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The Hull–White Two Factor Model

As explained in the text, Hull and White have proposed a model where the risk-neutral
process for the short rate, r, is

df(r) = [θ(t) + u− af(r)] dt + σ1 dz1 (1)

where u has an initial value of zero and follows the process

du = −bu dt + σ2 dz2

As in the case of one-factor no-arbitrage models, the parameter θ(t) is chosen to
make the model consistent with the initial term structure. The stochastic variable u is a
component of the reversion level of r and itself reverts to a level of zero at rate b. The
parameters a, b, σ1, and σ2 are constants and dz1 and dz2 are Wiener processes with
instantaneous correlation ρ.

This model provides a richer pattern of term structure movements and a richer pattern
of volatility structures than one-factor no-arbitrage models. For example, when f(r) = r,
a = 1, b = 0.1, σ1 = 0.01, σ2 = 0.0165, and ρ = 0.6 the model exhibits, at all times,
a “humped” volatility structure similar to that observed in the market. The correlation
structure implied by the model is also plausible with these parameters.

When f(r) = r the model is analytically tractable. The price at time t of a zero-
coupon bond that provides a payoff of $1 at time T is

P (t, T ) = A(t, T ) exp[−B(t, T )r − C(t, T )u]

where
B(t, T ) =

1
a
[1− e−a(T−t)]

C(t, T ) =
1

a(a− b)
e−a(T−t) − 1

b(a− b)
e−b(T−t) +

1
ab

and A(t, T ) is as given in the Appendix to this note.
The prices, c and p, at time zero of European call and put options on a zero-coupon

bond are given by
c = LP (0, s)N(h)−KP (0, T )N(h− σP )

p = KP (0, T )N(−h + σP )− LP (0, s)N(−h)

where T is the maturity of the option, s is the maturity of the bond, K is the strike price,
L is the bond’s principal

h =
1

σP
ln

LP (0, s)
P (0, T )K

+
σP

2

and σP is as given in the Appendix. Because this is a two-factor model, an option on
a coupon-bearing bond cannot be decomposed into a portfolio of options on zero-coupon

* c©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in
conjunction with Options, Futures, and Other Derivatives by John C. Hull.

1



bonds as described in Technical Note 15. However, we can obtain an approximate analytic
valuation by calculating the first two moments of the price of the coupon-bearing bond
and assuming the price is lognormal.

Constructing a Tree
To construct a tree for the model in equation (1), we simplify the notation by defining

x = f(r) so that
dx = [θ(t) + u− ax] dt + σ1 dz1

with
du = −bu dt + σ2 dz2

Assuming a 6= b we can eliminate the dependence of the first stochastic variable on the
second by defining

y = x +
u

b− a

so that
dy = [θ(t)− ay] dt + σ3 dz3

du = −bu dt + σ2 dz2

where

σ2
3 = σ2

1 +
σ2

2

(b− a)2
+

2ρσ1σ2

b− a

and dz3 is a Wiener process. The correlation between dz2 and dz3 is

ρσ1 + σ2/(b− a)
σ3

A three-dimensional tree for y and u can be constructed on the assumption that
θ(t) = 0 and the initial values of y and u are zero. A methodology similar to that for
one-factor models can then be used to construct the final tree by increasing the values of
y at time i∆t by αi. In the f(r) = r case, an alternative approach is to use the analytic
expression for θ(t), given in the Appendix to this note.

Rebonato gives some examples of how the model can be calibrated and used in prac-
tice.2

2 See R. Rebonato Interest Rate Option Models, (2nd Ed., Chichester, England: John
Wiley and Sons, 1998) pp 306-8.
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APPENDIX
The Functions in the Two-Factor Hull-White Model

The A(t, T ) function is

lnA(t, T ) = ln
P (0, T )
P (0, t)

+ B(t, T )F (0, t)− η

where

η =
σ2

1

4a
(1− e−2at)B(t, T )2 − ρσ1σ2[B(0, t)C(0, t)B(t, T ) + γ4 − γ2]

−1
2
σ2

2 [C(0, t)2B(t, T ) + γ6 − γ5]

γ1 =
e−(a+b)T [e(a+b)t − 1]

(a + b)(a− b)
− e−2aT (e2at − 1)

2a(a− b)

γ2 =
1
ab

[
γ1 + C(t, T )− C(0, T ) +

1
2
B(t, T )2 − 1

2
B(0, T )2 +

t

a
− e−a(T−t) − e−aT

a2

]

γ3 = − e−(a+b)t − 1
(a− b)(a + b)

+
e−2at − 1
2a(a− b)

γ4 =
1
ab

[
γ3 − C(0, t)− 1

2
B(0, t)2 +

t

a
+

e−at − 1
a2

]

γ5 =
1
b

[
1
2
C(t, T )2 − 1

2
C(0, T )2 + γ2

]

γ6 =
1
b

[
γ4 −

1
2
C(0, t)2

]
where F (t, T ) is the instantaneous forward rate at time t for maturity T .

The volatility function, σP , is

σ2
P =

∫ t

0

{σ2
1 [B(τ, T )−B(τ, t)]2 + σ2

2 [C(τ, T )− C(τ, t)]2

+2ρσ1σ2[B(τ, T )−B(τ, t)][C(τ, T )− C(τ, t)]} dτ

This shows that σ2
P has three components. Define

U =
1

a(a− b)
[e−aT − e−at]

and
V =

1
b(a− b)

[e−bT − e−bt]
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The first component of σ2
P is

σ2
1

2a
B(t, T )2(1− e−2at)

The second is

σ2
2

[
U2

2a
(e2at − 1) +

V 2

2b
(e2bt − 1)− 2

UV

a + b
(e(a+b)t − 1)

]
The third is

2ρσ1σ2

a
(e−at − e−aT )

[
U

2a
(e2at − 1)− V

a + b
(e(a+b)t − 1)

]
Finally, the θ(t) function is

θ(t) = Ft(0, t) + aF (0, t) + φt(0, t) + aφ(0, t)

where the subscript denotes a partial derivative and

φ(t, T ) =
1
2
σ2

1B(t, T )2 +
1
2
σ2

2C(t, T )2 + ρσ1σ2B(t, T )C(t, T )
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