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In the last issue of this Journal we explained a new
procedure for building trinomial trees for one-factor no-arbi-
trage models of the term structure. The procedure is appro-
priate for models where there is some function, x, of the
short rate, 7, that follows a mean-reverting arithmetic process.
It is relatively simple and computationally more efficient
than previously proposed procedures.

In this article we extend the new tree-building procedure

in two ways. First, we show how it can be used to model the

yield curves in two different countries simultaneously. Second, we

show how to develop a variety of Markov two-factor models.
In order to model the yield curves in two different

countries simultaneously, we first build a tree for each of the

yield curves separately. The trees are then adjusted so that

they are both constructed from the viewpoint of a risk-neu-
tral investor in the country in which the cash flows are real-
ized. We then combine the two trees on the assumption that
there is no correlation. In the final step we induce the
required amount of correlation by adjusting the probabilities
on the branches emanating from each node.

The two-factor Markov models of the term structure
that we consider incorporate a stochastic reversion level.
They have the property that they can acommodate a much
wider range of volatility structures than the one-factor models
considered in our earlier article. In particular, they can give
rise to a volatility “hump” similar to that observed in the
cap market. We show that one version of the two-factor
models is somewhat analytically tractable.

he most general approach to constructing
models of the term structure is the one sug-
gested by Heath, Jarrow, and Morton
[1992]. This involves specifying the volatili-
ties of all forward rates at all times. The expected
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drifts of forward rates in a risk-neutral world are cal-
culated from their volatilities, and the initial values of
the forward rates are chosen to be consistent with the
initial term structure.

Unfortunately, the models that result from the
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Heath, Jarrow, and Morton approach are usually non-
Markov, meaning that the parameters of the process for
the evolution of interest rates at a future date depend
on the history of interest rates as well as on the term
structure at that date. To develop Markov one-factor
models, an alternative approach has become popular.
This involves specifying a Markov process for the
short-term interest rate, r, in terms of a function of
time, 8(t). The function of time is chosen so that the
model exactly fits the current term structure.

Hull and White [1994] consider models of the
short rate, r, of the form

= [B(t) — ax]dt + odz _ (D)

where x = f{r) for some function f; a and G are con-
stants; and 6(t) is a function of time chosen so that the
model provides an exact fit to the initial term struc-
ture. This general family contains many of the com-
mon one-factor term structure models as special cases.
When f(r) = r and a = 0, the model reduces to

dr = 8(t)dt + cdz

This is the continuous time limit of the Ho and Lee
[1986] model. When f(r) = r and a # O, the model
becomes '

dr = [B(t) — ar]dt + odz

and is a version of the Hull and White [1990] extend-
ed-Vasicek model. When f{r) = log(r), the model is

dlog(r) = [6(t) — alog(r)]dt + odz

which is a version of Black and Karasinski [1991].

In this article we extend the ideas in Hull and
White [1994] to show how the yield curves in two
different countries can be modeled simultaneously.
We also show how the Hull-White approach can be
used to develop a variety of different Markov two-fac-
tor models of the term structure.

1. THE HULL-WHITE ONE-FACTOR
TREE-BUILDING PROCEDURE

The first step for building a tree for the model
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in Equation (1) is to set 8(t) = O so that the model
becomes

dx = —axdt + odz (2)

A time step, At, is chosen, and a trinomial tree is con-
structed for the model in Equation (2) on the assumption
that the initial value of x is zero. The spacing between the

x-values on the tree, Ax, is set equal to G+v3At. The
probabilities on the tree are chosen to match the mean
and the standard deviation of changes in x in time At.

The standard branching process on a trinomial
tree is “one up, no change, or one down.” This means
that a value x = jAx at time t leads to a value of x
equal to one of (j + 1)Ax, jAx, or (j — 1)Ax at time t +
At. Due to mean reversion, for large enough positive
and negative values of j, when this branching process
is used, it is not possible to match the mean and stan-
dard deviation of changes in x with positive probabili-
ties on all three branches. To overcome this problem,
a non-standard branching process is used in which the
values for x at time t + At are either (j + 2)Ax,
( + 1)Ax, and jAx, or jAx, (j — 1)Ax, and (j ~ 2)Ax.

Once the tree has been constructed so that it
corresponds to Equation (2), it is modified by increas-
ing the values of x for all nodes at time iAt by an
amount 0,. The os are chosen inductively so that the
tree is con51stent with the initial term structure. This
produces a tree corresponding to Equation (1). When
the Ho-Lee or Hull-White model is used so that x =
r, the values of @ can be calculated analytically. In
other cases an iterative procedure is necessary.

This procedure provides a relatively simple and
numerically efficient way of constructing a trinomial
tree for x and implicitly determining 6(t). The tree
has the property that the central node at each time is
the expected value of x at that time.

Exhibit 1 shows the tree that is produced when x
=r,a=0.1, 0 =001, At = one year, and the function
0.08 — 0.05¢918 defines the t-year zero rate.! Note that
the branching is non-standard at nodes E (where j is
positive and large) and I (where j is large and negative).

. MODELING TWO INTEREST RATES
SIMULTANEOUSLY

Certain types of interest rate derivatives require
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EXHIBIT 1

TREE ASSUMED FOR BOTH r, AND 1, — CORRESPONDS TO
THE PROCESS dr = [0(t) — ar]dt + odz WHERE a = 0.1,
o = 0.01, At = ONE YEAR, AND THE t- YEAR ZERO RATE
15 0.08 — 0.05¢70-18¢

Node A B C D E F G H I

o 382% 693% 5.20% 3.47% 9.71% 7.98% 6.25% 4.52% 2.79%
p, 0167 0122 0.167 0222 0887 0.122 0167 0222 0.087
p, 0666 0.656 0666 0656 0026 0656 0666 0.656 0.026
p; 0167 0222 0167 0.122 0087 0222 0167 0122 0.887

the yield curves in two different countries to be mod-
eled simultaneously. Examples are diff swaps and
options on diff swaps. Here we explain how the pro-
cedure in Hull and White [1994] can be extended to
accommodate two correlated interest rates.

For ease of exposition, we suppose the two
countries are the United States and Germany, and that
cash flows from the derivative under consideration are
to be realized in U.S. dollars (USD). We first build a
tree for the USD short rate and a tree for the
deutschemark (DM) short rate using the procedure
outlined above and described in more detail in Hull
and White [1994]. As a result of the construction pro-
cedure, the USD tree describes the evolution of USD
interest rates from the viewpoint of a risk-neutral
USD investor, and the DM tree describes the evolu-
tion of DM rates from the viewpoint of a risk-neutral
DM investor.

Adjusting the Deutschemark Tree

Since cash flows are realized in USD, the DM
tree must be adjusted so that it reflects the evolution
of rates from the viewpoint of a risk-neutral U.S.
investor rather than a risk-neutral DM investor.
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Define

- USD short rate from the viewpoint of a risk-
neutral U.S. investor;

r,, DM short rate from the viewpoint of a risk-neu-
tral DM investor;

r, : DM short rate from the viewpoint of a risk-neu-
tral U.S. investor;

X: the exchange rate (number of USD per DM);

volatility of exchange rate, X;

Py: instantaneous coefficient of correlation between
the exchange rate, X, and the DM interest rate, ,;

p: instantaneous coefficient of correlation between

the interest rates, r; and r,.

Suppose that the processes for r, and r, are
dx, = [8,(t) —a,x,]dt + 0,dz,

and
dx, = [0,(t) — ayx,]dt + 0,dz,

where x, = f,(r,) and x, = f,(r,) for some functions f,
and f,, and dz, and dz, are Wiener processes with cor-
relation, p. The reversion rate parameters, a, and 3
and the standard deviations, 0, and G,, are constant.
The drift parameters, 8, and 8,, are functions of time.

We show in Appendix A that the process for
r; is

*

dxy = [8,(t) — PxO,0x — axX,ldt + Oydz,

where x5 = f,(r;). The effect of moving from a
DM risk-neutral world to a USD risk-neutral world is
to reduce the drift of x, by py0,04. The expected
value of x, at time t is reduced by

J; pxcxoze—”(t_t) dt = _pX_G_z_(_S_X_(l - 72

as

To adjust the DM tree so that it reflects the viewpoint
of a risk-neutral U.S. investor, the value of x, at nodes
at time 1At (i.e., after i time steps) should therefore be
reduced by?
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| Note that this is true for all functions f,, not just
] fz(r) =r

To give an example, we suppose that f (r,) = r;
f,(r,) =1y 2, =a, = 0.1;and 6, = 0, = 0.01. We also
suppose that the t-year zero rate in both USD and
DM is 0.08 — 0.05e™%18 initially. (This resembles the
U.S. yield curve at the beginning of 1994.)

The tree initially constructed for r, and r,
when At = 1 is shown in Exhibit 1. Suppose the cor-
relation between r, and the exchange rate p, = 0.5,
and the exchange rate volatility 6, = 0.15. To create
the tree for r; from the r, tree, the interest rates rep-
resented by nodes on the tree at the one-year point
are reduced by 0.5 x 0.01 X 0.15 (1 — e%1)/0.1 =
0.00071 (0.071%). Similarly, interest rates at the two-
and three-year points are reduced by 0.00136 and
0.00194, respectively.

Constructing the Tree
Assuming Zero Correlation

We next combine the trees for USD and
DM interest rates on the assumption of zero corre-
lation. The result is a three-dimensional tree where
nine branches emanate from each node. The prob-
ability associated with any one of the nine branch-
es is the product of the unconditional probabilities
associated with corresponding movements in the
two short rates.

In the three-dimensional tree with the assumed
parameter values, there is one node at time 0, nine
nodes at time At, twenty-five nodes at time 2At,
twenty-five nodes at time 3At, and so on. (Note that
i the effect of mean reversion is to curtail the rate at
which the number of nodes on the tree increases.)
Each node at time iAt on the combined tree carre-
sponds to one node at time iAt on the first tree and
one node at time 1At on the second tree. We will use a
notation where node XY on the combined tree cor-
- responds to node X on the first tree and node Y on

: the second tree.

The nine nodes at time At and the probability
of reaching each of the nodes from the initial node
AA are:
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BD BC BB

0.0278 0.1111 0.0278
CD CC CB
0.1111 0.4444 0.1111
DD DC DB
0.0278 0.1111 0.0278

For example, the probability of reaching node
BC from node AA is 0.1667 x 0.6666 = 0.1111. To
illustrate how probabilities are calculated over the sec-
ond time step, consider node BD, where r, = 6.93%,
r, = 3.47%, and r, = 3.40%. From B we branch to E,
E G, and from D to G, H, 1. So from BD we branch
to the nine combinations of E, E G and G, H, I. The
nine nodes that can be reached from node BD togeth~
er with their probabilities are:

EIl EH EG
0.0149 0.0800 0.0271
FI FH FG
0.0800 © 0.4303 0.1456
GI GH GG
0.0271 0.1456 0.0493

Far example, the probability of reaching node EG from
node BD is 0.122 x 0.222 = 0.0271, the product of the
probability of branching from B to E and from D to G.

To express the calculations more formally, we

define node (i, j) as the node on the r, tree at time
period iAt at which the number of prior up-moves in
the interest rate minus the number of prior down-
moves is j. Similarly, node (i, k) is the node on the r;
tree at time period iAt at which the number of prior
up-moves in the interest rate minus the number of
prior down-moves is k. Let r,(i, j) be the value of r;
at node (i, j), and 1, (i, k) be the value of r, at node
(i, k) on the r, tree.

The three-dimensional tree is a combination of

the two two-dimensional trees. At time iAt the nodes
. . . . * — *
are denoted (i, j, k) where r, = r,(i, j) and r, =

(i, k) for all j and k. Assume the probabilities associat-
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ed with the upper, middle, and lower branches ema-
nating from node (i, j) in the r, tree are P, P, and
Py Similarly, assume that the upper, middle, and lower
 branches emanating from node (i, k) in the 1, tree are
Q> 9, and q,.
In the three-dimensional tree there are nine
branches emanating from the (i, j, k) node. The prob-
abilities associated with the nine branches are:

r,-Move
Lower Middle Upper
Upper P49, Pn9, P.q,
r, -Move  Middle P4, Pl Pyl
Lower  p,q, Pmd4 P44

Building in Correlation

We now move on to consider the situation
where the correlation between r, and rz* , P, is non~
zero. Suppose first that the correlation is positive. The
geometry of the tree is exactly the same, but the prob-
abilities are adjusted to be:

r,-Move
Lower Middle Upper
Upper  pyq,—€ p.q,—4€ p,g,+5¢
r -Move Middle pq_-4€ p.q_ +8 pgq_ —48
Lower pyqy+5¢ p.q,—4€ pgy—

Note that the sum of the adjustments in each
row and column is zero. As a result, the adjustments
do not change the mean and standard deviations of
the unconditional movements in r, and r;. The
adjustments have the effect of inducing a correlation
between r, and 1, of 36€. The appropriate value of €
is therefore p/36.

The choice of the probability adjustments is
motivated by the fact that in the limit as At tends to
zero the probablhmes tendtop, =q,=1/6,p_ =q_
= 2/3, and p; = q; = 1/6. When the correlation is
1.0, the ad_]usted probability matrix is in the limit:

r,-Move
Lower  Middle Upper
Upper 0 0 1/6
r, -Move Middle 0 2/3 0
Lower 176 0 0
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For correlations between 0 and 1, the correla-
tion matrix is the result of interpolating between the
matrix for a correlation of 0 and the matrix for a cor-
relation of 1.3

Suppose p = 0.2 so that € = 0.00556. The
probabilities on the branches emanating from node
AA become:

BD BC BB
0.0222 0.0889 0.0556
CD CC CB
0.0889 0.4889 0.0889
DD DC DB
0.0556 0.0889 0.0222

while the probabilities on branches emanating from
node BD become

EI EH EG

0.0093 0.0578 0.0549

FI FH e !

0.0578 0.4747 0.1234 1

GI GH GG

0.0549 0.1234 0.0437 }
i

For example, the probability of moving from
node AA to node BC is 0.1111 — 4 x 0.00556 =
0.0889; the probability of moving from node BD to
node EG is 0.0271 + 5 x 0.00556 = 0.0549.

For negative correlations, the procedure is the
same, except that the probabilities are:

r,-Move
Lower  Middle Upper
. Upper pyq, +5¢ p_q,—4€ pgq, —¢€
r, -Move Middle p,q_-4e p_ g, + 8 p,g, —4€
Lower pg;—€ p,q,—4€ p,q,+5€

In this case, € = —p/36. For a correlation of
—0.2, the probability on the branch from AA to BC is
as before: 0.1111 — 4 X 0.00556 = 0.0889; the proba-
bility of moving from node BD to node EG is 0.0271
— 0.00556 = 0.0215.
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b,

The only difficulty with this procedure is that
some probabilities are liable to become negative at
some nodes. We deal with this as follows. At any node
where € = p/36 leads to negative probabilities, we use
the maximum value of € for which probabilities are
non-negative.

To illustrate this rule, suppose that p = 0.8
instead of 0.2 in our earlier example, so that the cal-
culated value of € is 0.02222. Using this value of € at
node BD would cause the probabilities on the branch-
es to EH, EI, and FI to become negative. The maxi-
mum values of € for which the three probabilities are
non-negative are 0.0200, 0.0149, and 0.0200, respec-
tively. We would therefore use a value of € of 0.0149,
which corresponds to p = 0.5364, for all branches
emanating from BD.

As At approaches zero, p,, P, and py approach
1/6, 2/3, and 1/6. Also q,, q,, and q approach 1/6,
2/3, and 1/6. The proportion of the probability space
over which it is necessary to adjust € reduces to zero.
Although the procedure we have outlined does induce
a small bias in the correlation, this bias disappears in
the limit as At approaches zero. As a result the proce-
dure converges.

An Example

We illustrate the procedure by using it to price
a security whose payoff is calculated by observing the
three-month DM rate in three years’ time and apply-
ing it to a USD principal of 100. This is one compo-
nent of a diff swap in which the swap payment in dol-
lars is determined by the difference between the
German and U.S. interest rates. 4

As before, we suppose that the process for both
short rates is

dr = [B(t) — ar]dt + odz

with a = 0.1 and ¢ = 0.01.

The t-year zero-coupon bond rate in each
country is assumed to be 0.08 — 0.05¢™'%, and the
volatility of the exchange rate is assumed to be 15%
per year. This example enables us to test the conver-
gence of the tree-building procedure since the securi-
ty can be valued analytically using the formulas in Wei
[1994].

Recall that py is defined as the correlation
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EXHIBIT 2

VALUE OF A SECURITY WHOSE PAYOFF 1S CALCULATED BY
OBSERVING THE THREE-MONTH DM RATE IN

THREE YEARS’ TIME AND APPLYING IT TO A USD
PrINCIPAL OF 100

Number of p =05 p=05 p=-05 p= 05
Time Steps py = 0.5 py = ~05 Py =05 p,=-05

5 1.3971 1.4834 1.4045  1.4909 -
10 1.3976 1.4839 1.4055  1.4918
20 1.3978 1.4842 1.4059  1.4923
40 1.3980 1.4844 1.4062  1.4926
60 1.3981 1.4845 1.4063  1.4927
80 1.3981 1.4845 1.4063  1.4927

100 1.3981 1.4845 1.4064  1.4928

Analytic  1.3981 1.4845 1.4064  1.4928

Note: Both USD and DM rates are assumed to follow the process
dr = [8(t) — arJdt +0dz where 2 =0.1,0 = 0.01, At = one year,
and the t-year zero rate is 0.08 - 0.05¢~%18¢,

between the exchange rate and the DM rate, and p is
the correlation between the two interest rates. Exhibit
2 shows results for a number of combinations of p and
Py It illustrates that prices calculated by the tree do
converge rapidly to the analytic price in a variety of
different correlation environments.

III. TWO-FACTOR MODELS OF A
SINGLE TERM STRUCTURE

Now we consider two-factor models of the form
df(r) = [8(t) + u —af(r)]dt + 0,dz, 3)

where the drift parameter u has an initial value of
zero, is stochastic, and follows the process

du = ~budt + 0'2dz2

As in the one-factor models considered in Hull
and White [1994], the parameter 8(t) is chosen to
make the model consistent with the initial term struc-
ture. The stochastic variable u is a component of the
reversion level of r and itself reverts to a level of zero
at rate b.* The parameters a, b, Oy, and O, are con-
stants, and dz, and dz, are Wiener processes with
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instantaneous correlation .

This model provides a richer pattern of term
structure movements and a richer pattern of volatil-
ity structures than the one-factor models considered
at the outset. Exhibit 3 gives an example of forward
rate standard deviations and spot rate standard devi-
ations that are produced using the model when £{(r)
=ra=3,b=0.1, 0, =001, 6, =0.0145, and p
= 0.6.> The volatilities that are observed in the cap
market often have the “humped” shape shown in
this plot.

When f(r) = r, the model is analytically
tractable. As shown in Appendix B, the bond price in
that case has the form

P, T) = A(t, T) exp[-B(t, T)r — C(t, T)u]

The price, c, at time t of a European call option on a
discount bond is given by

¢ = P(t, )N(h) — XP(t, T)N(h - Gp)

where T is the maturity of the option, s is the maturi-
ty of the bond, X is the strike price,

b Liop PE3) , %
op "Pt T)X 2

and O, is as given in Appendix B. Since this is a two-
factor model, the decomposition approach in
Jamshidian [1989] cannot be used to price options on
coupon- bearing bonds.

Constructing the Tree

To construct a tree for the model in
Equation (3), we simplify the notation by defining
x = f(r) so that

dx = [O(t) + u —ax]dt + 0, dz,
with

du = —budt + 0,dz,

Assuming a # b, we can eliminate the dependence of
the first stochastic variable on the second by defining
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EXHIBIT 3

FORWARD RATE VOLATILITIES (F-VOLS) AND SPOT RATE
VorLATILITIES (Y-VoLS) IN Two-FACTOR MODEL

WHEN f(r) =r,a =3, b = 0.1, 0, = 0.01, 5, = 0.0145,
AND p = 0.6

Standard
Deviations (%)
1.40

1.20

0.80 1

0.60

040 +
020 L —— F-Vols

"""" Y-Vols
0.00 e+

aQ >~ ~N ” - w - ~ L] o™ e
Years
+ u
y =x
b - a
so that | |
|

dy = [8(t) — ay]dt + 0,dz,

du = ~budt + 0,dz,
where

2 2 o5 2p0,0,
03 = 61 + +

b-2a? b-a

and dz, is a Wiener process. The correlation between
dz, and dz, is

po; + G,/(b — a)
O3
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The approach described in Section II can be
used to construct a tree for y and u on the assumption
that 8(t) = 0 and the initial values of y and u are zero.
Using a similar approach to that described in Hull and
White [1994], we can then construct a new tree by
increasing the values of y at time iAt by o.. The os
are calculated using a forward induction technique
similar to that described in Hull and White [1994] so
that the initial term structure is matched. The details
are given in Appendix C.

An Example

Exhibit 4 shows the results of using the tree to
price three-month options on a ten-year discount
bond. The parameters used are those that give rise to
the humped volatility curve in Exhibit 3. The initial
t-year zero rate is assumed to be 0.08 — 0.05¢70-13¢
Five different strike prices are considered.

Exhibit 4 illustrates that prices calculated from
the tree converge rapidly to the analytic price. The
numbers here and in other similar tests we have car-
ried out provide support for the correctness of the
somewhat complicated formulas for A(t, T) and O, in
Appendix B.

IV. CONCLUSIONS

This article shows that the approach in Hull
and White [1994] can be extended in two ways. It can

EXHIBIT 4

VALUE OF THREE-MONTH OPTION ON A TEN-YEAR
Discount Bonp wiTH A PRINCIPAL OF 100 FOR MODEL
IN EXHIBIT 3

Number of Strike Price*
Time Steps  0.96 0.98 1.00 1.02 1.04
5 1.9464 1.0077 0.2890 0.0397 0.0012
10 1.9499 1.0077 0.2968 0.0370 0.0016
20 . 1.9512 1.0085 0.3000 0.0366 0.0015
40 1.9536 1.0107 0.3022 0.0369 0.0014
60 1.9529 1.0099 0.3020 0.0367 0.0014

Analytic  1.9532 1.0101 0.3023 0.0367 0.0014

*The strike price is expressed as a proportion of the forward bond
price.

Note: The t-year zero rate is 0.08 — 0.05¢~%18.

be used to model two correlated interest rates when
each follows a process chosen from the family of one-
factor models considered in our earlier article. It can
also be used to implement a range of different two-
factor models.

An interesting by-product of the research
described here is a method for combining trinomial
trees for two correlated variables into a single three-
dimensional tree describing the joint evolution of
the variables. This method can be extended so that it
accommodates a range of binomial as well as trino-
mial trees.

APPENDIX A

In this appendix we show how to calculate the pro-
cess for the DM interest rate from the viewpoint of a USD
investor. Qur approach is an alternative to that in Wel
[1994].

Define Z as the value of a variable seen from the
perspective of a risk-neutral DM investor and Z* as the
value of the same variable seen from the perspective of a
risk-neutral USD investor. Suppose that Z depends only on
the DM risk-free rate so that

©dZ = W(Z)Zdt + 6(Z)Z dz,

where dz, is the Wiener process driving the DM risk-free
rate, and W and O are functions of Z. The work of Cox,
Ingersoll, and Ross [1985] and others shows that the pro-
cess for Z* has the form:

dzZ* = [W(Z") - Ao(Z)]Z"dt + 6(Z")Z"dz,

where the risk premium, A, is a function of Z*.6

We first apply this result to the case where the vari-
able under consideration is the DM price of a DM discount
bond. Define P as the value of this variable from the view-
point of a risk-neutral DM investor and P* as its value from
the viewpoint of a risk-neutral USD investor. From the
perspective of a risk-neutral DM investor, the variable is
the price of a traded security so that:

dP = r,Pdt + o,Pdz, (A-1)

where Gy, is the volatility of P, and other variables are as
defined in the body of the article. Hence:’

dP* =[5 - Aop[P*dt + opP’dz, (A-2)
2 P P
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The nsk-neutral process for the exchange rate, X,
from the viewpoint of a risk-neutral USD investor is

dX = (g - rp)Xdt + oxXdzy (A-3)

where dz, is a Wiener process.

The variable XP” is the price in USD of the DM
bond. The drift of XP* in a risk-neutral USD world must
therefore be r,XP*. From Equations (A-2) and (A-3), this
drift can also be written as

XP*(r, — AGp + P50y Op)
It follows that

A = pyOy
When moving from a risk-neutral DM investor to a risk-
neutral USD investor there is a market price of risk adjust-
ment of Py C,y.

We can now apply the general result given for Z at

the beginning of Appendix A to the vanable f{r,). We are
assuming that:

dfy(r,) = [8,(0) — afy(r,)}dt + 0,dz,

Hence

df,(r) = [8,() — PxOxO, — afy(r)ldt + Oydz,

APPENDIX B

In this appendix we show that the complete yield
curve can be calculated analytically from r and u in the
model considered in Section III when f(r) = r.

The differential equation satisfied by a discount
bond price, f, is

f, + [08(t) + u — ar)f, — buf, +

1 1
—z—csffrr + Ec%fuu + pOO,f, —f =0

By direct substitution, a solution to this equation 1s

f= A(t, T)e BED-CTu
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providing
B,~aB+1=0 (B-1)
C,~bC+B=0 (B-2)
A, — BHAB + —;-cfABz + %GgACZ +
pc,0,ABC = 0 (B-3)

The solution to Equation (B-1) that satisfies the boundary
condition B(t, t) = 0 1s

B, T) = 1[1 — MT -
a

The solution to Equation (B-2) that is consistent with this
and satisfies the boundary condition C(t, t) = 0 1s

1 AT =8

C(t, T) = a(a—_gs

1 BT -0 1
bla - b) ab

By direct substitution, the solution to Equation (B-3) for A
and O that satisfies the boundary conditions A(t, T) =
A, T) whent=0and A(t, T) =1 whent =T is

logA(t, T) = logg—(-(-)’—T) + B, TFO, T) +

P(O, t)
&0, B(t, T) + jo‘ 80, Tydt -
jo‘ o(t, Tyde

8(t) = F(0, t) + aF(0, t) + 0,0, ©) + a¢(0, 1)

where F(t, T) is the instantaneous forward rate for time T
as seen at time t, and

1
oe, T) = %ch(t, T + Ecgc«, T)? +

po,0,B(t, TICE, T)
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This reduces to

where

n

Y1

Y2

Y3

Y4

Ys

Ye

PO, T)

log A(t, =1
ogA(t, T) = log PO, 9

+ B(t, TFO, t) -~ 7
0'2 2

= i(l - e™#B(t, T)* - po;0,[BO, t) x
CO. 9B T) + ¥, ~ Y2l = 303CO, o
B(t, T) + v¢ — Vsl

e—(a+b)T[e(a+b)t - 1] _ e—hT(CZat - 1)
(a + b)a — b) 2aa ~ b)

i{‘h + Ct, T) - C0O, T) + lB(:, T)?
ab 2

- 1po, M+ L -
2 a

t e-a(T-t) _ e—aT
32

e—(a+b)t -1 e—Zat -1

+
(a — b)a + b) 2a(a — b)

1 1 )

= — - C00, &y - =B, t)° +
abl:Ya © 9 - >BO. 9
tos e -1
a 32
11 : 1 2

= —|=Ct T)? - =C0, T +
b2 (t. T) > (0, T) 'Yz]

Yo - -;—cm, c)z}

i

I

a,

The volatility function o, is given by

op = [, (6Bt D - B of +

o3lC(t, T) - O, of +
2p0,0,[B(t, T) — B(z, t)] X

[Cr, T) — C(z, t]}de
This shows that G has three components. Define

1

U = [e—aT - e—at]
a(a - b)
and
_ 1 [T — b
b(a — b)
The first component of G3 is
P
—L B, T’ - &3
2a
The second is
U v?

2 2at 2be
o5l —@E* - 1) + — -1 -

zl: > ( ) oy (e )
2 Uv (e(a+b)t _ 1)]

a+b
The third is
290'102 (e—at _ e—aT)[y_(eZQI - 1) -

a 2a

\4 (a+b)t

e 1
a + b( )
APPENDIX C

In this appendix we explain how the tree for the two-
factor model discussed in Section III is fitted to the initial
term structure. We assume that a three-dimensional tree for y
and u has been constructed on the assumption that 8(t) = 0
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using the procedure in Section II, that the spacing between y-
values on the tree is Ay, and that the spacing between the u-
values on the tree is Au. From Equation (4) when y = jAy
and u = kAu, the short rate, r is given by the inital tree to be

. kAu
]

where g is the inverse function of f.

As in Hull and White [1994], we work forward
through the tree calculating the Ot that must be added to
the ys so that the tree is perfectly consistent with the initial
term structure. Once the appropriate o for time iAt, @, has
been calculated, it is used to calculate Arrow-Debreu prices
for the nodes at time jAt. (The Arrow-Debreu price for a
node is the present value of a security that pays off $1 if the
node is reached and zero otherwise.) These are then used
to calculate @, _,, and so on.

Define Qi‘j'k as the present value of a security that
pays off $1 if y = o + jAy and u = kAu at time iAt, and
zero otherwise. Q,, = 1. Similarly to Equation (6) in
Hull and White [1994],

Poy = ZQm,j,k exp{—g[o; + jAy —
Jik

KA/ — a)JAg

where the summation is taken over all values of j and k at
time mAt. When f{r) = r so that g(r) = r this can be solved
analytically for oc_:

o, =

log D, Qumjkexp{jdy ~ kAw/( — a)} — logPy
) At

In other situations, a one-dimensional Newton-Raphson
search is required.
The Qs are updated as the tree is constructed using

Quijx = 2, Qi 90 i k") x
j*.k‘

exp{—gltt, + {"Ay - k"Au/b ~ a)]At}

where in the summation j* and k* are set equal to all possi~
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ble pairs of values of j and k at time mAt. The variable
q(, k, j*, k%) is the probability of a transition from node
(m,j, kM to (m + 1, ], k).

ENDNOTES

'Exhibit 1 is the same as Exhibit 3 in Hull and
White [1994]. Fuller details of how it is developed are
given in that article.

2Using the notation in Hull and White [1994],
this is the amount by which o should be adjusted once the
tree has been constructed. Since the r on the tree is the At-
period rate rather than the instantaneous rate, the adjust-
ment is exact only in the limit as At tends to zero.

3The procedure described here can (with appro-
priate modifications) be used to construct a three-dimen-
sional tree for any two correlated varables from two trees
that describe the movements of each variable separately.
The two trees can be binomial or trinomial.

“There 1s no loss of generality in assuming that the
reversion level of u is zero and that its initial value is zero.
For example, if u reverts to some level ¢, u* = u — ct
reverts to 0. We can define u” as the second factor and
absorb the difference between u and u* in 8(t).

SThese parameters are chosen to produce the
desired pattern. Many other different volatility patterns can
be achieved.

6A is the difference between the market price of
the DM interest rate risk from the perspective of a risk-neu-
tral DM investor and the market price of DM interest rate
risk from the perspective of a risk-neutral USD investor.

"Note that r, in Equation (A-1) becomes r, in
Equation (A-2). This is because the r, in (A-2) is, strictly
speaking, r,(P). The Cox, Ingersoll, and Ross result out-
lined at the beginning of the appendix shows that this
becomes r,(P*) or , in Equation (A-2).
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ERRATUM

The first part of this article, “Numerical
Procedures for Implementing Term Structure Models
I: Single-Factor Models,” published in the Fall 1994
issue of The Journal of Derivatives, contained an equa-
tion that was stated incorrectly.

The last equation on page 13 (unnumbered)
should read

nn ]
log z"Qm,je"JA’At - logP(O, m + 1)

j==nm

mo = At
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