VALUE AT RISK WHEN

DAILY CHANGES IN

MARKET VARIABLES ARE NOT
NORMALLY DISTRIBUTED

John Hull

is a professor in the Faculty of Management at the University of Toronto.

Alan White

is a professor in the Faculty of Management at the University of Toronto.

This article proposes a new model for calculating
VaR in which the user can choose any probability distribu-
tions for daily changes in the market variables, and parame-
ters of the probability distributions are subject to updating
schemes similar to GARCH. Transformations of the proba-
bility distributions are assumed fo be multivariate normal.
The model is appealing in that the calculation of VaR is rel-

atively straightforward and can make use of the RiskMet-
vies™ or a similar data base.

We test a version of the model using nine years of
daily data on twelve different exchange rates. When the first
half of the data is used to estimate the model’s parameters,
we find that it provides good predictions for the second half
of the data.

n the last few years value at risk (VaR) has
become a very popular risk management tool in
many different types of organizations. There are
a number of reasons for this. One is J.P. Mor-
gan’s decision in 1994 to make its RiskMetrics data
base freely available to all market participanis. Anoth-
er is the climate created by derivatives disasters as
represented by Procter & Gamble, Kidder Peabody,
Orange County, and Barings. A third reason is the
decision by central bank regulators to use VaR in cal-
culating a bank’s required capital.!
A VaR calculation is aimed at making a state-
ment of the form: “We are X% certain that we will
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not lose more than V dollars in the next N days”
The variable V is the VaR. It is a function of two
parameters: N, the time horizon, and X, the confi-
dence level. In defining a bank’s required capital, reg-
ulators use N = 10 and X = 99. The required capital
is therefore based on the losses over a ten-day period
that are expected to happen 1% of the time.

Models for calculating VaR. are reviewed by
Duffie and Pan [1997]. The model most commeonly
used assumes that the probability distribution of the
daily changes in each market variable is normal, an
assumption that is far from perfect. The daily
changes in many variables, particularly exchange
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rates, exhibit significant amounts of positive excess
kurtosis. This means that the probability distributions
of daily changes in these variables have “fat tails” so
that extreme outcomes happen much more frequent-
ly than would be predicted by the normal distribu-
tion assumption.

Duffie and Pan [1997] identify jumps and
stachastic volatility as possible causes of kurtosis. They
point out that under a jump-diffusion model, kurtosis
is a declining function of the time horizon, while
under a stochastic volatility model, it is an increasing
function of the time horizon (at least for the time
horizons normally considered in VaR. calculations).

In this article we show how the normal distri-
bution assumption can be relaxed. We develop a
model that allows the user to choose any probability
distribution for the daily changes in each market vari-
able, with parameters of the distribution updated
using schemes similar to GARCH. A key aspect of
the model is the way that correlations are handled.
We transform the daily changes in each market vari-
able into 2 new variable that is normally distributed.
We assume that the new variables are multivariate
normal. We illustrate the approach using nine years of
daily data on twelve different exchange rates.

I. APPROACHES TO CALCULATING
VALUE AT RISK

There are a number of alternative ways to cal-
culate VaR for a portfolio. A popular approach that
uses the RiskMetrics' or similar data base is to
assume a model in which the changes in the values of
the market variables (such as equity prices, zero-
coupon bond prices, exchange rates, and commodity
prices) have a multivariate normal distribution. The
mean change in the value of each variable is assumed
to be zero.

If the instruments in the portfolio are linearly
dependent on n market variables, VaR. can be calculated
analytically when this model is used. The dollar change
in the portfolio value in one day, AP, has the form:

AP = TaAx,

i=1

where Ax, is the proportional change in the value of

10 VALUE AT RISK WHEN DAILY CHANGES IN MARKET VARIABLES ARE NOT NORMALLY DISTRIBUTED

the i~th market variable during the day, and the 3; are
constants (1 < i < n). The probability distribution of
the portfolio value at the end of one day is normal
with mean zero and standard deviation G, where

2 n
G‘P = Z E pijaiajGiGj
i=1j=1

The variable O, is the daily volatility of the i-th
market variable, and Py is the correlation between Ax;
and Ax;. The VaR for any given confidence level and
any time horizon can easily be calculated from Op.
For example, the VaR with a confidence level of 99%

and a horizon of N days is 2.33GP\/§ .

When the portfolio includes instruments that
are not linearly dependent on the market variables,
there are no exact approaches to calculating VaR.
One possibility is to use Monte Carlo simulation.
Unfortunately this can be quite time-consuming,
since the complete portfolio must be revalued on
each simulation trial.

An, alternative is to approximate the relation-
ship between AP and the Ax; variables using the first
two terms in a Taylor series expansion so that

n n n 2
ap= 5P A + 053397

AxAx; (1)

This expression can be used to calculate the moments
of AP analytically.?

Alternatively a Monte Catlo simulation can be
used, with AP calculated directly from Equation (1).
The latter is referred to as the partial simulation
approach. It is much less time-consuming than a full
simulation, since it avoids the need for the portfolio
to be revalued on each simulation trial.

Reecently, Jamshidian and Zhu [1997] have sug-
gested an interesting alternative way of speeding up
Monte Carlo simulation: scenario simulation. It
involves defining an M-point discrete approximation to
the probability distribution of each market variable. On
each simulation trial, samples for the changes in each
market variable are taken from the full multivariate dis-
tribution of the market variables in the usual way. Each
sample is then replaced by the closest value in the cor-
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responding discrete distribution before valuing the
portfolio. The advantage of the approach is that it sig-
nificantly reduces the number of times individual
instruments in-a portfolio (particularly those dependent
on only one market variable) have to be valued.

Some analysts prefer to use historical data rather
than a model to define the statistical behavior of mar-
ket variables. This involves creating a data base consist-
ing of the daily movements in all market variables over
a period of time. The first simulation trial assumes that
the percentage changes in each market variable are the
same as those on the first day covered by the data base;
the second simulation trial assumes that they are the
same as those on the second day, and so on.

The change in the portfolio value is calculated
for each simulation trial, and the VaR is calculated as
the appropriate fractile of the probability distribution
of these portfolio changes. The change in the portfo-
fio value can be obtained either by revaluing the port-
folio or by using Equation (1).

The historical data approach has the advantage
that it accurately reflects the historical multivariate
probability distribution of the market variables. Its
disadvantage is that the number of simulation trials is
limited to the number of days of data that are avail-
able. Also, sensitivity analyses are difficult, and vari-
ables for which there are no market data cannot easily
be included in the analysis.

The purpose of this article is to extend this
model-building approach so that the historical behav-
ior of market variables is represented more accurately.

. NON-NORMALITY IN
MARKET VARIABLES

Although the RiskMetrics™ VaR. calculation
approach assumes multivariate normality, the changes
in many market variables, particularly exchange rates,
exhibit positive excess kurtosis. This means that
extreme movements in the variables are more likely
than a normal distribution would predict.

Exhibit 1 compares a normal distribution with
a distribution exhibiting positive excess kurtosis.?
Both distributions have the same mean and variance,
but the positive excess kurtosis distribution is more
peaked and has fatter tails.

It is interesting to note what happens when we
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EXHIBIT 1

COMPARISON OF NORMAL DISTRIBUTION AND POSITIVE
KurTos1Ss DISTRIBUTION — THE DHSTRIBUTIONS HAVE
THE SAME MEAN AND VARIANCE

0.6

0.51

e Dhist. with Pos. Kut,

---- . Normal Dist.

move from a normal distribution to a distribution
with positive excess kurtosis. Probability mass is added
to the central part of the distribution and added to
the tails of the distribution. At the same time, proba-
bility mass is taken from regions of the probability dis-
tribution that are intermediate between the tails and
the center. The effect of excess kurtosis is therefore to
increase the probability of very large moves and very
small moves in the value of the variable, while
decreasing the probability of moderate moves.

To illustrate the problem of non-normality in
market variables, we use the behavior of exchange
rates. The data consist of daily exchange rates for
twelve major currencies between January 4, 1988, and
August 15, 1997. The total number of trading days
covered by the data is 2,425. The currencies are the
Australian dollar (AUD), Belgian franc (BEF), Swiss
franc (CHF), German deutschemark (DEM), Danish
krone (DKK), Spanish peseta (ESP), French franc
(FRF), British pound (GBP), Italian lire (ITL),
Japanese yen (JPY), Dutch guilder (NGL), and
Swedish krone (SEK).

Define e, as the proportional change in an
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exchange rate between day i and day i + 1. Exhibit 2
shows the frequency with which e, exceeded one,
two, three, four, five, and six standard deviations for
each of the currencies. (For the purposes of calculat-
ing this table, e, is assumed to have zero mean and
constant variance.)

The table illustrates that all currencies exhibit
significant excess kurtosis. The hypothesis that the e
are normal can be rejected with a very high degree of
confidence. The probability of a one-standard devia-
tion move is 25.04% on average. This is considerably
less than the 31.73% predicted by the normal distri-
bution, and indicates that exchange rates have a more
peaked distribution than the normal distribution.

The probability of a three-standard deviation
move is 1.34% on average. This compares with
0.27% for the normal distribution and is consistent
with exchange rates having fatter tails than the nor-
mal distribution. '

Exhibit 2 also shows the usual excess kurtosis
measure for each currency, For a normal distribution,
this measure is zero.*

The RiskMetrics™ data base uses an exponen-
tially weighted moving average (EWMA) for the daily

EXHIBIT 2

variance so that
o2 = AoZ, + (1 - Nely )

where o7 is the variance calculated on day i, and A s

set equal to 0.94.°

Exhibit 3 shows the frequency with which e
exceeded one, two, three, four, five, and six standard
deviations when the standard deviation is calculated
using Equation (2). The table shows that the stochas-
tic volatility model in Equation (2) does lead to a sig-
nificant reduction in the excess kurtosis measuze, but
the discrepancies between the observed frequencies
and those that would be expected if the e, were nor-
mal are still large. The hypothesis that the e, are not-
mal can still be rejected with a very high degree
of confidence.

III. MODELING NON-NORMALITY
AND THE CALCULATION OF VAR

"The traditional approach to modeling non-
normality in observed outcomes in a time series has

Excuance RATE MOVES WHEN CONSTANT-VARIANCE MODEL 15 USED (%)

AUD BEF CHF DEM DKK

ESP FRF GBP ITL

JPY NLG SEK

> 1 stdev 2380 2496 2624 2574 2558

> 2 stdev 5.49 4.95 5.45 5.65 5.40
> 3 stdev 1.36 1.32 1.24 1.24 1.32
> 4 stdev 0.41 0.25 0.17 0.25 0.12
> 5 stdev 0.21 0.04 0.04 0.00 0.00
> 6 stdev 0.08 0.04 0.00  0.00 0.00

Excess Kurtosis 4.40 3.31 1.69 1.91 1.61

23,72 2603 2533 2508 2360 2554 2483

470 553 545 483 540 524 520
153 144 144 128 149 120 1.24
0.37 012 037 029 062 025 025
0.17 000 004 017 012 004 012
008 000 000 0.08 000 000 004
775  1.65 257 593 334 207 444

AVERAGE NORMAL
> 1 stdev 25.04 31.73
> 2 stdev 5.27 4,55
> 3 sidev 1.34 0.27
> 4 stdey 0.29 0.01
> 5 stdev 0.08 0.00
> 6 stdev 0.03 0.00
Excess Kurtosis 3.39 0.00
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EXHIBIT 3 .
EXCHANGE RaTE Moves WHEN EXPONENTIAL WEIGHTED MOVING AVERAGE MODEL 1S USED (%)

AUD BEF

CHF DEM DEKK  ESP

FRE GBP ITL JPY NLG SEK

> 1 stdev 26.98 2842 28.80 2855 29.17

29.00 2950 27.81 2896 2649 2937 2929

> 2 stdey 5.73 6.52 6.31 6.68 6.35 6.15 6.52 6.68 6.11 6.52 6.15 6.35
> 3 stdev 1.53 1.40 1.03 1.44 1.28 1.32 1.53 1.44 1.69 1.24 1.11 1.24
> 4 stdev 0.66 0.33 0.17 0.08 0.21 0.29 0.17 0.25 0.33 0.50 0.29 G.08
> 5 stdev 0.21 0.08 0.08 0.04 0.04 0.12 0.04 0.08 0.08 0.17 0.08 0.04
> 6 stdev 0.08 0.08 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.12 0.04 0.04
Excess Kurtosis 3.59 3.23 209 203 1.97 2,77 2.12 2.35 2.15 3.47 2.15 1.47
AVERAGE NorMaL
> 1 stdev 28.53 31.73
> 2 stdev 6.34 4.55
> 3 stdev 1.36 0.27
> 4 stdev 0.28 0.01
> 5 stdev 0.09 0.00
> 6 stdev 0.06 0.00
Excess Kurtosis 2.45 0.00

been to assume that, although the unconditional
returns are not normal, suitably conditioned returns
are normal. There have been three popular models of
this type: GARCH models, mixed jump-diffusion
models, and Markov switching models.

In the GARCH or stochastic volatility models,
the returns are normal conditional on knowing the
current variance. In the mixed jump-diffusion mod-
els, the returns are normal conditional on there being
no jump. In the Markov switching models, the
returns are normal conditional on knowing the cur-
rent state. The models have the advantage that they
allow one to take advantage of the simple properties
of multivariate normal distributions.

We propose a fourth alternative for handling
non-normality. Our proposal is that some functional
transformation of the observed returns is normal. This
is similar to the other three models in that, suitably
conditioned, the data are assumed to be normal.

This proposal is not entirely new. For example,
it has traditionally been assamed that changes in asset
prices are drawn from a lognormal distribution so that
changes in the logarithm of the asset price are nor-
mally distributed.

SPRING 1998

Suppose that there are a total of m market vari-
ables. Define e; as the proportional change in variable
jondayi(1<5<m)and Gy as the cumulative proba-
bility distribution assumed for e;. In general, Gy is
dependent on a nutnber of parameters, some inde-
pendent of i and some subject to updating schemes
similar to GARCFH. We transform ¢, into a new vari-
able fij. using the transformation

£ = N[Gyfey)] ©

where N is the cumulative normal distribution function.®
The expression in the brackets in Equation (3)
is the cumulative probability that the daily change in
variable j on day i is less than e,.. Denote this by z so
that e, is the z-th fractile of the distribution being
assumed for daily changes. The variable fij is the same
fractile of the standard normal distribution. In moving
from e; to £, we are mapping observations from the
assumed distribution of daily changes into a standard
normal distribution on a “fractile-to-fractile” basis.
This approach can be used in conjunction with
either the historical data approach or the model
approach to VaR calculations. The model approach to
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VaR_ calculations assumes a particular form for the
distribution of outcomes (for example, a displaced
chi~square distribution, a t distribution, or a mixture~
of-normals distribution), and estimates the parameters
of the distribution for each market variable. In this
case, the G function is calculated from the assumed
distribution.

The historical data approach bases the distribu-
tion of future changes on the distribution of past
changes. In this case, the G function is the cumulative
histogram of historic changes.

We assume that the f. (1 <j < m) have a multi-
variate normal distribution. VaR. can be calculated
using either Monte Carlo simulation or a Taylor
series expansion. When Monte Carlo simulation is
used, the multivariate normally distributed variables,
;> are mapped into actual outcomes, ¢, using

RN 4

On each simulation trial, we sample an £, and
from Equation (4) find the corresponding eij.-" Tfne e;
are then used to calculate the change in the value of
the portfolio in the usual way, using either Equation
{1) or a full portfolic revaluation.

This model is ideally suited for use in conjunc-
tion with the scenario simulation approach of
Jamshidian and Zhu [1997]. We first replace the
assumed continuous probability distribution for each
e-variable by a discrete distribution in a way similar to
that suggested by Jamshidian and Zhu. We then carry
out a preliminary analysis to determine from Equa-

~tion (3) the range of values of fij that correspond to

each discrete value of e,. As the simulation proceeds,
we move directly from samples of the fij. that come
from a continuous multivariate normal to the corre-
sponding samples of the ¢; that come from the dis-
crete approximations to the assumed distributions.

'Io use the Taylor series expansion, we assume
a quadratic relationship between the change in the
portfolio value and the &5 To calculate the first few
moments of the change in the portfolio value (so that
the Cornish-Fisher expansion can be used), we
require terms of the form E(eij), E(ei}.eik), E(eij ei 1,

E(efj efk), and so on. These can be calculated, tab-
ulated, and stored in advance of VaR. calculations
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by carrying out a single Monte Catlo simulation of

the e.s.

Y If this Monte Cazlo simulation has to be car-
ried out every day, the Taylor series expansion
approach is clearly inferior to the use of Monte Catlo
simmilation approach in conjunction with a quadratic
approximation. If only one parameter in Gy is updat-
ed from day to day, however, and this is a variance
parameter that effectively “scales” the ¢, then the
Monte Carlo simulation has to be carried out only
once (or at least only when the Gij functions are
changed). This is the situation in the example given
below and is likely to be the case in most applications
of our approach.,

An alternative approach is to assume that the
correlation between e and e is the same as it
would be if the e variables were normally distributed,
and calculate the required expectations from these
correlations and the moments of the assumed proba-

bility distributions of the e variables.

IV. A PARTICULAR EXAMPLE
OF THE MODEL

Here we illustrate how the G functions can be
chosen.® The model parameters are estimated from
actual foreign exchange data, and the quality of
approximation is then tested by comparing the model
fit for a holdout sample of data. We use a mixture-of-
normals diseribution to represent the G functions.’

We consider two models. In the first model,
the distribution of daily changes is stationary. In the
second model, the variance of the distribution of
daily changes can change, but parameters describing
the kurtosis of the distribution are constant. The
parameter estimation is done by fitting the fractiles of
the distribution.

We emphasize that the functional form for
the G functions and the estimation procedure are
illustrations of the general approach that can be fol-
lowed. Many other different assumptions and esti-
mation procedures can be used. It is encouraging,
however, that the results we present for the second
model are quite good.

Define 67 as the variance of the proportional
daily change e, in a variable on day i. We assume that
the probability density of daily changes is'?
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- P i
gile) = expl — — — |+
27us; 2u“o;
1 - 2
P exp| — il 5 5
V27uo; 2v7o;

so that

ug; vQ;

The probability density function is a weighted
average of two zero-mean normal distributions. The
first distribution has weight p and standard deviation
us,. The second distribution has weight 1 — p and
standard deviation vo..

Note that we are not assuming a Markov
switching model, where on any given day either one
normal distribution or the other applies. Equation (5)
defines a family of distributions in terms of four
parameters: p, u, v, and G,.

The variance of the distribution in (5) is

puzr:fi2 + (1 - p)VZGiz

Since this must equal o, the parameters
underlying the distribution must satisfy

pu? + (1 —p)v? =1 (6)

In fitting the model to the data we consider
two cases. In the first case, the variance of daily
changes in a market variable is assumed to be constant
and equal to 67 so that o, = . (This is the assump-
tion in Exhibit 2.) In the second case, the variance is
assumed to be given by the EWMA model in Equa-
tion (2) with A = 0.94. Other GARCH updating
schemes for 6; could also be considered.

To test the models we choose values of p, u,
and v that are consistent with Equation (6) and pro-
vide a best fit to the distribution of e, over the period
covered by the first half of the data (January 4, 1988,
to October 19, 1992). A natural approach here would
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appear to be to maximize the log-likelihood function:

2 2
: 1 — .
2 log] N exp| — G + P exp| — G
i ug; 2ulc? vG; 2v?G?

One problem with this, pointed out by Hamil-
ton [1991], is that attempts to maximize the function
can lead to instability, local solutions, and non-con-
vergence problems.!’ Another problem is that the
best-fit values of p, u, and v are greatly influenced by
extreme data items.!?

To overcome these problems, we decided to
estimate the parameters by fitting the fractiles of the
distribution. The data on exchange rate changes are
divided into four categories: less than one standard
deviation (le] < ©)); one to two standard deviations
(0, < gl € 26,); two to three standard deviations
(20, < l¢} < 306); and more than three standard devia-
tions (36, < le). We compare the number of data
items observed in each category with the number that
would be predicted for particular values of p, u, and v,
and select the values of these parameters that maxi-
mize the log-likelihood function!?

4
2.0 Tog (B )
k=1

where ¢ is the actual proportion of observations in
the k-th category, and [, is the predicted proportion.
This procedure is carried out for each of the twelve
currencies as well as for the pooled results from all
exchange rates. Parameter estimates are made for the
constant-variance case and the EWMA case. The
best-fit parameters for the EWMA case values are
shown in Exhibit 4.

The best-fit estimates of p, u, and v are then
assumed to apply to the second half of the data sam-
ple, and a chi-square statistic is calculated to deter-
mine the goodness of fit. For the purposes of calculat-
ing the chi-square statistic the data are categorized as
described above.!*

We carry out a separate analysis for each of the
twelve curzencies. For the parameters estimated from
the pooled results from all exchange rates, the
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EXHIBIT 4
Best-FIT VALUES OF p, U, AND Vv WHEN THE EXPONENTIALLY WEIGHTED MOVING AVERAGE
MIXTURE OF NORMALS MODEL 18 FITTED To FiRST HALF OF DATA

AUD BEF CHF DEM DKK ESP FRF GBP IT3. JPY NLG SEK AIL

p 0.85 0.57 0.51 0.57 030 0.2 049 035 0.68 0.75 0.79 (.48 0.62
u 0.78 0.69 0.6%9 0.66 0.14  0.68 061 0.14 0.73 0.70 0.81 0.61 0.70
1-p 015 0.43 0.49 0.43 070 038 0.5t 0.5 0.32 0.25 0.21 0.52 0.38
v 1.77 1.30 1.24 1.32 119 137 127 124 1.41 1.58 1.52 1.26 1.36

v 5.81 6.14 1.90 1.86 9.24  9.92 877 9.34 4.27' 5.34 5.64 450 48.24

Note: Chi-square statistic measures the goodness of fit to the second half of the data.

chi-square statistic is calculated by applying the
pooled parameter estimates to each currency separate-
ly. These results for the EWMA case also appear in
Exhibit 4. The results for the constant-variance case
are poor because of substantial changes in the volatili-
ties of many of the currencies between the first peri-
od and the second period.'®

In testing the validity of the model and the
estitnated parameters for a single currency, the model
can be rejected with 95% confidence when the chi-
square statistic is greater than 7.8. When we attempt
to fit the distributions of all currencies simultaneously,

the model can be rejected with 95% confidence when
the chi-square statistic is greater than 51.

Exhibit 4 shows that for the exponentially
weighted moving average model the single-currency
mode] can be rejected for only four of the curren-
cies. When the same p, u, and v are vsed for all cur-
rencies, the value of the chi-square statistic is 48.24,
indicating that the model cannot be rejected with
95% confidence.

The sum of the chi-squares for the individual
currency models is 72.73, indicating that we can
reject at the 95% confidence level the hypothesis that

EXHIBIT 5

PROBABILITY DISTRIBUTIONS FOR SECOND HALF 0F DATA COMPARED WITH PROBABILITY DISTRIBUTION FOR THE
MIXTURE OF NORMALS EWMA MODEL THAT PROVIDES BEST OVERALL FIT T0 FIRsT HALF OF DATA (%)

AUD BEF CHF DEM DKK ESP FRF GBP ITL jJPY NLG SEK

0tolstdev 7244 7219 7228 7211 7096 7030 6997 7277 7071 7318 7145 70.79
1to2stdev 2137 2129 2153 2178 2310 2426 24.09 2104 2351 2005 2236 23.68
2 to 3 stdev 470 4.95 5.20 479 4,54 4.46 4.70 4.54 4.37 5.28 528 4.62

> 3 stdev 1.49 1.57 0.99 1.32 1.40 0.99 1.24 1.65 1.40 1.49 0.91 0.91
BrsT-FIT NORMAL
MODEL MODEL
0to 1 stdev 73.11 68.27
1 to 2 stdev 21.31 27.18
2 to 3 stdev 4,55 4,28
> 3 stdev 1.03 0.27
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the EWMA model is correct with a different p, u, and
_ v for each currency. .

Our analysis therefore provides support for
using the EWMA model with the same p, u, and v
parameters for all currencies. The fit to the first half
of the data is of course slightly worse when the p, 1,
and v parameters are constrained to be the same for
all currencies.!®

The fit to the second half of the data is much
better, however. This is because the best-fit parameter
values for an individual currency are not particularly

EXHIBIT 6

stable, while the best-fit parameters for the all-curren-
cy model are quite stable. For the exponentially
weighted moving average model, the latter change
from p = 0.62, u = 0.70, and v = 1.36 for the first
half of the data to p = 0.66, u = 0.73, and v = 1.38
for the second half.

Exhibit 5 compares the actual distributions of
¢, for the second half of the data assuming the
EWMA model with the distributions predicted by
the normal distribution and by a model based on a
single set of p, u, and v parameters. The table illus-

CORRELATIONS BETWEEN EXCHANGE RATE MOVEMENTS AND BETWEEN TRANSFORMED EXCHANGE RATE MOVEMENTS

(SECOND HALF OF DATA EWMA MODEL)

SPRING 1998

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NLG SEK
ExcHANGE RATE MOVEMENTS
AUD 1.000
BEF -0.046  1.000
CHF -0.054 0.862 1.000
DEM ~0.057 0926 05916 1.000
DXX ~0.057 0.886 0.839 0900 1.000
ESP -0.049 0.821 0762 0.831 0816 1.000
FREF —0.055 0.924 0.887 0.945 0.502 0846 1.000
GBP 0.087 0566 0576 0.605 0586 0526 0.599 1.000
ITL 0.049 0601 0594 0.627 0.621 0.651 0.668 0.466 1.000
- JPY -0.116 0513 0531 0536 0495 0.448 0520 0294 0333 1.000
NLG —0.059 0934 0914 0.984 0.901 0.836 0.946 0595 0.628 0534 1.000
SEK -0.006 0573 0571 0600 0598 0578 0625 0449 0588 0324 05% 1.000
TRANSFORMED EXCHANGE RATE MOVEMENTS
AUD 1.000
BEF -0.053  1.000
CHF —0.061 0866 1.000
DEM -0.068 0.932 0.915 1.000
DEK. -0.071 0.897 0.844 0908 1.000
ESP ~0.055 0.823 0.765 0.833 0.820 1.000
FRF ~0.065 0.925 0884 0543 0907 0847 1.000
GRBP 0.084 0580 0587 0.6i14 0595 03533 0608 1.000
ITL 0.037 0606 0.600 0627 0629 0657 0.672 0478 1.000
JPY —0.123 0513 0528 0.532 0498 0451 0516 0299 0339  1.000
NLG —0.071 0938 0913 0983 0508 0.838 0944 0605 0.628 0530 1.000
SEK —0.017 0531 0575 0601 0607 0582 0.630 0450 059 0327 0596 1.000
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trates that the mixture of normals is a big improve-
ment over the pure normal as a representation of
daily exchange rate changes.

V. USING THE RISKMETRICS™
OR SIMILAR DATA BASE

Exhibit 6 shows estimates for the correlations
between the e variables and the correlations
between the f variables for the second half of the
data in our example when the EWMA model is
used to update variance estimates. The correlations
are very similar.?

This suggests that, rather than estimating the
correlation between the f variables directly, we can
reasonably assume that the correlation matrix for the £
variables is the same as that for the e variables.

With this small approximation, all calculations
can be carried out using the RiskMetrics™ or similar
data base once the G functions have been determined.
In general, G, depends on the estimate of the stan-
dard deviation of e, made on day i. Our example uses
an EWMA model with A = 0.94 for this, but other
models can be used. The covariance matrix for the f
variables is known because by construction the vari-
ance of each f'is 1.0, and by assumption the correla-
tions between the f variables are the same as those
between the e variables.

VI. CONCLUSIONS

‘We have shown how the usual multivariate-
normal assumption in the calculation of VaR can be
replaced by a “transform-to-multivariate-normal”
assumption. The new model has the advantage that
it enables the third, fourth, and higher moments of
the returns on market variables to be reflected in
VaR. calculations.

We illustrate the model using nine years of
daily exchange rate data for twelve currencies, and
find that it is capable of accurately reflecting the prob-
abilities of one-, two-, and three-standard deviation
moves in the exchange rates. The model can be
applied to calculating VaR relatively easily using the
RiskMetrics or a similar data base. Either 2 Monte
Carlo simulation or a Taylor series expansion
approach can be used.
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ENDNOTES

The authors are grateful to Tom McCurdy for
comments and helpful suggestions. An earlier version of
this article was titled “Taking Account of the Kurtosis in
Market Variables When Calculating Value at Risk.”

1See Jackson et al. [1997] for a discussion of this.

?The Cornish-Fisher expansion provides an
approximate way of converting the moments of AP to the
approprate fractile of the distribution of AP. For a descrip~
tion, see Johnson and Kotz [1972].

*The positive kurtosis distribution in Exhibit 1 is
constructed as an equally weighted mixture of two normal
distributions.

*The excess kurtosis of a distribution is defined as

(ra,/ v3) 3
where m, is its fourth central movement, and v is its variance.

This is a particular case of a GARCH (1, 1) process.

8A similar idea is in Hull {1977] and has been used
by Duan {1997].

"This may involve an iterative search.

8Qur objective is to show that it is not difficult to
find a reasonable representation of the actual distribution of
returns for foreign exchange data. We are not attempting
to find the “true” form of G.

?Qther researchers who have used mixtures of
normals in Vall calculations are Zangari [19%96] and
Venkataraman [1997]. Zangari assumes probability distribu-
tions for each of the parameters describing the mixture of
normals and uses a Bayesian updating scheme, Venkatara-
man uses 2 quasi-Bayesian maximum likelihood estimation
procedure, Our model is non-Bayesian and conceptually
simpler than that of either Zangari or Venkataraman. Also
it has a quite different approach to handling correlations.

0For ease of notation, we omit the j subscript in
this part of the article.

HConsider, for example, when one of the e, is
zero. As u tends to zero, the two exponential functions are
both 1, while p/(uo)) tends to infinity, so that the log-like-
likood function also tends to infinity.

2It might seem strange that we are concerned
about the adverse effect of extreme data items on our
paramneter estimates when the purpose of the model is to
capture the probability of extreme outcomes more accu-
rately. Our argument is as follows. When calculating VaR,
we are not interested in modeling the really extreme (e.g.,
0.1% tails) of the distribution of a market variable accurate-
ly at the expense of decreased accuracy in modeling the 1%
and 5% tails. This is because the 0.1% tail is not known
accurately from historical data and does not influence a
VaR. calculation for the confidence levels usually chosen.
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13The probability that, out of a total of N obsex-
vations, n, are in category i (1 51 < 4} is proportional to

By B385° By’
Taking the logarithm of this function and dividing by N,
we obtain the log-likelihood function.

14The chi-square statistic is

L8 - B

i=1 E;

1
where A, is the actual number of observations in category i
in the second half of the data, and B, is the expected num-
ber of observations based on the distribution estimated
from the first half of the data.

157 5 interesting to note that, if we base the caloula-
Hon of the chi-square statistic on the volatility estimate of
each currency during the second period instead of the first,
the model works very well. Among the twelve currencies,
the constant-variance version of the model can be rejected
only for the Swedish krone. When a single model is used for
all currencies, the chi-square statistic is 29.55, well under the
959 confidence level of 51. This suggests that, although the
variance of 2 currency’s retum is non-stationary, the p, u, and
v parameters describing the kurtosis are fairly stationary.

16The maximum value of the total log-likelihood
function (all cuurencies} decreases from -9.46 to ~9.47
when we constrain the parameters to be the same for all
currencies in the case of the exponentially weighted mov-
ing average model.

1/Njote that the instantaneous correlations between
the e varidbles are identical to those between the f variables.
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