Technical Note No. $13{ }^{1}$
Options, Futures, and Other Derivatives

John Hull

Efficient Procedure for Valuing American-Style Lookback Options

A number of researchers have suggested an interesting and instructive approach to valuing lookback options. ${ }^{2}$ Consider an American-style lookback put. The initial stock price is 50 , the stock price volatility is 40%, the risk-free interest rate is 10% and the life of the option is 3 months. We suppose that three steps are used to model the stock price movements.

When exercised, the option provides a payoff equal to the excess of the maximum stock price over the current stock price. We define $G(t)$ as the maximum stock price achie ved up to time t and set

$$
Y(t)=\frac{G(t)}{S(t)}
$$

We next use the Cox, Ross, and Rubinstein tree for the stock price to produce a tree for Y. Initially, $Y=1$ because $G=S$ at time zero. If there is an up movement in S during the first time step, both G and S increase by a proportional amount u and $Y=1$. If there is a down movement in S during the first time step, G stays the same, so that $Y=1 / d=u$. Continuing with these types of arguments, we produce the tree shown in Figure 1 for Y. (Note that in this example $\Delta t=0.08333, u=1.1224, d=0.8909, a=1.0084$, and $p=0.5073$). The rules defining the geometry of the tree are

1. When $Y=1$ at time t, it is either u or 1 at time $t+\Delta t$.
2. When $Y=u^{m}$ at time t for $m \geq 1$, it is either u^{m+1} or u^{m-1} at time $t+\Delta t$.

An up movement in Y corresponds to a down movement in the stock price, and vice versa. The probability of an up movement in Y is, therefore, always $1-p$ and the probability of a down movement in Y is always p.

We use the tree to value the American lookback option in units of the stock price rather than in dollars. In dollars, the payoff from the option is

$$
S Y-S
$$

In stock price units, the payoff from the option, therefore, is

$$
Y-1
$$

[^0]We roll back through the tree in the usual way, valuing a derivative that provides this payoff except that we adjust for the differences in the stock price (i.e., the unit of measurement) at the nodes. If $f_{i j}$ is the value of the lookback at the j th node at time $i \Delta t$ and $Y_{i j}$ is the value of Y at this node, the rollback procedure gives

$$
f_{i j}=\max \left(Y_{i j}-1, e^{-r \Delta t}\left[(1-p) f_{i+1, j+1} d+p f_{i+1, j-1} u\right]\right)
$$

when $j \geq 1$.
Note that $f_{i+1, j+1}$ is multiplied by d and $f_{i+1, j-1}$ is multiplied by u in this equation. This takes into account that the stock price at node (i, j) is the unit of measurement. The stock price at node $(i+1, j+1)$, which is the unit of measurement for $f_{i+1, j+1}$ is d times the stock price at node (i, j) and the stock price at node ($i+1, j$ 1), which is the unit of measurement for $f_{i+1, j-1}$, is u times the stock price at node (i, j).

Similarly, when $j=0$ the rollback procedure gives

$$
f_{i j}=\max \left(Y_{i j}-1, e^{-r \Delta t}\left[(1-p) f_{i+1, j+1} d+p f_{i+1, j} u\right]\right)
$$

The calculations for our example are shown in Figure 1. The tree estimates the value of the option at time zero (in stock price units) as 0.1094 . This means that the dollar value of the option is $0.1094 \times 50=5.47$.

Figure 1 Procedure for valuing an American-style lookback option.

[^0]: ${ }^{1}$ ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull
 ${ }^{2}$ The approach was proposed by Eric Reiner in a lecture at Berkeley. It is also suggested in S. Babbs, "Binomial Valuation of Lookback Options," Working paper, Midland Global Markets, 1992; and T. H. F. Cheuk and T. C. F. Vorst, "'Lookback Options and the Observation Frequency: A Binomial Approach," Working Paper, Erasmus University, Rotterdam.

