Table of Contents
Preface |
|
xi |
|
|||
|
|
|
|
|||
Chapter 1 |
Introduction |
1 |
|
|||
|
1.1 This book and the ancillary material |
3 |
|
|||
|
1.2 Types of machine learning models |
4 |
|
|||
|
1.3 Validation and testing |
6 |
|
|||
|
1.4 Data cleaning |
14 |
|
|||
|
1.5 Bayes’ theorem |
16 |
|
|||
|
Summary |
19 |
|
|||
|
Short
concept questions |
20 |
|
|||
|
Exercises |
21 |
|
|||
|
|
|
|
|||
Chapter 2 |
Unsupervised Learning |
23 |
|
|||
|
2.1 Feature scaling |
24 |
|
|||
|
2.2 The k-means
algorithm |
25 |
|
|||
|
2.3 Choosing k |
28 |
|
|||
|
2.4 The curse of dimensionality |
31 |
|
|||
|
2.5 Country risk |
31 |
|
|||
|
2.6 Alternative clustering algorithms |
35 |
|
|||
|
2.7 Principal components analysis |
39 |
|
|||
|
Summary |
43 |
|
|||
|
Short
concept questions |
44 |
|
|||
|
Exercises |
45 |
|
|||
|
|
|
|
|||
Chapter 3 |
Supervised Learning:
Linear and Logistic Regression
|
47 |
|
|||
|
3.1 Linear regression: one feature |
48 |
|
|||
|
3.2 Linear regression: multiple features |
49 |
|
|||
|
3.3 Categorical features |
52 |
|
|||
|
3.4 Regularization |
53 |
|
|||
|
3.5 Ridge regression |
54 |
|
|||
|
3.6 Lasso regression |
58 |
|
|||
|
3.7 Elastic Net regression |
60 |
|
|||
|
3.8 Results for house price data |
62 |
|
|||
|
3.9 Logistic regression |
66 |
|
|||
|
3.10
Decision criteria |
69 |
|
|||
|
3.11
Application to credit decisions |
70 |
|
|||
|
3.12
The k-nearest neighbor algorithm |
76 |
|
|||
|
Summary |
76 |
|
|||
|
Short
concept questions |
77 |
|
|||
|
Exercises |
78 |
|
|||
|
|
|
|
|||
Chapter 4 |
Supervised Learning: Decision Trees |
81 |
|
|||
|
4.1 Nature of decision trees |
82 |
|
|||
|
4.2 Information gain measures |
83 |
|
|||
|
4.3 Application to credit decisions |
85 |
|
|||
|
4.4 The naïve Bayes classifier |
91 |
|
|||
|
4.5 Continuous target variables |
95 |
|
|||
|
4.6 Ensemble learning |
98 |
|
|||
|
Summary |
100 |
|
|||
|
Short
concept questions |
101 |
|
|||
|
Exercises |
101 |
|
|||
|
|
|
|
|||
Chapter 5 |
Supervised Learning:
SVMs |
103 |
|
|||
|
5.1 Linear SVM classification |
103 |
|
|||
|
5.2 Modification for soft margin |
109 |
|
|||
|
5.3 Non-linear separation |
112 |
|
|||
|
5.4 Predicting a continuous variable |
114 |
|
|||
|
Summary |
118 |
|
|||
|
Short
concept questions |
118 |
|
|||
|
Exercises |
119 |
|
|||
|
|
|
|
|||
Chapter 6 |
Supervised Learning:
Neural Networks |
121 |
|
|||
|
6.1 Single layer ANNs |
121 |
|
|||
|
6.2 Multi-layer ANNs |
125 |
|
|||
|
6.3 Gradient descent algorithm |
126 |
|
|||
|
6.4 Variations on the basic method |
131 |
|
|||
|
6.5 The stopping rule |
133 |
|
|||
|
6.6 The Black−Scholes−Merton
formula |
133 |
|
|||
|
6.7 Extensions |
137 |
|
|||
|
6.8 Autoencoders |
138 |
|
|||
|
6.9 Convolutional neural networks |
140 |
|
|||
|
6.10
Recurrent neural networks |
142 |
|
|||
|
Summary |
143 |
|
|||
|
Short
concept questions |
144 |
|
|||
|
Exercises |
144 |
|
|||
Chapter 7 |
Reinforcement
Learning |
147 |
|
|||
|
7.1 The multi-armed bandit problem |
148 |
|
|||
|
7.2 Changing environment |
152 |
|
|||
|
7.3 The game of Nim |
154 |
|
|||
|
7.4 Temporal difference learning |
157 |
|
|||
|
7.5 Deep Q-learning |
159 |
|
|||
|
7.6 Applications |
159 |
|
|||
|
Summary |
161 |
|
|||
|
Short
concept questions |
162 |
|
|||
|
Exercises |
163 |
|
|||
|
|
|
|
|||
Chapter 8 |
Natural Language
Processing |
165 |
|
|||
|
8.1 Sources
of data |
168 |
|
|||
|
8.2 Pre-processing |
169 |
|
|||
|
8.3 Bag of words model |
170 |
|
|||
|
8.4 Application of naïve Bayes classifier |
172 |
|
|||
|
8.5 Application of other algorithms |
176 |
|
|||
|
8.6 Information retrieval |
177 |
|
|||
|
8.7 Other NLP applications |
178 |
|
|||
|
Summary |
180 |
|
|||
|
Short
concept questions |
181 |
|
|||
|
Exercises |
181 |
|
|||
Chapter 9 |
Model Interpretability |
183 |
|
|||
|
9.1 Linear regression |
185 |
|
|||
|
9.2 Logistic regression |
189 |
|
|||
|
9.3 Black-box models |
192 |
|
|||
|
9.4 Shapley values |
193 |
|
|||
|
9.5 LIME |
196 |
|
|||
|
Summary |
196 |
|
|||
|
Short
concept questions |
197 |
|
|||
|
Exercises |
198 |
|
|||
|
|
|
|
|||
Chapter 10 |
Applications in Finance |
199 |
|
|||
|
10.1 Derivatives |
199 |
|
|||
|
10.2 Delta |
202 |
|
|||
|
10.3 Volatility surfaces |
203 |
|
|||
|
10.4 Understanding volatility surface movements |
204 |
|
|||
|
10.5 Using reinforcement learning for hedging |
208 |
|
|||
|
10.6 Extensions |
210 |
|
|||
|
10.7 Other finance applications |
212 |
|
|||
|
Summary |
213 |
|
|||
|
Short
concept questions |
214 |
|
|||
|
Exercises |
214 |
|
|||
|
|
|
|
|||
Chapter 11 |
Issues for Society |
217 |
|
|||
|
11.1 Data privacy |
218 |
|
|||
|
11.2 Biases |
209 |
|
|||
|
11.3 Ethics |
220 |
|
|||
|
11.4 Transparency |
221 |
|
|||
|
11.5 Adversarial machine learning |
221 |
|
|||
|
11.6 Legal issues |
222 |
|
|||
|
11.7 Man vs. machine |
223 |
|
|||
|
|
|
|
|||
Answers to
End of Chapter Questions |
|
225 |
||||
Glossary of Terms |
|
243 |
||||
Index |
|
253 |
||||