Technical Note No. 30* Options, Futures, and Other Derivatives John Hull

The Return for a Security Dependent on Multiple sources of Uncertainty

In this Note we prove a result relating the excess return to market prices of risk when there are multiple sources of uncertainty.

Suppose there are n stochastic variables following Wiener processes. Consider $n+1$ traded securities whose prices depend on some or all of the n stochastic variables. Define f_{j} as the price of the j th security $(1 \leq j \leq n+1)$. We assume that no dividends or other income is paid by the $n+1$ traded securities. ${ }^{1}$ It follows from Ito's lemma in Technical Note 29 that the securities follow processes of the form

$$
\begin{equation*}
d f_{j}=\mu_{j} f_{j} d t+\sum_{i=1}^{n} \sigma_{i j} f_{j} d z_{i} \tag{1}
\end{equation*}
$$

Since there are $n+1$ traded securities and n Wiener processes, it is possible to form an instantaneously riskless portfolio, Π, using the securities. Define k_{j} as the amount of the j th security in the portfolio, so that

$$
\begin{equation*}
\Pi=\sum_{j=1}^{n+1} k_{j} f_{j} \tag{2}
\end{equation*}
$$

The k_{j} must be chosen so that the stochastic components of the returns from the securities are eliminated. From equation (1) this means that

$$
\begin{equation*}
\sum_{j=1}^{n+1} k_{j} \sigma_{i j} f_{j}=0 \tag{3}
\end{equation*}
$$

for $1 \leq i \leq n$. The return from the portfolio is then given by

$$
d \Pi=\sum_{j=1}^{n+1} k_{j} \mu_{j} f_{j} d t
$$

The cost of setting up the portfolio is

$$
\sum_{j=1}^{n+1} k_{j} f_{j}
$$

* ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.
${ }^{1}$ This is not restrictive. A non-dividend-paying security can always be obtained from a dividend-paying security by reinvesting the dividends in the security.

If there are no arbitrage opportunities, the portfolio must earn the risk-free interest rate, so that

$$
\begin{equation*}
\sum_{j=1}^{n+1} k_{j} \mu_{j} f_{j}=r \sum_{j=1}^{n+1} k_{j} f_{j} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{j=1}^{n+1} k_{j} f_{j}\left(\mu_{j}-r\right)=0 \tag{5}
\end{equation*}
$$

Equations (3) and (5) can be regarded as $n+1$ homogeneous linear equations in the k_{j} 's. The k_{j} 's are not all zero. From a well-known theorem in linear algebra, equations (3) and (5) can be consistent only if for all j

$$
\begin{equation*}
f_{j}\left(\mu_{j}-r\right)=\sum_{i=1}^{n} \lambda_{i} \sigma_{i j} f_{j} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\mu_{j}-r=\sum_{i=1}^{n} \lambda_{i} \sigma_{i j} \tag{7}
\end{equation*}
$$

for some $\lambda_{i}(1 \leq i \leq n)$ that are dependent only on the state variables and time. Dropping the j subscript, this show that for any security f dependent on the n stochastic variables

$$
d f=\mu f d t+\sum_{i=1}^{n} \sigma_{i} f d z_{i}
$$

where

$$
\mu-r=\sum_{i=1}^{n} \lambda_{i} \sigma_{i}
$$

This proves the required result.

