Technical Note No. 11* Options, Futures, and Other Derivatives John Hull

The Manipulation of Credit Transition Matrices

Suppose that \mathbf{A} is an $N \times N$ matrix of credit rating changes in one year such as those discussed in the text. The matrix of credit rating changes in m years is \mathbf{A}^{m}. This can be readily calculated using the normal rules for matrix multiplication.

The matrix corresponding to a shorter period than one year, say six months or one month is more difficult to compute. We first use standard routines to calculate eigenvectors $\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{N}}$ and the corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$. These have the property that

$$
\begin{equation*}
\mathbf{A} \mathbf{x}_{\mathbf{i}}=\lambda_{i} \mathbf{x}_{\mathbf{i}} \tag{1}
\end{equation*}
$$

Define \mathbf{X} as a matrix whose i th column is $\mathbf{x}_{\mathbf{i}}$ and $\boldsymbol{\Lambda}$ as a diagonal matrix where the i th diagonal element is λ_{i}. From equation (1)

$$
\mathbf{A X}=\mathbf{X} \boldsymbol{\Lambda}
$$

so that

$$
\mathbf{A}=\mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-\mathbf{1}}
$$

From this it is easy to see that the nth root of A is

$$
\mathbf{X} \mathbf{\Lambda}^{*} \mathbf{X}^{-1}
$$

where $\boldsymbol{\Lambda}^{*}$ is a diagonal matrix where the i th diagonal element is $\lambda_{i}^{1 / n}$.
Some authors such as Jarrow, Lando, and Turnbull prefer to handle this problem in terms of what is termed a generator matrix. ${ }^{1}$ This is a matrix Γ such that the transition matrix for a short period of time Δt is $\mathbf{1}+\boldsymbol{\Gamma} \Delta t$ and the transition matrix for longer period of time, t, is

$$
\exp (t \boldsymbol{\Gamma})=\sum_{k=0}^{\infty} \frac{(t \boldsymbol{\Gamma})^{k}}{k!}
$$

[^0]
[^0]: * ©Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.
 ${ }^{1}$ See R. A. Jarrow, D. Lando, and S.M. Turnbull, "A Markov model for the term structure of credit spreads" Review of Financial Studies, 10 (1997), 481-523.

