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ABSTRACT 

 
 
We propose a simple dynamic model that is an attractive alternative to the (static) 
Gaussian copula model. The model assumes that the hazard rate of a company has a 
deterministic drift with periodic impulses. The impulse size plays a similar role to default 
correlation in the Gaussian copula model. The model is analytically tractable and can be 
represented as a binomial tree. It can be calibrated so that it exactly matches the term 
structure of CDS spreads and provides a good fit to CDO quotes of all maturities. 
Empirical research shows that as the default environment worsens default correlation 
increases. Consistent with this research we find that in order to fit market data it is 
necessary to assume that as the default environment worsens impulse size increases. We 
present both a homogeneous and heterogeneous version of the model and provide results 
on the use of the calibrated model to value forward CDOs, CDO options, and leveraged 
super senior transactions. 
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Dynamic Models of Portfolio Credit Risk: A Simplified Approach 

 

I. Introduction 

The credit derivatives market has experienced meteoric growth since 1998. The most 

popular instruments are credit default swaps. These provide a payoff when a particular 

company defaults. However, in recent years portfolio credit derivatives have been 

attracting a lot of attention. These provide protection against the defaults experienced by 

a portfolio of companies. Statistics published by the Bank for International Settlements 

show that the outstanding notional principal for portfolio credit derivatives has grown 

from about $1.3 trillion in December 2004 (20% of the notional principal for all credit 

derivatives) to about $10.0 trillion in December 2006 (35% of the notional principal for 

all credit derivatives). 

The most popular portfolio credit derivative is a collateralized debt obligation (CDO). In 

this a portfolio of obligors is defined and a number of tranches are specified. Each 

tranche is responsible for losses between U1 % and U2% of the total principal for some U1 

and U2. As the market has developed standard portfolios and standard tranches have been 

specified to facilitate trading. One example is the iTraxx portfolio. This is a portfolio of 

125 investment grade European companies with the notional principal (size of the credit 

exposure) being the same for each company. The equity tranche is responsible for losses 

in the range 0 to 3% of the total notional principal. The mezzanine tranche is responsible 

for losses in the range 3 to 6% of the total notional principal. Other tranches are 

responsible for losses in the ranges 6 to 9%, 9 to 12%, 12 to 22%, and 22 to 100% of total 

principal. The buyer of protection pays a predetermined annual premium (known as a 
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spread) on the outstanding tranche principal and is compensated for losses that are in the 

relevant range. (In the case of the equity tranche the arrangement is slightly different: the 

buyer of protection pays a certain percentage of the tranche principal upfront and then 

500 basis points on the outstanding tranche principal per year.) 

Several other standard portfolios and associated tranches have been defined. For 

example, CDX NA IG is a portfolio of 125 investment grade North American credit 

exposures. (The tranches for this portfolio are 0 to 3%, 3 to 7%, 7 to 10%, 10 to 15%, 15 

to 30%, and 30 to 100%) The most popular life of a CDO is five years. However, 7-year, 

10-year, and to a lesser extent 3-year CDOs now trade fairly actively. 

Default correlation is critical to the valuation of portfolio credit derivatives. Moody’s 

statistics show that between 1970 and 2005 the default rate per year ranged from a low of 

0.09% in 1979 to a high of 3.81% in 2001. This tendency of defaults to cluster has been 

studied by a number of researchers. One possible explanation is that default rates of all 

companies are influenced by one or more macroeconomic factors. Another is that 

defaults are “contagious” in the sense that a default by one company may induce other 

corporate failures. Das et al (2007) argue that contagion accounts for some part of the 

default clustering that is observed in practice.  

The standard market model for valuing portfolio credit derivatives assumes a simple one-

factor model for a company’s time to default. This is referred to as the Gaussian copula 

model. Its origins can be found in Vasicek (1987), Li (2000), and Laurent and Gregory 

(2005). The Gaussian copula model is a static model. A single normally distributed 

variable determines the default environment for the whole life of the model. When the 

variable has a low value, the probability of each company defaulting during the life of the 



 4

model is relatively high; when it has a high value, the probability of each company 

defaulting is relatively low. The model does not describe how the default environment 

evolves. Many alternatives to the Gaussian copula such as the t-copula, the double-t 

copula, the Clayton copula, the Archimedian copula, the Marshall Olkin copula, and the 

implied copula have been suggested. In some cases these models provide a much better 

fit to market data than the Gaussian copula model, but they are still static models. 

The availability of CDO data for multiple time horizons presents researchers with an 

interesting and important challenge. This is to develop a dynamic model that fits market 

data and tracks the evolution of the credit risk of a portfolio. Dynamic models are 

important for the valuation of some structures. For example, options on tranches of CDOs 

cannot be valued in a satisfactory way without a dynamic model. 

There are two types of dynamic credit risk models, which we will refer to as “specific” 

and “general” models. In a specific model the company or companies being modeled 

remain the same through time. In a general model they do not remain the same, but are 

defined to have certain properties. A model of the evolution of the credit spread for a 

particular company or the evolution of losses on a particular portfolio is a specific model. 

A model of the evolution of the average credit spread for A-rated companies or of the 

mezzanine spread for CDX NA IG is a general model. This paper is concerned with the 

development of a specific dynamic model for portfolios. 

Extensions of the Merton (1974) structural model provide one approach for developing a 

specific dynamic model. Correlated processes for the values of the assets of the 

underlying companies are specified and a company defaults when the value of its assets 

reaches a barrier. The most basic version of the structural model is very similar to the 
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Gaussian copula model. Extensions of the basic model have been proposed by Albanese 

et al (2005), Baxter (2006), and Hull et al (2005). Structural models have the advantage 

that they have sound economic underpinnings. Their main disadvantage is that they are 

difficult to calibrate to market prices and usually have to be implemented with Monte 

Carlo simulation. 

Reduced-form models provide an alternative to structural models. The most natural 

reduced-form approach to developing a dynamic model is to specify correlated diffusion 

processes for the hazard rates of the underlying companies. Our own experience and that 

of other researchers is that it is not possible to fit market data with this type of model. 

This is because there is a limit to how high the correlation between times to default can 

become. This has led researchers to include jumps in the processes for hazard rates. 

Duffie and Gârleanu (2001) for example assume that the hazard rate of a company is the 

sum of an idiosyncratic component, a component common to all companies, and a 

component common to all companies in the same sector. Each component follows a 

process with both a diffusion and a jump component. Other reduced form approaches are 

provided by Chapovsky et al (2006), Graziano and Rogers (2005), Hurd and Kuznetsov 

(2005), and Joshi and Stacey (2006).  

Another approach to developing dynamic models involves the development of a model 

for the evolution of the losses on a portfolio. This is sometimes referred to as the “top 

down” approach.  The behavior of individual companies in the portfolio is not 

considered. Sidenius et al (2004) use concepts from the Heath, Jarrow, and Morton 

(1992) interest-rate model to suggest a complex general no-arbitrage approach to 

modeling the probability that the loss at a future time will be less than some level. 
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Bennani (2005) proposes a model of the instantaneous loss as a percentage of the 

remaining principal. Schönbucher (2005) models the evolution of the loss distribution as 

a Markov chain. Errais et al (2006) suggest a model where the arrival rate of defaults 

experiences a jump when a default happens. In Longstaff and Rajan (2006) the loss 

follows a jump process where there are three types of jumps: firm specific, industry, and 

economy-wide. Putyatin et al (2005) suggest a model where the mechanism generating 

multiple defaults resembles the kinetics of certain chemical reactions. Walker (2007) uses 

a dynamic discrete-time multi-step Markov loss model. 

Our objective in this paper is to develop a model that is easy to implement and easy to 

calibrate to market data. The model is developed as a reduced-form model, but can also 

be formulated as a top-down model. Under the model the hazard rate for a company 

follows a deterministic process that is subject to periodic impulses. This leads to a jump 

process for the cumulative hazard rate (or equivalently for the logarithm of the survival 

probability). CDOs, forward CDOs, and options on CDOs can easily be valued 

analytically using the model. For other instruments a binomial representation of the 

model can be used. We propose a calibration method where credit default swap spreads 

are exactly matched and CDO tranche quotes are matched as closely as possible. 

The rest of the paper is organized as follows. Section II describes the model. Section III 

gives a number of progressively more complicated examples of the model and shows 

how they can be fitted to the market.  In Section IV the model is applied to the valuation 

of a three different types of securities. Section V discusses extensions of the basic model. 

Conclusions are in Section VI.  
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II. THE MODEL 

For any particular realization of the hazard rate, h(t), between time zero and time t we can 

define 

0
( )

( )
t
h d

S t e
− τ τ∫=  

The variable S(t) is the cumulative probability of survival by time t conditional on a 

particular hazard rate path between time 0 and time t. A common approach to building a 

reduced form model is to define a process for h(t) for each company over the life of the 

model. We choose instead to define a process for S(t) for each company. The process for 

S(t) provides the same information as the process for h(t). However, it is much easier to 

work with because it leads to a much more straightforward way of valuing CDOs. (As we 

will see the process for h(t) that corresponds to the process for S(t) that we assume is one 

that has a deterministic drift and periodic impulses.) The default probability between time 

zero and time t as seen at time zero is the expected value of 1 – S(t). 

It is important to specify what is known in this model. The underlying state variable is 

S(t). While S(t) is not directly observable it may be inferred from the prices of credit 

sensitive contracts. We also know how many defaults have occurred by time t. In 

developing and applying the model we will usually assume that at any given time, t, we 

know both S(t) and the total number of defaults up to time t. This defines the filtration.1 

Note that we do not assume that we know which particular companies have defaulted. In 

the homogeneous version of the model this additional information would of course be 
                                                 
 

1 This approach to separating default probabilities and default events is considered in Ehlers and 
Schönbucher (2006) and is valid in our set up. 
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irrelevant. Unfortunately, the heterogeneous version of the model becomes 

computationally intractable if an attempt is made to incorporate this additional 

information.  

The model assumes that most of the time the default probabilities of companies are 

predictable and defaults are independent of one another. Periodically there are economy-

wide shocks to the default environment. When a shock occurs each company has a non-

zero probability of default. As a result there are liable to be one or more defaults at that 

time. It is these shocks and their size that create the default correlation. 

The model is of course a simplification of reality. In practice shocks to the credit 

environment do not cause several companies to default at exactly the same time. The 

defaults arising from the shocks are usually spread over several months. However, the 

model’s assumption is reasonable because it is the total number of defaults rather than 

their precise timing that is important in the valuation of most portfolio credit derivatives. 

Another simplification is that shocks to the credit environment affect all companies. In 

practice they are liable to affect just a subset of companies in the portfolio. However, as 

an approximation we can think of a shock affecting a subset of companies as being 

equivalent to a smaller shock affecting all companies as far as its effect on the number of 

defaults is concerned.  

For ease of exposition in explaining the model we assume homogeneity so that all 

companies have the same default probabilities. We also assume that the recovery rate is 

constant. Later we explain how these assumptions can be relaxed. 

Consider a portfolio of obligors with total notional principal L. The protection seller for a 

tranche of a CDO provides protection against losses on the portfolio that are in the range 
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aLL to aHL for the life of the instrument. The parameter aL is known as the attachment 

point and the parameter aH is known as the detachment point. The protection buyer pays a 

certain number of basis points on the outstanding notional principal of the tranche. This 

principal equals aHL – aLL initially and declines as losses in the range aL to aH are 

experienced.  

As explained in Hull and White (2006) the key to valuing a CDO tranche at time zero is 

the calculation of the expected tranche principal on payment dates. The expected 

payment by the buyer of protection on the CDO tranche on a payment date equals the 

expected tranche principal on the payment date multiplied by the spread. The expected 

payoff by the seller of protection between two payments dates equals the reduction in the 

expected tranche principal between those dates.2 The expected accrual payments required 

in the event of a default between two payment dates can be calculated from the reduction 

in the expected tranche principal between the dates and an assumption about when the 

reduction occurs. As we will see the expected tranche principal can be easily calculated 

from S(t). This is why a model of the behavior of S(t) is much easier to work with than a 

model of the behavior of h(t).  

The properties of S(t) are that S(0) = 1, S is non-increasing in time, and S(t) ≥ 0 for all t. 

A convenient transformation of S is to define a variable X = –ln(S) that has the properties 

                                                 
2 Our terminology reflects the viewpoint of the buyer of protection. We will refer to the payments 
made by the buyer of protection as ‘payments’, and the payment in the event of default by the 
seller of protection as a ‘payoff’.  
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that X(0)=0 and X is non-decreasing in time with no upper bound. We assume that in a 

risk-neutral world X follows a jump process with intensity λ and jump size H:3 

 dqdtdX +μ=  (1)  

In any short interval of time, Δt, dq = H with probability λΔt, and dq = 0 with probability 

1 – λΔt. The non-decreasing nature of X requires that μ ≥ 0, and H ≥ 0. We will assume 

that μ and λ are functions only of time and H is a function only of the number of jumps 

so far.4  

For the purpose of using the model we do not need to explicitly consider the hazard rate 

process. However it is interesting to note that the process followed by the hazard rate, 

h(t), is more extreme than the jump process considered by other researchers. It is 

( )dh t dt dI′= μ +  

The term dI is an impulse that has intensity λ. Τhe impulse takes the form of a Dirac delta 

function. The effect of an impulse at time t is to cause the hazard rate to become infinite 

in such a way that the integral of the hazard rate over any short interval around time t is 

finite. 

The jumps in the model can lead to several companies defaulting at the same time. For 

example, suppose that S decreases from 1 to 1 – q as a result of a jump at time t. There 

                                                 
3 Processes of the form dX = μdt + σdz where dz is a Wiener process and σ > 0 are inappropriate 
because they allow X to decrease. We could assume a process where σ = 0 and μ follows a 
positive diffusion process. However, this would be difficult to handle and would not calibrate 
well to market data. In our experience large jumps in X are necessary to fit market data.  
4 The default intensity, λ, can be allowed to depend on X. The model is then less analytically 
tractable, but can still be represented as a binomial tree. 
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was no chance of default before the jump, but each company has a probability q of 

defaulting by time t. If there are N companies in the portfolio the probability that n of 

them will default at time t is then  

! (1 )
!( )!

n N nN q q
n N n

−−
−

 

Another model which allows multiple defaults at the same time is the generalized Poisson 

loss model of Brigo et al (2007). In this model there are several independent Poisson 

processes. An integer zi is associated with the ith process. When an event occurs in the ith 

process, zi defaults occur simultaneously. The model provides a good fit to data on CDOs 

with several maturities but does not have the dynamic structure of our model.  

A. Notation 

We will use the following notation: 

p(J, t1, t2) The probability of exactly J jumps between times t1 and t2 (t2 > t1) 

( ),P J t  The probability of exactly J jumps between time zero and time t  

(= p(J, 0, t)) 

HJ The size of the Jth jump in X 

( )1 2, ,n t tφ  The probability of exactly n defaults between times t1 and t2  

( ),n tΦ  The probability of exactly n defaults between time zero and time t  

(= ( ),0,n tφ ) 
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S(J, t) The cumulative probability of survival by time t when there have been J 

jumps between time zero and time t 

Λ(t) ( )
0

t
dλ τ τ∫  

Μ(t) ( )
0

t
dμ τ τ∫   

E(t) Expected principal on a tranche at time t when the initial tranche principal  

is $1. 

v(t) Present value of $1 received at time t 

W(n, t) The remaining CDO tranche principal at time t when there have been n 

defaults. The initial tranche principal is $1. 

 

B. Valuation of a CDO 

CDOs can be valued analytically using the model. Since the payments and payoffs 

associated with a CDO do not depend on decisions by the buyers and sellers of protection 

the value of the CDO is the same under all filtrations. As before, let aL and aH be the 

tranche attachment and detachment points, respectively. Define  

R
Na

n

R
Nan

H
H

L
L

−
=

−
=

1

1
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where N is the number of companies in the portfolio and R is the fixed recovery rate. 

Denote the smallest integer greater than x by g(x). For a tranche with an initial principal 

of $1 the tranche principal at time t when there have been n defaults is 

 ( )

( )
( ) ( ) ( )

( )

1 when
1 /

, when

0 when

L

H
L H

H L

H

n g n
a n R N

W n t g n n g n
a a

n g n

⎧ <
⎪

− −⎪= ≤ <⎨ −⎪
⎪ ≥⎩

 (2) 

The probability of J jumps between time zero and time t is 

 ( ) ( ) ( )

,
!

J tt e
P J t

J

−ΛΛ
=  (3) 

The value of S at time t if there have been J jumps is  

 ( ) ( )
1

, exp
J

j
j

S J t M t H
=

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑  (4) 

The probability of n defaults in the portfolio by time t conditional on J jumps is  

 ( ) ( )( ), , ,1 ,n t J b n N S J tΦ = −  (5) 

where b is the binomial probability function: 

( ) ( ) ( )!, , 1
! !

N nnNb n N q q q
n N n

−= −
−

 

The expected principal on the CDO tranche at time t conditional on J jumps is 

 ( ) ( ) ( )
0

, ,
N

n
E t J n t J W n t

=

= Φ∑  (6) 

The unconditional expected principal at time t is therefore 
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 ( ) ( ) ( ),
J

E t P J t E t J= ∑  (7) 

Let the payment times be t1, t2 … tm, define t0 = 0, and assume that defaults always 

happen half way through the period between payments. If the initial principal is $1 the 

present value of the regular payments that are made on payment dates is sA where s is the 

spread and 

 ( ) ( ) ( )1
1

m

k k k k
k

A t t E t v t−
=

= −∑  (8) 

The present value of the accrual payments made in the event of a default are sB where  

 ( ) ( ) ( ) ( )*
1 1

1
0.5

m

k k k k k
k

B t t E t E t v t− −
=

= − −⎡ ⎤⎣ ⎦∑  (9) 

where ( )*
10.5k k kt t t −= + . The present value of the payoffs arising from defaults is 

 ( ) ( ) ( )*
1

1

m

k k k
k

C E t E t v t−
=

= −⎡ ⎤⎣ ⎦∑  (10) 

The total value of the contract to the seller of protection is sA + sB – C. The breakeven 

spread is C/(A + B).  

 

C. The Loss Distribution 

The model has been presented as a reduced form model. However, it can be converted to 

a top down model where the process for the loss is modeled. Because we are assuming a 

constant recovery rate it is sufficient to model the number of defaults n. In this version of 

the model the filtration is different from that given at the beginning of this section. It is 
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assumed that at time t we know the number of defaults, but we do not know survival 

probabilities. The process for survival probabilities becomes nothing more than a 

convenient tool for generating the model. 

The proportion of the original portfolio lost by time t when the number of defaults is n is  

( )1n R
N

−  

First consider the unconditional distribution for n at time t. This can be calculated from 

equations (3) and (5)  

 ( ) ( ) ( ), , ,
J

n t n t J P J tΦ = Φ∑  (11) 

This is a mixture of Poisson distributions. The loss distribution given by the model has 

thin tails when jumps are small and fat tails when they are large. This means that the 

model is a flexible tool for handling a variety of default correlation environments.  

The probability of n defaults between times t1 and t2 conditional on J1 jumps by time t1, J2 

jumps by time t2, and n1 defaults between times zero and t1 is  

 ( ) ( ) ( )( ) ( )( )1 2 1 2 1 1 1 1 2 2 1 1, , , , , , , , ,n t t J J n b n N n S J t S J t S J tφ = − −  (12) 

The probability of J jumps between times t1 and t2 is 

 ( ) ( ) ( ) ( ) ( )1 2
2 1

1 2, ,
!

J t tt t e
p J t t

J

Λ −ΛΛ − Λ⎡ ⎤⎣ ⎦=  (13) 

and from Bayes rule the probability of J jumps by time t conditional on n defaults by time 

t is 
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∑φ
φ

=

j
tjPjtn

tJPJtn
ntJP

),(),(
),(),(

),(                                         (14) 

Equations (12) and (13) can be used to calculate the probability that there will be n2 

defaults at time t2 conditional on n1 defaults and J1 jumps by time t1: 

 ( ) ( ) ( )2 2 1 1 1 2 1 1 2 1 1 1 1 2, , , , , , , , ,
J

n t n J t n n t t J J J n p J t tΦ = φ − +∑   (15) 

Using equation (14) we obtain the transition probability from n1 defaults at time t1 to n2 

defaults at time t2 

 ( ) ( ) ( )
1

2 2 1 1 2 2 1 1 1 1 1 1, , , , , ,
J

n t n t n t n J t P J t nΦ = Φ∑  (16) 

This equation defines the process for the number of defaults (or equivalently the loss) for 

the portfolio.  
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III. ALTERNATIVE VERSIONS OF THE MODEL AND THEIR 

CALIBRATION  

In this section we first present a version of the model where (similar to Black-Scholes) 

there is just one free parameter. We then discuss extensions to this simple model and 

present a three-parameter version of the model that is designed to provide a good fit to all 

CDO spreads of all maturities. 

The calibration of the model to the market will be illustrated using the data in Exhibit 1 

for iTraxx and CDX NA IG on January 30, 2007.5  We assume a recovery rate of 40%. 

The term structure of CDS spreads is assumed to be a piece-wise linear function. It equals 

the three year spread for maturities up to three years; between years three and five the 

spread is interpolated between the three and five year CDS spreads; and so on. Payments 

on CDOs and CDSs are assumed to be quarterly in arrears. 

A: Zero Drift; Constant Jumps; Time-Dependent Intensity 

A particularly simple version of the model is the case in which μ(t) = 0 and the jump size 

is constant. For any given value of the jump size, H, the jump intensity λ(t) is chosen to 

match the term structure of CDS spreads. We assume that the value of λ(t) is constant 

between CDO/CDS payment dates and work forward in time choosing λ’s so that the 

CDS term structure is matched. 

                                                 
5 Following the usual conventions the quotes in Exhibit 1 are the rate of payment in basis points 
per year to purchase protection from defaults in the indicated range. The exception is the 0 to 3% 
tranche where the quote is the up front payment as a percentage of the notional that is paid in 
addition to 500 basis points per year. 
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This version of the model has just one free parameter: the jump size. The jump size can 

be implied from a CDO market quote or vice versa. The procedure for calculating the 

value of a CDO tranche is described in Section IIB. The jump sizes implied from the 

iTraxx market quotes in Exhibit 1 are shown in Exhibit 2. The numbers in this table are 

analogous to the numbers in a volatility surface that is determined from market quotes for 

option prices using the Black-Scholes formula. Just as option traders monitor volatility 

surfaces, credit derivatives traders can monitor the jump size surface. 

The implied jump size is a measure of default correlation. As the jump size approaches 

zero the default correlation approaches zero. As the jump size becomes large the default 

correlation approaches one. Exhibit 3 compares the implied jump sizes reported in 

Exhibit 2 with the tranche (or compound) correlations implied from the tranche quotes 

using a Gaussian copula model. It can be seen that the two exhibit very similar patterns. 

Results are similar for CDX NA IG. 

The advantage of calculating an implied jump size rather than an implied copula 

correlation is that the jump size is associated with a dynamic model whereas the copula 

correlation is associated with a static model.  

B. Extensions of the Constant Jump Model 

There are a number of ways the model we have just considered can be extended. The 

most obvious extension is to allow a non-zero drift. In this case the jump size and 

intensity can be chosen to fit CDO quotes while the drift is selected to fit the CDS term 

structure. In practice this does not provide material improvement over the zero-drift case. 
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We can obtain a better fit to CDO prices for a particular maturity by having multiple 

jump processes each with its own size and each with its own intensity or by having a 

single jump process in which the jump size is a random variable. This would be in the 

spirit of Longstaff and Rajan (2006) or Brigo et al (2006). These approaches work 

reasonably well in fitting panels of CDO quotes but pose computational problems in the 

convolution of the survival probabilities. When either of these approaches is implemented 

the best fit to market CDO quotes arises when there is a high probability of small jump 

sizes and a low probability of large jump sizes. These approaches do not have the 

property that large jump sizes are associated with adverse states of the world. 

Rather than developing the model along these lines we have chosen to consider a version 

of the model that is particularly easy to implement and involves relatively few 

parameters.  

C. A Three-Parameter Model 

Empirical evidence suggests that default correlations are stochastic and increase in 

adverse credit conditions. For example, Servigny and Renault (2002) who look at 

historical data on defaults and ratings transitions to estimate default correlations, find that 

the correlations are higher in recessions than in expansion periods. Das et al (2006) 

employ a reduced form approach and compute the correlation between hazard rates. They 

conclude that correlations increase when hazard rates are high. Hull et al (2005) show 

that a structural model fits CDO data well when asset correlations are positively related to 

the default rate. Their work is consistent with that of Ang and Chen (2002) who find that 

the correlation between equity returns is higher during a market downturn. 
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This research suggests that a model where the jump sizes in X are larger in adverse 

market conditions might fit market data better than a constant jump size model. To test 

this we relax the constant jump size assumption and explicitly build in the property that 

large jump sizes (high correlation) are associated with low survival probability states. 

The size of the Jth jump is given by 

J
J eHH β= 0  

where H0 and β are positive constants. The intensity of the process, λ, is a constant and 

the drift, μ(t), is determined to match CDS spreads.  

In calibrating the model the objective is to find values of H0, β, and λ that minimize the 

sum of squared differences between market tranche spreads and model tranche spreads. 

The procedure involves repeatedly a) choosing trial values of H0, β, and λ, b) calculating 

the μ(t) function so that the term structure of index spreads is matched for the trial 

parameters, and c) calculating the sum of squared differences between model spreads and 

market spreads for all tranches of all maturities (15 spreads in total). An iterative 

procedure is used to find the values of H0, β, and λ that lead to the sum of squared 

differences being minimized when this three-step procedure is used.  

For the iTraxx data in Exhibit 1 the best fit parameter values are H0=0.00223, β=0.9329, 

and λ=0.1486. The corresponding values for the CDX NA IG data are H0=0.00147, 

β=1.2813, and λ=0.1310. The pricing errors are shown in Exhibit 4. The model fits 

market data well − much better than versions of the model where the jump size is 

constant. 
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Exhibit 5 shows the loss distribution 3-, 5- , 7- and 10-years in the future for iTraxx as 

seen at time zero based on the calibrated model. As the time horizon increases the 

probability mass of the distribution shifts to the right and becomes more spread out. 

There is also some fine structure in the distribution. To make this visible all probabilities 

for losses greater than 9% are scaled up by a factor of 100. This reveals a complex shape 

to the right tail of the loss distribution. Results for CDX NA IG are similar. 

The values of HJ are initially fairly small, but increase fast. For example in the case of 

iTraxx on January 30, 2007 H3 = 0.057, H5 = 0.386, and H7 = 2.513. There is a small 

probability of low values of S being reached. For example, the probability that S is less 

than 0.90 at the end of 5 years is about 0.007, and the probability that it is less than 0.75 

is about 0.0001. Some of these results values may seem extreme. However, they are 

consistent with the results in papers such as Hull and White (2006) which show that it is 

necessary to assign a very low, but non-zero, probability to a very high hazard rate in a 

static model in order to fit market quotes. 

It should be recalled that the results shown here are risk-neutral probabilities that are 

inferred from tranche prices. Consider the 2 basis point cost of protection for the 5-year 

12 to 22% tranche of iTraxx. Given the recovery rate that is assumed, the buyer of 

protection only receives payoffs when more than 20% of the entire portfolio has 

defaulted and payments for protection only stop when the tranche is wiped out after 

36.7% of the portfolio has defaulted. Suppose there are only two possible outcomes: the 

tranche is wiped out with probability p or is untouched with probability 1–p. If the 

tranche is wiped out the buyer of protection receives a payoff of $1; if the tranche is 

untouched he pays 2 basis points per year for 5 years on a notional of $1. Ignoring 



 22

discounting, the value of p that makes this a fair contract is about 0.001 which is roughly 

consistent with the probabilities implied by the calibrated model. 

This calibration procedure was repeated for all the iTraxx tranche data that was available 

from Reuters between July 4, 2006 and January 10, 2007. This data includes the spreads 

on 5-, 7- and 10-year CDO tranches as well as 3- to 10- year index spreads. All 15 CDO 

tranche spreads were available on 51% of the days, 14 spreads were available on 34% of 

the days, 13 spreads were available on 13% of the days and on 2% of the days only 12 

spreads were quoted.  The quality of the fit on each day was similar to that reported for 

the January 30, 2007 market data. Exhibit 6 shows ten-day moving averages for the 

parameter values.6  

 

                                                 
6A ten-day moving average provides a better indication of parameter values than the daily results 
because of the impact of noise in the quotes and missing quotes.  
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IV. APPLICATIONS OF THE MODEL 

In this section we show how the model we calibrated to iTraxx market data in Section 

IIIC can be used to value a number of different instruments. 

A. Forward CDOs 

Consider first forward CDOs.7 As discussed earlier the model in this paper is a specific 

dynamic model. We are modeling defaults for a portfolio of companies that is defined at 

time zero and remains unchanged. The forward CDO spreads that we calculate using the 

model are the spreads for this portfolio. For example, the 3×2 forward spread for the 

mezzanine (3% to 6%) tranche is the spread that must be paid in years 4 and 5 on the 

remaining amount of the original tranche principal in order to provide protection. The 

protection is against those default losses that occur in years 4 and 5 and are between 3% 

and 6% of the principal of the original underlying portfolio. The calculated spread is not 

that for a forward start de novo iTraxx contract. The latter contract would be based on a 

portfolio that will be selected to be investment grade at the start of the protection period 

covered by the forward contract. 

Forward contracts can be valued analytically using the model in a similar way to CDOs. 

As with the CDO, since the payments and payoffs associated with the forward contract 

do not depend on decisions by the buyers and sellers the value of the forward contract is 

the same under all filtrations. Suppose that the forward contract lasts between payment 

times tu and tm.  Define A(tu), B(tu), and C(tu) similarly to A, B, and C in equations (8), (9) 

                                                 
7Forward CDOs provide a simple application of the model and lead into the calculation of options 
on CDOs in the next section. As explained in Hull and White (2007) a dynamic model is not 
necessary to determine forward CDO spreads.  
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and (10) except that they accumulate expected payoffs and payments between times tu 

and tm rather than between time zero and time tm: 
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The total value of the forward CDO contract to the seller of protection when the tranche 

spread is s is sA(tu) + sB(tu)– C(tu). The breakeven forward spread is C(tu)/[A(tu) + B(tu)].  

The breakeven spreads for forward contracts on CDO tranches that mature in five years 

are shown in Exhibit 7. The tranche spreads rise fairly fast. One reason for this is that the 

CDS spreads are upward sloping so that default probabilities tend to increase as time 

passes. Another reason is that, in the case of all tranches except the equity tranche, there 

is very little probability of loss in the first one or two years. It follows that when these 

years are excluded the spread for the remaining years increases.  

B. Options on CDO Tranches 

A European option on a CDO tranche is an option to buy or sell protection for a 

particular tranche at a particular strike spread. The option expires at time tu and if 

exercised the protection lasts between times tu and tm. As with the forward CDO contract, 

the underlying portfolio is defined at time zero and remains unchanged. Upon option 

exercise the spread is applied to the remaining principal (if any) of the tranche. Like 

forwards European options can be valued analytically using the model. 
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Since the buyer of the option must decide when to exercise the option the information 

available, the filtration, will affect the value of the option. It will be recalled that we are 

working in a filtration where both S(t) and the number of defaults between time zero and 

time t are known at time t. This information will therefore be used to determine exercise 

decisions. The number of defaults is directly observable by the holder of an option and 

we assume that the prices of CDSs and CDO tranches reflect the state of the economy, 

S(t). These prices are observable and can be used to formulate an exercise decision. An 

option to buy protection will be exercised at time tu if the cost of protection on the 

tranche at time tu is higher than the strike spread.  

Given the structure of our model, knowing the value of S at time tu  is equivalent to 

knowing the number of jumps Ju before time tu. Conditional on nu defaults and Ju jumps 

by time tu the expected tranche principal at time tk (k > u) can be calculated from 

equations (2) and (15) as 
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From this the present value of payments, accrual payments, and payoffs condition on nu 

and Ju can be calculated: 
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Suppose the strike spread for a European call option is sK. The present value of the option 

when there have been nu defaults and Ju jumps by time tu is 

( ) ( ) ( )max , , , ,0u u u K u u u K u u uC t n J s A t n J s B t n J⎡ ⎤− −⎣ ⎦  

The value of the call option can therefore be calculated from equations (3), (4), and (5) as  
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Similarly the value of a European put option is 
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When the strike spread is set equal to the forward spread an at-the-money option is 

created and the put and call have the same price. Exhibit 8 shows the prices in basis 

points of at-the-money options with varying maturities on a 5-year CDO tranche. For 

example, a one-year at-the-money option to buy at-the-money protection on the 6% to 

9% tranche for the period from one year to five years costs 23.2 basis points or 0.232% of 

the initial (time zero) tranche principal. The option strike spreads are the corresponding 

forward spreads given in Exhibit 7. 8 

Tranches with higher spreads (lower attachment points) have higher option values. The 

value of the option initially increases as we increase the option maturity and then starts to 

                                                 
8 We can also value options using the top down version of the model in Section IIC. Only nu is 
then used in generating the exercise decision. The results in Section IIC can be used to value 
options analytically in this case. Conditioning exercise on nu results in substantially lower option 
prices than conditioning on both nu and S. The differences vary by tranche and are largest for the 
mezzanine tranche. The average price reduction for the options in Exhibit 8 is about 13%.  



 27

decline to reflect the diminishing maturity of the underlying. This is similar to what we 

observe for options on bonds and swaps.  

As discussed in Hull & White (2007) if we are willing to assume that CDO tranche 

spreads are lognormally distributed it is possible to derive an analytic expression for the 

prices of European put and call options on CDO tranches. Exhibit 9 uses the result in 

Hull and White (2007) to calculate the implied spread volatilities from the prices in 

Exhibit 8. For the equity tranche the implied volatility decreases with option maturity 

while for all other tranches the implied volatility increases with option maturity. 

Exhibit 10 shows the implied volatilities for two-year options on 5-year CDO tranches 

for strike prices between 75% and 125% of the forward tranche spread. Again the results 

are based on Hull and White (2007). If the assumption of lognormality held exactly the 

implied volatility for an option would be the same for all strike prices. The table shows 

that the variation of implied volatility with the strike price is quite small. This suggests 

that the lognormality assumption in Hull and White (2007) is (at least for January 30, 

2007 data) approximately consistent with the model in this paper. 

C. Leveraged Super Senior Transaction 

Our final application of the model is to a leveraged super senior (LSS) tranche with a loss 

trigger. This is a CDO tranche which is automatically cancelled when losses reach some 

level.  On cancellation the tranche is marked to market and the seller of protection must 

pay the buyer an amount equal to the value of the tranche. However, the total amount 

paid by the seller (including any losses for which the seller is responsible prior to the 

cancellation date) is capped at a fraction x of the tranche notional. Since the payments 
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and payoffs associated with the LSS do not depend on decisions by the buyers and sellers 

the value of the contract is the same under all filtrations. 

Because we are assuming a constant recovery rate of 40% the loss that triggers 

cancellation can be translated to a number of defaults. We suppose that cancellation is 

triggered when the number of defaults reaches *n . The parameters defining the LSS on a 

particular portfolio are therefore the tranche attachment point aL, the tranche detachment 

point aH, the spread s, the maturity T, the loss cap x, and the number of losses triggering 

cancellation *n .9 To simplify matters we only consider cases in which the number of 

defaults that triggers a termination, *n , is less than 125aL/(1–R). This ensures that the 

seller is not responsible for any losses prior to the termination date.10 

The tranche in a LSS is generally a senior one. The seller of protection considers it highly 

unlikely that the tranche will experience losses, but does not find selling protection on the 

tranche to be appealing because the spread is small. The LSS provides a way of 

leveraging the spread. Suppose that the tranche principal is $10 million and the spread is 

15 basis points.  Selling protection on the tranche in the usual way requires $10 million to 

be deposited by the seller of protection at an interest rate of LIBOR so that, if the tranche 

does not experience defaults, the interest earned is LIBOR plus 15 basis points. Consider 

an LSS with x = 0.1. Only $1 million needs to be deposited at the beginning of the 

transaction because that is all that the seller of the protection is risking. As a result the 

                                                 
9 For ease of exposition we assume *n is constant. The methodology we present can easily be 
extended to the situation (often encountered in practice) where *n changes with the passage of 
time. 
10 Our methodology can be extended to cases where this condition is not satisfied. 
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spread earned on this principal, assuming the tranche does not experience defaults and the 

deal is not cancelled is LIBOR plus 150 basis points.  

The model for S that we developed in Section IIIC can be represented as a binomial tree. 

To construct the tree the life of the model is divided into a number of short time intervals. 

Denote the time corresponding to the end of the ith interval by τi and let τ0 = 0. During 

each time interval it is assumed that there is either zero or one jump in S. This leads to a 

tree with the geometry shown in Exhibit 11.  In this figure HJ is the size of the Jth jump 

and Mi = M(τi). The probability on the upper and lower branches emanating from a node 

at time τi are λiΔi and 1−λiΔi, respectively, where λi = λ(τi) and Δi = τi+1−τi. The τi are 

chosen so that there are nodes on each payment date (i.e., for each k, τi = tk for some i.) In 

practice this is achieved by creating ν equal time steps between each payment date for 

some integer ν. 

Note that the binomial tree as it is presented in Exhibit 11 only reveals S(t). As a result it 

would produce different values for options on a CDO tranche than those discussed in 

section IV B.11 To value an option where the exercise decision depends on both S(t) and 

the number of defaults to date it would be necessary to construct a binomial tree for S 

where there are N+1 states at each S-node corresponding to the N+1 alternative values for 

the number of defaults at the node. The use of this type of tree was proposed by Hull and 

                                                 
11 Similar to the development of the top down version of the model in which only the number of 
defaults is known, it is possible to develop a version of the model in which only S(t) is known. 
The resulting prices for European options on CDO tranches are usually about 1% lower than the 
prices discussed in section IV B where the exercise decision is based on both S(t) and the number 
of defaults to date. 
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White (1993). It is now sometimes referred to as a “binomial forest.” As one rolls back 

through the tree calculations are carried out for all N+1 states at each node. 

As it happens the binomial tree can be used to value a LSS without becoming a forest. 

The key difference between an LSS and an option on a CDO is that there are no decisions 

to be made by either party at any node in an LSS. 

Denote the jth node at time τi by (i, j). Let Sij and Eij be the cumulative survival 

probability and expected tranche principal at node (i, j). The value of Sij is given by 

equation (4) and Eij can be calculated from equations (2), (5) and (6).  

We first roll back through the tree calculating Vij, the value of the tranche to the 

protection buyer per dollar of principal at node (i, j) assuming no cancellation and no 

limit on the liability of the protection seller.12  Some times τi correspond to payment dates 

and others do not. Define δi as follows. When τi is a payment date so that τi = tk, δi  

equals the accrual fraction tk−tk-1. When τi is not a payment date δi = 0. Variables Aij, Bij, 

and Cij can be defined analogously to A, B, and C in Section IIB. At the final nodes  

Aij = δiEij, Bij = 0, and Cij = 0 and at earlier nodes they can calculated by working 

backward through the tree using  

                                                 
12 This could be calculated analytically, but since the tree is used for incorporating the impact of 
the cancellation it makes sense to use the tree for this as well. The results are slightly different 
from those previously reported because now defaults are no longer restricted to occur in the 
middle of an accrual period. 
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where )(5.0 1
*

−τ+τ=τ iii . The Vij are then calculated as 
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To value the LSS it is necessary to roll back through the tree again. At node (i, j) we 

know the probability that a company has not defaulted, Sij. The probability of n defaults 

by node (i, j), is given by equation (5) as b(n, N, 1 – Sij). The probability that termination 

has not been triggered at a node (i, j) so that the deal is alive is therefore 
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As in the case of a CDO we assume without loss of generality that the principal is $1. 

Variables LSS
ijA and LSS

ijC  are defined analogously to Aij and Cij so that LSS
ijsA is the present 

value of payments on the LSS from node (i, j) to the end of the life of the LSS and LSS
ijC  

as the present value of payoffs from node (i, j) to the end of the life of the transaction. 

(We do not need LSS
ijB  because the protection seller is never responsible for any defaults 

prior to cancellation in the LSS). 

At node (i, j) we are in one of three situations: 

1. The structure is still alive. 
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2. Cancellation was triggered at an earlier node. 

3. Cancellation is triggered at node (i, j). 

The probability that the structure is still alive at node (i, j) is wij. In this case the 

backwards induction equations for LSS
ijA and LSS

ijC are the same as those for Aij and Cij in 

equation (17).  

The probability that the structure is not alive at node (i, j) is 1–wij. We are then in 

situations 2 or 3. Assume that situation 3 applies. The protection buyer must make a final 

payment equal to εiEij where εi is the time since the previous payment date. There are two 

components to LSS
ijC . The seller of protection must pay –Vij, the present value of future 

net payments on a regular CDO tranche as well as the payment that would be due on a 

regular CDO tranche at time iΔt. The latter is 1–Eij because we know that the protection 

seller is not responsible for defaults prior to cancellation. Payoffs are capped at x so that 

LSS
ijC  equal the minimum of x and –Vij+1–Eij. 

Assuming situation 1 or situation 3 applies leads to the following formulas for calculating 

LSS
ijA  and 

LSS
ijC  
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Because of the way the values of 
LSS
ijA  and LSS

ijC  get overwritten as we work back 

through the tree the values calculated at the first node take into account  the possibility of 

situation 2 applying at nodes (i,j). The breakeven spread is therefore LSSLSS AC 0000  . 



 33

To illustrate the properties of LSS transactions we calculated the breakeven spread for a 

5-year CDO iTraxx tranche on January 30, 2007 using the model in Section IIIC with aL 

= 0.12, aH = 0.22. We considered leverage levels between 5% (x=0.05) and 20% (x=0.2) 

and for trigger levels from 1 to 16 defaults.  

The results are shown in Exhibit 12. It should be noted that while the market spread for 

the 12% to 22% iTraxx tranche is 2 basis points, the spread for this tranche in the 

calibrated model is 1.53 basis points. All the results we present (for forward contracts, 

options, and LSSs) are of course based on the calibrated model. In particular the spread 

for the LSS converges to the calibrated 1.53 basis points. If our sole objective had been to 

price the LSS considered here, when carrying out the calibration we would have given 

the squared error in the spread for the 12 to 22% tranche a high weight compared with 

that for other tranches. This would have resulted in that tranche having a spread very 

close to 2 basis points in the calibrated model. 

As the degree of leverage and the number of defaults required to trigger termination are 

increased the breakeven spread declines. Higher leverage means that the buyer of 

protection gets a smaller payoff in the event of default and so should be required to pay 

less for the protection. When the number of defaults required to trigger termination is 

increased it is less likely that the deal will be terminated prematurely and more likely that 

the seller of protection will benefit from the loss cap. Again this reduces the amount the 

buyer of protection should be required to pay. 
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V. EXTENSION OF MODEL 

We now consider a number of ways in which the basic homogeneous constant recovery 

rate model can be extended. 

A. Stochastic Recovery Rate 

Let the cumulative default probability, 1–S, be denoted as Q. A negative relationship 

between the recovery rate and the cumulative default rate can be incorporated into the 

model by assuming that the average recovery rate R  applying to all the defaults that have 

occurred up to time t is a function only of the cumulative default probability, Q. One 

possibility is the relationship 

( )( )
0

1 1 Ea Q QR R e
aQ

− −= −  

where a and R0 are positive constants and QE is the expected value of Q at the particular 

time being considered. Under this model the marginal recovery rate when the cumulative 

default probability is Q is 
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Q
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∂
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This is greater than R0 when Q is lower than its expected value and less than R0 when it is 

greater than its expected value. A constraint is that a must be chosen so that )(
0

EQQaeR −−  is 

always less than one.  

Define ( , )R J t  as the average recovery rate between times 0 and t when there have been J 

jumps in X.  In equation (2) W(n,t) is replaced by ),( JtnW , R is replaced by ),( tJR , and 
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nL and nH are defined in terms of R  so that they become dependent on J and t. Equation 

(6) becomes 

∑
=

Φ=
N

n
JtnWJtnJtE

0
),(),()(  

Apart from these changes the valuation of a CDO tranche is the same as before. Similar 

changes enable forward CDOs, European options on CDOs, and leveraged super seniors 

to be valued. In the case of leveraged super senior it is necessary to calculate the critical 

number of defaults at each node that lead to the loss threshold be exceeded.     

B. Heterogeneous Model 

The model in Section IIIC can be extended so that it becomes a heterogeneous model 

where each company has a different CDS spread.13 The model that has been presented is 

then assumed to represent the evolution of the cumulative default probability for a 

representative company in the portfolio. For any particular company in the portfolio the 

jump size and jump intensity are assumed to be the same as that for the representative 

company. However the deterministic drift, μ(t), is adjusted to match the CDS spread. The 

binomial model for determining the probability of n defaults by time t conditional on J 

jumps in equation (5) must be replaced by an iterative procedure such as that in Andersen 

et al (2003) and Hull and White (2004). Once this has been done the model structure and 

calculations for valuing a CDO are much the same as we have presented them. 

                                                 
13 Recall that we are working a filtration where, in addition to S(t), we know the number of 
defaults by time t. We do not know the particular companies that have defaulted. Incorporating 
the latter into our model, or any other model, would be prohibitively time consuming. 
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Valuing a forward CDO is similar to valuing a regular CDO. To value a leveraged super 

senior it is necessary to calculate at each node of the tree the probability the critical loss 

level has been exceeded. One application of the iterative procedure just mentioned is 

therefore necessary for each node of the tree. For options on CDOs calculations are more 

time consuming. It is necessary to calculate the probability of n-nu defaults between times 

tu and tk conditional on nu defaults by time tu and Ju jumps by this time.  For this we 

require, for each of the N companies, the probability of survival by time tu conditional on 

nu defaults and Ju jumps by time tu. This is 321 γγγ  where γ1 is the unconditional 

probability of the company surviving to time tu, γ2 is the probability of nu out of the 

remaining N–1 companies defaulting, and γ3 is the probability of nu out of N companies 

defaulting. A large number of applications of the iterative procedure are required.14   

C. Modeling Two Portfolios Simultaneously 

The model can be extended so that iTraxx and CDX NA IG are modeled simultaneously. 

One way of doing this is to have three independent jump processes. The first process 

leads only to jumps in the cumulative hazard rate for iTraxx companies; the second jump 

process leads only to jumps in the cumulative hazard rate for CDX NA IG companies; the 

third jump process leads to jumps in the cumulative hazard rate for both iTraxx and CDX 

NA IG companies. 

D. Bespoke Portfolios 

In practice it is often the case that derivatives dependent on bespoke portfolios have to be 

valued with dynamic models. The model we have presented must first be calibrated to 
                                                 
14 It may well be possible to speed up the calculations by developing a robust approximation to 
the probability that a particular company will survive by time tu conditional on nu defaults. 
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iTraxx or CDX NA IG (or both). The drifts for the cumulative hazard rates of individual 

names comprising the bespoke portfolio can then chosen to match their CDS spreads.   
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VI. CONCLUSIONS 

We have presented a simple one-factor model for the evolution of defaults on a portfolio. 

The model has two advantages over the Gaussian copula model. First, it is simpler and 

easier to implement. Second, it is a dynamic model that allows a wider range of products 

to be valued. The model is an alternative to the more complex dynamic models suggested 

by other researchers. To our knowledge this is the first paper to use a dynamic credit 

model for pricing a variety of different types of portfolio credit derivatives. 

The model has the attractive feature that it has many analytic properties and can be 

represented in the form of a binomial tree. The variable modeled on the tree is the 

cumulative survival probability for a representative company. The model is easy to use 

and appears to have the property that future CDO spreads are approximately lognormal.  

We have shown how the model can be calibrated to market data. Our results indicate that 

in a risk neutral world there is a small chance that the default probability for a 

representative company during the life of the model will be very high. This is consistent 

with the results from static copula models. To fit market data it is necessary for jump 

sizes to become increasingly large. This is consistent with empirical data showing that 

default correlations are higher in recessionary periods. 
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Exhibit 1 

iTraxx CDO tranche quotes January 30, 2007.  
aL aH 3 yr 5 yr 7 yr 10 yr 
0 0.03 n/a 10.25 24.25 39.30 

0.03 0.06 n/a 42.00 106.00 316.00 
0.06 0.09 n/a 12.00 31.50 82.00 
0.09 0.12 n/a 5.50 14.50 38.25 
0.12 0.22 n/a 2.00 5.00 13.75 

Index 15.00 23.00 31.00 42.00 
 

CDX NA IG CDO tranche quotes January 30, 2007.  
aL aH 3 yr 5 yr 7 yr 10 yr 
0 0.03 n/a 19.63 38.28 50.53 

0.03 0.07 n/a 63.00 172.25 427.00 
0.07 0.10 n/a 12.00 33.75 96.00 
0.10 0.15 n/a 4.50 14.50 43.25 
0.15 0.30 n/a 2.00 6.00 13.75 

Index 19.00 31.00 43.00 56.00 
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Exhibit 2 
Implied jump sizes for iTraxx on January 30, 2007 for the 
one-parameter model in Section IIIA where the drift is zero 
and the jump size is constant 

aL aH 3 yr 5 yr 7 yr 10 yr 
0 0.03 n/a 0.0247 0.0221 0.0221 

0.03 0.06 n/a 0.0120 0.0054 0.2378 
0.06 0.09 n/a 0.0336 0.0268 0.0112 
0.09 0.12 n/a 0.0578 0.0501 0.0340 
0.12 0.22 n/a 0.0981 0.0900 0.0749 
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Exhibit 3: Implied jump size using the one-parameter model in Section IIIA 
compared with the implied tranche (i.e., compound) correlation from the Gaussian 
copula model for 5-, 7-, and 10-year tranches of iTraxx on January 30, 2007. 
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Exhibit 4 
Errors resulting from calibration of three-parameter model in 
Section IIIC to the iTraxx data in Exhibit 1 for January 30, 
2007. (For example, the quote for the 3% to 6% 10-year 
tranche is 316 and the best fit spread is 314.63.)  

aL aH 3 yr 5 yr 7 yr 10 yr 
0 0.03 n/a 1.34 2.75 4.32 

0.03 0.06 n/a 0.37 3.12 –1.37 
0.06 0.09 n/a –0.54 –2.69 –1.92 
0.09 0.12 n/a –1.01 –1.55 –0.12 
0.12 0.22 n/a –0.47 –0.21 1.28 

Index 0.00 0.00 0.00 0.00 
 

Errors resulting from calibration of the three-parameter 
model in Section IIIC to the CDX NA IG data in Exhibit 1 
for January 30, 2007. 

aL aH 3 yr 5 yr 7 yr 10 yr 
0 0.03 n/a 1.63 3.20 2.85 

0.03 0.07 n/a –4.01 –2.16 1.99 
0.07 0.10 n/a 2.30 3.39 2.51 
0.10 0.15 n/a 4.00 4.79 1.44 
0.15 0.30 n/a 0.69 1.28 5.55 

Index 0.00 0.00 0.00 0.00 
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Exhibit 5: Unconditional loss distribution for iTraxx on January 30, 2007 at four 
maturities. Results are based on the three-parameter model in Section IIIC 
calibrated to the market data in Exhibit 1. 
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Exhibit 6: Parameters H0, β and λ estimated for iTraxx for the model in Section III 
C between July 4, 2006 and January 10, 2007. 
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Exhibit 7 
Breakeven tranche spread for forward start CDO tranches on iTraxx on 
January 30, 2007. The tranches mature in five years. Results are based on 
the three-parameter model in Section IIIC calibrated to the market data in 
Exhibit 1.  

Tranche Start  1.0 2.0 3.0 4.0 4.5 
aL aH Breakeven Tranche Spreads 
0 0.03 11.5 11.3 11.1 6.4 3.4 

0.03 0.06 54.0 70.1 93.2 124.4 144.2 
0.06 0.09 14.7 19.4 26.1 35.2 40.7 
0.09 0.12 5.8 7.7 10.6 14.8 17.5 
0.12 0.22 2.0 2.6 3.7 5.3 6.3 

Index 25.3 29.1 36.7 41.4 43.7 
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Exhibit 8 
Prices in basis points of at-the-money European options 
on iTraxx CDO tranches on January 30, 2007. The 
tranches mature in five years. Results are based on the 
three-parameter model in Section IIIC calibrated to the 
market data in Exhibit 1. 

  Option Expiry in Years 

aL aH 1.0 2.0 3.0 4.0 4.5 

0.03 0.06 67.8 91.3 89.7 68.3 41.4 

0.06 0.09 23.2 29.8 30.7 23.1 13.5 

0.09 0.12 9.7 12.2 13.3 10.0 6.1 

0.12 0.22 3.7 4.4 5.0 3.8 2.4 
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Exhibit 9 
Implied volatilities of at-the-money European style options on 
iTraxx CDO tranches on January 30, 2007. The tranches 
mature in five years. Results are based on the three-parameter 
model in Section IIIC calibrated to the market data in Exhibit 
1. 

  Option Expiry in Years 

aL aH 1.0 2.0 3.0 4.0 4.5 

0.03 0.06 96.1% 100.9% 96.8% 104.3% 107.5% 

0.06 0.09 123.2% 122.6% 125.6% 137.2% 135.3% 

0.09 0.12 133.0% 128.6% 139.4% 144.8% 148.9% 

0.12 0.22 149.3% 137.3% 160.5% 160.6% 181.8% 
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Exhibit 10 

Implied volatilities for 2-year European options on 
iTraxx CDO tranches for strike prices between 75% and 
125% of the forward spread on January 30, 2007. The 
tranches mature in five years. Results are based on the 
three-parameter model in Section IIIC calibrated to the 
market data in Exhibit 1. 

 CDO Tranche 

K / F 3 to 6% 6 to 9% 9 to 12% 12 to 22% 

0.75 100.1% 125.6% 132.9% 143.5% 

0.80 100.6% 125.2% 132.1% 142.3% 

0.85 100.9% 124.7% 131.3% 141.1% 

0.90 101.1% 124.1% 130.5% 139.9% 

0.95 101.0% 123.4% 129.5% 138.6% 

1.00 100.9% 122.6% 128.6% 137.3% 

1.05 100.6% 121.7% 127.5% 136.0% 

1.10 100.3% 120.9% 126.5% 135.2% 

1.15 99.8% 119.9% 125.4% 135.3% 

1.20 99.3% 119.0% 125.0% 136.0% 

1.25 98.8% 118.0% 124.8% 137.1% 
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Exhibit 11: Four-step binomial tree for the variable X, which is minus the log of  the 
cumulative survival probability. Μi is the value of X at time τi when there are no 
jumps; HJ is the size of the Jth jump. The probability on the upper and lower 
branches emanating from a node at time τi are λiΔi and 1− λiΔi, respectively, where 
λi = λ(τi) and Δi = τi+1 – τi. The value of the cumulative survival probability, S, at any 
node is exp(–X). 
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Exhibit 12: Breakeven spread in a leveraged super senior transaction in basis points 
as a function of the number of defaults required to trigger termination for the 
iTraxx 12% to 22% tranche on January 30, 2007. Results are based on the three-
parameter model in Section IIIC calibrated to the market data in Exhibit 1. The 
maximum loss borne by the seller of protection is x. 
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