Technical Note No. 21*

Options, Futures, and Other Derivatives John Hull

Hermite Polynomials and Their Use for Integration

As explained in the chapter on credit derivatives in the text, the Gaussian copula model requires functions to be integrated over a normal distribution between $-\infty$ and $+\infty$. Gaussian quadrature approximates the integral as

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-F^{2} / 2} g(F) d F \approx \sum_{k=1}^{M} w_{k} g\left(F_{k}\right) \tag{1}
\end{equation*}
$$

The approximation gets better as M increases. It has the property that it is exact when $g(F)$ is a polynomial of order M.

The determination the w_{k} and F_{k} involves Hermite polynomials. If you want to avoid getting into the details of this, values of w_{k} and F_{k} for different values of M can be downloaded from a spread sheet on the author's web site.

The first few Hermite polynomials are

$$
\begin{gathered}
H_{0}(x)=1 \\
H_{1}(x)=2 x \\
H_{2}(x)=4 x^{2}-2 \\
H_{3}(x)=8 x^{3}-12 x \\
H_{4}(x)=16 x^{4}-48 x^{2}+12
\end{gathered}
$$

A recurrence relationship for calculating higher order polynomials is

$$
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x)
$$

and an equation for the derivative with respect to x is

$$
H_{n}^{\prime}(x)=2 n H_{n-1}(x)
$$

Define $x_{k}(1 \leq k \leq n)$ as the n roots of $H_{n}(x)$ (that is, the n values of x for which $\left.H_{n}(x)=0\right)$ and

$$
w_{k}^{*}=\frac{2^{n-1} n!\sqrt{\pi}}{n^{2}\left[H_{n-1}\left(x_{k}\right)\right]^{2}}
$$

A key result is

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) d x \approx \sum_{k=1}^{n} w_{k}^{*} e^{x_{k}^{2}} f\left(x_{k}\right) \tag{2}
\end{equation*}
$$

[^0]Setting $x=F / \sqrt{2}$ and

$$
f(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}} g(\sqrt{2} x)
$$

equation (2) gives

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-F^{2} / 2} g(F) d F \approx \sum_{k=1}^{n} \frac{1}{\pi} w_{k}^{*} g\left(F_{k}\right)
$$

or alternatively

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-F^{2} / 2} g(F) d y \approx \sum_{k=1}^{n} w_{k} g\left(F_{k}\right)
$$

where

$$
w_{k}=\frac{w_{k}^{*}}{\sqrt{\pi}} \quad F_{k}=\sqrt{2} x_{k}
$$

This is the result in equation (1), with $n=M$.
This leaves the problem of calculating the n roots of a Hermite polynomial. A program for doing this is 'gauher' in "Numerical Recipes for C: The Art of Scientific Computing" by Press, Flanery, Teukolsky, and Vetterling, Cambridge University Press.

[^0]: * ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.

