Technical Note No. 29*

Options, Futures, and Other Derivatives John Hull

Proof of Extensions to Ito's Lemma

Options, Futures and Other Derivatives proves Ito's lemma for a function of a single stochastic variable. Here we present a generalized version of Ito's lemma for the situation where there are several sources of uncertainty.

Suppose that a function, f, depends on the n variables $x_{1}, x_{2}, \ldots, x_{n}$ and time, t. Suppose further that x_{i} follows an Ito process with instantaneous drift a_{i} and instantaneous variance $b_{i}^{2}(1 \leq i \leq n)$, that is,

$$
\begin{equation*}
d x_{i}=a_{i} d t+b_{i} d z_{i} \tag{1}
\end{equation*}
$$

where $d z_{i}$ is a Wiener process $(1 \leq i \leq n)$. Each a_{i} and b_{i} may be any function of all the x_{i} 's and t. A Taylor series expansion of Δf gives

$$
\begin{equation*}
\Delta f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \Delta x_{i}+\frac{\partial f}{\partial t} \Delta t+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \Delta x_{i} \Delta x_{j}+\frac{1}{2} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial t} \Delta x_{i} \Delta t+\cdots \tag{2}
\end{equation*}
$$

Equation (1) can be discretized as

$$
\Delta x_{i}=a_{i} \Delta t+b_{i} \epsilon_{i} \sqrt{\Delta t}
$$

where ϵ_{i} is a random sample from a standardized normal distribution. The correlation, $\rho_{i j}$, between $d z_{i}$ and $d z_{j}$ is defined as the correlation between ϵ_{i} and ϵ_{j}. In the book's proof of Ito's lemma when there is only one stochastic variable it was argued that

$$
\lim _{\Delta t \rightarrow 0} \Delta x_{i}^{2}=b_{i}^{2} d t
$$

Similarly,

$$
\lim _{\Delta t \rightarrow 0} \Delta x_{i} \Delta x_{j}=b_{i} b_{j} \rho_{i j} d t
$$

As $\Delta t \rightarrow 0$, the first three terms in the expansion of Δf in equation (2) are of order Δt. All other terms are of higher order. Hence

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}+\frac{\partial f}{\partial t} d t+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} b_{i} b_{j} \rho_{i j} d t
$$

This is the generalized version of Ito's lemma. Substituting for $d x_{i}$ from equation (1) gives

$$
\begin{equation*}
d f=\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} a_{i}+\frac{\partial f}{\partial t}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} b_{i} b_{j} \rho_{i j}\right) d t+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} b_{i} d z_{i} \tag{3}
\end{equation*}
$$

[^0]For an alternative generalization of Ito's lemma suppose that f depends on a single variable x and that the process for x involves more than one Wiener process:

$$
d x=a d t+\sum_{i=1}^{m} b_{i} d z_{i}
$$

In this case

$$
\begin{gathered}
\Delta f=\frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial t} \Delta t+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} \Delta x^{2}+\frac{1}{2} \frac{\partial^{2} f}{\partial x \partial t} \Delta x \Delta t+\cdots \\
\Delta x=a \Delta t+\sum_{i=1}^{m} b_{i} \epsilon_{i} \sqrt{\Delta t}
\end{gathered}
$$

and

$$
\lim _{\Delta t \rightarrow 0} \Delta x_{i}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{m} b_{i} b_{j} \rho_{i j} d t
$$

where as before $\rho_{i j}$ is the correlation between $d z_{i}$ and $d z_{j}$ This leads to

$$
\begin{equation*}
d f=\left(\frac{\partial f}{\partial x} a+\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} b_{i} b_{j} \rho_{i j}\right) d t+\frac{\partial f}{\partial x} \sum_{i=1}^{m} b_{i} d z_{i} \tag{4}
\end{equation*}
$$

Finally consider the more general case where f depends on variables $x_{i}(1 \leq i \leq n)$ and

$$
d x_{i}=a_{i} d t+\sum_{k=1}^{m} b_{i k} d z_{k}
$$

A similar analysis shows that

$$
\begin{equation*}
d f=\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} a_{i}+\frac{\partial f}{\partial t}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \sum_{k=1}^{m} \sum_{l=1}^{m} b_{i k} b_{j l} \rho_{k l}\right) d t+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \sum_{k=1}^{m} b_{i k} d z_{k} \tag{5}
\end{equation*}
$$

[^0]: * ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.

