Technical Note No. 18* Options, Futures, and Other Derivatives John Hull

Valuation of a Compounding Swap

Consider a compounding swap where floating rate cash flows in a swap are compounded forward at LIBOR plus a spread rather than being paid. We can use forward rate agreements to show that the value of the floating side is the same as the value it would have if forward rates were realized. In other words, the swap can be valued similarly to a regular swap by assuming that future interest rates equal today's forward rates.

Suppose that t_{0} is the time of the payment date immediately preceding the valuation date and that the payment dates following the valuation date are at times $t_{1}, t_{2}, \ldots, t_{n}$. Define $\tau_{i}=t_{i+1}-t_{i}(0 \leq i \leq n-1)$ and other variables as follows ${ }^{1}$
L : Principal on the floating side of swap
Q_{i} : Value of floating side compounded forward to time t_{i} (Q_{0} is known)
Q_{i}^{*} : Value of floating side compounded forward to time t_{i} if forward rate is realized
R_{i} : LIBOR rate from t_{i} to t_{i+1} for $i \geq 1$ (R_{0} is known)
F_{i} : Forward rate applicable to period between time t_{i} and t_{i+1} (all known)
s_{p} : Spread above LIBOR at which interest is paid on the floating side of the swap (20 basis points in Business Snapshot example in text)
s_{c} : Spread above LIBOR at which floating interest compounds (10 basis points in Business Snapshot example in text)
We assume that the spread s_{c} is applied first to Q_{i} and then the result is compounded forward at R_{i} to produce $Q_{i}\left(1+R_{i} \tau_{i}\right)\left(1+s_{c} \tau_{i}\right)$. (This assumption is discussed at the end of the Note.)

The value of the floating side of the swap at time t_{1} is known. It is:

$$
Q_{1}=Q_{0}\left[\left(1+R_{0} \tau_{0}\right)\left(1+s_{c} \tau_{0}\right)\right]+L\left(R_{0}+s_{p}\right) \tau_{0}
$$

The first term on the right hand side is the result of compounding the floating payments from time t_{0} to t_{1}. The second term is the floating payment at time t_{1}.

The value of the floating side at time t_{2} is not known and depends on R_{1}. It is

$$
\begin{equation*}
Q_{2}=Q_{1}\left[\left(1+R_{1} \tau_{1}\right)\left(1+s_{c} \tau_{1}\right)\right]+L\left(R_{1}+s_{p}\right) \tau_{1} \tag{1}
\end{equation*}
$$

However, we can costlessly enter into two FRAs today:

1. An FRA to exchange, at time t_{2}, R_{1} for F_{1} on a principal of $Q_{1}\left(1+s_{c} \tau_{1}\right)$
2. An FRA to exchange, at time t_{2}, R_{1} for F_{1} on a principal of L

The first FRA shows that the first term on the right hand side of equation (1) has the same present value as a cash flow of $Q_{1}\left(1+F_{1} \tau_{1}\right)\left(1+s_{c} \tau_{1}\right)$ at time t_{2}. The second FRA shows that the second term on the right hand side of equation (1) has the same present value as a cash flow of $L\left(F_{1}+s_{p}\right) \tau_{1}$ at time t_{2}. The value of the floating side of the swap at time t_{2} is, therefore the same as the value of a cash flow of

$$
Q_{1}\left[\left(1+F_{1} \tau_{1}\right)\left(1+s_{c} \tau_{1}\right)\right]+L\left(F_{1}+s_{p}\right) \tau_{1}
$$

* ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull
${ }^{1}$ All rates are here expressed with a compounding frequency reflecting their maturity. Three-month rates are expressed with quarterly compounding; six-month rates are expressed with semi-annual compounding; etc.
at time t_{2}. This means that Q_{2} at time t_{2} can costlessly be converted to Q_{2}^{*} at time t_{2}. Consider next time t_{3}. The compounded forward amount at time t_{3} is

$$
\begin{equation*}
Q_{3}=Q_{2}\left[\left(1+R_{2} \tau_{2}\right)\left(1+s_{c} \tau_{2}\right)\right]+L\left(R_{2}+s_{p}\right) \tau_{2} \tag{2}
\end{equation*}
$$

To deal with the first term on the right hand side, we note that a cash flow of $Q_{2}[(1+$ $\left.R_{2} \tau_{2}\right)\left(1+s_{c} \tau_{2}\right)$] at time t_{3} is worth the same as $Q_{2}\left(1+s_{c} \tau_{2}\right)$ at time t_{2}. This from our earlier result is worth the same as $Q_{2}^{*}\left(1+s_{c} \tau_{2}\right)$ at time t_{2}. This in turn is worth the same as $Q_{2}^{*}\left[\left(1+F_{2} \tau_{2}\right)\left(1+s_{c} \tau_{2}\right)\right]$ at time t_{3}. To deal with the second term, we note that we can today enter into an FRA to exchange, at time t_{3}, R_{2} for F_{2} on a principal of L. These two observations show that a cash flow of Q_{3} at time t_{3} is worth the same as a cash flow of Q_{3}^{*} at time t_{3}.

Similarly, a cash flow of Q_{4} at time t_{4} is worth the same as a cash flow of Q_{4}^{*} at time t_{4}; a cash flow of Q_{5} at time t_{5} is worth the same as a cash flow of Q_{5}^{*} at time t_{5}; and so on. In particular, a cash flow of Q_{n} at time t_{n} is worth the same as a cash flow of Q_{n}^{*} at time t_{n} so that the result is proved.

In practice it may be the case that Q_{i} is compounds forward to $Q_{i}\left[1+\left(R_{i}+s_{c}\right) \tau_{i}\right]$ rather than to $Q_{i}\left(1+R_{i} \tau_{i}\right)\left(1+s_{c} \tau_{i}\right)$. There is then an approximation. The result is only true when small terms of the form $s_{c} R_{i} \tau_{i}^{2}$ are ignored.

The example in teh text provides an application of the result in this Technical Note. (It does make the approximation just mentioned).

