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Abstract

A volatility surface is an important tool for pricing and hedging derivatives. The surface shows the
volatility that is implied by the market price of an option on an asset as a function of the option’s strike
price and maturity. Often, market data is incomplete and it is necessary to estimate missing points on
partially observed surfaces. In this paper, we show how variational autoencoders can be used for this
task. The first step is to derive latent variables that can be used to construct synthetic volatility surfaces
that are indistinguishable from those observed historically. The second step is to determine the synthetic
surface generated by the latent variables that fits available data as closely as possible. The synthetic
surfaces produced in the first step can also be used in stress testing, in market simulators for developing
quantitative investment strategies, and for the valuation of exotic options. We illustrate our procedure
using foreign exchange market data.
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Variational Autoencoders:
A Hands-Off Approach to Volatility

1. Introduction

The famous Black and Scholes (1973) formula does not provide a perfect model for pricing options,
but it has been very influential in the way traders manage portfolios of options and communicate
prices. The formula has the attractive property that it involves only one unobservable variable:
volatility. As a result, there is a one-to-one correspondence between the volatility substituted into
Black-Scholes and the option price. The volatility that is consistent with the price of an option
is known as its implied volatility. Traders frequently communicate prices in the form of implied
volatilities. This is convenient because implied volatilities tend to be less variable than the prices
themselves.

A volatility surface shows the implied volatility of an option as a function of its strike price and
time to maturity. If the Black-Scholes formula provided a perfect description of prices in the market,
the volatility surface for an asset would be flat (i.e., implied volatilities would be the same for all
strike prices and maturities) and never change. However, in practice, volatility surfaces exhibit a
variety of different shapes and vary through time.

Traders monitor implied volatilities carefully and use them to provide quotes and value their
portfolios. When transactions for many different strike prices and maturities are available on a
particular day, there is very little uncertainty about the volatility surface. However, in situations
where only a few points on the surface can be reliably obtained, it is necessary to develop a way of
estimating the rest of the surface. We refer to this problem as “completing the volatility surface”.

Black–Scholes assumes that the asset price follows geometric Brownian motion. This leads to
a lognormal distribution for the future asset price. Many other more sophisticated models have
been suggested in the literature in an attempt to fit market prices more accurately. Some, such
as Heston (1993), assume that the volatility is stochastic. Others, such as Merton (1976), assume
that a diffusion process for the underlying asset is overlaid with jumps. Bates (1996) incorporates
both stochastic volatility and jumps. Madan et al. (1998) propose a “variance-gamma” model
where there are only jumps. Recently, rough volatility models have been proposed by authors such
as Gatheral et al. (2014). In these, volatility follows a non-Markovian process. One approach to
completing the volatility surface is to assume one of these models and fit its parameters to the
known points as closely as possible.

Parametric models are another way to complete volatility surfaces. The popular stochastic volatil-
ity inspired representation (Gatheral 2004), as well as its time dependent extension (Gatheral and
Jacquier 2013), characterizes the geometry of surfaces directly through each of its parameters.
Compared to stochastic volatility models, parameteric representations are easier to calibrate and
provide better fits to empirical data.

We propose an alternative deep learning approach using variational autoencoders (VAEs). The
advantage of the approach is that it makes no assumptions about the process driving the underly-
ing asset or the shape of the surface. The VAE is trained on historical data from multiple assets to
provide a way in which realistic volatility surfaces can be generated from a small number of param-
eters. A volatility surface can then be completed by choosing values for the parameters that fit the
known points as closely as possible. VAEs also make it possible to generate synthetic-yet-realistic
surfaces, which can be used for other tasks such as stress testing and in market simulators for
developing quantitative investment strategies. We illustrate our approach using data from foreign
exchange markets.

Deep learning techniques are becoming widely used in the field of mathematical finance. Fer-
guson and Green (2018) pioneered the use of neural networks for pricing exotic options. Several
researchers, such as Hernandez (2016), Horvath et al. (2019), and Bayer et al. (2019) have used
deep learning to calibrate models to market data. One advantage of these approaches is that, once
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computational time has been invested upfront in developing the model, valuations can be pro-
duced quickly. Our application of VAEs shares this advantage, but also aims to empirically learn
a parameterization of volatility surfaces.

Some research uses deep learning to model volatility surfaces directly. Ackerer et al. (2020) pro-
pose an approach where volatility is assumed to be a product of an existing model and a neural
network. Chataigner et al. (2020) use neural networks to model local volatility using constraints
inspired by existing models. A potential disadvantage of these approaches is that they train the
neural network on each surface individually, which can be costly and impractical for real-time infer-
ence. Chataigner et al. (2021) use deterministic autoencoders to compress and complete individual
volatility surfaces, amortizing training over multiple surfaces. In contrast to their approach, we
encode the space of volatility surfaces as a distribution taking full advantage of the regularization
offered by stochasticity in variational autoencoders

We conclude this introduction with a brief outline of the paper. Section 2 introduces variational
autoencoders. Section 3 describes how variational autoencoders can be applied to volatility surfaces.
Section 4 presents experimental results. Finally, conclusions are presented in Section 5.

2. Variational Autoencoders

The architecture of a vanilla neural network is illustrated in figure 1. There are series of hidden
layers between the inputs (which form the input layer) and the outputs (which form the output
layer). The value at each neuron of a layer (except the input layer) is F (c + wvT ) where F is a
nonlinear activation function, c is a constant, w is a vector of weights and v is a vector of the
values at the neurons of the immediately preceding layer. Popular activation functions are the
rectified linear unit (F (x) = max(x, 0)) and the sigmoid function (F (x) = 1/(1 + e−x)). The
network’s parameters, c and w, are in general different for each neuron. A training set consisting
of inputs and outputs is provided to the network and parameter values are chosen so that the
network determines outputs from inputs as accurately as possible. Further details are provided by
Goodfellow et al. (2017).

An autoencoder is a special type of neural network where the output layer is the same as the
input layer. The objective is to determine a small number of latent variables that are capable of
reproducing the inputs as accurately as possible. The architecture is illustrated in figure 2. The
encoding function, E, consists of a number of layers that produce a vector of latent variables, z,
from the vector of inputs, x. The decoder function, D, attempts to reproduce the inputs from z. In
the simple example in figure 2, there are five input variables. These are reduced to two variables
by the encoder and the decoder attempts to reconstruct the original five variables from the latent
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Latent Encoding
z

Encoder E(x) Decoder D(z)

Figure 2. An autoencoder can be split into encoder and decoder networks. Note that the dimensionality of the latent
encoding is typically smaller than the original input dimension.

variables. The parameters of the neural network are chosen to minimize the difference between
D(z) and x. Specifically, we choose the network’s parameters to minimize the reconstruction error
(RE):

RE =
1

M

M∑
i=1

(xi − yi)2 (1)

where M is the dimensionality for the input and output, xi is the ith input value and yi is the
ith output value obtained by the decoder. Principal component analysis (PCA) is an alternative
approach to dimensionality reduction, and can be regarded as the use of an autoencoder with linear
activation functions.1

A useful extension of autoencoders is the Variational Autoencoder (VAE), which was introduced
by Kingma and Welling (2014). As its name suggests, the VAE is closely linked to variational
inference methods in statistics, which aim to approximate intractable probability distributions.
Rather than producing latent variables in a deterministic manner, the latent variable is sampled
from a distribution that is parameterized by the encoder. By sampling from the distribution,
synthetic data similar to the input data can be generated. A useful prior distribution for the
latent variables is a multivariate normal distribution, N (0, I), where the variables are uncorrelated
with mean zero and standard deviation one. This is what we will use in what follows. Contrary
to deterministic autoencoders, there are now two parts to the objective function which is to be
minimized. The first part is the loss function in equation (1). The second part is the Kullback-
Leibler (KL) divergence between the parameterized distribution and N (0, I). That is:

KL =
1

2

d∑
k=1

(−1− log σ2k + σ2k + µ2k) (2)

where µk and σk are the mean and standard deviation of the kth latent variable. The objective
function is:

RE + βKL (3)

1Avellaneda et al (2020) provides a recent application of PCA to volatility surface changes.
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where β is a hyperparameter that tunes the strength of the regularization provided by KL. Note
that in the limiting case where β goes to 0, the VAE behaves like a deterministic autoencoder.
The reason for introducing the KL divergence term in the loss function is to encourage the model
to encode a distribution that is as close to normal as possible. This helps ensure stability during
training and tractability during inference.

3. Application for Volatility Surfaces

3.1. Implied Volatility Surfaces

We now show how VAEs can be applied to volatility surfaces. As mentioned earlier, a volatility
surface is a function of the strike price and time to maturity, where the implied volatilities are
obtained by inverting Black-Scholes on observed prices.

For a European call option with strike K ≥ 0, and time to maturity T > 0, let S denote the
current price of the underlying asset, and let r denote the (constant) risk-free rate. Let Cmkt(K,T )
denote the market price of this option, and let CBS be the price of this option as predicted by the
Black-Scholes formula (Black and Scholes 1973). The implied volatility σ(K,T ) ≥ 0 is implicitly
defined by:

Cmkt(K,T ) = CBS (S,K, T, r, σ(K,T )) , (4)

which can be solved using a root-finding method.
The moneyness of an option is a measure of the extent to which the option is likely to be exercised.

A moneyness measure providing equivalent information to the strike price usually replaces the
strike price in the definition of the volatility surface. One common moneyness measure is the ratio
of strike price to asset price, K/S. Another is the delta of the option, ∆. The delta is the partial
derivative of the option price with respect to the asset price.1 Intuitively, the delta approximates
the probability that an option expires in-the-money. For a call option on an asset this varies from
zero for a deep out-of-the-money option (high strike price) to one for a deep in-the-money option
(low strike price). As per convention, we present results on foreign exchange rates using delta as a
measure of moneyness.

Both the level of volatilities and the shape of the surface tends to change through time. However,
implied volatility surfaces do not come in completely arbitrary shapes. Indeed, there are several
restrictions on their geometry arising from the absence of (static) arbitrage, that is, the existence of
a trading strategy providing instantaneous risk-free profit. Lucic (2019) provides a good discussion
of approaches that can be used to understand such constraints.2

3.2. Network Architecture

Inspired by Bayer et al. (2019), we considered two methods for modelling volatility surfaces: the
grid-based approach, and the pointwise approach. Figure 3 provides an illustration of the differences
between these approaches. In both approaches, the input to the encoder is a volatility surface,
sampled at N prespecified grid points, which is then flattened into a vector, as shown in figure 3(a).
Figure 3(b) illustrates the grid-based approach, which follows the same architecture as traditional
VAEs, where the decoder uses a d-dimensional latent variable to reconstruct the original grid
points. Finally, the pointwise approach, as shown in figure 3(c), is an alternative architecture where
the option parameters (moneyness and maturity) are explicitly defined inputs to the decoder.
Concretely, the input for the pointwise decoder is a single option’s parameters and the latent

1The partial derivative is calculated using the Black-Scholes model with volatility set equal to the implied volatility.
2For convenience, we also include the conditions that we use to check for static arbitrage in Appendix A.
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(a) The encoder architecture for a deterministic autoencoder. For a variational autoencoder the output

is the mean and standard deviation of z.
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(b) The decoder architecture for the grid-based training approach.
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(c) The decoder architecture for the pointwise training approach.

Figure 3. An illustration of the grid-based and pointwise architectures.

variable for the entire surface, and the output is a single point on the volatility surface. We can
then use batch inference to output all points on the volatility surface in a single forward pass.

While Bayer et al. opt to use the grid-based approach for their application, we choose the point-
wise approach for greater expressivity. The pointwise approach has the advantage that interpolation
is performed entirely by neural networks and therefore the derivatives with respect to option pa-
rameters (the “Greeks”) can be calculated precisely and efficiently using backpropagation. This is
not true for the grid-based approach, where derivatives need to be approximated.

Throughout our investigation, we find that VAEs interpolated volatility surfaces quite well even
in environments with limited data. However, as usual, if more data is available it should be used
since it can improve results. We also experimented with VAEs that were penalized for constructing
surfaces that exhibited arbitrage. Nevertheless, we find that this did not significantly improve
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results, as the majority of surfaces produced by our VAEs did not exhibit arbitrage. This is not
surprising in light of the fact that the market volatility surfaces we used as training data were
arbitrage-free to begin with. For further details, we refer the reader to Appendix A.

3.3. Use Cases

Once the VAE has been trained, the network’s parameters can be fixed and used for inference
tasks. During the calibration procedure, the goal is to identify the latent variables such that the
outputs of the decoder match the market data as closely as possible. There are two methods for
calibration. One method is to use the encoder to infer the latent variables corresponding to market
data. This requires only a single pass through the network, making it the preferred choice when
data is available. In the case where data is sparse, the alternative is to use the decoder in isolation,
minimizing the reconstruction loss using an optimizer such as LFBGS (Zhu et al. 1997).

After the latent variables have been calibrated, the VAE can be used to infer unobserved option
prices. The latent variables are simply decoded to obtain a fully interpolated surface. Although
we focus on the use of VAEs for completing volatility surfaces, there are several other notable
applications. In lieu of PCA, VAEs can be used for efficient non-linear dimensionality reduction
and analysis of the dynamics of volatility surfaces. Additionally, the model can be used to generate
synthetic-yet-realistic volatility surfaces which can be used in stress tests, or for inputs to other
analyses such as the valuation of exotic options.

4. Experimental Results

4.1. Methodology

To test our methodology, we use over-the-counter option data from 2012–2020 for the

AUD/USD, USD/CAD, EUR/USD, GBP/USD and USD/MXN

currency pairs, provided by Exchange Data International. We work with a prespecified grid con-
sisting of 40 points: eight times to maturity (one week, one month, two months, three months,
six months, nine months, one year and three years) and five different deltas (0.1, 0.25, 0.5, 0.75,
and 0.9). As prices are quoted for at-the-money, butterfly, and risk-reversal options, we use the
equations provided in Reiswich and Wystup (2012) to obtain the implied volatilities for the call
options (for further details refer to Clark (2010)).

The dataset is partitioned into a training set, which is used to train the VAE, and a validation set,
which is used to evaluate performance. The partitions are split chronologically to prevent leakage
of information. We use 15% of available data as the validation set, which contains data from March
2020 – December 2020.

We find that the choice of network architecture makes a marginal difference to the results so we
choose to use two hidden layers in the encoder and decoder, with 32 units in each layer. We leave
the latent dimension (i.e., the dimension of the encoder output) to be a variable in our experiments.
To train our model, we minimize the objective function in equation (3) using the Adam optimizer
from Kingma and Ba (2017). With an exponential number of hyperparameter combinations, we
use a random grid search to identify suitable hyperparameter choices to optimally balance the
reconstruction loss and KL divergence to ensure continuity in latent space.

4.2. Completing Volatility Surfaces

To evaluate the model’s ability to complete volatility surfaces, we randomly sample a subset of
all options observed on a given day, and assume that these provide the only known points on the
volatility surface. We then use these points to calibrate our model. Rather than calibrating the
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Table 1. The mean absolute error across the AUD/USD validation set for inferring volatility surfaces when given
partial observations. Each row contains a trained model with a different number of latent dimensions. Models are

trained using only AUD/USD volatility surfaces. Units are in basis points.

Assumed Number of Known Points on Volatility Surface
Latent
Dimensions 5 10 15 20 25 30 35 40

2 87.2 77.7 75.9 74.5 73.1 73.0 72.9 72.7
3 77.2 66.4 62.4 60.0 59.0 58.0 57.5 57.2
4 73.2 57.8 53.7 50.1 48.5 47.0 46.9 46.5

Table 2. The mean absolute error across the AUD/USD validation set for inferring volatility surfaces when given
partial observations. Each row contains a trained model with a different number of latent dimensions. Models are

trained using all available currency pairs. Units are in basis points.

Assumed Number of Known Points on Volatility Surface
Latent
Dimensions 5 10 15 20 25 30 35 40

2 107.6 82.5 71.4 64.2 63.9 63.5 63.5 63.3
3 75.9 53.8 49.8 48.2 47.0 46.6 46.5 46.3
4 61.1 41.5 37.7 35.9 34.7 34.2 34.1 33.6

latent variables deterministically, we use a stochastic algorithm that minimizes equation (3) to
approximate the distribution of the latent variable conditioned on the partially observed surface.
By doing so, we are able to recover a distribution of volatility surfaces. Finally, we compare the
average of the volatility surfaces to all 40 option prices. We vary the number of sample points and
the number of latent dimensions in the trained VAEs to see how our model performs in various
conditions.

Initially, we trained VAEs on volatility surfaces from single currency pairs. However, we find
that training models using data from multiple currencies yielded more robust models through
transfer learning. Table 1 shows the mean absolute error when the models are trained using only
the AUD/USD data, while table 2 shows the mean absolute errors when VAEs are trained using
volatility surfaces from all six currency pairs. It can be seen that in the majority of cases better
results are achieved by training the model on all six currency pairs. This illustrates the existence of
universal principles constraining the dynamics of volatility surfaces across different currency pairs.

To compare our results to a traditional volatility model with a similar number of parameters,
we perform calibration using Heston. The mean absolute error for each currency in the validation
set is shown in table 3, where we compare Heston to our best performing model from table 2. In
addition to outperforming Heston in reconstructing volatility surfaces, there are some additional
practical benefits from using VAEs. A primary advantage of using the VAE is that it predicts
prices significantly faster, which makes calibration much more efficient. Another advantage is that
regularization during training encourages the latent space to be continuous, i.e., small perturbations
in latent space result in small perturbations in the volatility surface. This is not true for a model such
as Heston, as the inverse map from market prices to model parameters can be multivalued. Finally
we highlight the flexibility of our approach. When extreme market conditions are encountered, a

Table 3. Mean absolute error when calibrating using Heston and a four-dimensional VAE. All 40 points of the
volatility surface are observed for calibration. Units are in basis points.

Currency Pair Heston VAE

AUD/USD 56.6 33.6
USD/CAD 35.3 32.5
EUR/USD 32.2 30.9
GBP/USD 47.6 34.0
USD/JPY 58.5 38.2
USD/MXN 92.2 56.7
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Figure 4. The error distributions across the AUD/USD validation set when inferring volatility surfaces given partial
observations using a four-dimensional VAE. The red line represents the mean bid-ask spread across all liquid options.
Units are in basis points.

VAE can easily be retrained. In our experience, this can be done in only a few minutes using over
10,000 surfaces.

To supplement our findings, we also examine the distributions of errors. To isolate the most
important options, we restrict our attention to prices whose bid-ask spread is smaller than the 90%
quantile of the spreads for the given currency. The distribution of errors when inferring incomplete
AUD/USD surfaces is presented in figure 4.

While the majority of the predictions are within the mean bid-ask spread, we examine how
the model performs with the outliers in our dataset. We find that the errors come from surfaces
with extremely high levels of volatility. For example, figure 5(a) shows the interpolation of the
AUD/USD volatility surface on March 24, 2020, the worst performing surface in our dataset. To
test our model under realistic settings, we randomly sample 10 (of 40) points that are assumed to
be observed, where the delta is between 0.25 and 0.75, and the time to expiry is less than one year.
We note that this model was never trained on markets in crisis conditions, but can still provide
reasonable estimates for the options expiring within a year. For comparison, we also show how our
model performs in typical market conditions in figure 5(b).

To investigate where our model performs the best, we calculate the mean absolute error for
individual grid points. We find that options close to expiry have the greatest error. This is not
surprising as these options, particularly when they are close to the money, exhibit the most volatile
prices. We note that our models were trained using an equal weighting of all options, however
practitioners can easily alter the weights to suit their requirements.

As mentioned, VAEs can be useful for generating synthetic volatility surfaces (e.g. for stress
testing a portfolio) as well as for completing partially observed surfaces. A straightforward approach
is to sample random points in latent space and use the decoder to construct volatility surfaces. To
show that this would yield a variety of volatility surfaces, we interpolate between points in latent
space and construct the corresponding surface. This is illustrated in the case of a two-dimensional
VAE in figure 6. While, in general, interpreting the latent dimensions of a VAE is a non-trivial
task, we can observe how the direction of skew and the term structure of volatility varies across
both dimensions. A rich variety of volatility surface patterns are obtained.
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(a) The AUD/USD volatility surface on March 24, 2020 - the worst performing surface in our dataset.

(b) The AUD/USD volatility surface on March 2, 2020 - a typical surface from our dataset.

Figure 5. Examples of volatility surfaces interpolated using a four dimensional VAE. The red and blue points
represent the bid and ask volatility. The predicted surface is inferred by observing only 10 (of 40) liquid mid point
prices, represented by the black points. The shaded area represents the 90% confidence interval after decoding multiple
samples from latent space.
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Figure 6. Examples of synthetic volatility surfaces generated when interpolating across two latent dimensions.

We may wish to observe the behavior of volatility surfaces in specific scenarios. Figure 7 shows
the encoded latent variables for the volatility surfaces in the validation set. While the majority
of the points are clustered near the origin, we notice many outliers which correspond to volatility
surfaces observed at the beginning of the international pandemic in March 2020. By sampling and
decoding latent variables in these outlying regions, we can simulate extreme scenarios that may
occur.

5. Conclusion

Our results demonstrate that VAEs provide a useful approach to analyzing volatility surfaces
empirically. We have described how a VAE can be trained, and used the context of foreign exchange
markets as a realistic testing ground. Our results show that volatility surfaces can be captured using
VAEs with as few as two latent dimensions and that the resulting models can be used for practical
and exploratory purposes. For the sake of concreteness, we limited the scope of this paper to VAEs
with Gaussian priors. Future work could determine if a VAE model with non-Gaussian priors is
able to learn an even wider range of market behaviors while retaining the stability of our model.
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Figure 7. Latent encodings of implied volatility surfaces (colour coded)
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Appendix A: Arbitrage Conditions

Following Gatheral and Jacquier (2013), we can specify static arbitrage conditions as follows: Let
Ft denote the forward price at time t and X = log K

Ft
. Define w(X, t) = t · σ2(X, t) as the total

implied variance surface. An IVS is free of calendar arbitrage if

∂w

∂t
≥ 0. (A1)

Let w′ = ∂w
∂X and w′′ = ∂2w

∂X2 . Suppressing the arguments for w(X, t), the volatility surface is free of
butterfly arbitrage if

g(X, t) :=
(

1− Xw′

2w

)2
− w′

4

( 1

w
+

1

4

)
+
w′′

2
≥ 0. (A2)

A volatility surface is said to be free of static arbitrage if the conditions in equations (A1) and (A2).
If we let

Lcal =

∥∥∥∥max
(

0,−∂w
∂t

)∥∥∥∥2 , (A3)

and

Lbut = ‖max(0,−g)‖2 , (A4)

the loss function in equation (3) can then be extended as follows:

RE + βKL + λcalLcal + λbutLbut. (A5)

As the parameters λcal and λbut are increased, the possibility of static arbitrage is reduced.
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