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Properties of Ho—Lee and Hull-White Interest Rate Models

This note presents some of the math underlying the Ho—Lee and Hull-White one-factor
models of the term structure. It follows the approach in Hull and White (1993).1

In a one-factor term structure, model the process for a zero-coupon bond price in the
traditional risk-neutral world must have a return equal to the short rate . Suppose that
v(t,T) is the volatility. Then:

dP(t,T) =rP(t,T)dt +v(t,T)P(t,T)dz (1)
In this note, we will assume that v is a function only of t and T". Because the bond’s price

volatility declines to zero at maturity v(¢,¢) = 0.
From Ito’s lemma, for any times 77 and T with Ty > T}

dln P(t,Ty) = —r - U(t’TTl)Q— dt +v(t, Ty)d=(t) (2)
dln P(t,T) = _r — MLTW dt +v(t, Tz)dz(t) (3)

Define f(t,T1,T5) as the forward rate for the period between time 77 and T, as seen at

time ¢
1IlP(t,T2) —lnP(t,Tl)

t,17,1Ty) =
f(717 2) TQ—Tl

From equations (2) and (3)

_ v, T2)? = o(t, Th)? (t, Tp) — (¢, Th)
df(t,Tl,Tg) = Q(Tg _ Tl) :| dt — |: Tg _ T1 dZ(t)
Define R(t,T) as the zero rate for the period between ¢ and 7.
T
R(t,T) = f(0,t,T) +/ df (r,t,T)
0
so that
B "To(r, T)? — (T, t)? To(r, T) — v(r,t)
R(t,T)—f(O,t,T)-I-/O { 2T —1) } dT—/O { 3 } dz(t)  (4)
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1 See J. Hull and A. White , “Bond Option Pricing Based on a Model for the Evolution
of Bond Prices,” Advances in Futures and Options Research, 6 (1993), 1-13.



As T approaches t, R(t,T) becomes r(t) and f(0,¢,7T) becomes the instantaneous forward
rate, F'(0,t) so that

r(t):F(O,t)—l— 875 2 d —/ —uv(7,t)dz(T)

r(t) = F(0,t) +/O v(T, t)ve (T, t)dT—/O v (7, t)dz(T) (5)

where subscripts denote partial derivatives. To calculate the process for r we differentiate
with respect to t. Because v(t,t) = 0, this gives

dr = {Ft(O,t) + ; [o(T, t) v (T, 1) + v (7, )7 ]dT — /0 Vet (T, t)dz(T)} dt — vy (7, 1) |r=¢dz(t)

(6)
Case 1: Ho—Lee; v(t,T) = o(T —t)
In the case, equation (5) gives
¢
r(t) = F(0,t) + o*t?/2 — / odz(T) (7)
0
and equation (6) gives
dr(t) = [F3(0,t) + ot]dt + o dz
This is the Ho-Lee model
dr =0(t)dt + odz
We have proved the equation for 6(t)
0(t) = Fy(0,t) + ot
Also from equation (4)
¢
R(t,T) = f(0,t,T) + c*tT/2 — / o dz(T) (8)
0

From equations (7) and (8)
R(t,T) = f(0,t,T)+c*tT/24+r(t)—F(0,t)—c*t? /2 = £(0,t,T)—F(0,t)+c*t(T—t) /247 (t)

Because
InP(t,T) = —R(t, T)(T —t)

It follows that
InP(t,T) = —f(0,t,T)(T —t) 4+ F(0,t)(T —t) — o*t(T — t)*/2 — r(t)(T — 1)
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The forward bond price P(0,T)/P(0,t) equals e=f (041N (T=t) 5o that this becomes

P(0,T)
P(0,1)

InP(t,T) = In + F(0,t)(T —t) — o*t(T — t)*/2 — r(t)(T — 1)

This proves:
P(t,T) = A(t,T)e "O(T=1)
where
P(0,T)

In A(t.T) = In i + PO 1) - %J%(T 42

Case 2: Hull-White; v(t,T) = o(1 — e~T=%)/q

In this case, equation (5) gives

o’ —at o’ —2at ! —a(t—T)
r(t):F(O,t)—F?(l—e )—ﬁ(l—e ) — i oe dz(T)
Equation (6) gives
o? t
dr(t) = {Ft(O,t) + — (7 — e720) +/ aae_“(t_T)dz(T)} dt — o dz(t)
a 0

Substituting for
t
/ e =T dx(7)
0

from equation (9) into equation (10) we obtain

dr(t) = {Ft(o,t) + %2 :

or

dr(t) = {Ft(O, t)+aF(0,t) —ar(t) + 3—2(1 - e_QQt)} dt — o dz(t)

a

This is the Hull-White model
dr(t) = (0(t) —ar)dt +odz
with

2

0(t) = F,(0,1) + aF(0,t) + ;’—au _ e 2at)

From equation (4)

R(t,T) = f(0,t,T) +

(10)

(e = e7>") —ar(t) + aF(0,6) + (1 —e ") - g—2<1 - 6‘2‘”)} dt—o dz(t>|

o2 [e—2a(T—t) —e—2aT _ 1 + e—2at _ 46—a(T—t) + 4e—aT 4 4e—at]

1a3(T — 1)



O.(efaT _ efat) t ur
+ o(T = 1) /0 e’ dz(T) (11)

From equation (9)

2 2

§<€at _ 1) _ _(eat _ e—at)

t
U/ e’ dz(1) = —r(t)e™ + F(0,t)e™ + U
0
so that

RULT) = f(0,4,7) + Tl e — 1 e = de=a(T=8) 4 ge=oT 4 4 — 4e=0t]

1a3(T — 1)
(e—aT B e—at) at at 02 at 02 at —at
+ o(T = 1) —r(t)e* + F(0,t)e* + ?(e —-1)— ﬁ(e —e )

Now
InP(t,T) = —R(t, T)(T —t)

and the forward bond price P(0,T)/P(0,t) equals e~ f(O:tT)(T=1)  After some tedious
algebra we get

PO, T 1
InP(t,T) =1In P(?(’) t) + F(0,t)B(t,T) — @02((;” — e M2(e2 — 1) —r(t)B(t,T)
where ()
1 Tt
B.1) = =)
a
showing that
P(t,T) = A(t,T)e” B&D)
where
P(0,T) 1 —a —a a
lIlA(t,T) ZIHW—FF(O,IJ;)B(@T)—EUQ(@ T—6 t)2(€2 t—l)



Bond Options

Consider a European option with strike price K and maturity 7" on a zero-coupon
bond where the maturity of the bond is s. The forward price of the bond underlying the
option as seen at time ¢, Fp(t,T, s), is

FB(t,T, 8) =

Using the results in equations (2) and (3) we get

v(t, T)? —v(t,s)?

dln Fp(t,T,s) = 5

dt + [v(t,s) —v(t,T)] dz

This shows that the P(T,s) = fg(T,T,s) is lognormal when v(t,T") is function only of ¢
and T. The variance In P(T), s) is then

0% = /0 [v(t,s) — v(t, T)]dt

In the case of Ho-Lee v(t,T) = o(T —t) and 0% = o0?(s — T)?>T. In Hull-White
v(t,T) = oB(t,T) so that

2

T
o2 = o? / [B(t,s) — B(t,T)]>dt = 2"—3[1 — ema(s=D2(] _ g2aT)
0 a

In both cases bond options can be valued using Black’s model. The average variance rate
of the forward bond price is 0% /T. This leads to the results for bond options in the text.



