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Abstract

We develop a novel method to generate future possible implied volatility surfaces

given a historical sequence of surfaces and extra features such as historical returns.

The proposed model architecture is based on a conditional variational autoencoder

(CVAE) that encodes historical data and a long short-term memory network (LSTM)

that allows for the representation of sequences of observations. The architecture can

be used to generate future surfaces conditional on any set of historical data. We apply

the model to S&P500 data and show that the model is able to capture the real world

dynamics.
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1 Introduction

If the assumptions underlying the model developed by Black and Scholes [1973] and Merton

[1973] held, a single volatility could be used to price all options dependent on a particular

asset and that volatility would not change through time. In reality, the volatility that must

be used in conjunction with the Black-Scholes-Merton model to price an option on an asset

at any given time depends on the option’s strike price and time to maturity. The volatility

as a function of these parameters is referred to as the implied volatility surface (IVS). The

IVS changes through time. A key question for a trader responsible for options dependent

on a particular asset is therefore: “By how much can the asset price and the IVS change?”

Every possible change gives rise to a gain or loss on the trader’s portfolio. The trader must

be satisfied that, with the hedges contemplated, the risks are acceptable.

There have been many attempts to model the dynamics of IVSs. Examples are Cont and

Da Fonseca [2002], Cont et al. [2002], Carmona et al. [2017], Cuchiero et al. [2020], Cohen

et al. [2020], Bloch and Böök [2021], Shang and Kearney [2022], Cont and Vuletić [2022],

Francois et al. [2022], and Choudhary et al. [2023]. Some of these jointly model the asset

price and the volatility surface while others model only the volatility surface.

In this research, we use a variational autoencoder (VAE) to model changes in the asset

price and the IVS. This is, as far as we know, a different approach from that taken by

other researchers. A VAE is an attractive tool because it requires no assumptions about the

nature of the model. It uses historical data to produce a multivariate normal distribution

for a number of latent variables that relate the changes in the asset price and IVS to recent

asset price returns and recent IVSs. By sampling from the latent variables alternative future

scenarios for the asset price and IVS are generated. We apply the methodology to options

on the S&P500.

We define the IVS by 25 points: five moneyness levels combined with five times to

maturity. Based on the assumptions by VAE models, the actual IVS and asset price should

be a random sample from those generated by VAE. We test this by comparing a number of

attributes of the actuals with those of the generated data. The attributes are: asset price,

level, slope, and skew. The model proposed in this paper has shown to be both a viable and

explainable approach for modelling a set of potential next-day volatility surfaces given some

sequence of historical information. We show this by highlighting the mean value of generated

surfaces can accurately capture the implied volatility of 1 year at-the-money options. We

also show that the variation in the surfaces our model produces is directly related to next-day

real market volatility conditions. The proposed model architecture is able to distinguish the

evolution of IVSs and asset prices between recession and non-recession periods.
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The rest of this paper is organized as follows. Section 2 explains the VAE methodology.

Section 3 explains how we used daily data on S&P500 option trading to estimate implied

volatilities for the 25 pre-determined moneyness/time-to-maturity combinations. Section 4

presents our VAE results for S&P500 data. Conclusions are in Section 5.

2 Methodology

2.1 Variational Auto-Encoders (VAEs)

The basic VAE architecture proposed by Kingma and Welling [2013] is an unsupervised

generative model consisting of two parts: an encoder and a decoder.

The encoder infers from observed data, x, the latent factors, z, in the form of a probability

distribution qϕ(z|x) with parameters, ϕ. We choose qϕ(z|x) to match a multivariate normal

distribution, p(z) = N (0, 1). We can ensure the matching of the two probability distributions

by minimizing the Kullback-Leibler (KL) divergence:

min
ϕ

DKL(qϕ(z|x)||p(z)). (1)

The decoder takes the output, z, from the encoder to reproduce the observed data, x.

Thus, a suitable objective function for the decoder part is to maximize the marginal log-

likelihood of the observed data, x, in expectation over the distribution of the latent variable,

z:

max
θ

Epθ(z)(log pθ(x|z)), (2)

where θ denotes the parameters of the decoder.

The objective function of a VAE model is therefore:

max
θ,ϕ

Eqϕ(z|x)(log pθ(x|z))−DKL(qϕ(z|x)||p(z)). (3)

Higgins et al. [2017] proposed a regularization factor on the KL divergence:

max
θ,ϕ

Eqϕ(z|x)(log pθ(x|z))− βDKL(qϕ(z|x)||p(z)). (4)

Changing β changes the focus of training. A small value for β means that we focus on the

accuracy of matching the generated data with observed data. A large β means that we focus

more on enforcing structure in the space of hidden variables. This causes the decoder to

smoothly interpolate between samples of hidden variables to obtain synthetic data that do

2

Electronic copy available at: https://ssrn.com/abstract=4628457



not have extreme and unrealistic differences compared to observed data. In practice, an

appropriate value of β can be found with hyperparameter tuning.

Typically, the decoder produces the mean value µx|z, and we assume a unitary covariance.

Therefore log pθ(x|z) = −1
2
∥x − µx|z∥22. Finally, the expectation can be approximated by

averaging, so the maximum likelihood can be replaced by minimizing a mean squared error,

which is the reconstruction loss.

Since we assume the prior p(z) = N (0, 1), the KL divergence can also be reduced to an

exact expression:

DKL(qϕ(z|x)||p(z)) =
1

2

∑
i

(
−1− log σ2

i + σ2
i + µ2

i

)
, (5)

where zi ∼ N (µi, σ
2
i ) for each individual latent variable zi in the vector z. The objective

function can then be rewritten as:

max − 1

2
∥x− µx|z∥22 −

β

2

∑
i

(
−1− log σ2

i + σ2
i + µ2

i

)
, or

min
1

2
∥x− µx|z∥22 −

β

2

∑
i

(
1 + log σ2

i − σ2
i − µ2

i

)
. (6)

The basic VAE architecture generates new data samples unconditionally. Sohn et al.

[2015] proposed a conditional VAE (CVAE), which generates data based on some given

condition c. In this setting, the encoder maps inputs to latent factors according to the

distribution qϕ(z|x, c) using both the observed data x and condition c. The decoder generates

x by pθ(x|z, c). This gives some control over the generated output. For instance, Ning et al.

[2022] use CVAE to generate parameters for SDEs that characterize the behavior of IVS’s

conditional on observable market states such as spot rates or indices.

VAEs have also been applied to the task of timeseries generation (see Desai et al. [2021]).

One-dimensional convolutional layers are used by the encoder to extract time-dependent

features and construct the latent space, and transposed convolutional layers are used to

reconstruct the timeseries. Trend blocks and seasonality blocks may be incorporated to

improve the interpretability of such models. Apart from VAEs, other generative models

such as Generative Adversarial Networks (GANs) have also been applied to generate price

scenarios with particular focus on tail risk (see Cont et al. [2022]).
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2.2 Long Short-Term Memory (LSTM)

The asset price and IVS changes we work with can be viewed as timeseries data. The asset

price and IVS today can be dependent on those on yesterday. Recurrent neural networks

(RNNs), such as LSTM originally proposed by Hochreiter and Schmidhuber [1997], incorpo-

rate the time evolution and can be useful in timeseries generation as shown by Siami-Namini

et al. [2018]. Within each recurrent unit of the LSTM, a long term cell state ct and a

short term hidden state ht are maintained by self-recurrence through four interacting neural

network layers:

1) The forget gate layer which compares ht−1 and current input xt and decides which

elements in cell state ct−1 to keep and which to forget (ft).

2) The input gate layer which first decides which cell unit to update (it) and then

creates new candidate value c̃t.

3) The update layer which updates the cell state ct using ft, it and c̃t.

4) The output layer which calculates ot based on xt and ht−1, and updates the short

term memory ht.

Let σ(·) be the sigmoid function. The LSTM model can be represented by the following

equations:

Forget: ft = σ(Wf · [ht−1, xt] + bf ),

Input: it = σ(Wi · [ht−1, xt] + bi),

c̃t = tanh(Wc · [ht−1, xt] + bc) (7)

Update: ct = ft × ct−1 + it × c̃t,

Output: ot = σ(Wo · [ht−1, xt] + bo),

ht = ot × tanh(ct),

where × is the Hadamard product, i.e. element-wise product, and W · [h, x] = Whh+Wxx

is a tensor product of the weights with the concatenated vector [h, x].

There are also several variants of LSTM, but Greff et al. [2017] show that these variants

perform similarly. VAE and LSTM or other memory models have been combined to per-

form tasks in natural language generation (Bowman et al. [2016]) and anomaly detection in

timeseries (Lin et al. [2020]).
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2.3 Proposed Model

We first define some notation. Let xt be the realized IV surface on day t, constructed as

outlined in Sec. 3. Letting pt be the asset price on day t, we use log-returns rt = log
(

pt
pt−1

)
to

model price changes. Let yt be an extra feature of interest that can impact volatility surface

dynamics, which includes underlying asset returns rt. In what follows, the subscript t may

be omitted whenever we refer to general operations that don’t depend on specific days.

To use a VAE to model changes in asset prices and IVSs, we consider the problem:

Given the context information, xc = (..., xt−3, xt−2, xt−1) and yc = (..., yt−3, yt−2, yt−1), which

represents the historical timeseries of realized surfaces and extra features before day t re-

spectively, can we generate possible surfaces and asset returns for day t and after, i.e.

xn = (xt, xt+1, xt+2, ...) and rn = (rt, rt+1, rt+2, ...)?

The basic VAE architecture learns an unconditional probability distribution based on the

entire set of observations. It can only generate random samples without conditions, which

means that the generated surfaces and extra features are difficult to control. The data points

that occur more frequently across observations are the ones more likely to be generated. We

are not able to know specifically for which day the surfaces/returns are generated. CVAEs

could work by setting the historical timeseries as conditions. However, without controlling

time steps, we could have a look-ahead bias when generating new surfaces. For example, a

surface generated on day t could also use the latent values for day t+1, t+2 in the standard

CVAE formulation. Secondly, as the length of historical content and length of future values

to generate increase, we would need to encode more surfaces and extra features, meaning

that the number of parameters will increase, because there is no recurrent units in the CVAE

and inputs of each individual day require different parameters to encode. Finally, CVAEs

using simple multilayer perceptron (MLP) or convolutional neural network (CNN) can only

accept a fixed size input, and cannot generate surfaces based on variable length contexts

without breaking the surface structures.

To address these challenges, we propose a new architecture which combines the advan-

tages of CVAEs and LSTM and is suitable for our task. The architecture employs a CVAE

as a backbone and contains three components: (1) The encoder that takes the historical

context together with the future values (xc,yc,xn,yn) to generate a distribution N (µt,i, σ
2
t,i)

for each latent variable on each day. The latent representation z = (..., zt−1, zt, zt+1, ...)

can then be sampled from the distribution. Each latent variable on each day is sampled

individually from the corresponding distribution N (µt,i, σ
2
t,i) in the training process. In the

generation steps after the model is trained, the latent variables are sampled individually

from the standard normal N (0, 1). (2) A context encoder that generates an efficient rep-

resentation ζ = (..., ζt−3, ζt−2, ζt−1) of the historical context (xc,yc). (3) Finally, a decoder
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that uses ζ as condition, and the sampled latent variables z to reconstruct the surfaces and

returns in the future, x̂n, r̂n. The LSTM is a core part in each of the three components.

With limited number of parameters and no look-ahead bias, it efficiently captures the time

dependencies of the inputs when generating embeddings in the encoder and context encoder

and generates outputs based on previous day conditions in the decoder, where both the in-

puts and outputs can be of any length. Also, with the addition of LSTM, we can separate

the tasks of capturing temporal and spatial features.

We define the objective function for each day t:

L(ϕ, θ, xt, yt) =
1

HW
∥xt − x̂t∥22 + α∥rt − r̂t∥22 −

β

2

L∑
i=1

(
1 + log σ2

t,i − σ2
t,i − µ2

t,i

)
, (8)

whereH andW are the dimensions of the IVSs, L is number of latent variables. 1
HW

∥xt−x̂t∥22
is the mean squared error of points on the generated surface x̂t and ∥rt − r̂t∥22 is the mean

squared error of generated underlying asset returns feature r̂t.
1 α is the regularization factor

for the error on returns. Integrating historical returns in the loss function accounts for

underlying asset dynamics, which aims to create more accurate volatility surface predictions

that align with observed market trends. −β
2

∑L
i=1

(
1 + log σ2

t,i − σ2
t,i − µ2

t,i

)
is the regularized

KL divergence of the day. This objective function is computed for each generated day in a

batch, and averaged across all days within a batch.

3 S&P500 Implied Volatility Surface Estimation

S&P500 Call Option data from January 2000 to February 2023 were downloaded from Op-

tionMetrics.2 We filtered the data in several ways. Firstly, we eliminated all options that

didn’t have a reported implied volatility in the database. Additionally, we retained only

those options with an open interest greater than 0, moneyness (defined as the strike price

divided by the index level K/S) ranging between 0.7 and 1.3, and a time to maturity from

1 month up to 2 years. We then established a 5× 5 Time-to-Maturity (ttm) by Moneyness

grid for the implied volatility surface, with ttm values set at 1, 3, 6, 12, and 24 months and

Moneyness values of 0.7, 0.85, 1, 1.15, and 1.3. It’s worth noting that the 5 × 5 implied

volatility surface isn’t directly observable from the available options on any given trading

day due to variations in available strike prices and expiration dates. We used a search algo-

1We also experiment generating the complete extra feature vector yt and compute the loss as 1
E ∥yt− ŷt∥22,

with simple configuration, but it introduces bias towards specific surface properties and doesn’t help with
the performance.

2We gained the access through https://wrds-www.wharton.upenn.edu/pages/about/data-vendors

/optionmetrics/
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rithm outlined in Cao et al. [2021] to determine the implied volatilities for standard reference

points.

We use x[ttm,Moneyness] to index a single point on the surface, with ttm in the order

of years. For example, x[0.25, 1] means the implied volatility when ttm= 3 months and

Moneyness K
S
= 1.

4 Results

4.1 Extra feature definition

One of the extra features used is the daily log return of the asset price. We also define two

other extra features. The skew is defined as

skew =
x [1, 0.85] + x [1, 1.15]

2
− x [1, 1] . (9)

and the slope is defined as

slope = x [2, 1]− x [0.25, 1] . (10)

These features are used in training and evaluation.

4.2 Training and Model Performance

We use data from 2000-01-03 to 2015-11-27 (4000 valid days) for training, data from 2015-

11-30 to 2019-11-18 (1000 days) for validation and 2019-11-19 to 2023-02-24 (1000 days)

for testing. The model uses 3 convolution layers of output size 5 for surface encoding, and

the identity for the encoding of any extra features. The latent and context embedding

dimensions are set to 5. We use 2 layer memory with 100 hidden units in each layer and

apply a 0.2 dropout rate. The KL divergence weight is set to β = 10−5. We train, validate

and test on a variable sequence length between 4 and 10 inclusive, with context length being

one less than the sequence length. The validation set is used to select the optimal model

during 500 epoches of training. The model is defined and trained using PyTorch 1.133 on

a RTX 3080 Ti linux machine4. All random seeds are reset to 0 before dataset preparation

and before training. 64-bit floating points are used in calculation for a better precision.

Several different feature configurations are tested, and we find that the best model is to use

all returns, skews and slopes as extra features in addition to the surfaces, while minimizing

loss on surfaces and returns. The model gets a 8.97 × 10−4 reconstruction loss on surface,

3The code is compatible with PyTorch 2.0, but the performance varies.
4https://www.runpod.io/console/pods
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6.54× 10−5 reconstruction loss on return and 2.15 KL divergence loss in validation set, and

2.43×10−2 reconstruction loss on surface, 1.86×10−4 reconstruction loss on return and 2.69

KL divergence loss in test set. We need to note that for the test set, data starting from

around 2021-02-24 might have a higher loss as most of the grid points with a large time to

maturity cannot be accurately calculated when constructing the dataset. We restrict the

time range for evaluation in the next section to avoid the potential unwanted artifacts in the

generated surfaces.

4.3 Evaluating Generated Scenarios

In order to leverage the model as a tool for decision-making, we would like to understand

the variation in the outcomes it generates. The following tests are used to measure the

range of surfaces the model can produce as well examine different scenarios that can explain

instances of larger variation. The first set of tests involve developing histograms and z-score

plots to visualize where realized values lie in a distribution produced by generated values.

The plots are created for the single point on the surface x[1, 1], the return, the skew and

the slope. The plots use data in the training set only (first 4000 days). The surfaces and

returns are generated conditioned on surfaces and extra features with 3 day context t − 1,

t−2 and t−3, so there are 3997 distributions in total. The distribution of each day is based

on 1000 samples of generated surfaces and returns on that day. We divide the distributions

into quartiles (denoted Q1, Q2, Q3, and Q4), and build histograms based on the number of

days on which the realized value lies in a specific quartile. The z-scores are estimated using

sample mean and sample standard deviation, calculated based on the 1000 samples per day,

z =
x− x̄

S
, (11)

where x is the realized value, x̄ is the mean of the generated values, and S is the standard

deviation of the generated values. We would expect that the histogram plots are more

concentrated towards Q2 and Q3 and the z-scores are centered around zero, preferably

within ±1.96 (95% confidence interval). The plots can be found in Fig. 1 and 2. From the

histogram, the single point on the surface seems to be under-estimated by the model, as most

of the realized points lie in the Q4. However, the z-scores are mostly concentrated within the

range [−2, 2], meaning that most of the realized values lie in 95% interval of the distribution.

Most of the realized returns lie in Q2 and Q3, close to the mean. From the z-scores, most

of the realized returns are in the positive side, meaning that the mean values of generated

mean are under-estimating the realized returns. In terms of the additional surface features:

skews and slopes. The skews are better learned than slopes, with a more even distribution,
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and fewer outliers. Also the z-scores are closer to zero for skews. Potentially, optimizing loss

on the returns lowers the performance on the surfaces.

To examine the model’s capability, particularly the context encoder, in differentiating

volatility dynamics during distinct market regimes, we conduct principal component analysis

(PCA). The focus of this analysis is to understand if the model is effective in distinguishing

between the dynamics of NBER recession periods and dates where markets are more stable.

First, we examine the context encoding process of real S&P500 surface data. Same as in the

previous test, we use a 3 day context (xt−3, yt−3), (xt−2, yt−2), and (xt−1, yt−1) to generate

the 3 × 5 embeddings (ζt−3, ζt−2, ζt−1). These ζ values are then concatenated into a one

dimensional vector χ, where the first 5 values are from ζt−3, the middle 5 values are from

ζt−2, and the last 5 values are from ζt−1. This χ value is calculated for 5300 days from 2000-

01-06 to 2021-02-02. We then apply PCA on [χ1, χ2, ..., χ5300] to extract out the first and

second principal components (FPC and SPC) for each day. We categorize the days according

to if they were in a NBER recession period, and then plot the principal components. The

NBER recession periods within our analysis are 2001-04-01 to 2001-11-30, 2008-01-01 to

2009-06-30 and 2020-03-01 to 2020-04-305. The result is shown in the first image of Fig. 3.

The majority of the stable market dates, represented by blue dots, cluster near the origin

in the bottom left corner. In contrast, the principal components for the NBER recession

dates, indicated by red triangles, are scattered to the top right corner. This noticeable

separation indicates the model’s ability to capture distinct volatility characteristics within

varying market regimes and periods of recession. To further validate our VAE model, we

apply this PCA test to a generated set of S&P500 surfaces to see if our model is producing

similar outcomes to what was seen for real surface data. We conduct the same experiment

now utilizing synthetic surfaces for the same range of dates used in the methodology described

above. To do this, 1000 surfaces and returns are sampled for each day from 2000-01-06 to

2021-02-02, conditioned on surfaces and extra features with a 3 day context t− 3, t− 2 and

t− 1. We calculate the average of the 1000 surfaces and returns for each day. The skew and

slope features are calculated based on the average surface of each day. Then, these generated

values are used as inputs to the context encoder to get the ζ̂ and χ̂ values and the FPC,

SPC. The plot is shown in the right image of Fig. 3. This plot is almost identical to the plot

on the left. The generated values are capturing the realized dynamics with some variability.

In addition to the tests conducted on S&P500 data, we have developed a similar analysis

on a more controlled environment using the SABR option price model seen in Appendix C

which provides a well-defined universe of volatility surfaces. This additional study helps to

investigate the explainability of the model’s performance by controlling complexities that

5Monthly periods from https://fred.stlouisfed.org/series/USREC
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may arise with real financial data.

4.4 Validation from Real Market Dynamics

To assess the accuracy of our VAE-generated surfaces in simulating real-world market dy-

namics, we considering the following regression analyses that compare our generated outputs

to real market data:

xt [ttm,moneyness] = α + β1µ (x̂t [ttm,moneyness]) + ϵt, (12)

|xt [ttm,moneyness]− xt−1 [ttm,moneyness] | = α + β1σ (x̂t [ttm,moneyness]) + ϵt. (13)

The mean value of generated surfaces should capture the actual level of each individual

surface grid point, since in the training process, the mean squared error between the gen-

erated surfaces and the realized surfaces are optimized. The results are shown in Table 1

for all 25 grid points of surfaces we modelled. The coefficients β1 are close to 1 for most of

the surface grid points, with high R2s, suggesting that the mean of our daily generated dis-

tributions are accurate representations of next-day surfaces. We use the standard deviation

of generated surfaces as an insight into the challenges of predicting the next day’s situation

based on the historical context sequence. Larger standard deviations in generated values

may suggest that the next day’s realized surface values maybe significantly different from

previous context history. The results are shown in Table 2. The coefficients β1 are mostly

positive with high significance, except for the ttm=3 month and K/S = 0.7 grid point. The

positiveness of the coefficient shows that a higher standard deviation is correlated with a

larger change in the realized values. The R2 are ranging from 6% to 17.5% for K/S = 0.85, 1

and 1.15 points with 3 month, 6 month or 1 year maturity. The edge and corner points with

1 month/2 year time to maturity or K/S = 0.7, K/S = 1.3 have a lower performance. The

reason could be that we use zero-padding in convolutions to preserve the spatial dimensions

and the features of edge points are not well-exploited.

5 Conclusion

In this paper we propose a new model that incorporates the historical context and additional

features to generate distributions of IV surfaces and corresponding returns on a single day.

The same method can be easily extended to generate distributions on multiple days in the

future, based on a history of any length. The performance is also consistent with a SABR

dataset which is a well-defined simplified model for asset pricing and volatility.
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We showed that the distributions learned by our VAE model with extra features using

real data can be explained by market conditions and volatility indicators. This provides

valuable insight into the model’s ability to comprehend underlying market conditions.

The potential future work to expand on this analysis includes: 1) Generating surfaces

and returns of multiple days in the future in one shot, and investigating how the errors are

propagated. 2) Study how each point on the generated surfaces is affected by historical

values. 3) Generalize the model so that it works on other existing datasets to compare its

performance with CVAE or a conventional timeseries VAE.
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Figure 1: Histogram Plot for S&P500 Surfaces and Returns

This figure shows the histogram plots of where the realized point lies in the VAE
distribution. The first rows shows the distribution and z-scores for the levels. The second
row shows the distribution and z-scores for the returns.

12

Electronic copy available at: https://ssrn.com/abstract=4628457



Figure 2: Histogram Plot for S&P500 Surface Structural Properties

This figure shows the histogram plots of how the structural properties of generated surfaces
are distributed. The first rows shows the distribution and z-scores for the skews. The
second row shows the distribution and z-scores for the slopes.
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Figure 3: PCA of Context Embeddings

The left figure shows the first and second principal components of context embedding of
the realized surfaces. The right figure shows the first and second principal components of
context embedding of the mean of generated surfaces. In both figures, the horizontal axis
represents the first principal component (FPC), and the vertical axis represents the second
principal component (SPC). The data points in NBER recessions are plotted as red
triangles. The data points in normal years are plotted as blue circles.
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Table 1: Regression for IVSs with Mean Value

This table reports the results of following regression:

xt [ttm,moneyness] = α + β1µ (x̂t [ttm,moneyness]) + ϵt.

The regression is performed on all 25 points of the surfaces. The columns represent the mon-
eyness grids. The rows represent the time-to-maturity grids. Panel A reports the coefficient
β1 for each grid point. *, **, *** denote the associated p-values below the 10%, 5%, 1%
levels, respectively. Panel B reports the R2 of each regression.

Panel A. coefficients

K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 2.3170*** 1.2592*** 1.1019*** 0.9799*** 1.3478***
3 month 1.6568*** 1.1160*** 1.0683*** 1.0122*** 1.0980***
6 month 1.3631*** 1.1260*** 1.0742*** 1.0258*** 0.9859***
1 year 1.2570*** 1.0726*** 1.0488*** 1.0310*** 0.9916***
2 year 1.1493*** 1.0605*** 1.4443*** 0.9980*** 0.9368***

Panel B. R2

K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 0.243 0.674 0.876 0.852 0.421
3 month 0.260 0.874 0.935 0.921 0.683
6 month 0.626 0.915 0.954 0.939 0.476
1 year 0.703 0.940 0.960 0.935 0.866
2 year 0.553 0.907 0.046 0.897 0.825
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Table 2: Regression for Change in IVSs with Standard Deviation

This table reports the results of following regression:

|xt [ttm,moneyness]− xt−1 [ttm,moneyness] | = α + β1σ (x̂t [ttm,moneyness]) + ϵt.

The regression is performed on all 25 points of the surfaces. The columns represent the mon-
eyness grids. The rows represent the time-to-maturity grids. Panel A reports the coefficient
β1 for each grid point. *, **, *** denote the associated p-values below the 10%, 5%, 1%
levels, respectively. Panel B reports the R2 of each regression.

Panel A. coefficients

K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 1.9927*** 1.6149*** 1.3298*** 1.6641*** 4.1280***
3 month -0.2979*** 1.3629*** 1.6954*** 1.6697*** 2.7616***
6 month 0.9239*** 1.3784*** 1.4553*** 1.2610*** 3.5984***
1 year 1.8200*** 1.2768*** 0.9585*** 1.1105*** 0.5551***
2 year 1.1589*** 1.1655*** 5.3379** 1.0160*** 0.2754***

Panel B. adjusted R2

K/S=0.7 K/S=0.85 K/S=1 K/S=1.15 K/S=1.3

1 month 0.010 0.036 0.190 0.160 0.099
3 month 0.001 0.059 0.168 0.143 0.105
6 month 0.026 0.080 0.165 0.175 0.043
1 year 0.019 0.107 0.141 0.170 0.014
2 year 0.031 0.059 0.001 0.026 0.002
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Appendix

A Proposed Model Details

Let C be the context length (i.e., the number of days of history considered relevant), N be

the number of days we want to generate, T = C +N be the overall sequence length, and L

be the number of latent variables. Let xt ∈ RH×W be the realized IV surface on day t, where

H represents time-to-maturity grid size, W represents moneyness (K/S) grid size. Let pt

be the asset price on day t. We use log-return rt = log
(

pt
pt−1

)
to model price changes. Let

yt ∈ RE be the extra features of interest, where E is the number of extra features. One of

such extra feature can be rt. Let xc = (xt−C , ..., xt−1) ∈ RC×H×W be the historical surfaces

from day t−C to t−1, xn = (xt, ..., xt+N−1) ∈ RN×H×W be the surfaces we want to generate

for day t to day t+N − 1. Let yc = (yt−C , ..., yt−1) ∈ RC×E be the extra features from from

day t − C to t − 1, yn = (yt, ..., yt+N−1) ∈ RN×E be the extra features from from day t to

t+N−1. If a, b are two constants, then [a, b] is the usual interval notation. If a = (a1, ..., an),

b = (b1, ..., bm) are two vectors/tensors, then [a, b] = (a1, ..., an, b1, ..., bm) is the vector/tensor

concatenation.

The model consists of three parts:

1. Encoder: takes x = [xc,xn] ∈ RT×H×W and y = [yc,yn] ∈ RT×E and builds a

distribution N (µt,i, σt,i) for each day t and each latent variable zt,i. The latents

z = (zt−C , ..., zt+N−1) ∈ RT×L are then sampled individually from the correspond-

ing distributions. ∀i ∈ [t−C, t+N − 1], the encoder generates the daily latent vector

zi by qϕ(zi|x[t−C,...,i],y[t−C,...,i], i), where x[t−C,...,i] = (xt−C , ..., xi).

2. Context Encoder: takes xc and yc and generates a compressed representation of the

context ζ = (ζt−C , ..., ζt−1) ∈ RC×L.6 ∀i ∈ [t−C, t−1], ζi = Embed(xc,[t−C,...,i],yc,[t−C,...,i]),

where xc,[t−C,...,i] = (xt−C , ..., xi).

3. Decoder: takes z from the encoder and ζ from the context encoder and reconstructs

x̂n = (x̂t, ..., x̂t+N−1), ŷn = (ŷt, ..., ŷt+N−1). Each x̂i, ŷi, i ∈ [t, t+N−1] is reconstructed

by sampling from pθ(xi, yi|ζ, z[t−C,...,i], i), where z[t−C,...,i] = (zt−c, ..., zi).

In each of the component, we use convolutional networks or multi-layer perceptrons to

encode/decode the surface structures on each day, and LSTM to capture the time dependen-

cies of any lengths. Graphical illustrations of each part and the complete model are shown in

6We can configure the context embedding size to values other than L, but we use L as embedding size
here to be consistent with the main article.
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Figure A1, A2, A3, A4. All convolutional/transpose convolutional/linear layers within the

CNN/TCNN (transpose convolutional neueral network)/MLP blocks are followed by ReLU

activation (max(x, 0)), unless identity function (Id) or single linear layer is used in place of

MLPs, or the layer is the last layer of TCNN/MLP in the decoder. The TCNN/MLP blocks

used in the decoder are symmetric to the CNN/MLP blocks used in the encoder so that the

shape of input and output as well as the process of encoding and decoding match. For all

convolutional and transpose convolutional layers, the kernel size is fixed to 3× 3 with stride

1 and equal size padding, so the grid size won’t change after multiple convolutions. f1, f2,

g1, g2 are embedding functions performed by these blocks in encoder and context encoder.
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Figure A1: Encoder

x = [xc,xn],y = [yc,yn]

(xt−C , yt−C) · · · (xt, yt) · · · (xt+N−1, yt+N−1)

xt−c yt−c xt yt xt+N−1 yt+N−1

CNN/
MLP

MLP/
Id

CNN/
MLP

MLP/
Id

CNN/
MLP

MLP/
Id

[f1(xt−C), f2(yt−C)] [f1(xt), f2(yt)] [f1(xt+N−1), f2(yt+N−1)]

LSTM Cell · · · LSTM Cell · · · LSTM Cell

ht−C

ct−C

ht−1

ct−1

ht

ct

ht+N−2

ct+N−2

LSTM

Linear1 Linear2 Linear1 Linear2 Linear1 Linear2

µt−C σ2
t−C

µt σ2
t

µt+N−1 σ2
t+N−1

zt−C ∼ N (µt−C , σ
2
t−C) zt ∼ N (µt, σ

2
t ) zt+N−1 ∼ N (µt+N−1, σ

2
t+N−1)

z = (zt−C , ..., zt, ..., zt+N−1)

19

E
lectronic copy available at: https://ssrn.com

/abstract=
4628457



Figure A2: Context Encoder
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Figure A3: Decoder
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Figure A4: Overall Architecture
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B Arbitrage Conditions

Following Gatheral and Jacquier [2013] and Bergeron et al. [2022], we specify static arbitrage

conditions as follows: let M = K
S

be the moneyness, t be the time to maturity. Define

w(t,M) = t · x(t,M) as the total implied variance surface, where x is the IVS on a single

day. An IVS is free of calendar arbitrage if

∂w

∂t
≥ 0. (A1)

Let w′ = ∂w
∂M

and w′′ = ∂2w
∂M2 . The IVS is free of butterfly arbitrage if

(
1− Mw′

2w

)2

− w′

4

(
1

w
+

1

4

)
+

w′′

2
≥ 0. (A2)

An IVS is said to be free of static arbitrage if the conditions in Eq. A1 and A2 are satisfied.

We test the arbitrage conditions on the realized IVSs constructed by calibration on the

available options. Among 5300 surfaces from 2000-01-06 to 2021-02-02, there are 4022 sur-

faces with at least one calendar arbitrage opportunity and 3859 surfaces with at least one

butterfly arbitrage opportunity. The generated surfaces on each day can significantly re-

duce calendar arbitrage opportunities. The generated surfaces are unable to avoid butterfly

arbitrage, but they generally do not create additional butterfly opportunities on each day.

It is possible to incorporate the calendar arbitrage condition into the calibration of IVSs

on the available options we have, and the learned model can further reduce the calendar

arbitrage opportunity with the better calibrated data. However, incorporating the butterfly

arbitrage condition into the calibration may lead to realized market volatility being captured

less well.

To further reduce the possibility of static arbitrage in the generated surfaces, we could

extend our loss function in Eq. 8 similarly to Bergeron et al. [2022].
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C Controlled SABR Environment

The histogram and latent variable tests were performed under a controlled environment in

order to study the the model’s capacity to understand latent features and patterns in path

trajectories of price returns and volatility surface evolution. The SABR model developed

by Hagan et al. [2002], was used to generate over 10,000 paths of evolving implied volatility

surfaces given the same fixed grid of moneyness and time to maturity using General Brownian

Motion for underlying asset price evolution. We define our SABR model with the following

properties: A Skew parameter of β = 1 , initial risk free rate of rf = 0 , volatility of

volatility of volvol = 0.3, correlation parameter of ρ = -0.7, and an initial underlying asset

price of S0 = 10. On the SABR data set, the model reported a reconstruction loss of

4.56 × 10−5 of surfaces, reconstruction loss of 3.97 × 10−5 on returns, and KL loss of 0.59

in validation; in testing, losses of 4.65× 10−5 and 4.00× 10−5 were reported for surface and

returns reconstruction respectively with the same KL loss.

The model configuration used on S&P500 data yielded more balanced outcomes for this

dataset in terms of volatility level and returns. Additionally, it produces a higher frequency

of outcomes wherein realized additional features such as skew and slope are similar to the

mean of daily generated normal distributions. This is evident through a greater number of

outcomes falling within the Q2 and Q3 buckets, coupled with smaller daily z-scores, in our

histogram tests as illustrated in Figure A5 and A6.

The SABR dataset has been valuable for enhancing the explainability our VAE model’s

latent space, as well as the influence of significant additional features like skew and slope.

We investigated the effect of altering latent variables while fixing the others on two model

variants. It is observed that including different features obtain distinct outcomes illustrated

in Figure A7. The set of graphs in Panel A shows how the generated surfaces changes

when we manipulate each latent value for a baseline model trained only on surface context,

excluding any other extra features. The second set of graphs in Panel B shows the impacts

of latent value manipulation for a model that trains losses on returns and includes the other

extra features: skew and slope. When changing a latent value of the VAE model with skew

and slope context information, there is reduced variation in the surface level and shape

relative to the realized curve, in contrast to the model that excludes these features. Please

note this figure illustrates changes in the first latent variable for ttm = 1 only, however this

trend holds for all 5 latent factors in the model and all moneyness and time to maturity

slices.
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Figure A5: Histogram Plots of SABR Surfaces and Returns

This Figure shows the histogram plots for the best VAE model that includes skew and
slope information. The top row shows the distribution and z-scores for the volatility levels.
The second row shows the distribution and z-scores for the returns.
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Figure A6: Histogram Plots of SABR Surface Structural Properties

This Figure shows the histogram plots for the best VAE model that includes skew and
slope information. The top row shows the distribution and z-scores for the skews. The
second row shows the distribution and z-scores for the slopes.
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Figure A7: SABR Latent Manipulation

Panel A. VAE SABR Model with Surface Context Only

Panel B. VAE SABR Model with Return, Slope, Skew, and Surface Context
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Rama Cont and Milena Vuletić. Simulation of arbitrage-free implied volatility surfaces.

December 2022. Available at SSRN: https://ssrn.com/abstract=4299363 or http:

//dx.doi.org/10.2139/ssrn.4299363.
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