Technical Note No. 29* Options, Futures, and Other Derivatives John Hull

Proof of Extensions to Ito's Lemma

Options, Futures and Other Derivatives proves Ito's lemma for a function of a single stochastic variable. Here we present a generalized version of Ito's lemma for the situation where there are several sources of uncertainty.

Suppose that a function, f, depends on the n variables x_1, x_2, \ldots, x_n and time, t. Suppose further that x_i follows an Ito process with instantaneous drift a_i and instantaneous variance b_i^2 $(1 \le i \le n)$, that is,

$$dx_i = a_i \, dt + b_i \, dz_i \tag{1}$$

where dz_i is a Wiener process $(1 \le i \le n)$. Each a_i and b_i may be any function of all the x_i 's and t. A Taylor series expansion of Δf gives

$$\Delta f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \Delta x_i + \frac{\partial f}{\partial t} \Delta t + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} \Delta x_i \Delta x_j + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i \partial t} \Delta x_i \Delta t + \cdots$$
(2)

Equation (1) can be discretized as

$$\Delta x_i = a_i \,\Delta t + b_i \epsilon_i \,\sqrt{\Delta t}$$

where ϵ_i is a random sample from a standardized normal distribution. The correlation, ρ_{ij} , between dz_i and dz_j is defined as the correlation between ϵ_i and ϵ_j . In the book's proof of Ito's lemma when there is only one stochastic variable it was argued that

$$\lim_{\Delta t \to 0} \Delta x_i^2 = b_i^2 \, dt$$

Similarly,

$$\lim_{\Delta t \to 0} \Delta x_i \, \Delta x_j = b_i b_j \rho_{ij} \, dt$$

As $\Delta t \to 0$, the first three terms in the expansion of Δf in equation (2) are of order Δt . All other terms are of higher order. Hence

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i + \frac{\partial f}{\partial t} dt + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} b_i b_j \rho_{ij} dt$$

This is the generalized version of Ito's lemma. Substituting for dx_i from equation (1) gives

$$df = \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} a_i + \frac{\partial f}{\partial t} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} b_i b_j \rho_{ij}\right) dt + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} b_i dz_i \tag{3}$$

* ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.

For an alternative generalization of Ito's lemma suppose that f depends on a single variable x and that the process for x involves more than one Wiener process:

$$dx = a \, dt + \sum_{i=1}^{m} b_i \, dz_i$$

In this case

$$\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \Delta x^2 + \frac{1}{2} \frac{\partial^2 f}{\partial x \partial t} \Delta x \Delta t + \cdots$$
$$\Delta x = a \Delta t + \sum_{i=1}^m b_i \epsilon_i \sqrt{\Delta t}$$

and

$$\lim_{\Delta t \to 0} \Delta x_i^2 = \sum_{i=1}^m \sum_{j=1}^m b_i b_j \rho_{ij} \, dt$$

where as before ρ_{ij} is the correlation between dz_i and dz_j . This leads to

$$df = \left(\frac{\partial f}{\partial x}a + \frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}\sum_{i=1}^m\sum_{j=1}^m b_i b_j \rho_{ij}\right)dt + \frac{\partial f}{\partial x}\sum_{i=1}^m b_i dz_i \tag{4}$$

Finally consider the more general case where f depends on variables x_i $(1 \le i \le n)$ and

$$dx_i = a_i \, dt + \sum_{k=1}^m b_{ik} dz_k$$

A similar analysis shows that

$$df = \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} a_i + \frac{\partial f}{\partial t} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} \sum_{k=1}^{m} \sum_{l=1}^{m} b_{ik} b_{jl} \rho_{kl}\right) dt + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \sum_{k=1}^{m} b_{ik} dz_k$$
(5)