Technical Note No. 15* Options, Futures, and Other Derivatives John Hull

Valuing Options on Coupon-Bearing Bonds in a One-Factor Interest Rate Model

Jamshidian shows that the prices of options on coupon-bearing bonds can be obtained from the prices of options on zero-coupon bonds in a one-factor interest rate model, such as Vasicek, Ho-Lee, Hull-White, and Cox-Ingersoll-Ross. ${ }^{1}$ These models have the property that all rates are moving in the same direction as the short rate at any given time.

Consider a European call option with exercise price K and maturity T on a couponbearing bond. Suppose that the bond provides a total of n cash flows after the option matures. Let the i th cash flow be c_{i} and occur at time $s_{i}\left(1 \leq i \leq n ; s_{i} \geq T\right)$. Define:
r_{K} : Value of the short rate, r, at time T that causes the coupon-bearing bond price to equal the strike price.
K_{i} : Value at time T of a zero-coupon bond paying off $\$ 1$ at time s_{i} when $r=r_{K}$.
When bond prices are known analytically as a function of r, r_{K} can be obtained very quickly using an iterative procedure such as the Newton Raphson method.

The variable $P\left(T, s_{i}\right)$ is the price at time T of a zero-coupon bond paying $\$ 1$ at time s_{i}. The payoff from the option is, therefore,

$$
\max \left[0, \sum_{i=1}^{n} c_{i} P\left(T, s_{i}\right)-K\right]
$$

Because all rates are increasing functions of r, all bond prices are decreasing functions of r. This means that the coupon-bearing bond is worth more than K at time T and should be exercised if, and only if, $r<r_{K}$. Furthermore, the zero-coupon bond maturing at time s_{i} underlying the coupon-bearing bond is worth more than $c_{i} K_{i}$ at time T if, and only if, $r<r_{K}$. It follows that the payoff from the option is

$$
\sum_{i=1}^{n} c_{i} \max \left[0, P\left(T, s_{i}\right)-K_{i}\right]
$$

This shows that the option on the coupon-bearing bond is the sum of n options on the underlying zero-coupon bonds. A similar argument applies to European put options on coupon-bearing bonds.

Example

Suppose that $a=0.1, b=0.1$, and $\sigma=0.02$ in Vasicek's model with the initial value of the short rate being 10% per annum. Consider a three-year European put option with a strike price of $\$ 98$ on a bond that will mature in five years. Suppose that the bond has a principal of $\$ 100$ and pays a coupon of $\$ 5$ every six months. At the end

* ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.
${ }^{1}$ See F. Jamshidian, "An Exact Bond Option Pricing Formula," Journal of Finance, 44 (March 1989), 205-9.
of three years, the bond can be regarded as the sum of four zero-coupon bonds. If the short-term interest rate is r at the end of the three years, the value of the bond is

$$
5 A(3,3.5) e^{-B(3,3.5) r}+5 A(3,4) e^{-B(3,4) r}+5 A(3,4.5) e^{-B(3,4.5) r}+105 A(3,5) e^{-B(3,5) r}
$$

Using the expressions for $A(t, T)$ and $B(t, T)$, this becomes

$$
5 \times 0.9988 e^{-0.4877 r}+5 \times 0.9952 e^{-0.9516 r}+5 \times 0.9895 e^{-1.3929 r}+105 \times 0.9819 e^{-1.8127 r}
$$

To apply Jamshidian's procedure, we must find r_{K}, the value of r for which this bond price equals the strike price of 98 . An iterative procedure shows that $r_{K}=0.10952$. When r has this value, the values of the four zero-coupon bonds underlying the couponbearing bond are $4.734,4.484,4.248$, and 84.535 . The option on the coupon-bearing bond is, therefore, the sum of four options on zero-coupon bonds:

1. A three-year option with strike price 4.734 on a 3.5 -year zero-coupon bond with a principal of 5 .
2. A three-year option with strike price 4.484 on a four-year zero-coupon bond with a principal of 5 .
3. A three-year option with strike price 4.248 on a 4.5 -year zero-coupon bond with a principal of 5 .
4. A three-year option with strike price 84.535 on a five-year zero-coupon bond with a principal of 105 .
To illustrate the pricing of these options, consider the fourth. $P(0,3)=0.7419$ and $P(0,5)=0.6101$. Also, $\sigma_{P}=0.05445, h=0.4161, L=105$, and $K=84.535$. The value of the option as 0.8085 . Similarly, the value of the first, second, and third options are, respectively, $0.0125,0.0228$, and 0.0314 . The value of the option under consideration is, therefore, $0.0125+0.0228+0.0314+0.8085=0.8752$.
