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Properties of Lognormal Distribution

A variable V' has a lognormal distribution if X = In(V') has a normal distribution.

Suppose that X is ¢(m, s?); that is, it has a normal distribution with mean m and standard
deviation, s. The probability density function for X is
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The probability density function for V' is therefore
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Consider the nth moment of V' N
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Substituting V = exp X this is
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The integral in this expression is the integral of a normal density function with mean
m + ns? and standard deviation s and is therefore 1.0. It follows that

/+Oo V'"h(V)dV = exp(nm + n?s*/2) (1)
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The expected value of V' is given when n = 1. It is
exp(m + s2/2)
The formula for the mean of a stock price at time 7' in the text is given by setting
m = In(Sp) + (n — 0%/2)T and s = o/T
The variance of V is E(V?) — [E(V)]2. Setting n = 2 in equation (1) we get
E(V?) = exp(2m + 25?)
The variance of V' is therefore
exp(2m + 25?) — exp(2m + 52) = exp(2m + s%)[exp(s?) — 1]
The formula for the variance of a stock price at time 7' in the text is given by setting
m =In(S) + (n —0%/2)T and s = o/T.

* ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in
conjunction with Options, Futures, and Other Derivatives by John C. Hull.

1



