Technical Note No. 26*

Options, Futures, and Other Derivatives John Hull

A Binomial Measure of Credit Correlation

A credit correlation measure sometimes used by rating agencies is the binomial correlation measure. For two companies, A and B, this is the coefficient of correlation between:

1. A variable that equals 1 if company A defaults between times 0 and T and zero otherwise; and
2. A variable that equals 1 if company B defaults between times 0 and T and zero otherwise
The measure is

$$
\begin{equation*}
\beta_{A B}(T)=\frac{P_{A B}(T)-Q_{A}(T) Q_{B}(T)}{\sqrt{\left[Q_{A}(T)-Q_{A}(T)^{2}\right]\left[Q_{B}(T)-Q_{B}(T)^{2}\right]}} \tag{1}
\end{equation*}
$$

where $P_{A B}(T)$ is the joint probability of A and B defaulting between time zero and time T, $Q_{A}(T)$ is the cumulative probability that company A will default by time T, and $Q_{B}(T)$ is the cumulative probability that company B will default by time T. Typically $\beta_{A B}(T)$ depends on T, the length of the time period considered. Usually it increases as T increases.

From the definition of a Gaussian copula model $P_{A B}(T)=M\left[x_{A}(T), x_{B}(T) ; \rho_{A B}\right]$. where $x_{A}(T)=N^{-1}\left(Q_{A}(T)\right)$ and $x_{B}(T)=N^{-1}\left(Q_{B}(T)\right)$ are the transformed times to default for companies A and B , and $\rho_{A B}$ is the Gaussian copula correlation for the times to default for A and B. $M(a, b ; \rho)$ is the probability that, in a bivariate normal distribution where the correlation between the variables is ρ, the first variable is less than a and the second variable is less than $b .{ }^{1}$ It follows that

$$
\begin{equation*}
\beta_{A B}(T)=\frac{M\left[x_{A}(T), x_{B}(T) ; \rho_{A B}\right]-Q_{A}(T) Q_{B}(T)}{\sqrt{\left[Q_{A}(T)-Q_{A}(T)^{2}\right]\left[Q_{B}(T)-Q_{B}(T)^{2}\right]}} \tag{2}
\end{equation*}
$$

This shows that, if $Q_{A}(T)$ and $Q_{B}(T)$ are known, $\beta_{A B}(T)$ can be calculated from $\rho_{A B}$ and vice versa. Usually $\rho_{A B}$ is markedly greater than $\beta_{A B}(T)$. This illustrates the important point that the magnitude of a correlation measure depends on the way it is defined.

Example

Suppose that the probability of company A defaulting in one-year period is 1% and the probability of company B defaulting in a one-year period is also 1%. In this case $x_{A}(1)=x_{B}(1)=N^{-1}(0.01)=-2.326$. If $\rho_{A B}$ is $0.20, M\left(x_{A}(1), x_{B}(1), \rho_{A B}\right)=$ 0.000337 and equation (2) shows that $\beta_{A B}(T)=0.024$ when $T=1$.

[^0]
[^0]: * ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.
 ${ }^{1}$ See Technical Note 5 for the calculation of $M(a, b ; \rho)$.

