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Abstract 

In this paper we develop two fast procedures for valuing tranches of collateralized debt 
obligations and nth to default swaps. The procedures are based on a factor copula model 
of times to default and are alternatives to using fast Fourier transforms. One involves 
calculating the probability distribution of the number of defaults by a certain time using a 
recurrence relationship; the other involves using a “probability bucketing” numerical 
procedure to build up the loss distribution. We show how many different copula models 
can be generated by using different distributional assumptions within the factor model. 
We examine the impact on valuations of default probabilities, default correlations, the 
copula model chosen, and a correlation of recovery rates with default probabilities. 
Finally we look at the market pricing of index tranches and conclude that a “double t-
distribution” copula fits the prices reasonably well.  

                                                 
1 We would like to thank Michael Gibson, Dominic O’Kane, Michael Walker, and the editors of this 
journal, Stephen Figlewski and Raghu Sundaram, for comments on earlier versions of this paper. 
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Valuation of a CDO and an nth to Default CDS  
Without Monte Carlo Simulation 

 
John Hull and Alan White 

 

As the credit derivatives market has grown, products that depend on default correlations 

have become more popular. In this paper we focus on three of these products:  nth to 

default credit default swaps, collateralized debt obligations, and index tranches. 

A collateralized debt obligation (CDO) is a way of creating securities with widely 

different risk characteristics from a portfolio of debt instruments. An example is shown in 

Figure 1. In this four types of securities are created from a portfolio of bonds. The first 

tranche of securities has 5% of the total bond principal and absorbs all credit losses from 

the portfolio during the life of the CDO until they have reached 5% of the total bond 

principal. The second tranche has 10% of the principal and absorbs all losses during the 

life of the CDO in excess of 5% of the principal up to a maximum of 15% of the 

principal. The third tranche has 10% of the principal and absorbs all losses in excess of 

15% of the principal up to a maximum of 25% of the principal. The fourth tranche has 

75% of the principal absorbs all losses in excess of 25% of the principal.  

The yields in Figure 1 are the rates of interest paid to tranche holders. These rates are 

paid on the balance of the principal remaining in the tranche after losses have been paid. 

Consider tranche 1. Initially the return of 35% is paid on the whole amount invested by 

the tranche 1 holders. But after losses equal to 1% of the total bond principal have been 

experienced, tranche 1 holders have lost 20% of their investment and the return is paid on 

only 80% of the original amount invested.  

Tranche 1 is referred to as the equity tranche. A default loss of 2.5% on the bond 

portfolio translates into a loss of 50% of the tranche’s principal. Tranche 4 by contrast is 

usually given an Aaa rating. Defaults on the bond portfolio must exceed 25% before the 
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holders of this tranche are responsible for any credit losses. The creator of the CDO 

normally retains tranche 1 and sells the remaining tranches in the market.  

The CDO in Figure 1 is referred to as a cash CDO. An alternative structure is a synthetic 

CDO where the creator of the CDO sells a portfolio of credit default swaps to third 

parties. It then passes the default risk on to the synthetic CDO’s tranche holders. 

Analogously to Figure 1 the first tranche might be responsible for the payoffs on the 

credit default swaps until they have reached 5% of the total notional principal; the second 

tranche might be responsible for the payoffs between 5% and 15% of the total notional 

principal; and so on. The income from the credit default swaps is distributed to the 

tranches in a way that reflects the risk they are bearing. For example, tranche 1 might get 

3,000 basis points per annum; tranche 2 might get 1,000 basis points per annum, and so 

on. As in a cash CDO this would be paid on a principal that declined as defaults for 

which the tranche is responsible occur.  

Participants in credit derivatives markets have developed indices to track credit default 

swap spreads. For example, the Dow Jones CDX NA IG 5yr index gives the average five-

year credit default swap spread for a portfolio of 125 investment grade U.S. companies. 

Similarly, the Dow Jones iTraxx EUR 5 yr index is the average credit default swap 

spread for a portfolio of 125 investment grade European companies. The portfolios 

underlying indices are used to define standardized index tranches similar to the tranches 

of a CDO. In the case of the CDX NA IG 5 yr index, successive tranches are responsible 

for 0% to 3%, 3% to 7%, 7% to 10%, 10% to 15%, and 15% to 30% of the losses. In the 

case of the iTraxx EUR 5 yr index, successive tranches are responsible for 0% to 3%, 3% 

to 6%, 6% to 9%, 9% to 12%, and 12% to 22% of the losses. Derivatives dealers have 

created a market to facilitate the buying and selling of index tranches. This market is 

proving very popular with investors. An index tranche is different from the tranche of a 

synthetic CDO in that an index tranche is not funded by the sale of a portfolio of credit 

default swaps. However, the rules for determining payoffs ensure that an index tranche is 

economically equivalent to the corresponding synthetic CDO tranche.  

As we will see a CDO is closely related to nth to default credit default swaps. An nth to 

default credit default swap (CDS) is similar to a regular CDS. The buyer of protection 
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pays a specified rate (known as the CDS spread) on a specified notional principal until 

the nth default occurs among a specified set of reference entities or until the end of the 

contract’s life. The payments are usually made quarterly. If the nth default occurs before 

the contract maturity, the buyer of protection can present bonds issued by the defaulting 

entity to the seller of protection in exchange for the face value of the bonds. 

Alternatively, the contract may call for a cash payment equal to the difference between 

the post-default bond value and the face value.2 

In this paper we develop procedures for valuing both an nth to default CDS and tranches 

of a CDO or index. Our model is a multifactor copula model similar to that used by 

researchers such as Li (2000), Laurent and Gregory (2003), and Andersen and Sidenius 

(2004).3 Like other researchers we calculate a distribution for the default loss by a certain 

time conditional on the factor values and then integrate over the factor values. The 

advantage of this procedure is that the conditional default losses for different companies 

are independent. Laurent and Gregory use the fast Fourier transform method to calculate 

the conditional loss distribution on a portfolio as a convolution of the conditional loss 

distributions of each the companies comprising the portfolio. We present two alternative 

approaches. The first involves a recurrence relationship to determine the probability of 

exactly k defaults occurring by time T and works well for an nth to default CDS and 

tranches of an index or a CDO when each company has the same weight in the portfolio 

and recovery rates are assumed to be constant. The second involves an iterative procedure 

which we refer to as “probability bucketing” for building up the portfolio loss distribution 

and can be used in a wider range of situations. The second approach is the one we 

recommend for CDO pricing. As we will explain it is a robust and flexible approach that 

has some advantages over a similar approach that was developed independently by 

Andersen et al  (2003). 

                                                 
2 This is how we will define an nth to default swap for the purposes of this paper. However nth to default 
swaps are sometimes defined so that there is a payoff for the first n defaults rather than just for the nth 
default. Also, sometimes the rate of payment reduces as defaults occur. 
3 It has also been used outside the credit risk area by researchers such as Hull (1977) and Hull and White 
(1998). 
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The paper evaluates the sensitivity of spreads for an nth to default CDS and a CDO to a 

variety of different assumptions concerning default probabilities, recovery rates, and the 

correlation model chosen. It also explores the impact of dependencies between recovery 

rates and default probabilities. Finally it examines the market pricing of index tranches 

and the interpretation of implied correlations. 

 

I. THE DEFAULT CORRELATION MODEL 

Default correlation measures the tendency of two companies to default at about the same 

time. Two types of default correlation models that have been suggested by researchers are 

reduced form models and structural models. Reduced form models such as those in 

Duffie and Singleton (1999) assume that the default intensities for different companies 

follow correlated stochastic processes. Structural models are based on Merton's (1974) 

model, or one of its extensions, where a company defaults when the value of its assets 

falls below a certain level. Default correlation is introduced into a structural model by 

assuming that the assets of different companies follow correlated stochastic processes. 

Unfortunately the reduced form model and the structural model are computationally very 

time consuming for valuing the types of instruments we are considering. This has led 

market participants to model correlation using a factor copula model where the joint 

probability distribution for the times to default of many companies is constructed from 

the marginal distributions.  

Consider a portfolio of N companies and assume that the marginal risk-neutral 

probabilities of default are known for each company. Define 

ti : The time of default of the ith company 

Qi(t): The cumulative risk-neutral probability that company i will default 

before time t; that is, the probability that ti ≤ t 

Si(t) = 1 – Qi(t): The risk-neutral probability that company i will survive beyond 

time t; that is, the probability that ti > t  
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To generate a one-factor model for the ti we define random variables xi (1 ≤ i ≤ N) 

 21i i i ix a M a Z= + −  (1) 

where M and the Zi have independent zero-mean unit-variance distributions and  

–1 ≤ ai < 1. Equation (1) defines a correlation structure between the xi dependent on a 

single common factor M. The correlation between xi and xj is aiaj. 

Let Fi be the cumulative distribution of xi. Under the copula model the xi are mapped to 

the ti using a percentile-to-percentile transformation. The five-percentile point in the 

probability distribution for xi is transformed to the five-percentile point in the probability 

distribution of ti; the ten-percentile point in the probability distribution for xi is 

transformed to the ten-percentile point in the probability distribution of ti; and so on. In 

general the point xi = x  is transformed to ti = t where t = Qi
–1[Fi(x)]. 

Let H be the cumulative distribution of the Zi.4 It follows from equation (1) that 
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When x = Fi
–1[Qi(t)], Prob(ti < t) = Prob(xi < x). Hence  
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The conditional probability that the ith bond will survive beyond time T is therefore 

 ( ) ( )1
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 (2) 

Extension to Many Factors 

The model we have presented can be extended to many factors. Equation (1) becomes  

22
2

2
12211 1 imiiimimiii aaaZMaMaMax −−−−++++= KK  

                                                 
4 For notational convenience we assume that the Zi are identically distributed. 
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where 122
2

2
1 <++ imii aaa K  and the Mj have independent distributions with zero mean and 

unit variance. The correlation between xi and xj is then 1 1 2 2 .i j i j im jma a a a a a+ + +K  

Equation (2) becomes 
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Distributional Assumptions  

The advantage of the copula model is that it creates a tractable multivariate joint 

distribution for a set of variables that is consistent with known marginal probability 

distributions for the variables. One possibility is to let the M’s and the Z’s have standard 

normal distributions. A Gaussian copula then results. However, any distributions can be 

used for M’s and the Z’s (providing they are scaled so that they have zero mean and unit 

variance). Each choice of distributions results in a different copula model. The choice of 

the copula governs the nature of the default dependence. For example, as we will see, 

copulas where the M’s have heavy tails generate models where there is a greater 

likelihood of a clustering of early defaults for several companies. Later in this paper we 

will explore the effect of using normal and t-distributions for the M's and Z's. 

Implementation of the Model 

We will present two new approaches for implementing the model so that an nth default 

CDS or the tranches of CDOs and indices can be valued. The first involves calculating 

the probability distribution of the number of defaults by a time T and is ideally suited to 

the situation where companies have equal weight in the portfolio and recovery rates are 

assumed to be constant. The second involves calculating the probability distribution of 

the total loss from defaults by time T and can be used for a wide range of assumptions.  
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II. FIRST IMPLEMENTATION APPROACH 

Define πΤ (k) as the probability that exactly k defaults occur in the portfolio before time T. 

Conditional on the M’s the default times, ti, are independent. It follows that the 

conditional probability that all the N bonds will survive beyond time T is 

 ( ) ( )1 2 1 2
1

0 , , , , , ,
N

T m i m
i

M M M S T M M M
=

π =∏K K  (4) 

where ( )1 2, , ,i mS T M M MK  is given by equation (3). Similarly 
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The conditional probability of exactly k defaults by time T is 

 ( ) ( )1 2 1 2 (1) (2) ( ), , , 0 , , ,T m T m z z z kk M M M M M M w w wπ = π ∑K K K  (5) 

where {z(1), z(2),…, z(k)} is a set of k different numbers chosen from {1, 2, …, N} and 

the summation is taken over the 

 
( )

!
! !

N
k N k−

 

different ways in which the numbers can be chosen. Appendix A provides a fast way of 

computing this.  

The unconditional probability that there will be exactly k defaults by time T, ( )T kπ , can 

be determined by numerically integrating ( )1 2, , ,T mk M M Mπ K  over the distributions of 

the Mj.
5

 The probability that there will be at least n defaults by time T is 

( )
N

T
k n

k
=

π∑  
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The probability that the nth default occurs between times T1 and time T2 is the difference 

between the value of this expression for T = T2 and its value for T = T1. 

This approach does give rise to occasional numerical stability problems.6  These can be 

handled using the approach given at the end of Appendix A and other straightforward 

procedures.  

III. SECOND IMPLEMENTATION APPROACH 

The second implementation (our “probability bucketing” approach) is described in 

Appendix B. It calculates the probability distribution of the losses by time T. We divide 

potential losses into the following ranges: {0, b0}, {b0, b1}, …, {bK–1, ∞}. We will refer 

to {0, b0} as the 0th bucket, {bk–1, bk} as the kth bucket (1 ≤ k ≤ K – 1), and  {bK–1, ∞} as 

the Kth bucket.  The loss distribution is built up one debt instrument at a time. The 

procedure keeps track of both the probability of the cumulative loss being in a bucket and 

the mean cumulative loss conditional that the cumulative loss is in the bucket. Andersen 

et al (2003) has a similar procedure where discrete losses 0, u, 2u, 3u, …n*u are 

considered for some u (with n*u is the maximum possible loss) and the losses considered 

are rounded to the nearest discrete point as the loss distribution is built up. In situations 

where u is a common divisor of all potential losses, our approach with a bucket width of 

u is the same as Andersen et al’s approach. In other circumstances we find it to be more 

accurate because it keeps track of the mean loss within each bucket. Our approach can 

accommodate situations where we want extra accuracy (and therefore smaller bucket 

sizes) in some regions of the loss distribution. Also we truncate the loss distribution at bK-

1 so that we do not need to spend computational time on large losses that have virtually 

no chance of occurring. The method works well when recovery rates are stochastic. 

Define  

                                                                                                                                                 
5 The integration can be accomplished in a fast and efficient way using an appropriate Gaussian quadrature. 
6 These numerical stability problems are caused by the fact that very large and very small numbers are 
sometimes involved in the recurrence relationship calculations. A computer stores only a finite number of 
digits for each number. For example, when 16 digits are stored, if it calculates X–Y where X and Y are both 
between 1020 and 1021 and have the same first 17 digits the result will be unreliable. 
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pT(k): The probability that the loss by time T lies in the kth bucket 

P(k,T): The probability that the loss by time T is greater than bk–1 (i.e. that it lies in the 

kth bucket or higher) 

The approach in Appendix B calculates the conditional probabilities 

( )1 2, , ,T mp k M M MK . As in the case of πT(k) in the previous section we can calculate 

the unconditional probability pT(k) by integrating over the distributions of the Mj.  

We have compared our approach for calculating the pT(k) with the fast Fourier transform 

(FFT) approach of Laurent and Gregory (2003). Our approach has the advantage of being 

more intuitive. We find that the two approaches, for a given bucket size, are very similar 

in terms of computational speed. We compared both approaches with Monte Carlo 

simulation, using a very large number of trials (so that the Monte Carlo results could be 

assumed to be correct.). In our comparisons we used the same bucketing scheme for both 

approaches. The approach in Appendix B always gives reasonably accurate answers. We 

find the performance of the FFT method is quite sensitive to the bucket size.7 When the 

bucket size is such that FFT works well the accuracy of the two approaches is about the 

same. In other circumstances Appendix B works much better.  

Both methods can be used to compute Greek letters quickly. Both methods can be used to 

calculate the probability distribution of the number of defaults by time T by setting the 

principal for each reference entity equal to one and the recovery rate equal to zero.  

After the procedure in Appendix B has been carried out we assume that losses are 

concentrated at the mid points of the buckets for the purposes of integrating over factors. 

The probabilities P(n,T) are given by 

( ) ( ),
K

T
k n

P n T p k
=

= ∑  

We estimate the probability that a loss equal to 0.5(bk–1 + bk), the mid point of bucket k, 

first happens between T1 and T2 as  

                                                 
7 In FFT the number of buckets must be 2N–1 for some integer N, but not all choices for N work well.  
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 ( ) ( ) ( ) ( )2 2 1 10.5 , 1, 0.5 , 1,P k T P k T P k T P k T+ + − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

IV. RESULTS FOR AN nth TO DEFAULT CDS  

We now present some numerical results for an nth to default CDS. We assume that the 

principals and expected recovery rates are the same for all underlying reference assets. 

The valuation procedure is similar to that for a regular CDS where there is only one 

reference entity.8 In a regular CDS the valuation is based on the probability that a default 

will occur between times T1 and T2. Here the valuation is based on the probability that the 

nth default will occur between times T1 and T2.  

We assume the buyer of protection makes quarterly payments in arrears at a specified rate 

until the nth default occurs or the end of the life of the contract is reached. In the event of 

an nth default occurring the seller pays the notional principal times 1 – R. Also, there is a 

final accrual payment by the buyer of protection to cover the time elapsed since the 

previous payment. The contract can be valued by calculating the expected present value 

of payments and the expected present value of payoffs in a risk-neutral world. The 

breakeven CDS spread is the one for which the expected present value of the payments 

equals the expected present value of payoffs.9 

Consider first a 5-year nth to default CDS on a basket of 10 reference entities in the 

situation where the expected recovery rate, R, is 40%. The term structure of interest rates 

is assumed to be flat at 5%. The default probabilities for the 10 entities are generated by 

Poisson processes with constant default intensities, λi, (1 ≤ i ≤ 10) so that10  

 ( ) ( ); 1i it t
i iS t e Q t e−λ −λ= = −  

In our base case we use a one-factor model where λi = 0.01 for all i (so that all entities 

have a probability of about 1% of defaulting each year). The correlation between all pairs 

                                                 
8 For a discussion of the valuation of a regular CDS, see Hull and White (2000, 2003). 
9The valuation methodology can be adjusted to accommodate variations on the basic nth to default structure 
such as those mentioned in footnote 1.  
10 We use constant default intensities because they provide a convenient way of generating marginal default 
probabilities. Our valuation procedures can be used for any set of marginal default time distributions. 
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of reference entities is 0.3. This means that 3.0=ia  for all i in equation (1). Also M 

and the Zi are assumed to have standard normal distributions.  

As shown in Table 1, in the base case, the buyer of protection should be willing to pay 

440 basis points per year for a first to default swap, 139 basis points per year for a second 

to default swap, 53 basis points per year for a third to default swap, and so on.  

Impact of Default Probabilities and Correlations 

Tables 1 and 2 show the impact of changing the default intensities and correlations. 

Increasing the default intensity for all firms raises the cost of buying protection in all nth 

to default CDSs. The cost of protection rises at a decreasing rate for low n and at an 

increasing rate for high n.  

Increasing the pairwise correlations between all firms while holding the default intensity 

constant lowers the cost of protection in an nth to default CDS if n is small and increases 

it if n is large. To understand the reason for this, consider what happens as we increase 

the pairwise correlations from zero to one. When the correlation is zero, the cost of 

default protection is a sharply declining function of n. In the limit when the default times 

are perfectly correlated all entities default at the same time and the cost of nth to default 

protection is the same for all n. As correlations increase we are progressing from the first 

case to the second case so that the cost of protection decreases for low n and increases for 

high n. 

Impact of Distributional Assumptions 

Table 3 shows the effect of using a t-distribution instead of a normal distribution for M 

and the Zi in equation (1). The variable nM is the number of degrees of freedom of the 

distribution for M and nZ is the number of degrees of freedom for the distribution of the 

Zi. As the number of degrees of freedom becomes large the t-distribution converges to a 

standard normal. In addition to our base case we consider 3 alternatives. In the first, M 

has a t-distribution with 5 degrees of freedom and the Zi are normal. In the second, M is 

normal and the Zi have t-distributions with 5 degrees of freedom. In the third, both M and 

the Zi have t-distributions with 5 degrees of freedom. Because a standard t-distribution 
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with f degrees of freedom has a mean of zero and a variance of ( )2f f −  the random 

variable for used for M in equation (1) is scaled by ( )2 /M Mn n− so that it has unit 

variance and the random variable used for the Zi is scaled by ( )2 /Z Zn n−  for the same 

reason. 

Using heavier tails for M (small nM) lowers the cost of protection in an nth to default CDS 

if n is small and increases it if n is large. Using heavier tails for the Zi distributions (small 

nZ) raises the cost of protection in an nth to default CDS if n is small and lowers the cost 

of protection if n is large.  

These results can be explained as follows. The value of xi in equation (1) can be thought 

of as being determined from a sample from the distribution for M and a sample from the 

distribution for Zi. When M has heavy tails and the Z’s are normal, an extreme value for a 

particular xi is more likely to arise from an extreme value of M than an extreme value of 

Zi. It is therefore more likely to be associated with extreme values for the other xi. 

Similarly, when the Z’s have heavy tails and M is normal, an extreme value for a 

particular xi is more likely to arise from an extreme value of Zi than an extreme value of 

M. It is therefore less likely to be associated with extreme values for the other xi. 

We deduce that an extreme situation where the default times of several companies is 

early becomes more likely as the tails of the distribution of M become heavier and less 

likely as the tails of the distribution of the Z’s become heavier. This explains the results 

in Table 3. The overall effect of making the tails of M heavier is much the same as 

increasing the correlation between all entities and the overall effect of making the tails of 

the Z’s heavier is to much the same as reducing the correlation between all entities.  

We refer to the case where both M and Zi  have t-distributions as the “double t-

distribution copula”. The cost of protection increases (relative to the base case) for small 

and large n and decreases for intermediate values of n. As we will see later the double t-

distribution copula fits market prices reasonably well. 

Impact of Dispersion in Default Intensities 

Table 4 shows the effect of setting the default intensities equal to  
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 ( )0.0055 0.001 1i iλ = + −  

The default intensities average 0.01 as in the base case. However they vary from 0.0055 

to 0.0145.  

In the case where the default correlations are zero the probability of no defaults by time T 

is  

 ⎟
⎠

⎞
⎜
⎝

⎛
−∑

=

N

i
iT

1
exp λ  

and the probability of the first to default will occur before time T is 

 ⎟
⎠

⎞
⎜
⎝

⎛
−− ∑

=

N

i
iT

1
exp1 λ  

This is dependent only on the average default intensity. We should therefore expect the 

value of the first to default CDS to be independent of the distribution of default 

intensities. Table 4 shows that this is what we find.  

From the equations in Section II the probability of one default by time T is 

 ( )∑∑
==

−⎟
⎠

⎞
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⎝

⎛
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i

T
N

i
i

ieT
11

1exp λλ  

Because of the convexity of the exponential function  

 ( ) ( )
1

1 1i

N
T T

i

e N eλ λ

=

− > −∑  

dispersion in the default intensities increases the probability of exactly one default 

occurring by time T. The probability that the second default occurs before time T is 

therefore reduced. The value of the second-to-default should therefore decline. Again this 

is what we find. Similarly the value of nth to default where n > 2 also declines.  

Table 4 also considers the situation where all pairs of firms have a correlation of 0.3. In 

this case allowing each firm to have a different default probability while maintaining the 

average default probability constant increases the cost of default protection relative to the 

base case. To understand why this occurs consider the case in which the pairwise 
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correlation is 1. In this case there is only a single value of x for all firms. This value of x 

is mapped into 10 possible default times for the 10 firms. The first of these default times 

is always the time for the firm with the highest default intensity. So, as we spread the 

default intensities while maintaining the average intensity the same, the first default (for 

any value of x) becomes earlier than when the intensities are all the same. As a result, the 

first to default protection becomes more valuable. When the correlation is less than 

perfect this effect is still present but is more muted. The effect of dispersion in the default 

intensities on nth to default swaps where n > 1 is a combination of two effects. The 

correlation makes it more likely that the nth default will occur by time T when there is 

dispersion. The convexity of the exponential function makes it less likely that this will 

happen. In our example the second effect is bigger. 

Impact of Dispersion in the Pairwise Correlations 

In the base case we considered the value of an nth to default CDS when all firms have the 

same pairwise correlation of 0.30. We now consider the valuation of a CDS when each 

firm has a different coefficient, ai, in the single factor model. The coefficients vary 

linearly across firms but are chosen so that the average pairwise correlation is 0.30. Three 

cases other than the base case are considered: 

 
( )

( ) ( )
( ) ( )

Case 1: 0.01 0.30 0.0555 1 1, ,10
Case 2: 0.0055 .001 1 0.30 0.0555 1 1, ,10
Case 3: 0.0145 .001 1 0.30 0.0555 1 1, ,10

i i

i i

i i

a i i
i a i i
i a i i

λ = = + − =
λ = + − = + − =
λ = − − = + − =

K

K

K

 

In cases 2 and 3 both default intensities and correlations vary across firms. In case 2 the 

default intensities and correlations are positively related while in case 3 the relation is 

negative. The results are shown in Table 5. 

Building dispersion into the pairwise correlations while holding default intensities 

constant has a modest effect on the cost of protection for first- and second-to-default 

swaps but greatly increases the cost of protection for 8th to 10th to default swaps. When 

the correlations are correlated with the default probabilities we observe very large 

changes in the cost of protection. The changes are similar to those observed when we 

move from a normal distributions to t-distributions with few degrees of freedom for M 
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and the Z’s. When high-default-probability firms have high correlations (case 2) the cost 

of nth to default protection is sharply reduced for n = 1 while higher for n > 1. When high 

default probability firms have low correlations (case 3) the cost of nth to default 

protection is increased for low and high n while it is lower for intermediate values of n. 

Two Factors 

In Table 6 we investigate the effect of using a two-factor model. We maintain the average 

correlation at 0.3 and the average default intensity at 1%. In Case 1 there are two sectors 

each with five of the entities. The pairwise correlations within a sector are 0.6 and the 

pairwise correlations between sectors are zero. Because there are 5 entities in each sector, 

the impact of moving from the Base Case to Case 1 when less than five defaults are 

considered is similar to the effect of increasing the correlation in the Base Case. For more 

than 5 defaults we need entities from both sectors to default and so the impact of the two 

sectors is more complex. 

In Case 2 one sector has a default intensity of 1.5% and the other has a default intensity 

of 0.5%. This produces results very similar to Case 1. In Case 3 the default intensity for 

each sector varies linearly from 0.5% to 1.5%. Here the results are similar to those for 

Case 1, but the difference from the base case is slightly less pronounced.  

V. RESULTS FOR A CDO 

The approach in Appendix A can be used to value a CDO when the principals associated 

with all the underlying reference entities are the same. The recovery rates must be 

nonstochastic and the same. Consider for example the tranche responsible for between 

5% and 15% of losses in a 100-name CDO. Suppose that the recovery rate is 40%. This 

tranche bears 66.67% of the cost of the 9th default, and all of the costs of the 10th, 11th, 

12th, …, and 25th defaults. The cost of defaults is therefore the 66.67% of the cost of a 9th 

to default CDS plus the sum of the costs of nth to default for all values of n between 10 

and 25, inclusive. Assume that the principal of each entity is L and there is a promised 

percentage payment of r at time τ. The expected payment in this case is 
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The approach in Appendix B can be used in a more general set of circumstances. The 

principals for the underlying names can be different. Also there can a probability 

distribution for the recovery rate and this probability distribution can be different for each 

name. Furthermore the recovery rate and factor loadings can be dependent on the factor 

values.  

Cash vs. Synthetic CDOs 

Up to now we have not made any distinction between a cash CDO and a synthetic CDO. 

In fact the valuation approaches for the two types of CDOs are very similar. In a cash 

CDO the tranche holder has made an initial investment and the valuation procedure 

calculates the current value of the investment (which can never be negative). In a 

synthetic CDO there is no initial investment and the value of a tranche can be positive or 

negative. 

If we assume that interest rates are constant, the value of a cash CDO tranche is the value 

of the corresponding synthetic CDO tranche plus the remaining principal of the tranche. 

The breakeven rate for a tranche in a new cash CDO is the risk-free zero rate plus the 

breakeven rate for a tranche in the corresponding CDO. To see that these results are true 

we note that in the constant interest rate situation a cash CDO tranche is the same as a 

synthetic CDO tranche plus a cash amount equal to the remaining principal of the 

tranche. As defaults occurs the synthetic tranche holder pays for them out of the cash. 

The cash balance at any given time is invested at the risk-free rate. Losses reduce both 

the principal to which the synthetic CDO spread is applied and the cash balance. The total 

income from the synthetic CDO plus the cash is therefore the same as that on the 

corresponding cash CDO.  
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Numerical Results 

The breakeven rate for a synthetic CDO is the payment that makes the present value of 

the expected cost of defaults equal to the present value of the expected income. The 

breakeven promised payments (per year) for alternative tranches for a 100-name 

synthetic CDO for a range of model assumptions are shown in Table 7. Payments are 

assumed to be made quarterly in arrears. The recovery rate is assumed to be 40% and the 

default probabilities for the 100 entities are generated by Poisson processes with constant 

default intensities set to 1% per year. The term structure of interest rates is flat at 5%. The 

parameters nM and nZ are the degrees of freedom in the M and Zi t-distributions in 

equation (1). 

The results in Table 7 are consistent with the CDS results reported in Tables 1 to 5. 

Increasing the correlations lowers the value and breakeven rate for the junior tranches 

that bear the initial losses and increases the breakeven rate for the senior tranches that 

bear the later losses. Making the tails of the M distribution heavier has the same effect as 

increasing the correlation while making the tails of the Z distribution heavier generally 

has the opposite effect. The double t-distribution copula has the same sort of effect as for 

nth to default. The breakeven spreads for the most junior and senior tranches increase 

while those for intermediate tranches decrease.  

Note that for low risk (senior) tranches, increasing the size of the tranche lowers the 

spread that is paid on the tranche. This is because increasing the tranche size does not 

materially increase the number of defaults that are likely to be incurred but it does 

increase the notional on which the payments are based. As a result the spread paid on the 

tranche is approximately proportional to the inverse of the size of the tranche. For 

example in the 0.1 correlation case in Table 7  tranches 10% to 15%, 10% to 20%, and 

10% to 30% have sizes of 5%, 10% and 20% respectively. The spreads for the 3 tranches 

are 11, 6, and 3, almost exactly inversely proportional to the size of the tranche. (The 

probability of losses totaling more than 15% in this case is close to zero.) 

In Table 8 we consider the effect of moving to two sectors. The default intensities for all 

entities are 1% and the average correlation is maintained at 0.30. The 100 names are 

divided into two sectors, not necessarily equal in size. The results are consistent with 
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those for Case 1 in Table 6. The impact of the two-factor model is to reduce the 

breakeven spread for the very junior tranches and increase it for the more senior ones. 

VI. CORRELATION BETWEEN DEFAULT RATE AND RECOVERY RATE 

As shown by Altman et al (2002), recovery rates tend to be negatively correlated with 

default rates. Cantor, Hamilton, and Ou (2002, p19) estimate the negative correlation to 

be about –0.67 for speculative-grade issuers. The phenomenon is quite marked. For 

example, in 2001 the annual default rate was about 10% and the recovery rate was about 

20%; in 1997 the annual default rate was about 2% and the recovery rate was about 55%.  

In the one-factor version of our model the level of defaults by time T is measured by the 

factor M. The lower the value of M the earlier defaults occur. We model the dependence 

between the recovery rate, R, and the level of defaults by letting R be positively 

dependent on M. We use a copula model to define the nature of the dependency. The 

math is similar to that in Section I. Define a random variable, xR  

RRRR ZaMax 21−+=  

where –1 < aR < 1 and ZR is has a zero-mean, unit variance distribution that is 

independent of M. The copula model maps xR to the probability distribution of the 

recovery rate on a percentile-to-percentile basis. If HR is the probability distribution for 

ZR, FR is the unconditional probability distribution for xR, and QR is the unconditional 

probability for R, then 
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Figure 2 shows the relationship between the expected recovery rate and the expected 

default rate when parameters similar to those observed by Cantor, Hamilton and Ou for 

speculative-grade issuers are used in the copula model. The nature of the relationship is 

quite similar to that reported by Cantor, Hamilton, and Ou. (See Exhibit 21 of their 

paper.) 

The procedure in Appendix B can be extended to accommodate a model such as the one 

we have presented where the recovery rate (assumed to be the same for all companies) 
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and the value of M are correlated. When a value of M is chosen we first use equation (6) 

to determine the conditional probability distribution for R. We then proceed as described 

in Appendix B.  

Table 9 shows the impact of a stochastic recovery rate on the breakeven spread for 

tranches in a CDO when the recovery rate is assumed to have a trinomial distribution. 

When there is no correlation between value of the factor levels and the recovery rate the 

impact of a stochastic recovery rate is small. However, when the two are correlated the 

impact is significant, particularly for senior tranches. Without the correlation these 

tranches are relatively safe. With the correlation they are vulnerable to a bad (low M) 

year where probabilities of default are high and recovery rates are low.  

When recovery rates are correlated with the probability of loss the expected loss is 

increased if the default intensity is the same as in the uncorrelated case. As a result the 

breakeven rate for every tranche is increased with senior tranches more seriously 

affected. This phenomenon is shown in the fourth column of Table 9.  

To adjust for the change in expected loss, when the recovery rate is correlated with 

default probabilities, we reduced the default intensity to a level at which the breakeven 

spread on a single name CDS is the same as in the uncorrelated case. We then 

recalculated the breakeven spread for every tranche of the CDO. The results are in the 

final column of Table 9. The breakeven spread for the lowest quality tranches is reduced 

relative to the zero-correlation case while that for the highest quality tranches is 

increased.11 

VII. DETERMINING PARAMETERS AND MARKET PRACTICE 

A model for valuing a CDO or nth to default CDS requires many parameters to be 

estimated. Recovery rates can be estimated from data published by rating agencies. The 

required risk-neutral default probabilities can be estimated from credit default swap 

spreads or bond prices using the recovery rates. The copula default correlation between 

                                                 
11 Results similar to those in the final column of Table 9 are produced if the recovery rate is constant at 0.5, 
the default intensity is 1% per year, and the factor weightings, ai, are negatively related to M. This is similar 
to Case 2 in Table 5. 
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two companies is often assumed to be the same as the correlation between their equity 

returns. This means that the factor copula model is related to an equivalent market model. 

For the one-factor model in equation (1) ai is set equal to the correlation between the 

equity returns of company i and the returns from a well diversified market index.12 For 

the multifactor model in equation (3) a multifactor market model with orthogonal factors 

would be used to generate the aij. 

The standard market model has become a one-factor Gaussian copula model with 

constant pairwise correlations, constant CDS spreads, and constant default intensities for 

all companies in the reference portfolio. A single recovery rate of 40% is assumed. This 

simplifies the calculations because the probability of k or more defaults by time T 

conditional on the value of the factor M can be calculated from the properties of the 

binomial distribution. In equation (1) the ai’s are all the same and equal to ρ  where ρ is 

the pairwise correlation. 

It is becoming common practice for market participants to calculate implied correlations 

from the spreads at which tranches trade using the standard market model. (This is 

similar to the practice of calculating implied volatilities from option prices using the 

Black-Scholes model.) The implied correlation for a tranche is the correlation that causes 

the value of the tranche to be zero. Sometimes base correlations are quoted instead of 

tranche correlations. Base correlations are the correlations that cause the total value of all 

tranches up to a certain point to have a value of zero.  For example, in the case of the DJ 

CDX IG NA 5yr index, the 0% to 10% base correlation is the correlation that causes the 

sum of the values of the 0% to 3%, the 3% to 7%, and the 7% to 10% tranches to be zero.  

VIII. MARKET DATA 

Market data for the pricing of index tranches is beginning to be available. We will look at 

the Dow Jones CDX NA IG 5 yr and the Dow Jones iTraxx EUR 5yr tranches on August 

4, 2004. Table 10 shows mid market quotes collected by GFI, a credit derivatives broker 

                                                 
12 A variation on this procedure is to assume that ai is proportional to the correlation between the return 
from company i’s stock price and the return from a market index and then choose the (time varying) 
constant of proportionality so that available market prices are matched as closely as possible. 
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and tranche spreads calculated using the standard market model for different correlations. 

The CDX index level on August 4, 2004 was 63.25 basis points and the iTraxx index 

level was 42 basis points. We assumed a recovery rate of 40% and estimated the swap 

zero curves on that day in the usual way.  

Note that the first (equity) tranche is by convention quoted in a different way from other 

tranches. The market quote of 41.75% for the CDX means that the tranche holder 

receives 500 basis points per year on the outstanding principal plus an initial payment of 

41.75% of the tranche principal. Similarly the market quote of 27.6% for iTraxx means 

that the tranche holder receives 500 basis points per year plus an initial payment of 27.6% 

of the principal.  

Table 10 shows that the spreads in the market are not consistent with the standard market 

model. Consider the situation where the correlation is 0.25. The standard market model 

comes close to giving the correct breakeven spread for the 0-3% and the 15 to 30% 

tranche but produces a breakeven spread that is too high for the other tranches. The 

breakeven spread is particularly high for the 3-7% tranche. 

In this paper we have looked at a number of reasons why the pricing given by the 

standard market model may be wrong. Most model changes that we have considered have 

the effect of either a) reducing spreads for all tranches up to a certain level of seniority 

and increasing spreads for all tranches beyond that level of seniority or  

b) increasing spreads for all tranches up to a certain level of seniority and reducing 

spreads for all tranches beyond that level of seniority. Examples of model changes having 

this effect are 

1. Changing the pairwise correlation 

2. Making the tails of the distribution of M heavier or less heavy 

3. Making the tails of the distribution of the Zi heavier or less heavy 

4. Allowing the recovery rate to be stochastic and correlated with M 

5. Adding a second factor 

To match market data we require a model that increases breakeven spreads for the equity 

and very senior tranches and reduces it for intermediate tranches.  Of those we have 
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looked at, the only model that does this is the double t-distribution copula where both M 

and the Zi have heavier tails than the normal distribution. We investigated how well this 

model fits the data in Table 10. We found the fit to be quite good. This is illustrated in 

Table 11 which shows model prices for the iTraxx data on August 4, 2004 when both M 

and Zi had four degrees of freedom. (The fit with four degrees of freedom was slightly 

better than the fit with five degrees of freedom.) 

Implied Correlation Measures 

A final point is that tranche implied correlations must be interpreted with care. For the 

equity tranche (the most risky tranche in a CDO, typically 0% to 3% of the notional) 

higher implied correlation means lower value to someone buying protection. For the 

mezzanine tranche (the second-most risky tranche in the CDO, typically 3% to 6% or 3% 

to 7%) the value of the tranche is not particularly sensitive to correlation and the 

relationship between correlation and breakeven spread, as illustrated in Table 10, may not 

be monotonic. For other tranches higher implied correlation means higher value to 

someone buying protection. 

Base implied correlations are even more difficult to interpret. For the equity tranche the 

base correlation is the same as the implied correlation; higher implied correlation means 

lower value to someone buying protection. Consider the calculation of the base 

correlation for the mezzanine 3-7% tranche in the CDX case. This is the correlation that 

causes the sum of values of the 0% to 3% and the 3% to 7% tranche to be zero. When the 

correlation equals 0.210, the 0% to 3% tranche has a zero value and the 3% to 7% tranche 

has a positive value to a buyer of protection. Increasing the correlation reduces the value 

of the 0% to 3% tranche to a buyer of protection and increases the value of the 3% to 7% 

tranche. The 0% to 3% tranche is much more sensitive to correlation than the 3% to 7% 

tranche. As the correlation increases from 0.210 the total value of the two tranches 

therefore decreases. When the correlation reaches 0.279 the total value of the two 

tranches is reduced to zero. Similar arguments explain why base correlations continue to 

increase as we move to more senior tranches.  
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It is evident from this that implied correlations, particularly base correlations, are not at 

all intuitive. On August 4, 2004 a correlation smile for tranche implied correlations 

translates into steeply upward sloping skew for base implied correlations.   

 

 

IX. CONCLUSIONS 

This paper has presented two fast procedures for valuing an nth to default CDS and a 

CDO tranche. The procedures (particularly the probability bucketing approach in 

Appendix B) are attractive alternatives to Monte Carlo simulation and have advantages 

over the fast Fourier transform approach.  

We have presented a general procedure for generating a wide range of different copulas. 

We find that the double t-distribution copula where both the market factor and the 

idiosyncratic factor have heavy tails provides a good fit to iTraxx and CDX market data.  

Implied correlations are now being reported by dealers and brokers for index tranches. 

They are often higher than typical equity correlations and can be very difficult to 

interpret. Implied correlations are typically not the same for all tranches. This leads to a 

correlation smile phenomenon.  
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APPENDIX A 

First Approach: Calculation of the Probability  
Distribution of the Time of the nth Default 

 

For any given set of numbers Nccc ,,, 21 K  we define 

 ( ) ( ) ( ) ( )1 2 1 2, , ,k N z z z kU c c c c c c=∑K K  

where k < N and {z(1), z(2),…, z(k)} is a set of k different integers chosen from  

{1, 2, …., N} and the summation is taken over the 
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There is an easy-to-compute recurrence relationship for determining the Uk from the Vk. 

Dropping arguments, the recurrence relationship is 
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With ci = wi this recurrence relation allows the probabilities in equation (5) to be 

calculated. 

To prove the recurrence relationship we define Yk,i as the value of ( )1 2, , ,k NU c c cK  when 

ci = 0. We define  
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It follows that 

1,,1 ++ += nknkkn XXUV  

when k > 1 and  
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These results lead to  
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Because kk kUX =1,  it follows that 
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This is the required relationship. 
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This is a useful result for calculating Uk for large k. 
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APPENDIX B 

Second Approach: Probability Bucketing 

In this approach we build up the probability distribution of the loss by time T, conditional 

on the values of the factors M1, M2, …, Mm, one debt instrument at a time. It is not 

necessary for the principals to be equal and the recovery rates can be stochastic.  

Consider first the situation where the recovery rate is known and suppose there are N debt 

instruments. We choose the following intervals or buckets {0, b0}, {b0, b1}, …, {bK–1, ∞} 

for the loss distribution. We will refer to {0, b0} as the 0th bucket, {bk–1, bk} as the kth 

bucket (1 ≤ k ≤ K–1), and {bK–1, ∞} as the Kth bucket. Our objective is to estimate the 

probability that the total loss lies in the kth bucket for all k. In some circumstances it is 

best to set to set b0 = 0 and bk–bk–1 = u (1 ≤ k ≤ K–1) for some constant u. The first bucket 

then corresponds to a loss of zero and the other buckets except for the final one have 

equal widths.  In other circumstances, when we are interested in valuing only one 

tranche,  it makes sense to use narrow buckets for losses corresponding to the tranche and 

wide buckets elsewhere. 

For the purposes of this appendix we abbreviate ( )1 2, , ,T mp k M M MK , the conditional 

probability that the loss by time T will be in the kth bucket, as pk. Let Ak be the mean loss 

conditional that the loss is in the kth bucket (0 ≤ k ≤ K). We calculate pk and Ak iteratively 

by first assuming that there are no debt instruments, then assuming that there is only one 

debt instrument, then assuming that there are only two debt instruments and so on. Our 

only assumption in the iterative procedure is that all the probability associated with 

bucket k is concentrated at the current value of Ak. We find that in practice this 

assumption leads to accurate loss probability distributions. 

When there are no debt instruments we are certain there will be no loss. Hence p0 = 1 and 

pk = 0 for k > 0. Also A0 = 0. The initial values Ak for k > 0 are not important, but for the 

sake of definiteness we can set Ak = 0.5(bk–1+bk) for 1 ≤ k ≤ K–1 and AK = bK–1. 

Suppose that we have calculated the pk and Ak when the first j–1 debt instruments are 

considered. Suppose that the loss given default from the jth debt instrument is Lj and the 

probability of a default is αj. Define u(k) as the bucket containing Ak+Lj for 0 ≤ k ≤ K. 
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The impact of the jth debt instrument is to move an amount of probability pkαj from 

bucket k to bucket u(k) (0 ≤ k ≤ K). When u(k) > k the updating formulas are: 
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* * * *, , , andk ku k u kp p A A  are the values of pk, pu(k), Ak, and Au(k) before the 

probability shift is considered. When u(k) = k the updating formulas are 
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When all N debt instruments have been considered we obtain the total loss distribution.  

If the recovery rate for each debt instrument is stochastic, we must first discretize the 

recovery rate distribution. This leads to a situation where the jth debt instrument has loss 

Lji with probability αji (i=1, 2, 3….). The total loss probability is ∑α
i

ji . The iterative 

procedure can easily be adapted to accommodate this. As each entity is considered we 

shift probability mass to multiple future buckets rather than to a single future bucket. 

The procedure we have described calculates the impact on the distribution of losses of 

adding a company to the portfolio. We can analogously calculate the impact of removing 

a company from the portfolio. This is useful in the calculation of Greek letters. For 

example, to calculate the impact of increasing the probability of default for a company 

we can remove the company from the portfolio and then add it back with the higher 

default probability. This type of approach has been independently developed by Andersen 

et al (2003).  

It is worth noting that when debt instruments have different principals or different 

recovery rates the valuations and Greek letters from our approach may depend on the 

sequence in which names are added to the loss distribution. (An exception is the case 

where the bucket width is constant and a divisor of potential losses.)  However our tests 
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show that the sequence in which names are added makes very little difference to the 

results.
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Figure 1 
The Structure of a CDO 
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Figure 2 
Relationship between default probability and expected recovery rate when a Gaussian 
copula model is used to relate the factor level, M, and the recovery rate in a one-factor 
model 
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Table 1 
Spread to buy 5 year protection for the nth default from a basket 
of 10 names. All firms have the same probability of default. The 
correlation between each pair of names is 0.3. The spread is in 
basis points per annum 

 Default Intensity for all Firms 
n 0.01 0.02 0.03 
1 440 814 1165 
2 139 321 513 
3 53 149 263 
4 21 71 139 
5 8 34 72 
6 3 15 36 
7 1 6 16 
8 0 2 6 
9 0 1 2 
10 0 0 0 

 

Table 2 
Spread to buy protection for the nth default from a basket of 10 
names. All pairs of firms have the same correlation. The default 
intensity for each firm is 0.01. The spread is in basis points per 
annum 

 Pairwise Correlations 
n 0.00 0.30 0.60 
1 603 440 293 
2 98 139 137 
3 12 53 79 
4 1 21 49 
5 0 8 31 
6 0 3 19 
7 0 1 12 
8 0 0 7 
9 0 0 3 
10 0 0 1 
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Table 3 
The effect of different distributional assumptions on the spread to buy protection 
for the nth default from a basket of 10 names. All pairs of firms have a 0.3 copula 
correlation. The default intensity for each firm is 0.01. The spread is in basis point 
per annum. 

 Degrees of freedom of t-Distributions (nM / nZ) 
N ∞ / ∞ 5 / ∞ ∞ / 5 5 / 5 
1 440 419 474 455 
2 139 127 127 116 
3 53 51 44 44 
4 21 24 18 22 
5 8 13 7 13 
6 3 8 3 8 
7 1 5 1 5 
8 0 3 0 4 
9 0 2 0 2 
10 0 1 0 1 

 

 

Table 4 
The effect of varying the probability of default across firms on the spread to buy 
protection for the nth default from a basket of 10 names. The average default 
probability is kept constant. In the base case the default intensity is 1% for each 
firm. In the comparison case the default intensity varies linearly from 0.0055 to 
0.0145. The spread is in basis points per annum. 

 Correlation = 0 Correlation = 0.30 
n λ = 0.01 Disperse λ λ = 0.01 Disperse λ 
1 602.6 602.6 439.9 443.0 
2 97.8 97.0 138.7 138.0 
3 12.0 11.7 52.8 51.8 
4 1.0 1.0 21.1 20.4 
5 0.1 0.1 8.4 8.0 
6 0.0 0.0 3.2 3.0 
7 0.0 0.0 1.1 1.0 
8 0.0 0.0 0.3 0.3 
9 0.0 0.0 0.1 0.1 
10 0.0 0.0 0.0 0.0 
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Table 5 
The effect of varying the probability of default and the pairwise correlation across 
firms on the spread to buy protection for the nth default from a basket of 10 names. 
The average default probability and the average correlation are kept constant. In 
the base case the default intensity is 1% for each firm and all correlations are 0.30. 
In Cases 1 to 3 the factor weights generating correlations vary linearly from 0.30 to 
0.7995. In Case 1 the default intensity is 1% for each firm. In Cases 2 and 3 the 
default intensity varies linearly from 0.0055 to 0.0145. In Case 2 the relation 
between default intensity and factor weight is positive while in Case 3 it is 
negative. 

n Base Case Case 1 Case 2 Case 3 
1 440 436 418 460 
2 139 135 140 129 
3 53 54 59 48 
4 21 23 26 20 
5 8 10 11 8 
6 3 4 4 3 
7 1 3 3 3 
8 0 3 3 0 
9 0 3 0 0 
10 0 3 0 0 
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Table 6 
The effect of a two-factor model on the spread to buy protection for the nth default 
from a basket of 10 names. The average default probability and the average 
correlation are kept constant. In the base case the default intensity is 1% for each 
firm and all pairwise correlations are 0.30. In cases 1 to 3 there are two sectors. 
The factor weights are chosen so that pairwise correlations are 0.6 for companies in 
the same sector and zero for companies in different sectors. This is similar to a two 
sector model. In case 1 the default intensity is 1% for each firm. In case 2 
companies in one sector have a default intensity of 0.5% while those in the other 
sector have a default intensity of 1.5%. In case 3 the default intensity in each sector 
varies linearly from 0.5% to 1.5%.  

n Base Case Case 1 Case 2 Case 3 
1 440 392 386 401 
2 139 151 151 150 
3 53 68 69 65 
4 21 30 30 27 
5 8 11 11 9 
6 3 2 2 2 
7 1 1 0 1 
8 0 1 0 1 
9  0 0 0 0 
10 0 0 0 0 
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Table 7 
The breakeven spread paid on various tranches in a 100-name synthetic 
CDO for a range of pairwise correlations and distributional assumptions. 
The default intensity is 1% per year for every name in the CDO. 

Correlation 0.1 0.3 0.3 0.3 0.3 
nM / nZ ∞ / ∞ ∞ / ∞ ∞ / 5 5 / ∞ 5 / 5 

Tranche (%) Breakeven Tranche Spread (basis points per 
annum) 

0 to 3 2279 1487 1766 1444 1713 
3 to 6 450 472 420 408 359 
6 to 10 89 203 161 171 136 

10 to 100 1 7 6 10 9 
 

 

 

Table 8 
The effect of a two-factor model on the breakeven spread paid on 
various tranches in a 100-name synthetic CDO. The default intensity is 
1% per year for every name in the CDO. The 100 names are divided 
into two sectors. The pairwise correlation between companies in the 
same sector is positive and between companies in different sectors is 
zero. In each case the within-sector correlation is chosen so that the 
average pairwise correlation is 0.30. 

Sector Size 100 / 0 50 / 50 75 / 25 
nM / nZ ∞ / ∞ ∞ / ∞ ∞ / ∞ 

Tranche (%) Breakeven Tranche Spread (basis points per 
annum) 

0 to 3 1487 1161 1352 
3 to 6 472 475 455 
6 to 10 203 238 213 

10 to 100 7 11 9 
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Table 9 
Breakeven spreads for CDO tranches. The CDO contains 50 debt instruments each with a default 
intensity of 1% per year. A one-factor model with all ai equal to 0.5 is used. Mean recovery rate (RR) is 
50%. When recovery rate is stochastic it has a trinomial distribution with probabilities being assigned to 
25%, 50% and 75% recovery rates. When the recovery rate is negatively correlated with default levels, 
the expected loss and the breakeven spread on a CDS is increased. To adjust for this the default intensity 
is reduced to a level at which the breakeven CDS spread is the same as it is in the uncorrelated case. 
These results are shown in the rightmost column. 

A Gaussian copula is used to relate the factor the value of M to the recovery rate. The correlation shown 
is the correlation in the copula model. 

Tranche % Const RR SD of RR=0.2
PD/RR corr. = –0.5 
Same Def. Intens.  

PD/RR corr. = –0.5 
Same CDS Spread 

0 to 3 1401 1368 1403 1208 
3 to 6 395 403 480 391 
6 to 10 139 144 211 164 

10 to 100 3 3 8 6 
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Table 10 
Market quotes and model prices for the Dow Jones CDX IG NA and iTraxx EUR index tranches. Market 
quotes are from August 4, 2004. On that date the CDX index level was 63.25 basis points and the iTraxx 
index level was 42 basis points. The quote for the 0% to 3% tranche is an upfront payment as a 
percentage of the notional paid in addition to 500 basis points per year. Quotes for all other tranches are 
in basis points per year.  
Model prices are calculated for constant pairwise correlations from 0.0 to 0.4 using a normal copula. The 
tranche implied correlation is the constant pairwise correlation that makes the model price equal to the 
market quote. Base implied correlation is the constant pairwise correlation that sets the total value of all 
tranches up to and including the current tranche equal to zero. 

 
DJ CDX IG NA 

Tranche 0 - 3% 3 - 7% 7 - 10% 10 - 15% 15 - 30% 
Market Quote 41.8% 347 135.5 47.5 14.5 

Correlation Model Quotes 
0.00 67.9% 251 1 0 0 
0.05 59.5% 365 29 2 0 
0.10 53.0% 418 76 13 0 
0.15 47.5% 444 118 31 2 
0.20 42.6% 455 151 51 6 
0.25 38.2% 457 177 72 11 
0.30 34.0% 453 198 89 18 
0.40 26.3% 434 227 116 35 

Tranche Implied Corr. 0.210 0.042 0.177 0.190 0.274 
Base Implied Corr. 0.210 0.279 0.312 0.374 0.519 

      
DJ iTraxx EUR 

Tranche 0 - 3% 3 - 6% 6 - 9% 9 - 12% 12 – 22% 
Market Quote 27.6% 168 70 43 20 

Correlation Model Quotes 
0.00 44.3% 69 0 0 0 
0.05 39.7% 161 10 1 0 
0.10 35.4% 222 36 6 0 
0.15 31.5% 258 64 18 2 
0.20 27.9% 281 90 33 6 
0.25 24.5% 294 110 49 11 
0.30 21.2% 300 127 64 18 
0.40 15.2% 299 151 86 34 

Tranche Implied Corr. 0.204 0.055 0.161 0.233 0.312 
Base Implied Corr. 0.204 0.288 0.337 0.369 0.448 

 



 40

 

Table 11 
Market quotes and model prices for the iTraxx EUR index tranches. Market quotes are from August 4, 
2004. On that date the iTraxx index level was 42 basis points. The quote for the 0% to 3% tranche is an 
upfront payment as a percentage of the notional paid in addition to 500 basis points per year. Quotes for 
all other tranches are in basis points per year.  
Model prices are calculated for constant pairwise correlations from 0.0 to 0.4. The factors underlying the 
factor model are both assumed to be t-distributed with 4 degrees of freedom. The tranche implied 
correlation is the constant pairwise correlation that makes the model price equal to the market quote. 
Base implied correlation is the constant pairwise correlation that sets the total value of all tranches up to 
and including the current tranche equal to zero. 

 
DJ iTraxx EUR 

Tranche 0 - 3% 3 - 6% 6 - 9% 9 - 12% 12 – 22% 
Market Quote 27.6% 168 70 43 20 

Correlation Model Quotes 
0.00 43.7% 66 0 0 0 
0.05 41.0% 107 9 3 1 
0.10 37.9% 133 23 10 4 
0.15 34.8% 150 37 18 8 
0.20 31.7% 161 49 26 13 
0.25 28.6% 167 60 35 18 
0.30 25.5% 171 69 42 23 
0.40 19.5% 173 84 56 34 

Tranche Implied Corr. 0.266 0.258 0.303 0.304 0.270 
Base Implied Corr. 0.266 0.266 0.260 0.253 0.241 

 


