Section 3 explains the data and how it was used. Section 4 explains the way algorithms were 

implemented. Section 5 presents the results for the three-feature model. Section 6 examines 

the extra explanatory power of the VIX index and conclusions are in Section 7.  

 

2. Neural Networks 

Artificial neural networks (ANNs) are at the very core of deep learning. They were first 

introduced by McCulloch and Pitts (1943) who presented a simplified model of how the 

neurons in a human brain can perform computations. In recent years, improvements in 

computer processing speed and the large volumes of data that are being generated in many 

spheres have led to renewed interest in ANNs.    

Traditionally, finance and economics have used linear models or models involving simple 

transformations of linear functions. ANNs enable non-linear functions involving many 

parameters to be estimated from large data sets. The structure of an ANN is shown in Figure 1. 

There are a number of inputs, referred to as features and one or more outputs, referred to as 

targets. In our first application, there are three features: index return, moneyness (as measured 

by the Black-Scholes delta), and time to maturity. There is one target, the change in the 
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implied volatility. We then add an additional market sentiment indicator, the VIX index, as a 

feature.          

The inputs form the input layer and the outputs form the output layer. The calculations 

necessary to determine the output layer from the input layer involve one or more hidden 

layers. Each hidden layer has a number of nodes at which values are calculated.  In Figure 1 

there are n hidden layers, an input layer, and an output layer. The left-most layer is the input 

layer and contains the values of the input variables (or features). The right-most layer is the 

output layer and contains the output variables (or targets).  

Instead of developing a model to estimate the outputs directly from the inputs we specify 

functions relating the values at the nodes comprising one layer to values at the nodes 

comprising the previous layer.  The first function is used to transform the values of the 

features in the input layer to the values at the nodes in the first layer. Further functions are 

used to transform the values at the nodes in layer i to values at the nodes in layer i+1 (1 ≤ i ≤ 

n−1). A final function is used to transform the values at the nodes in layer n to the target 

values in the output layer. These functions are referred to as activation functions. ANNs that 

have multiple hidden layers are referred to as deep neural networks. See Hull (2019) for more 

details. 

The Universal Approximation Theorem, derived by Hornik (1991), states that an ANN with a 

single hidden layer can approximate any function arbitrarily closely. However, a very large 

number of nodes may be required and in some situations it may be more practical to use 

multiple layers so that there are fewer nodes overall.3       

Suppose that there are m0 features, mi nodes in hidden layer i (1 ≤ i ≤ n), and mn+1 targets. We 

will refer to the input layer as layer 0 and the output layer as layer n+1.    Define 
,i jv  as the 

value at the jth node of layer i (0 ≤ i ≤ n+1, 1 ≤  j  ≤ mi). The variable v0,j = xj   is the value of 

the jth feature and  vn+1,j  is the estimate of the jth target given by the model.   

The formula for calculating the vi,j (1 ≤  i  ≤ n + 1 and 1 ≤  j  ≤  mi) can be written 

                                                           
3 See Telgarsky (2016) for a discussion of this. 
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1

, , 1, , 1,

1

im
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k

v f b w v


 



 
  

 
                                                           (1) 

In this formula fi defines the activation function used to calculate values at the nodes of layer i 

(1 ≤  i  ≤ n + 1). The bi,j and wi,k,j  are parameters of the model. Specifically, wi,k,j is the weight 

assigned to the value at the kth node of layer i when the value at jth node of layer i+1 is being 

calculated and bi,j is a constant, known as the bias, which is added to the weighted value 

computed for the jth node of layer i.   

The number of parameters in equation (1) can be quite large. For example if there are F 

features, H hidden layers, M nodes in each hidden layer, and T targets there are 

( 1) ( 1)( 1) ( 1)F M M M H M T       

parameters in total.  We used three hidden layers and 80 nodes per hidden layer.  The number 

of parameters in the three and four feature models were therefore 13,361 and 13,441, 

respectively. The huge number of parameters compared with traditional models naturally 

leads to overfitting concerns. As we discuss later these concerns are addressed by dividing the 

data into a training set, validation set, and test set and choosing an appropriate stopping rule 

for the algorithm.   

The weights and biases are chosen to minimize an objective function that captures the 

difference between the estimated target values for the training set and the actual values. Our 

application involves only one target (the change in implied volatility) and our objective 

function is the mean squared error between the estimated target and the actual target across all 

the options used for training. 

The minimization is accomplished using a steepest descent algorithm. Initial values are 

assigned to the weights and biases. An iterative procedure is then carried out to improve the 

objective function by changing these parameters.  On each iteration a partial derivative of the 

objective function is calculated with respect to each of the parameters. Each parameter is then 

reduced by the product of its partial derivative and a constant, referred to as the learning rate. 

The iterations are referred to as epochs. 
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For large data sets and models involving many parameters this procedure is made 

computationally feasible by a technique known as backpropagation. This was proposed by 

Rummelhart et al (1986) and involves working back through the layers calculating the 

required partial derivatives using the chain rule.  

The vanilla gradient descent algorithm described above can sometimes be slow. To speed up 

the learning process, several variations have been developed. For example,  

 Mini-batch stochastic gradient descent. This algorithm randomly splits the training data 

into small mini-batches. Instead of using the whole training data to calculate gradient, it 

updates model parameters based on the gradient calculated from a single batch with each 

of the mini-batches being used in turn. Because the algorithm estimates the gradient using 

a small sample of the training data, it is less computationally expensive and often leads to 

much faster learning. 

 Gradient descent with momentum. This algorithm calculates gradient as an exponentially 

decaying moving average of past gradients. This approach helps to build up parameter 

update ‘velocity’ in any direction that has a consistent gradient. 

 Gradient descent with adaptive learning rates. A learning rate that is too small will result 

in many epochs being required to reach a reasonable result. A learning rate that is too high 

may lead to oscillations and a poor result. Different model parameters may benefit from 

different learning rates at different stages of training. Because choosing proper learning 

rates can be difficult, many algorithms try to automate the process. For example, 

RMSProp (Root Mean Squared Propagation) and Adam (Adaptive Moment Estimation) 

are both popular adaptive learning rate algorithms that adjust learning rate at each iteration 

for each model parameter. 

In this paper, we use a  mini-batch size of 512 and implement Adam methods with the 

parameters suggested in Kingma and Ba (2017).4  

In practice, the algorithms we have described are not used to fully minimize the loss function. 

This would be computationally quite time consuming. Also the nature of the algorithms and 

the large number of parameters used are such that as training increases more of the 

                                                           
4 Initial value of weights can also affect convergence speed. In our training, we apply the Glorot uniform initializer 
suggested by Glorot and Bengio (2010).  
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idiosyncrasies of the training data tend to be reflected in the model. A stopping rule is 

therefore specified both for computational efficiency and to avoid overfitting. We describe the 

stopping rule we used in Section 4. 

 

3. Data  

We used S&P 500 call options data from OptionMetrics between January 2010 and December 

2017. The data for each option on each day includes the strike price, time to maturity, index 

level, and implied volatility, as well as hedge parameters such as delta, gamma, vega, and 

theta derived from the practitioner Black-Scholes model.  

The data was filtered in a number of ways. We only retained options where the information 

provided was complete.  Options with remaining lives less than 14 days were removed from 

the data set. Options for which the practitioner Black-Scholes delta was less than 0.05 or 

greater than 0.95 were removed from the data set. The data was then sorted to produce 

observations for the same option on two successive trading days. This resulted in about 2.07 

million observations on daily volatility changes for 53,653 call options. 

The three features we used in the first stage of this research are the S&P 500 daily change, 

time-to-maturity, and the practitioner Black-Scholes delta. There is one target, the implied 

volatility change. In the second stage we added the VIX index as a feature. A summary of 

statistical properties of the features and target variables is provided in Table 1.  

To apply the neural network technique, we randomly divided the data into a training set, a 

validation set, and test set, with a 7:2:1 ratio. We used the training set and the validation set to 

train and fine-tune the neural network model, and then evaluated the model performance with 

the test set. All results presented are those for the test set.  

 

 

 

4.  Model Selection Criteria 

 

Key elements of a neural network model are the activation function, the number of layers and 

the number of nodes per layer. The activation functions fi in equation (1) for i ≤ n are designed 
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to distinguish between positive and negative signals. We considered four different activation 

functions that have been suggested in the literature: the sigmoid, the rectified linear unit (relu), 

the leaky relu, and the exponential linear unit. The functional forms are shown in Table 2. 

They all have attractive properties for backpropagation algorithms. For i = n+1 the activation 

function is f(x) = x so that a linear function relates values at the nodes on the final hidden 

layer to the target. (This is usual practice when a continuous variable is being estimated.)  We 

present results for a model with three hidden layers and 80 nodes per layer. We found models 

with sigmoid activation functions generally perform better (lower mean squared errors) and 

we will therefore only present results from using the sigmoid activation function. 

To avoid overfitting, we experimented with a number of different early stopping rules. A 

common approach involves stopping when the mean square error for the validation set starts 

to trend up. For our data this happened only after a very large number of epochs if at all, a 

result which may be indicative of local overfitting.5 In the end, we decided to use the 

smoothness of the predicted change in the volatility surface as our criterion. We manually 

inspected a three-dimensional plot of the volatility surface change as the number of epochs 

was increased and stopped when this was no longer smooth. This led to earlier stopping than 

that would be indicated by other rules. In both of the three-factor models and four-factor 

model we stopped after 4,000 epochs. The choice of the stopping rule did not affect the 

general shape of the volatility surface movements, but it did affect the smoothness of the 

results.  

5. Results for Three-Feature Model 

Hull and White (2017) propose a simple analytic model for determining volatility surface 

movements. Their model is  

 

2
BS BS

imp( )
a b cS

E
S T

   
                                                    (2) 

                                                           
5 See for example Lawrence and Giles (2000). 
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This model involves three parameters, a, b, and c, which can be estimated using linear 

regression. The best fit parameters for our data are shown in Table 3. We use the model as a 

benchmark. Similar to Hull and White (2017), we define the Gain from using Model A rather 

than Model B as   

 
 

Model A
Gain 1

Model B

SSE

SSE
                                                            (3) 

where SSE denotes sum of squared errors.  

The gain from using the three-feature machine learning model rather than the analytic model 

was 10.72%.  The mean squared error for the test set was 0.0000984 (with implied volatilities 

measured as decimals). To investigate the sources of the gain we calculated the gain given by 

the three-feature model for a number of different subsets of the data. Our results are 

summarized in Table 4. This shows that the gain is greatest for (a) situations when the index 

return is higher than +1% or lower than −1% and (b) short maturity options. 

Tables 5 and 6 show the volatility changes predicted by the analytic model in equation (2) and 

the three-feature model for index returns of −1.25% and +1.25%.  Plots of the volatility 

surface changes are in Figure 2. As might be expected, the results from the two models are 

similar. The volatility surface moves up when the return is negative and moves down when 

the return is positive. The change decreases as the time to maturity increases and is greatest 

for low-delta and high-delta options. 

The analytic model in equation (1) is linear in the return. The impact of a gain of X% on a 

particular option’s implied volatility is equal and opposite to that of a gain of –X%. The same 

is not true for the three-feature neural network model. The reduction in implied volatilities 

arising from a daily return of 1.25% is on average about twice as great the increase in implied 

volatilities arising from a daily return of −1.25%. The change in the implied volatility 

predicted by the analytic model is too high for large negative returns and too low for large 

positive returns. This non-linearity suggests that the gamma, as well as the delta of a portfolio, 

may be affected by volatility uncertainty.    

6. Results for Four-Feature Model 
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The four-feature model is designed to test whether the behavior of the volatility surface in 

high volatility environments is different from that in low volatility environments. The fourth 

feature is the value of the VIX index on the day before the index return and volatility change 

are observed. With a mean squared error of 0.0000372 for the test set, the four-feature model 

produces a gain of 62.12% over the three-feature model. Table 7 shows the gain as a function 

of the VIX index and the index return. It shows that the gain is greatest for high and low 

values of the index return and high and low values of the VIX. 

Table 8 shows the expected changes in the volatility given by the four-feature model when the 

index return is +1.25% and −1.25%, and the VIX has values of 13% and 16%. Figure 3 shows 

corresponding charts. It is interesting to note that, when the VIX is low (13%) and there is a 

big increase in the index (+1.25%), all points on the volatility surface increase. This is quite 

different behavior from the average shown in Table 6. As with most of our other results, this 

one is most marked for high delta short maturity options. Table 6 shows that the expected 

change in the implied volatility of a three-month option with a delta of 0.9 is −62 basis points 

when the index return is +1.25%. Conditional on a low VIX index of 13% this change is 84 

basis points, over 146 basis points greater. Presumably a high index return in a low volatility 

environment is seen as signal of high future volatilities. 

Our results show that the VIX index and the return on the index interact in a way that makes 

the basic Hull-White three-parameter model at best an incomplete description of volatility 

surface movements. We illustrate this in Table 9 which shows the Hull-White parameters for 

different ranges of the index return and the VIX index. The parameters a can be viewed as an 

indicator of the size of volatility surface movements for low delta options. A negative value of 

a indicates that positive returns lead to negative volatility surface movements and vice versa. 

It can be seen that for returns less than -1%, a is approximately the same regardless of the 

VIX index. For returns greater than -1%, the values of a indicate that the magnitude of the 

low-delta volatility movements increases as VIX increases. For values of the VIX less than 19, 

the magnitude of low-delta volatility surface movements decreases as the index return 

increases. When VIX is low and the return is highly positive, a is positive indicating the 

volatility surface moves in the opposite direction to that normally expected for a positive 

return. This is consistent with our ANN result mentioned above. 
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The parameter b can be interpreted as the slope of the implied volatility as a function of delta 

for low delta options. It can be seen that this slope is always positive and tends to increase as 

the VIX index increases and the index return increases. The parameter c measures the extent 

the curvature of the relationship between implied volatility and delta (see Figures 2 and 3).  

As in the case of the low-delta slope, this is greatest in situations where the VIX index is high 

and the index return is high.  

As mentioned earlier, one application of this research is to minimum variance delta hedging. 

The Hull-White model sets the minimum variance delta as 

BS
BS BS BS

2( )
v

a b c
S T

       

where BS and BSv  are the delta and vega parameters calculated from the practitioner Black-

Scholes model, S is the index level,  and T is the time to maturity. It is clear from our research 

that the current level of the VIX, which is not included in the Hull-White model, has a bearing 

on volatility movements and therefore on the minimum variance delta. A potential simple 

improvement on the Hull-White model is to use the final row in Table 9 to adjust the a, b, and 

c parameters according to the level of the VIX index.  For example, for an option with a delta 

of 0.5, the table indicates that the delta adjustment when the VIX is greater than 19 is 48% 

higher than when the VIX is in the 13 to 19 range, and this is 30% greater than when the VIX 

is less than 13.  

 

7. Conclusions 

Machine learning is usually used as a prediction tool. The values of features observed prior to 

time t are used to predict target values at or after time t. In this paper we show how machine 

learning can be used to explore a nonlinear relationship between variables. We consider the 

relationship between the change in the S&P 500 index and the contemporaneous change in the 

implied volatility of an option on the index as a function of option’s maturity and its 

moneyness.  Our results are generally supportive of the negative correlation between the 

implied volatilities and asset returns that has been documented in the literature and is 
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discussed in the introduction. However, we do find one notable exception. When volatilities 

are low and the index return is particularly high there is a tendency for volatilities to increase. 

The use of a three feature neural network model refines the expected volatility change 

estimates produced by Hull and White (2017). The difference between the two models is most 

marked for high-delta short-maturity options and when extreme positive or negative returns 

are observed. The Hull-White model tends to understate the impact of large positive returns 

and overstate the impact of large negative returns.  

Volatility surface movements depend on the initial level of volatility. We demonstrated this 

by including the level of the VIX index on Day t−1 as a feature to determine expected 

volatility surface changes between Day t−1 and Day t. It is normally the case that the whole 

volatility surface moves up when the index declines and moves down when the index 

increases. As mentioned, we have shown that this is not necessarily what happens when there 

is a large positive return in the index. When the large positive return occurs in an environment 

where volatilities were (prior to the return being observed) low, the movement in the volatility 

surface is the opposite of that normally associated with a positive return. For example, when 

the VIX is 13% and a +1.25% index return occurs, the expected changes in implied volatilities 

are mostly positive. When the VIX is a more normal 16% the expected changes are highly 

negative. The changes are most marked for high-delta short-maturity options.   

This research assumed a stationary model. When we tested the model on the most recent 10% 

of the data it performed slightly less well than on a test set which was randomly chosen from 

our complete data set. A possible area for further research is to extend our model to one where 

the time sequence of the data is taken into account.  This could be done using a recurrent 

neural network where equation (1) is modified so that vi,j depends on the previous day’s 

estimates as well as on the current day’s values at the immediately preceding nodes. The long 

short-term memory approach of Hochreiter and Schmidhuber (1997) could also be used.   

 

Another possible extension of our research would be to train a model on the errors in an 

analytic model such as Hull and White (2017) rather than on the movements in the volatility 

surface itself. This is analogous to a widely used machine learning method known as gradient 
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boosting where there are a sequence of predictors each one trying to correct the errors of the 

previous one.    
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Table 1: Summary Statistics of Features and Target 

  

S&P500 Daily 
Change 

Time-to-
Maturity 

Delta VIX 
Implied Volatility 

Change 

Mean 0.05% 0.81 0.63 15.89 -0.06% 

Std 0.87% 0.97 0.29 5.41 1.12% 

Min -6.66% 0.06 0.05 9.14 -45.30% 

Median 0.05% 0.34 0.72 14.42 -0.01% 

Max 4.74% 4.38 0.95 48.00 36.85% 
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Table 2: Alternative Activation Functions. The value used for a in the leaky relu and exponential 

linear unit activation functions was 0.03. 

 

Sigmoid 1
( )

1 x
f x

e



 

Relu ( ) max( ,0)f x x  

Leaky relu 0
( )

0

x x
f x

ax x


 


 

Exponential linear unit 0
( )

( 1) 0x

x x
f x

a e x


 

 
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Table 3: Parameters estimated for the analytic model in equation (2) using training set and 

validation data sets: January 2010 to December 2017. Time is measured in years and the implied 

volatility change is measured in decimal form. 

 

Parameter Value t-statistic 

a − 0.2329 −165.3 

b    0.4176     66.5 

c − 0.4892   −84.5 
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Table 4: Percentage gain of three-feature model over analytic model in equation (2) for different 

index returns and different times to maturity 

Time to Index Return 

 Maturity <-1% −1% to 0 0 to 1% >1% All 

0-6m 28.39 3.65 1.07 26.13 11.48 

6m to 1yr 20.56 -1.42 -2.29 14.13 5.14 

1yr to 2yr 13.49 1.62 -1.69 15.94 4.52 

>2yr 11.12 2.02 3.23 7.54 4.23 

All 26.76 3.28 0.98 25.09 10.72 
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Table 5: Expected daily changes in volatility given by the analytic model in equation (2) for 

options with different moneyness and time to maturity. Volatility is measured in basis points per 

year. Moneyness is measured by the practitioner Black-Scholes delta. The table considers 

scenarios where the daily return on the index is (a) −1.25%, (b) +1.25% 

 

Index return = -1.25% 

 

Index return = +1.25% 

           B-S Time to Maturity 

 

B-S Time to Maturity 

Delta 3m 6m 1yr 1.5yr 

 

Delta 3m 6m 1yr 1.5yr 

0.1 49 35 25 20 

 
0.1 -49 -35 -25 -20 

0.3 38 27 19 15 

 
0.3 -38 -27 -19 -15 

0.5 37 26 18 15 

 
0.5 -37 -26 -18 -15 

0.7 45 32 23 18 

 
0.7 -45 -32 -23 -18 

0.9 63 45 32 26 

 
0.9 -63 -45 -32 -26 
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Table 6: Expected daily volatility changes given by three-feature model for options with 

different moneyness and time to maturity. Volatility is measured in basis points per year. 

Moneyness is measured by the practitioner Black-Scholes delta. The table considers scenarios 

where the daily return on the index is (a) −1.25%, (b) +1.25%. 

 

Index return = -1.25% 

 

Index return = +1.25% 

           B-S Time to Maturity 

 

B-S Time to Maturity 

Delta 3m 6m 1yr 1.5yr 

 

Delta 3m 6m 1yr 1.5yr 

0.1 33 23 16 6 

 
0.1 -54 -42 -36 -28 

0.3 18 14 10 8 

 
0.3 -41 -32 -25 -25 

0.5 17 14 8 6 

 
0.5 -39 -32 -24 -23 

0.7 20 16 9 9 

 
0.7 -43 -36 -25 -20 

0.9 29 21 9 8 

 
0.9 -62 -43 -26 -14 

            

 

 

 

 

  



24 
 

Table 7:  Percentage gain of four-feature model over three-feature model for different index 

returns and different times to maturity  

VIX Index 
Index Return   

<-1% -1% to 0% 0% to 1% >1% All 

<=13% 85.00 52.26 53.69 89.23 55.23 

13% to 19% 67.73 51.34 46.64 70.17 53.41 

>=19% 80.01 72.09 69.69 86.02 78.78 

All 77.01 55.49 53.41 80.80 62.12 
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Table 8: Expected daily volatility changes given by four-feature model for options with different 

moneyness and time to maturity. Volatility is measured in basis points per year. Moneyness is 

measured by the practitioner Black-Scholes delta. The table considers scenarios where the daily 

return on the index is −1.25% and +1.25%, and the VIX index is 13%, 16%. 

 

Index Return = -1.25%; VIX =13%                      Index Return = +1.25%; VIX = 13% 

B-S Time to Maturity 

 

B-S Time to Maturity 

Delta 3m 6m 1yr 1.5yr 

 

Delta 3m 6m 1yr 1.5yr 

0.1 41 25 12 5 

 

0.1 4 1 0 1 

0.3 21 14 9 5 

 

0.3 16 11 6 5 

0.5 16 8 3 2 

 

0.5 26 18 12 8 

0.7 15 6 1 1 

 

0.7 37 25 16 12 

0.9 13 -1 -10 -11 

 

0.9 84 62 45 35 

 

Index Return = -1.25%; VIX =16%                      Index Return = +1.25%; VIX = 16% 

B-S Time to Maturity 

 

B-S Time to Maturity 

Delta 3m 6m 1yr 1.5yr 

 

Delta 3m 6m 1yr 1.5yr 

0.1 41 30 20 14 

 

0.1 -88 -58 -33 -24 

0.3 36 28 20 15 

 

0.3 -76 -49 -27 -19 

0.5 34 26 20 16 

 

0.5 -72 -47 -27 -19 

0.7 34 25 21 18 

 

0.7 -88 -59 -37 -27 

0.9 46 32 28 29 

 

0.9 -188 -114 -59 -38 
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Table 9: Regression parameters under different market scenarios. Time is measured in years and 

the implied volatility change is measured in decimal form. 

 

Index  VIX≤13 13<VIX<19 VIX≥19 

Return a b c a b c a b c 

≤−1% − 0.269 0.297 − 0.357 − 0.228 0.233 − 0.137 − 0.280 0.476 − 0.508 

−1% to 
+1% − 0.133 0.297 − 0.282 − 0.208 0.407 − 0.394 − 0.291 0.556 − 0.631 

≥+1% 0.008 0.370 − 0.357 − 0.191 0.466 − 0.540 − 0.277 0.737 − 1.033 

All − 0.156 0.275 −0.278 − 0.208 0.358 − 0.343 − 0.274 0.572 − 0.730 
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Figure 1: The structure of an artificial neural network. The v0,j are the inputs and the vn+1,j  

are the outputs.  

 

 

 

 

  

v1,1

v1,2

v1,3

v1,5

v1,4

v0,1

v0,2

v0,3

v2,1

v2,2

v2,3

v2,5

v2,4

v3,1

v3,2

v3,3

v3,5

v3,4

vn,1

vn,2

vn,3

vn,5

vn,4

vn+1,1

vn+1,2

vn+1,3



28 
 

Figure 2: Expected change in implied volatility for analytical and machine learning 3-

feature model 
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Figure 3: Expected change of implied volatility surface for 4-feature machine learning 

model 

 

 

 

 

 

 

 

 

 


