Table of Contents
Preface |
|
xi |
|
|||
|
|
|
|
|||
Chapter 1 |
Introduction |
1 |
|
|||
|
1.1 Machine learning vs. statistics |
4 |
|
|||
|
1.2 This book and the ancillary material |
5 |
|
|||
|
1.3 Types of machine learning models |
6 |
|
|||
|
1.4 Validation and testing |
8 |
|
|||
|
1.5 Data cleaning |
16 |
|
|||
|
1.6 Bayes’ theorem |
18 |
|
|||
|
Summary |
20 |
|
|||
|
Short
concept questions |
21 |
|
|||
|
Exercises |
22 |
|
|||
|
|
|
|
|||
Chapter 2 |
Unsupervised Learning |
23 |
|
|||
|
2.1 Feature scaling |
24 |
|
|||
|
2.2 The k-means
algorithm |
25 |
|
|||
|
2.3 Choosing k |
30 |
|
|||
|
2.4 The curse of dimensionality |
33 |
|
|||
|
2.5 Country risk |
34 |
|
|||
|
2.6 Alternative clustering approaches |
39 |
|
|||
|
2.7 Principal components analysis |
41 |
|
|||
|
Summary |
45 |
|
|||
|
Short
concept questions |
46 |
|
|||
|
Exercises |
47 |
|
|||
|
|
|
|
|||
Chapter 3 |
Supervised Learning:
Linear and Logistic Regression
|
49 |
|
|||
|
3.1 Linear regression: one feature |
50 |
|
|||
|
3.2 Linear regression: multiple features |
51 |
|
|||
|
3.3 Categorical features |
54 |
|
|||
|
3.4 Regularization |
56 |
|
|||
|
3.5 Ridge regression |
56 |
|
|||
|
3.6 Lasso regression |
60 |
|
|||
|
3.7 Elastic Net regression |
63 |
|
|||
|
3.8 Application to Predicting House Prices |
64 |
|
|||
|
3.9 Logistic regression |
69 |
|
|||
|
3.10
Decision criteria |
71 |
|
|||
|
3.11
Application to credit decisions |
72 |
|
|||
|
3.12
The k-nearest neighbor algorithm |
79 |
|
|||
|
Summary |
80 |
|
|||
|
Short
concept questions |
81 |
|
|||
|
Exercises |
82 |
|
|||
|
|
|
|
|||
Chapter 4 |
Supervised Learning: Decision Trees |
85 |
|
|||
|
4.1 Nature of decision trees |
86 |
|
|||
|
4.2 Information gain measures |
87 |
|
|||
|
4.3 Application to LendingClub
data |
89 |
|
|||
|
4.4 The naïve Bayes classifier |
94 |
|
|||
|
4.5 Continuous target variables |
98 |
|
|||
|
4.6 Ensemble learning |
102 |
|
|||
|
Summary |
103 |
|
|||
|
Short
concept questions |
104 |
|
|||
|
Exercises |
105 |
|
|||
|
|
|
|
|||
Chapter 5 |
Supervised Learning:
SVMs |
107 |
|
|||
|
5.1 Linear SVM classification |
107 |
|
|||
|
5.2 Modification for soft margin |
114 |
|
|||
|
5.3 Non-linear separation |
117 |
|
|||
|
5.4 Predicting a target’s value |
119 |
|
|||
|
Summary |
122 |
|
|||
|
Short
concept questions |
123 |
|
|||
|
Exercises |
124 |
|
|||
|
|
|
|
|||
Chapter 6 |
Supervised Learning:
Neural Networks |
125 |
|
|||
|
6.1 ANNs with a single hidden layer |
125 |
|
|||
|
6.2 Multi-layer ANNs |
130 |
|
|||
|
6.3 Other activation functions |
132 |
|
|||
|
6.4 Gradient descent algorithm |
134 |
|
|||
|
6.5 Variations on the basic method |
140 |
|
|||
|
6.6 The stopping rule |
141 |
|
|||
|
6.7 The Black−Scholes−Merton
formula |
143 |
|
|||
|
6.8 Extensions |
146 |
|
|||
|
6.9 Understanding volatility movements |
147 |
|
|||
|
Summary |
152 |
|
|||
|
Short
concept questions |
152 |
|
|||
|
Exercises |
153 |
|
|||
Chapter 7 |
Further
Applications of Neural Networks |
155 |
|
|||
|
7.1 Autoencoders and
PCA |
155 |
|
|||
|
7.2 General autoencoder
design |
158 |
|
|||
|
7.3 Variational autoencoders |
160 |
|
|||
|
7.4 Generative adversarial networks |
161 |
|
|||
|
7.5 Recurrent neural networks |
163 |
|
|||
|
7.6 Convolutional neural networks |
165 |
|
|||
|
Summary |
169 |
|
|||
|
Short concept
questions |
169 |
|
|||
|
Exercises |
170 |
|
|||
|
|
|
|
|||
|
|
|
|
|||
Chapter 8 |
Reinforcement
Learning |
171 |
|
|||
|
8.1 The multi-armed bandit problem |
172 |
|
|||
|
8.2 Changing environment |
177 |
|
|||
|
8.3 The game of Nim |
179 |
|
|||
|
8.4 Temporal difference learning |
182 |
|
|||
|
8.5
When the opponent learns |
185 |
|
|||
|
8.6
Deep Q-learning |
186 |
|
|||
|
8.7 Playing chess |
186 |
|
|||
|
8.8 Applications |
187 |
|
|||
|
8.9 Optimal trade execution |
189 |
|
|||
|
8.10
Data issues |
192 |
|
|||
|
Summary |
192 |
|
|||
|
Short
concept questions |
193 |
|
|||
|
Exercises |
194 |
|
|||
|
|
|
|
|||
Chapter 9 |
Natural Language
Processing |
195 |
|
|||
|
9.1 Sources
of data |
198 |
|
|||
|
9.2 Pre-processing |
199 |
|
|||
|
9.3 Bag-of-words model |
200 |
|
|||
|
9.4 Application of naïve Bayes classifier |
202 |
|
|||
|
9.5 Application of other algorithms |
206 |
|
|||
|
9.6 Information retrieval |
207 |
|
|||
|
9.7 Other NLP applications |
208 |
|
|||
|
Summary |
210 |
|
|||
|
Short
concept questions |
211 |
|
|||
|
Exercises |
211 |
|
|||
Chapter 10 |
Model Interpretability |
213 |
|
|||
|
10.1 Linear regression |
215 |
|
|||
|
10.2 Logistic regression |
219 |
|
|||
|
10.3 Black-box models |
222 |
|
|||
|
10.4 Shapley values |
223 |
|
|||
|
10.5 LIME |
226 |
|
|||
|
Summary |
226 |
|
|||
|
Short
concept questions |
227 |
|
|||
|
Exercises |
228 |
|
|||
|
|
|
|
|||
Chapter 11 |
Issues for Society |
229 |
|
|||
|
11.1 Data privacy |
230 |
|
|||
|
11.2 Biases |
231 |
|
|||
|
11.3 Ethics |
232 |
|
|||
|
11.4 Transparency |
233 |
|
|||
|
11.5 Adversarial machine learning |
233 |
|
|||
|
11.6 Legal issues |
234 |
|
|||
|
11.7 Man vs. machine |
235 |
|
|||
|
|
|
|
|||
Answers to
End of Chapter Questions |
|
237 |
||||
Glossary of Terms |
|
255 |
||||
Index |
|
265 |
||||