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Gamma and vega hedging using
deep distributional reinforcement
learning
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Zissis Poulos1, Zeyu Wang1 and Jun Yuan1

1Joseph L. Rotman School of Management, University of Toronto, Toronto, ON, Canada, 2Department of

Computer Science, University of Toronto, Toronto, ON, Canada

We show how reinforcement learning can be used in conjunction with quantile

regression to develop a hedging strategy for a trader responsible for derivatives that

arrive stochastically and depend on a single underlying asset. We assume that the

trader makes the portfolio delta-neutral at the end of each day by taking a position

in the underlying asset. We focus on how trades in options can be used to manage

gamma and vega. The option trades are subject to transaction costs. We consider

three di�erent objective functions. We reach conclusions on how the optimal hedging

strategy depends on the trader’s objective function, the level of transaction costs, and

the maturity of the options used for hedging. We also investigate the robustness of

the hedging strategy to the process assumed for the underlying asset.
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1. Introduction

Hedging a portfolio of options or more complex derivative securities involves sequential

decision-making. The position that is taken to reduce risk must be revised daily, or even more

frequently, to reflect movements in market variables. Reinforcement learning (RL) is therefore

an ideal tool for finding a hedging strategy that optimizes a particular objective function.

Previous studies concerned with the application of RL to hedging decisions include Halperin

(2017), Buehler et al. (2019), Kolm and Ritter (2019), and Cao et al. (2021). These authors

consider how RL can be used to hedge a single call or put option using a position in the

underlying asset. The key measure of risk they consider is the delta of the option. This is the

first partial derivative of the option price with respect to the price of the underlying asset and

is, therefore, a measure of exposure to small changes in the price of the underlying asset. The

position taken in the underlying asset can reduce or eliminate this exposure.

In practice, a trader responsible for derivatives dependent on a particular underlying asset

does not have a great deal of discretion about delta hedging: the trader is usually required to

eliminate, or almost eliminate, the delta exposure each day.1 A more interesting decision that

the trader has to make concerns the gamma and vega exposure. Gamma is the second partial

derivative of the value of the portfolio with respect to the underlying asset and is a measure of

exposure to large asset price changes. Vega is the partial derivative of the value of the portfolio

with respect to the volatility of the asset price and is a measure of exposure to volatility changes.

A trader is typically subject to limits on the permissible size of a portfolio’s gamma and vega

exposure but has discretion on how gamma and vega are managed within those limits. Whereas,

delta can be changed by taking a position in the underlying asset, gamma and vega can be

changed only by taking a position in an option or other derivative.

1 Trading rooms are generally organized so that responsibility for all derivatives dependent on a particular

underlying asset is assigned to a single trader.
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In deciding on a hedging strategy, traders must take transaction

costs into account. These arise because of the difference between the

bid price (the price at which a financial instrument can be sold to

a market maker) and the ask price (the price at which the financial

instrument can be bought from the market maker). The mid-market

price (i.e., the average of the bid and ask prices) is usually considered

to be the true value of the instrument. As a result, the transaction cost

can be quantified as half the difference between the bid and ask prices.

Transaction costs are typically quite small for trading the underlying

asset but much larger for trading options and other derivatives.

Rather than considering a single option, we consider a portfolio

of options that evolves stochastically. We assume that the portfolio is

made delta-neutral at the end of each day. Before a final trade in the

underlying asset is made to achieve delta neutrality, the trader makes

a decision on how gamma and vega are managed. As a simplification,

we assume that there are no transaction costs associated with trading

the underlying asset (As mentioned earlier, these costs are usually

quite small.). Alternative levels for transaction costs for the options

brought into the portfolio for hedging are considered.

Our article can be regarded as a “proof of concept”. We make

relatively simple assumptions about the process driving the arrival of

client options, the options available for hedging, the process driving

the price of the underlying asset, the nature of transaction costs,

and the trader’s objective function. The assumptions appropriate

to a particular trading situation are likely to be more complicated

than those we make. Our objective is to illustrate how RL can be

used to develop a strategy for managing gamma and vega risk. The

same reinforcement approach can be used in all situations, but the

strategies resulting from applications of the approach are likely to

depend on the assumptions made.

The assumptions we make to produce illustrative results are as

follows. Client options arrive according to a Poisson process with an

intensity of 1.0 per day. The options entered into by clients have 60

days to maturity and are equally likely to be long or short. We assume

that a single option is available for hedging. This is an at-the-money

call with a particular time to maturity.2 Each day, the trader chooses

the position (if any) to be taken in the option. The trader then trades

the underlying asset tomake the whole portfolio (options entered into

with clients plus options entered into for hedging) delta-neutral. The

transaction costs associated with an option trade are assumed to be a

specified proportion of the value of that trade. The performance of the

hedging strategy is considered over 30 days. At the end of that period,

all options in the portfolio are valued at their mid-market prices.

The choice of an objective function depends on the risk

preferences of the trader. We consider three different objective

functions. The first involves a trade-off between the mean and

standard deviation of the trader’s profit/loss over a predetermined

period. This objective function has been used by other researchers as

a measure of the efficiency of hedging but it can be criticized because

it penalizes good as well as bad outcomes.We, therefore, also consider

two objective functions that focus only on losses. These are value at

risk (VaR) with a 95% confidence level and conditional value at risk

(CVaR; also referred to as expected shortfall) with a 95% confidence

level. As is well-known, CVaR, although more complicated than VaR,

2 At-the-money options are e�cient hedging instruments because they have

a large gamma and vega compared with similar maturity options that are

significantly in- or out-of-the-money.

has better theoretical properties. In the case of the first objective

function, we set the objective (to be minimized) as the mean loss

over the period considered plus 1.645 times the standard deviation

of the loss (with gains being considered negative losses). This is an

interesting choice because, if the distribution of the profit/loss after

hedging was normal, it would be equivalent to the second (VaR)

objective function.

In our experiments, all the options in the portfolio at any given

time are “plain vanilla” European call options, and the process

assumed for the underlying asset does not include jumps. As a

result, the distribution of the change in the value of the hedged

portfolio between hedging decisions is approximately normal and

the differences between the hedging strategies for the three objective

functions we consider are relatively small. When other options such

as barrier options and digital options are considered and when

more elaborate processes for the underlying asset are considered,

the change in the value of the hedged portfolio between hedge

rebalancing is liable to have a non-symmetrical distribution and

bigger differences between the results obtained for the three objective

functions can be expected.

Our approach can be used to assess the profitability of trading

derivatives when a particular hedging strategy is used. The expected

profit on client options (i.e., the expected transaction costs earned on

these options) can be compared with the expected loss on hedging

(i.e., the expected transaction costs paid on the options used for

hedging). Assuming the former is calculated in the same way as the

latter, we find that the hedging strategies for the cases we consider

are economically feasible in the sense that expected transaction costs

earned are greater than those paid.

The rest of the article is organized as follows. Section 2 describes

the RL model we use. Section 3 explains the models we use for

the evolution of the underlying asset price. Section 4 presents our

illustrative results. It first focuses on gamma hedging by using amodel

where volatility is constant and then considers a stochastic volatility

world where both gamma and vega have to be monitored. Section

5 investigates the robustness of the RL strategies to the assumptions

made about the asset price process. Conclusions and suggestions for

further study are discussed in the final section.

2. The RL model

In the standard RL formulation, the goal of the agent is to

maximize expected future rewards. Specifically, the agent attempts to

maximize at time t the expected value of Gt , where

Gt = Rt+1 + γRt+2 + γ 2Rt+3 + . . .+ γ T−1RT

where Rt is the reward at time t, T is a horizon date, and γ ∈
(0, 1] is a discount factor. Q (S,A) is defined as the expected value

of Gt from taking action A in state S at time t. The standard RL

formulation involves maximizing Q (S,A). This is not appropriate

for our application (and many other applications in finance) because

we are concerned with exploring risk-return trade-offs. A class of

RL methods collectively referred to risk-aware RL has recently been

developed to extend RL so that other attributes of the distribution of

Gt besides the mean can be considered.

Tamar et al. (2016) showed how both the first and second

moments (and possibly higher moments) of the distribution
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of Gt can be updated using more than one Q-function. Cao

et al. (2021) used this approach and produced results for an

objective function involving the mean and standard deviation

of Gt , where one Q-function approximates the mean of the

terminal return and a second Q-function approximates the

expected value of the square of the terminal return. However,

the approach is less than ideal. It is computationally demanding

and imposes restrictions on the objective functions that can

be considered.

Bellemare et al. (2017) pointed out that the Bellman equation

used to update Q (S,A) can also be used to update distributions.

Z (S,A) is defined as the distribution of Gt resulting from action

A in state S. They suggest a procedure known as C51 where

Z (S,A) is defined as a categorical distribution and probabilities

are associated with 51 fixed values of Gt . As new points on the

distribution are determined in trials, they are allocated to the

neighboring fixed points. Barth-Maron et al. (2018) incorporate this

approximation method into an actor-critic RL model, where one

neural network (NN; critic) estimates the categorical distribution

Z (S,A) and another (NN; actor) decides the actions that the

agent takes based on information from the critic network.

These two NNs are trained simultaneously. Their framework

also supports the use of multiple agents at the same time for

distributed exploration of the search space in large-scale RL

problems. The overall process is known as Distributed Distributional

Deep Deterministic Policy Gradients (D4PG) and has become

an impactful RL algorithm with applications primarily in robotic

control systems.

Dabney et al. (2018) proposed an alternative distributional

RL algorithm, QR-DQN, that uses quantile regression (QR) to

approximate Z (S,A). The distribution is represented with a discrete

set of quantiles whose positions are adjusted during training.

Compared to C51, QR generalizes better and is more flexible. It can

efficiently approximate a wide range of distributions without the need

to specify fixed points a priori. The QR procedure is wrapped within

Deep Q-Learning (DQN), a well-known and studied RL algorithm.

Unlike actor-critic architectures, DQN uses only a single NN. The

NN approximates Z (S,A) and the agent actions are generated using

a greedy algorithm. The authors show that QR produces better results

than C51 when both are used in DQN algorithms and applied to Atari

2600 games.

For the hedging problem at hand, QR is an attractive solution as it

is straightforward to measure VaR and CVaR directly on the quantile-

based representation that it generates. In contrast, C51 requires

interpolating on the categorical distribution to obtain quantiles,

which induces additional approximation errors. Furthermore, an

actor-critic architecture similar to the one used in D4PG is also

more desirable compared to DQN. The latter is a lightweight

sample-efficient model, often used in cases where simulation is

slow. In our setting, simulating the portfolio is a fast process and

not the bottleneck, so actor-critic models can handle the task well

while exploring the search space rigorously. We posit that this is

an important step toward identifying hedging strategies that are

sensitive to different hedging scenarios and volatility movements in

the underlying.

The combination of QR and D4PG has not been explored in the

literature. In this study, as one of our contributions, we modify D4PG

to support QR at the output of the critic NN. The resulting algorithm,

which we refer to as D4PG-QR, is used for all experiments discussed

later. We observed that our implementation is superior to D4PG

(which uses C51 by default) for VaR and CVaR objective functions

and as good as D4PG for the mean/standard deviation objective in

terms of accuracy and computational efficiency.3

We now describe how we use the distributional RL framework

for hedging. We assume that we are hedging a portfolio of client

options. The portfolio composition evolves as new client options

arrive. Arrivals are modeled with a Poisson process, the intensity

of which can be specified as a parameter in our framework. In

expectation, half of the client orders are short and half is long. At

the time of each rebalancing, we use an at-the-money call option for

hedging. We assume that the trader rebalances at time intervals of t.

Prices for the underlying asset are generated by a pre-specified

stochastic process, which will be described in the next section. All

options are assumed to give the holder the right to buy or sell 100

units of the underlying asset. We set t equal to 1 day and the time

period, T, considered is 30 days. We set γ = 1 as this period is

fairly short.

The state at time i1t is defined as follows:

• The price of the underlying asset.

• The gamma of the portfolio.

• The vega of the portfolio.

• The gamma of the at-the-money option used for hedging.

• The vega of the at-the-money option used for hedging.

The portfolio gamma is calculated as the sum of the gammas of

all the options in the portfolio. Portfolio vega is calculated similarly.

The action at time i1t is the proportion of maximum hedging

that is done. Specifically, we do not allow the agent to try any

arbitrary position in the hedging option during training. Instead, we

determine at each time step the maximum hedge permitted such that

at least one of the two following criteria is satisfied: (a) the ratio of

gamma after hedging to gamma before hedging falls in the range

[0,1] and (b) the ratio of vega after hedging to vega before hedging

falls in the range [0,1]. The action of the agent is constrained to lie

within the resulting range.4 This ensures that the agent is hedging

rather than speculating. Restricting the action space increases sample

efficiency and improves convergence. We avoid wasteful simulations

where the agent tries actions that are known not to be part of

any optimal hedging strategy and, therefore, reduce the size of the

search space.

The definitions we use are:

Vi: The value of the option used for hedging at time i1t.

Hi: The position taken in the option used for hedging at

time i1t.

κ : The transaction cost associated with the option used for

hedging as a proportion of the value of the option.

Pi: The total value of options in the portfolio at time i1t that

have not previously expired.

The variable Pi includes all the options in the portfolio that have

not expired before time i1t. If an option expires at time i1t, its value

at time i1t is set equal to its intrinsic value.

3 We use D4PG with a single agent in all experiments since the distributed

version is not necessary.

4 This can be done by choosing an appropriate activation function in the last

layer of the neural network that models the agent’s action.
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FIGURE 1

RL architecture for actor-critic learning and proposed networks.

The reward at time i1t (i > 0) is therefore5

Ri = −κ |ViHi| + (Pi − Pi−1)

2.1. Hedging with D4PG-QR

The RL framework is provided in Figure 1, and it includes the

proposed D4PG-QR architecture. There are threemajor components,

namely, the environment, an actor NN, and a critic NN. The trading

environment involves a simulator of how the portfolio composition

and value evolve over time based on the hedging positions that

the agent takes, the market dynamics for the underlying, and the

client option arrival process. At any given time, the simulator

computes the next state and the reward. The actor NN (also

known as the policy network) implements the hedging strategy.

It takes as input a state and outputs the position of the hedger.

The critic NN takes as inputs a state, S, and the action from

the actor’s output, A. Its role is to (a) estimate the distribution

of the trading loss at the end of the hedging period, Z (S,A) ,

when taking action A in state S, and (b) compute gradients that

minimize the objective function f (Z (S,A)). These gradients are then

used by the actor NN to improve the actions that it outputs in

subsequent rounds. For the actor NN, we used three layers with 256

neurons per layer. For the critic NN, we used three layers with 512

5 As mentioned, we assume that delta hedging can be carried out at no cost.

Our γ = 1 assumption is equivalent to assuming no funding costs and is not

unreasonable given the short (30 day) time horizon considered.

neurons per layer for the first two layers and 256 neurons for the

final layer.

The key difference between D4PG and our architecture is

that Z (S,A) is represented by a set of discrete quantiles, whose

probabilities are fixed but their position is adjusted during training

based on the rewards observed over several episodes. We used 1%

quantile intervals so that the probability distribution is represented

by 100 points. This quantile-based representation also allows us to

compute the CDF of Z (S,A). The adjustment is done via QR using

the quantile Huber loss as a loss function. The Huber loss function is

defined as follows:

Lk (u) =

{

1
2u

2, |u| ≤ k

k
(

|u| − 1
2k
)

, otherwise

The quantile Huber loss used as the critic’s loss in D4PG-QR

corresponds to an asymmetric squared loss in the interval [−k, k] and
acts as a regular quantile loss outside that interval. Specifically, the

critic’s quantile Huber loss for any quantile τ ∈ [0, 1] and parameter

k is defined as follows:

hkτ (u) = |τ − δu<0| Lk (u)

where δu<0 denotes a Dirac at all negative points.

Gradients that minimize the loss are used to improve the critic’s

accuracy when estimating Z (S,A). In the early training stages, the

critic’s estimate of Z (S,A) is very rough and thus the actor’s hedging

policy is far from optimal. As the critic improves so does the actor’s

policy to the point where both NNs converge to some local optimum:
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Input: batch size N, quantile representation

Z
τj
w of Zwfor j = 1 . . . M, initial learning

rates α0 (actor, πθ) and β0 (critic, Zw)

1: Initialize actor parameters θ and critic

parameters w at random

2: for t = 1 :T do

3: Sample N transitions (Si,Ai, Ri) → (Si+1, Ai+1, Ri+1)

from replay buffer

4: Compute target distributions

Yi ← Ri + γZw(Si+1, πθ (Si+1))

5: Compute the expected quantile Huber loss

Li (w)←
∑M

j=1 EYi

[

hkτj (Yi − Z
τj
w (Si,Ai))

]

6: Compute actor and critic updates:

7: 1w ← 1
N

∑N
i=1 ∇wLi(w)

8: 1θ ← 1
N

∑N
i=1 ∇θπθ (Si)E

[

∇Af (Zw (Si,A))
]

|
A=πθ (Si)

9: w← w+ βt1w

10: θ ← θ + αt1θ

Algorithm 1. D4PG-QR.

the critic ends up with a good estimate of the distribution of hedging

loss for a large range of states and actions and the actor learns a good

policy that optimizes the corresponding objective for any state that it

is presented with.

We should point out that there are several other components

(not shown in Figure 1) that we borrow from the D4PG algorithm,

the most important being the use of a replay buffer. With a replay

buffer, instead of learning a policy using state transitions in the order

that they appear based on the actor’s actions, we simulate and store

a large set of state transitions (along with their rewards) in a table.

Then, to update the critic and actor NNs, we sample transitions

and their rewards uniformly at random from that table. This aids

with the convergence of the NNs for two reasons. First, the samples

are i.i.d. which is beneficial when updating NNs in general. Second,

the replay buffer allows for “experience replay”. That is, we can use

the same state transition and reward multiple times when updating

the critic and actor. Since the improvements in estimating Z (S,A)

are incremental, applying gradient updates several times over the

same state transitions leads to faster convergence. The pseudocode

describing the parameter update process for the actor and critic

networks in D4PG-QR is given in Algorithm 1.

3. The asset pricing model

We assume that the risk-neutral behavior of the underlying asset

price, S, and its volatility, σ , is governed by the following stochastic

processes6:

dS =
(

r − q
)

Sdt + σSdz1

dσ = vσdz2

where dz1 and dz2 are Wiener processes with constant correlation ρ.

The volatility of the volatility variable, v, the risk-free rate, r, and the

dividend yield, q, is assumed to be constant. We assume that the real-

world expected return µ is also constant. The real-world process for

the asset price is the same as that given above with r−q replaced byµ.

6 For the rest of the article, S refers to the asset price rather than the state.

This model is a particular case of the SABR model developed by

Hagan et al. (2002).7 It has the attractive property that there is a good

analytic approximation to a European option’s implied volatility.

σ0 and S0 are defined as the initial values of σ and S, respectively. If

the strike price and time to maturity of a European call option are K

and T, respectively, the estimate of the implied volatility is σ0B when

F0 = K and σ0Bϕ

χ
, otherwise, where

F0 = S0e
(r−q)T

B = 1+

(

ρvσ0

4
+
(

2− 3ρ2
)

v2

24

)

T

φ =
v

σ0
ln

(

F0

K

)

χ = ln

(
√

1− 2ρϕ+ φ2 + φ − ρ

1− ρ

)

Denoting the implied volatility by σimp, the value of the option is

given by the Black–Scholes–Merton formula as follows:

S0N
(

d1
)

e−qT − Ke−rTN
(

d2
)

(1)

where

d1 =
ln
(

S0
K

)

+
(

r − q+
σ 2
imp

2

)

T

σimp

√
T

d2 = d1 − σimp

√
T

and N is the cumulative normal distribution function. When v = 0,

the implied volatility is constant and equal to σ0, and the SABRmodel

reduces to the option pricing model developed by Black and Scholes

(1973) and Merton (1973).

As mentioned, delta is the first partial derivative of the option

price with respect to the asset price, gamma is the second partial

derivative with respect to the asset price, and vega is the first partial

derivative with respect to volatility. Under the model that is being

assumed, a natural idea is to regard a European option value as a

function of S and σ for the calculation of these partial derivatives.

However, the usual practitioner approach is to regard the option value

as a function of S and σimp when Greek letters are calculated. This is

the approach we will adopt. Denoting delta, gamma, and vega by 1,

Ŵ, and ϒ , respectively, Equation (1) gives the following formula:

1 = N
(

d1
)

e−qT

Ŵ =
N′
(

d1
)

e−qT

S0σimp

√
T

ϒ = S0e
−qT√TN′

(

d1
)

The delta, gamma, and vega of a portfolio are calculated by

summing those for the individual options in the portfolio.

7 The general SABR model is (in a risk-neutral world) dF = σFβdz1 with

dσ = vσdz2 where F is the forward price of the asset for a particular maturity.

We set β = 1 and assume that the volatility, σ , applies to the evolution of all

forward prices. When the forward contract matures at time T, S = Fe−(r−q)(T−t)

so that S follows the process indicated.
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4. Results

We conducted the hedging experiment with three different

objective functions. The objective functions are calculated from

the total gain/loss during the (30-day) period considered. The first

objective function to be minimized is

m+ 1.645s

where m is the mean of the loss and s is its standard deviation.8 If

the distribution of losses was normal, this objective function would

minimize the 95th percentile of the portfolio loss distribution.

The second and third objective functions minimize the VaR

and CVaR. For both measures, we use a 95% confidence level.

Our VaR measure (VaR95) is, therefore, the 95th percentile of the

portfolio loss, while our CVaR measure (CVaR95) is the expected loss

conditional on the loss being worse than the 95th percentile of the

loss distribution.

We report the results of over 5,000 test scenarios for a 30-day

hedging period on average. The test scenarios are different from the

(much greater number of) scenarios on which agents are trained.

Within each set of tests, the scenarios were kept the same.

4.1. Hedge ratios

The gamma (vega) hedge ratio when a hedging decision is made

is the proportional amount by which gamma (vega) is reduced. It is

defined as oneminus the gamma (vega) exposure of the portfolio after

the hedging divided by the gamma (vega) exposure of the portfolio

before hedging, i.e.,

Gamma Hedge Ratio = 1−
∑

t sign
(

Ŵt
)

Ŵt+

∑

t sign
(

Ŵt
)

Ŵt

Vega Hedge Ratio = 1−
∑

t sign
(

ϒ t
)

ϒ t+

∑

t sign
(

ϒ t
)

ϒ t

where Ŵt is portfolio gamma before hedging at time t and Ŵt+ is the

ratio after hedging. Similarly,ϒ t andϒ t+are the portfolio vega before

and after hedging. We report the average values of the gamma and

vega hedge ratios across all test scenarios and all hedging actions.

4.2. Gamma hedging results

We start by focusing on gamma risk by setting v = 0 so that

the SABR model reduces to the Black–Scholes–Merton model and

there is no vega risk. We remove the two vega-related state variables

in this experiment as they are not relevant to the agent. As already

mentioned, we assume that the RL agent has to hedge the client orders

arriving according to the Poisson process with an intensity of 1.0 per

day. Each client order is assumed to be for a 60-day option on 100

units of the underlying assets and has an equal probability of being

8 Gains are regarded as negative losses. When gamma and vega are hedged,

m is positive because we do not take into account of the profit from the client

options being hedged.

long or short. We run experiments with transaction costs assumed to

be 0.5, 1, and 2% of the option price. A 30-day at-the-money option

is used as the hedging option. The initial stock price is set at $10 and

the volatility is 30% per annum.9

Table 1 compares the performance of RL agents with delta-

neutral and delta-gamma-neutral strategies when they use the three

different objective functions and the three different transaction

cost assumptions. It shows that RL improves the hedger’s objective

functions compared to the simpler strategies.10 The outperformance

of the RL agents can be attributed to their ability to adjust their

hedging policies for different transaction costs. As the transaction

cost increases, the RL agents reduce the amount of gamma they are

hedging. The expected cost of hedging increases as the transaction

cost increases. However, because less hedging is done, the expected

cost of hedging rises more slowly than transaction costs.

The value of one client option is ∼$60 based on Black–Scholes

pricing formula with our chosen parameters. With the expected

arrival of one option per day, the expected profit from client options

over 30 days is, therefore, ∼1,800 times the premium over the

mid-market value charged on client options. If this premium is κ

times the option price (i.e., the transaction cost faced by clients of

the dealer is the same as the transaction cost faced by the dealer

when hedging), the results in Table 1 show that the cost of hedging

is comfortably covered by the transaction costs earned on client

options. For example, when κ is 1%, the expected cost of the RL hedge

is <$5, whereas the expected profit from client options is $18.

Figure 2 shows the distribution of the gain for the delta, delta-

gamma, and RL strategies for the VaR95 agent when transaction costs

are 1%. An examination of the left tails of the distributions in the rug

plot shows that the VaR95 RL strategy has a smaller probability of

experiencing large losses than the delta and delta-gamma strategies.

The expected cost of delta hedging is zero (This is as expected because

we assume no transaction costs for delta hedging.). The expected cost

of RL is clearly less than the delta-gamma strategy.

4.3. Risk limits

Traders are usually subject to limits on their gamma and

vega exposure at the end of each day. These limits can easily be

incorporated into RL by imposing constraints, in addition to those

mentioned in Section 2, on the range of hedging transactions that

are considered.

As an experiment, we compared RL with delta-gamma hedging

when gamma is reduced only when the exposure exceeds a risk

limit. We choose a risk limit equal to 10% of the max gamma

exposure of the unhedged portfolio in the simulated environment,

which could be an appropriate choice for a trading desk to set the

risk limit in practice. As Table 2 shows, the RL agent continues to

outperform the rule-based agents across different objective functions

and transaction costs.

9 The results presented are for r = q = µ = 0. We tried a range of other values

for these parameters and the results were similar to those presented.

10 We obtain good results in almost all our experiments, but there is no theory

guaranteeing convergence to the optimal strategy.
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TABLE 1 Results of tests when volatility is constant.

Objective function value for RL gamma
hedge ratio

Expected RL
transaction cost

Objective function Delta Delta-gamma RL

0.5% transaction cost

Mean-Std 24.61 5.78 5.44 0.83 3.00

VaR95 24.29 5.78 5.47 0.75 2.80

CVaR95 36.64 7.13 6.78 0.79 2.92

1% transaction cost

Mean-Std 24.61 9.93 8.36 0.57 4.58

VaR95 24.29 10.12 8.63 0.56 4.51

CVaR95 36.64 11.55 10.02 0.60 4.71

2% transaction cost

Mean-STD 24.61 18.74 12.73 0.30 5.91

VaR95 24.29 19.11 13.05 0.24 5.15

CVaR95 36.64 21.10 15.37 0.29 5.78

The Delta column shows the values of the objective functions when only delta hedging is carried out; the Delta-Gamma column shows the values when delta and gamma are fully hedged. The RL

results column shows the values when RL agents are used to minimize the objective functions in the first column. The final two columns report the average percentage of gamma hedged by the RL

agent and the expected loss arising from transaction costs from the trading conducted by the RL agent.

FIGURE 2

Comparison of gain distribution for delta hedging, delta-gamma-neutral hedging, and hedging by the VaR95 RL agent when transaction cost = 1%. Note

that the 5th percentile of the gain distribution corresponds to the 95th percentile loss in Table 1.

4.4. Impact of volatility uncertainty

We now move on to consider situations where volatility is

uncertain by setting σ0 equal to 30%, v equal to 0.3, and ρ =
−0.7 in the SABR model described in Section 3. Other parameters

and assumptions are described in Section 4.2. With two options,

both gamma and vega could be completely neutralized. However,

we assume that only a single at-the-money option is available.

Whereas, short maturity at-the-money options are most useful for

hedging gamma, longermaturity options work better for vega. Table 3

illustrates this by showing results for the following two different

maturities of the options used for hedging: 30 and 90 days. As before,

three different transaction costs, as a percent of the hedging option

price, are considered. The hedging policy of the RL agents is adaptive

to the maturity of the hedging options. The performance of the

RL agents is closest to the delta-gamma-neutral policy when short-

dated maturity options are used for hedging and the performance

moves closer to the delta-vega neutral policy as the option maturity

increases. Similar to the results when the Black–Scholes–Merton

model is used, the RL agents reduce the amount of gamma and vega

hedging as transaction cost increases. As in the constant volatility

example, it can be shown that the expected cost of hedging paid is

comfortably covered by the transaction costs earned on client options

in the situations we consider.

By training multiple RL agents with different VaR percentiles

as objective functions and using a 30-day maturity hedging option,

we have constructed a frontier to represent the risk and return for

different levels of risk aversion when transaction cost is equal to 1%,
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TABLE 2 Results of tests when volatility is constant.

Objective function value for

Objective function Delta-gamma RL

0.5% transaction cost

Mean-Std 7.27 6.80

VaR95 7.40 6.43

CVaR95 9.20 7.84

1.0% transaction cost

Mean-Std 9.59 9.19

VaR95 9.69 8.86

CVaR95 11.62 10.39

2.0% transaction cost

Mean-Std 14.85 13.34

VaR95 15.17 13.29

CVaR95 17.44 15.33

The Delta-Gamma agent shows the values when delta is fully hedged, and gamma is fully hedged

every time the dollar gamma exposure is >50. The RL results show the values when delta is fully

hedged and gamma exposure is hedged according to the VaR95 RL agent policy when the dollar

gamma exposure >50.

as shown in Figure 3. The figure shows that the RL agents generally

outperform simple rule-based strategies such as delta-neutral, delta-

gamma-neutral, and delta-vega-neutral.

5. Robustness tests

Our tests, so far, have assumed that the agent correctly estimates

the stochastic process followed by the underlying asset. We now

consider the sensitivity of hedge performance to a stochastic process

that is different from the one assumed in developing the hedging

strategy. We assume that the true stochastic process is the one

considered in Table 3 where the volatility of the volatility parameter,

v, is 0.3 and the initial volatility σ is 30%. The option used for hedging

is assumed to last for 90 days and the transaction costs are 1% of the

option price.

Table 4 considers the situation where the agent develops the

hedging strategy with the correct value of σ but with values of v

equal to 0, 0.15, 0.3, 0.45, and 0.6. Table 5 considers the situation

where the correct value of v is used but the hedging strategy is

developed with values of σ equal to 10, 20, 30, 40, and 50%. Overall,

the results indicate that hedging performance is fairly robust to the

values assumed for the parameters. Interestingly, in both cases, there

is virtually no deterioration in the performance of the hedge when the

parameters used to determine the hedging strategy are too high, but a

noticeable decrease in performance when they are too low. However,

the expected cost of hedging is greater when the parameter estimates

are too large.

6. Conclusion and further study

We have illustrated how D4PG can be used in conjunction

with QR to produce hedging strategies that are consistent with the

objective of the hedger. Our approach allows the agent to take

transaction costs into account when developing a policy formanaging

gamma and vega. Our results illustrate that the RL agent is able to find

a good balance between (a) only hedging delta and (b) fully hedging

gamma or vega as well as delta.

There are a number of ways in which our research can be

extended. A straightforward extension is to explore how well the

hedging strategies work for other stochastic volatility processes for

the underlying asset and for processes where there are jumps in the

price of the underlying asset. Alternatively, a joint process for the

asset price and volatility surface, such as that proposed by Francois

et al. (2023), can be investigated. The analysis should incorporate the

way delta, gamma, and vega are normally calculated by practitioners

(i.e., by substituting the implied volatility into the Black–Scholes–

Merton formulas).

We have assumed that all the options traded with clients are

“plain vanilla” European options. Further research could test how

well our results carry over to exotic options. Our results show that an

objective function involving a trade-off between mean and standard

deviation works reasonably well when only plain vanilla options are

traded. Preliminary results we have produced for barrier options

show that hedging strategies produced using this objective function

give quite different results from objective functions that focus on

losses. This is because, when the underlying asset price is close to the

barrier, the probability distribution of the derivative’s price changes

between hedge rebalancing is non-symmetrical.

We have used a fairly simple setup where a trade in at-the-

money option with a certain maturity is used for hedging each day.

In practice, only options with particular strike prices and times to

maturity are available for trading on any given day. The RL approach

must be used in conjunction with an algorithm for selecting from

available options the one that is used for hedging each day. It is likely

that a trader will wish to experiment with different algorithms.11 An

extension to the analysis would be to assume that two options are

available for hedging. The analysis is similar to that we have described

but more computationally time-consuming.

In practice, the time horizon used (30 days in our tests) is likely to

depend on the metrics used to assess the performance of the trader.

A single analysis could be carried out at the beginning of a relevant

period with the derived action as a function of the state variables

being used throughout the period. Alternatively, the analysis could

be updated periodically to reflect new information on the asset price

process and the arrival of client orders.

As we wanted to focus on gamma and vega hedging, we

assumed no transaction costs for delta hedging. The transaction costs

associated with trading the underlying asset are almost invariably

much less than those associated with trading options on the asset and

tests that we have carried out suggest that the change in the optimal

strategy arising from including these costs is not substantial. We also

assumed no bid-ask spread on client options. Practitioners are likely

to find it attractive to extend the analysis to incorporate both this and

the transaction costs on the underlying asset so that a probability

distribution for trading profitability is obtained. This can be done

fairly easily.

11 In our tests using the SABR model, Table 3 suggest that for transaction

costs of 0.5 and 1% the longermaturity option is preferable, but for a transaction

cost of 2% the shorter maturity option produces better results.
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TABLE 3 Results of tests when volatility is stochastic.

Hedge option
maturity

Objective
function

Value of objective function for RL
gamma

hedge ratio

RL vega
hedge
ratio

Expected
RL

transaction
cost

Delta Delta-
gamma

Delta-
vega

RL

Transaction costs = 0.5%

30 days Mean-Std 35.76 19.46 44.82 17.76 0.53 0.17 2.75

VaR95 34.43 19.23 42.90 19.31 0.61 0.18 3.25

CVar95 52.91 27.53 62.77 26.06 0.73 0.16 3.44

90 days Mean-Std 35.76 25.25 15.47 14.28 0.27 0.55 4.90

VaR95 34.43 24.43 15.40 14.41 0.24 0.47 4.53

CVar95 52.91 31.96 20.21 18.17 0.26 0.63 5.04

Transaction costs = 1%

30 days Mean-Std 35.76 23.06 51.36 20.03 0.50 0.13 4.40

VaR95 34.43 23.02 50.24 20.22 0.45 0.12 3.98

CVar95 52.91 31.55 69.92 26.81 0.42 0.10 4.00

90 days Mean-Std 35.76 35.29 22.20 18.61 0.14 0.37 6.21

VaR95 34.43 35.01 22.05 18.86 0.15 0.32 6.36

CVar95 52.91 42.63 27.18 24.58 0.12 0.31 5.65

Transaction costs = 2%

30 days Mean-Std 35.76 30.51 64.77 24.17 0.33 0.11 7.01

VaR95 34.43 30.67 64.56 23.85 0.29 0.07 5.70

CVar95 52.91 39.79 84.38 31.57 0.27 0.07 5.62

90 days Mean-Std 35.76 56.67 36.58 25.20 0.09 0.21 9.31

VaR95 34.43 56.97 36.78 25.73 0.08 0.16 7.80

CVar95 52.91 65.05 42.14 32.62 0.09 0.16 8.13

The Delta-column shows the values of the objective function when only delta hedging is carried out; the Delta-Gamma column shows the values when delta and gamma are fully hedged; the Delta-

Vega column shows the values when delta and vega are fully hedged. The RL results column shows the values when RL agents are used to minimize objective functions. The final three columns report

the averages of the gamma and vega hedged by RL and the expected RL loss from transaction costs.

FIGURE 3

Risk-return trade-o�s that are possible using RL with di�erent objective functions. The positive average cost of hedging reported in previous tables

means the average return of the agent is negative.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2023.1129370
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Cao et al. 10.3389/frai.2023.1129370

TABLE 4 Values of the objective function and expected cost of hedging when the hedging strategy is developed with values of the volatility of volatility, v,

that are di�erent from the actual 0.3 value.

v Objective function Value of objective
function

Gamma hedge
ratio

Vega hedge ratio Expected
transaction costs

0.0 Mean-Std 23.29 0.17 0.16 6.03

VaR95 23.96 0.18 0.16 6.43

CVaR95 32.79 0.21 0.17 7.08

0.15 Mean-Std 21.49 0.15 0.17 6.13

VaR95 20.98 0.11 0.18 4.99

CVaR95 25.86 0.17 0.24 6.66

0.3 Mean-Std 18.61 0.14 0.37 6.21

VaR95 18.86 0.15 0.32 6.36

CVaR95 24.58 0.12 0.31 5.65

0.45 Mean-Std 18.72 0.19 0.48 7.60

VaR95 18.73 0.16 0.41 7.08

CVaR95 22.97 0.19 0.40 7.71

0.6 Mean-Std 19.66 0.20 0.62 9.06

VaR95 18.47 0.17 0.48 7.46

CVaR95 23.48 0.20 0.52 8.74

The initial volatility, σ , is assumed to be 30%.

TABLE 5 Values of the objective function when the hedging strategy is developed with values of the initial volatility, σ , that are di�erent from the actual 30%

value.

σ Objective function Value of objective
function

Gamma hedge
ratio

Vega hedge ratio Expected
transaction costs

10% Mean-Std 26.57 0.28 0.44 11.12

VaR95 28.58 0.29 0.34 10.40

CVaR95 29.81 0.36 0.39 11.93

20% Mean-Std 21.48 0.21 0.50 8.94

VaR95 19.61 0.22 0.53 8.37

CVaR95 27.07 0.18 0.46 7.79

30% Mean-Std 18.61 0.14 0.37 6.21

VaR95 18.86 0.15 0.32 6.36

CVaR95 24.58 0.12 0.31 5.65

40% Mean-Std 18.88 0.18 0.40 7.18

VaR95 20.92 0.17 0.35 7.13

CVaR95 23.38 0.15 0.35 6.64

50% Mean-Std 19.95 0.12 0.32 6.02

VaR95 19.62 0.14 0.40 7.13

CVaR95 24.95 0.23 0.35 8.96

The volatility of volatility parameter, v, is assumed to be 0.3.

For the sake of simplicity, we assumed proportional transaction

costs throughout our experiments. Other tests could involve

transaction costs that are convex or “fixed plus variable”. The

bid-ask spread, which determines the transaction costs, could,

with some increase in complexity, be assumed to be stochastic.

The robustness tests that we have carried out are encouraging.

However, more extensive tests where the true process followed by

the asset price is quite different from the assumed process could be

carried out.

The economics of trading derivatives is an important concern

to dealers. In the example we considered, we have shown that the

profits on trades more than cover the costs of hedging. It would be

interesting to carry out further tests to see how this result depends on

the average number of client orders per day and the transaction costs.
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