Technical Note No. 27* **Options**, Futures, and Other Derivatives John Hull

Calculation of Moments for Valuing Asian Options

We consider the problem of calculating the first two moments of the arithmetic average price of an asset in a risk-neutral world when the average is calculated from discrete observations. Suppose that the asset price is observed at times T_i $(1 \le i \le m)$. We define variables as follows:

- S_i : The value of the asset at time T_i
- F_i : The forward price of the asset for a contract maturing at time T_i
- σ_i : The implied volatility for an option on the asset with maturity T_i
- ρ_{ij} : Correlation between return on asset up to time T_i and the return on the asset up to time T_i
- P: Value of the arithmetic average
- M_1 : First moment of P in a risk-neutral world M_2 : Second moment of P in a risk-neutral world With these definitions

$$M_1 = \frac{1}{m} \sum_{i=1}^m F_i$$

Also

$$P^{2} = \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} S_{i} S_{j}$$

In this case

$$\hat{E}(S_i S_j) = F_i F_j e^{\rho_{ij} \sigma_i \sigma_j} \sqrt{T_i T_j}$$

It can be shown that when $i \leq j$

$$\rho_{ij} = \frac{\sigma_i \sqrt{T_i}}{\sigma_j \sqrt{T_j}}$$

so that

$$\hat{E}(S_i S_j) = F_i F_j e^{\sigma_i^2 T_i}$$

and

$$M_2 = \frac{1}{m^2} \left[\sum_{i=1}^m F_i^2 e^{\sigma_i^2 T_i} + 2 \sum_{j=1}^m \sum_{i=1}^{j-1} F_i F_j e^{\sigma_i^2 T_i} \right]$$

^{* (}c)Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.