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Abstract

Implied volatilities are frequently used to quote the prices of options. The implied

volatility of a European option on a particular asset as a function of strike price and

time to maturity is known as the asset’s volatility surface. Traders monitor movements

in volatility surfaces closely. In this paper we develop a no-arbitrage condition for the

evolution of a volatility surface. We examine a number of rules of thumb used by

traders to manage the volatility surface and test whether they are consistent with the

no-arbitrage condition and with data on the trading of options on the S&P 500 taken

from the over-the-counter market.



1 Introduction

Option traders and brokers in over-the-counter markets frequently quote option prices using

implied volatilities calculated from Black and Scholes (1973) and other similar models. Put–

call parity implies that, in the absence of arbitrage, the implied volatility for a European call

option is the same as that for a European put option when the two options have the same

strike price and time to maturity. This is convenient: when quoting an implied volatility

for a European option with a particular strike price and maturity date, a trader does not

need to specify whether a call or a put is being considered.

The implied volatility of European options on a particular asset as a function of strike

price and time to maturity is known as the volatility surface. Every day traders and brokers

estimate volatility surfaces for a range of different underlying assets from the market prices of

options. Some points on a volatility surface for a particular asset can be estimated directly

because they correspond to actively traded options. The rest of the volatility surface is

typically determined by interpolating between these points.

If the assumptions underlying Black–Scholes held for an asset, its volatility surface would

be flat and unchanging. In practice the volatility surfaces for most assets are not flat and

change stochastically. Consider for example equities and foreign currencies. Rubinstein

(1994) and Jackwerth and Rubinstein (1996), among others, show that the implied volatil-

ities of stock and stock index options exhibit a pronounced “skew” (that is, the implied

volatility is a decreasing function of strike price). For foreign currencies this skew becomes

a “smile” (that is, the implied volatility is a U-shaped function of strike price). For both

types of assets, the implied volatility can be an increasing or decreasing function of the

time to maturity. The volatility surface changes through time, but the general shape of the

relationship between volatility and strike price tends to be preserved.

Traders use a volatility surface as a tool to value a European option when its price is

not directly observable in the market. Provided there are a reasonable number of actively

traded European options and these span the full range of the strike prices and times to

maturity that are encountered, this approach ensures that traders price all European options

consistently with the market. However, as pointed out by Hull and Suo (2002), there is

no easy way to extend the approach to price path-dependent exotic options such as barrier

options, compound options, and Asian options. As a result there is liable to be some model
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risk when these options are priced.

Traders also use the volatility surface in an ad hoc way for hedging. They attempt to

hedge against potential changes in the volatility surface as well as against changes in the

asset price. As described in Derman (1999) one popular approach to hedging against asset

price movements is the “volatility-by-strike” or “sticky strike” rule. This assumes that the

implied volatility for an option with a given strike price and maturity will be unaffected

by changes in the underlying asset price. Another popular approach is the “volatility-by-

moneyness” or “sticky delta” rule. This assumes that the volatility for a particular maturity

depends only on the moneyness (that is, the ratio of the price of an asset to the strike price).

The first attempts to model the volatility surface were by Rubinstein (1994), Derman

and Kani (1994), and Dupire (1994). These authors show how a one-factor model for an

asset price, known as the implied volatility function (IVF) model, can be developed so that

it is exactly consistent with the current volatility surface. Unfortunately, the evolution

of the volatility surface under the IVF model can be unrealistic. The volatility surface

given by the model at a future time is liable to be quite different from the initial volatility

surface. For example, in the case of a foreign currency the initial U-shaped relationship

between implied volatility and strike price is liable to evolve to one where the volatility is a

monotonic increasing or decreasing function of strike price. Dumas, Fleming, and Whaley

(1997) have shown that the IVF model does not capture the dynamics of market prices well.

Hull and Suo (2002) have shown that it can be dangerous to use the model for the relative

pricing of barrier options and plain vanilla options.

In the first part of this paper we develop a general diffusion model for the evolution

of a volatility surface and derive a restriction on the specification of the model necessary

for it to be a no-arbitrage model. Other researchers that have independently followed a

similar approach are Ledoit and Santa Clara (1998), Schönbucher (1999), and Brace et al

(2001). In addition, Britten–Jones and Neuberger (2000) produce some interesting results

characterizing the set of all continuous price processes that are consistent with a given set of

option prices. Our work is different from that of other researchers in that we a) investigate

the implications of the no-arbitrage condition for the shapes of the volatility surfaces likely

to be observed in different situations and b) examine whether the various rules of thumb

that have been put forward by traders are consistent with the no-arbitrage condition. We

also extend the work of Derman (1999) to examine whether the rules of thumb are supported
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by market data.

The rest of this paper is organized as follows. Section 2 proposes a general model for the

evolution of a volatility surface and derives the no-arbitrage condition. Section 3 discusses

the implications of the no-arbitrage condition. Section 4 examines a number of special

cases of the model. Section 5 considers three rules of thumb used by traders and examines

whether they are consistent with the no-arbitrage condition. Section 6 uses the rules of

thumb to develop and test a number of hypotheses on the evolution of a volatility surface

using data from the over-the-counter market. We also demonstrate how the dynamics of the

volatility surface can be estimated by suing maximum likelihood estimations. Conclusions

are in Section 7.

2 The Dynamics of the Implied Volatility

We suppose that the risk-neutral process followed by the price of an asset, S, is

dS

S
= [r(t)− q(t)] dt + σ dz, (1)

where r(t) is the risk-free rate, q(t) is the yield provided by the asset, σ is the asset’s

volatility, and z is a Wiener process. We suppose that r(t) and q(t) are deterministic

functions of time and that σ follows a diffusion process. Our model includes the IVF model

and stochastic volatility models such as Hull and White (1987), Stein and Stein (1991) and

Heston (1993) as special cases.

Most stochastic volatility models specify the process for σ directly. We instead specify

the processes for all implied volatilities. Define σTK(t, S) as the implied volatility at time

t of an option with strike price K and maturity T when the asset price is S and VTK(t, S)

as the implied variance of this option (t < T ) so that

VTK(t, S) = [σTK(t, S)]2

Suppose that the process followed by VTK in a risk-neutral world is

dVTK = αTK dt + VTK

N∑

i=1

θTKi dzi (2)

where z1, · · · , zN are Wiener processes driving the volatility surface. Without loss of gen-

erality, we assume that these Wiener processes are uncorrelated. The zi may be correlated
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with the Wiener process, z, driving the asset price in equation (1). We define ρi as the

correlation between z and zi. The initial volatility surface is σTK(0, S0) where S0 is the

initial asset price. This volatility surface can be estimated from the current (t = 0) prices

of European call or put options and is assumed to be known.

The family of processes in equation (2) defines the multi-factor dynamics of the volatility

surface. The parameter θTKi measures the sensitivity of VTK to the Wiener process, zi. In

the most general form of the model the parameters αTK and θTKi (1 ≤ i ≤ N) may depend

on past and present values of S, past and present values of VTK , and time.

There is clearly a relationship between the instantaneous volatility σ(t) and the volatility

surface σTK(t, S). The appendix shows that the instantaneous volatility is the limit of the

implied volatility of an at-the-money option as its time to maturity approaches zero. For

this purpose an at-the-money option is defined as an option where the strike price equals

the forward asset price.1 Formally:

lim
T→t

σTF (t, S) = σ(t). (3)

where F is the forward price of the asset at time t for a contract maturing at time T . In

general the process for σ is non-Markov. This is true even when the processes in equation

(2) defining the volatility surface are Markov.2

Define c(S, VTK , t;K, T ) as the price of a European call option with strike price K and

maturity T when the asset price, S, follows the process in equations (1) and (2). From

the definition of implied volatility and the results in Black and Scholes (1973) and Merton

(1973) it follows that:

c(S, VTK , t; K, T ) = e−
∫ T

t
q(τ) dτSN(d1)− e−

∫ T

t
r(τ) dτKN(d2)

where

d1 =
ln(S/K) +

∫ T
t [r(τ)− q(τ)]dτ√

VTK(T − t)
+

1
2

√
VTK(T − t)

1Note that the result is not necessarily true if we define an at-the-money option as an option where the

strike price equals the asset price. For example, when

σTK(t, S) = a + b
1

T − t
ln(F/K)

with a and b constants, limT→t σTF (t, S) is not the same as limT→t σTS(t, S)
2There is an analogy here to the Heath, Jarrow, and Morton (1992) model. When each forward rate

follows a Markov process the instantaneous short rate does not in general do so.
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d2 =
ln(S/K) +

∫ T
t [r(τ)− q(τ)]dτ√

VTK(T − t)
− 1

2

√
VTK(T − t)

Using Ito’s lemma equations (1) and (2) imply that the drift of c in a risk-neutral world is:

∂c

∂t
+ (r − q)S

∂c

∂S
+

1
2
σ2S2 ∂2c

∂S2
+ αTK

∂c

∂VTK
+

1
2
V 2

TK

∂2c

∂V 2
TK

N∑

i=1

(θTKi)2

+SVTKσ
∂2c

∂S∂VTK

N∑

i=1

θTKiρi

In the most general form of the model ρi, the correlation between z and zi, is a function of

past and present values of S, past and present values of VTK and time. For there to be no

arbitrage the process followed by c must provide an expected return of r in a risk-neutral

world. It follows that

∂c

∂t
+ (r − q)S

∂c

∂S
+

1
2
σ2S2 ∂2c

∂S2
+ αTK

∂c

∂VTK
+

1
2
V 2

TK

∂2c

∂V 2
TK

N∑

i=1

(θTKi)2

+SVTKσ
∂2c

∂S∂VTK

N∑

i=1

θTKiρi = rc

When VTK is held constant, c satisfies the Black-Scholes (1973) and Merton (1973)

differential equation. As a result

∂c

∂t
+ (r − q)S

∂c

∂S
= rc− 1

2
VTKS2 ∂2c

∂S2

It follows that

1
2
S2 ∂2c

∂S2
(σ2 − VTK) + αTK

∂c

∂VTK
+

1
2
V 2

TK

∂2c

∂V 2
TK

N∑

i=1

(θTKi)2

+SVTKσ
∂2c

∂S∂VTK

N∑

i=1

θTKiρi = 0

or

αTK = − 1
2∂c/∂VTK

[
S2 ∂2c

∂S2
(σ2 − VTK) +

∂2c

∂V 2
TK

V 2
TK

N∑

i=1

(θTKi)2

+2SVTKσ
∂2c

∂S∂VTK

N∑

i=1

θTKiρi

]
(4)

The partial derivatives of c with respect to S and VTK are the same as those for the

Black–Scholes model:

∂c

∂S
= e−

∫ T

t
q(τ) dτN(d1)
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∂2c

∂S2
=

φ(d1)e
−

∫ T

t
q(τ) dτ

S
√

VTK(T − t)

∂c

∂VTK
=

Se−
∫ T

t
q(τ) dτφ(d1)

√
T − t

2
√

VTK

∂2c

∂V 2
TK

=
Se−

∫ T

t
q(τ) dτφ(d1)

√
T − t

4V
3/2
TK

(d1d2 − 1)

∂2c

∂S∂VTK
= −e−

∫ T

t
q(τ) dτφ(d1)d2

2VTK

where φ is the density function of the standard normal distribution:

φ(x) =
1
2π

exp

(
−x2

2

)
, −∞ < x < ∞.

Substituting these relationships into equation (4) and simplifying we obtain

αTK =
1

T − t
(VTK − σ2)− VTK(d1d2 − 1)

4

N∑

i=1

(θTKi)2 + σd2

√
VTK

T − t

N∑

i=1

θTKiρi (5)

Equation (5) provides an expression for the risk-neutral drift of an implied variance in

terms of its volatility. The first term on the right hand side is the drift arising from the

difference between the implied variance and the instantaneous variance. The second term

arises from the part of the uncertainty about future volatility that is uncorrelated with

the asset price. The third term arises from the correlation between the asset price and its

volatility.

The first term can be understood by considering the situation where the instantaneous

variance, σ2, is a deterministic function of time. The variable VTK is then also a function

of time and

VTK =
1

T − t

∫ T

t
σ(τ)2dτ

Differentiating with respect to time we get

dVTK

dt
=

1
T − t

[VTK − σ(t)2]

This is the first term.

The analysis can be simplified slightly by considering the variable V̂TK instead of V

where V̂TK = (T − t)VTK . Because

dV̂TK = −VTKdt + (T − t)dVTK
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it follows that

dV̂TK =

[
−σ2 − V̂TK(d1d2 − 1)

4

N∑

i=1

(θTKi)2 + σd2

√
V̂TK

N∑

i=1

θTKiρi

]
dt

+V̂TK

N∑

i=1

θTKidzi

3 Implications of the No-Arbitrage Condition

Equation (5) provides a no-arbitrage condition for the drift of the implied variance as a

function of its volatility. In this section we examine the implications of this no-arbitrage

condition. In the general case where VTK is nondeterministic the first term in equation (5)

is mean fleeing; that is it provides negative mean reversion. This negative mean reversion

becomes more pronounced as the option approaches maturity. For a viable model the

θTKi must be complex functions that in some way offset this negative mean reversion.

Determining the nature of these functions is not easy. However, it is possible to make some

general statements about the volatility smiles that are consistent with stable models.

3.1 The Zero Correlation Case

Consider first the case where all the ρi are zero so that the third term in equation (5)

disappears. As before we define F as the forward value of the asset for a contract maturing

at time T so that

F = Se
∫ T

t
[r(τ)−q(τ)]dτ

¿From equation (5) the drift of VTK − VTF is

1
T − t

(VTK − VTF )− VTK(d1d2 − 1)
4

N∑

i=1

(θTKi)2 − VTF [1 + VTF (T − t)/4]
4

N∑

i=1

(θTFi)2

Suppose that d1d2−1 > 0 and VTK < VTF . In this case each term in the drift of VTK−VTF

is negative. As a result VTK − VTF tends to get progressively more negative and the model

is unstable with negative values of VTK being possible. We deduce from this that VTK must

be greater than VTF when d1d2 > 1. The condition d1d2 > 1 is satisfied for very large and

very small values of K. It follows that the case where the ρi are zero can be consistent with

the U-shaped volatility smile. It cannot be consistent with a upward or downward sloping

smile because in these cases VTK < VTF for either very high or very low values of K.
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Our finding is consistent with a result in Hull and White (1987). These authors show

that when the instantaneous volatility is independent of the asset price, the price of a

European option is the Black–Scholes price integrated over the distribution of the average

variance. They demonstrate that when d1d2 > 1 a stochastic volatility tends to increase an

option’s price.

A U-shaped volatility smile is commonly observed for options on a foreign currency. Our

analysis shows that this is consistent with the empirical result that the correlation between

implied volatilities and the exchange rate is close to zero (see, for example, Bates (1996)).

3.2 Volatility Skews

Consider next the situation where the volatility is a declining function of the strike price.

The variance rate VTK is greater than VTF when K is very small and less than VTF when K

is very large. When we do not make the zero-correlation assumption the drift of VTK−VTF

is

1
T − t

(VTK − VTF )− VTK(d1d2 − 1)
4

N∑

i=1

(θTKi)2 − VTF (1 + VTF (T − t)/4)
4

N∑

i=1

(θTFi)2

+σd2

√
VTK

T − t

N∑

i=1

θTKiρi + σ
VTF

2

N∑

i=1

θTFiρi

When K > F , VTK − VTF is negative and the effect of the first three terms is to provide a

negative drift as before. For a stable model we require the last two terms to give a positive

drift. As K increases and we approach option maturity the first of the last two terms

dominates the second. Because d2 < 0 we must have
N∑

i=1

θTKiρi < 0 (6)

when K is very large. The instantaneous covariance of the asset price and its variance is

σ
N∑

i=1

θTKiρi

Because σ > 0 it follows that when K is large the asset price must be negatively correlated

with its variance.

Equities provide an example of a situation where there is a volatility skew of the sort

we are considering. As has been well documented by authors such as Christie (1982), the

volatility of an equity price tends to be negatively correlated with the equity price. This is

consistent with the result we have just presented.
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3.3 Other Results

Consider the situation where volatility is an increasing function of the strike price. (This

is the case for options on some commodity futures.) A similar argument to that just given

shows that the no-arbitrage relationship implies that the volatility of the variable should

be positively correlated with the level of the variable.

Another possibility for the volatility smile is an inverted-U-shaped pattern. In this case

a similar analysis to that given above shows that for a stable model
N∑

i=1

θTKiρi

must be less than zero when K is large and greater than zero when K is small. It is difficult

to see how this can be so without the stochastic terms in the processes for the VTK having

a form that quickly destroys the inverted-U-shaped pattern.

4 Special Cases

In this section we consider a number of special cases of the model developed in Section 2.

Case 1: VTK is a deterministic function only of t, T , and K

In this situation θTKi = 0 for all i ≥ 1 so that from equation (2)

dVTK = αTK dt,

Also from equation (5)

αTK =
1

T − t

[
VTK − σ2

]

so that

dVTK =
1

T − t

[
VTK − σ2

]
dt

which can be written as

(T − t)dVTK − VTKdt = −σ2 dt

or

σ2 = −d [(T − t)VTK ]
dt

(7)

This shows that σ is a deterministic function of time. The only model that is consistent

with VTK being a function only of t, T , and K is therefore the model where the instantaneous

volatility, σ, is a function only of time. This is Merton’s (1973) model.
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In the particular case where VTK depends only on T and K, equation (7) shows that

VTK = σ2 and we get the Black-Scholes constant-volatility model.

Case 2: VTK is independent of the asset price, S .

In this situation ρi is zero and equation (5) becomes

αTK =
1

T − t
(VTK − σ2)− VTK(d1d2 − 1)

4

N∑

i=1

(θTKi)2

Both αTK and the θTKi must be independent of S. Because d1 and d2 depend on S we must

have θTKi equal zero for all i. Case 2 therefore reduces to Case 1. The only model that is

consistent with VTK being independent of S is therefore Merton’s (1973) model where the

instantaneous volatility is a function only of time.

Case 3: VTK is a deterministic function of t, T , and K/S, or equivalently, K/F .

In this situation

VTK = G

(
T, t,

K

F

)
,

where G is a deterministic function and as before F is the forward price of S. From equation

(3) the spot instantaneous volatility, σ, is given by

σ2 = G (t, t, 1) ,

This is a deterministic function of time. It follows that, yet again, the model reduces to

Merton’s (1973) deterministic volatility model.

Case 4: VTK is a deterministic function of t, T , S and K.

In this situation we can write

VTK = G(T, t, F, K), (8)

where G is a deterministic function. From equation (3), the instantaneous volatility, σ is

given by

σ2 = lim
T→t

G(T, t, F, F )

This shows that the instantaneous volatility is a deterministic function of F and t. Equiv-

alently it is a deterministic function of underlying asset price, S, and t. It follows that the

model reduces to the IVF model. Writing σ as σ(S, t), Dupire (1994) and Andersen and

Brotherton–Ratcliffe (1998) show that

[σ(K,T )]2 = 2
∂c/∂T + q(T )c + K[r(T )− q(T )]∂c/∂K

K2(∂2c/∂K2)

where c is here regarded as a function of S, K and T for the purposes of taking partial

derivatives.
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5 Rules of Thumb

A number of rules of thumb have been proposed about volatility surfaces. These rules of

thumb fall into two categories. In the first category are rules concerned with the way in

which the volatility surface changes through time. They are useful in the calculation of the

Greek letters such as delta and gamma. In the second category are rules concerned with the

relationship between the volatility smiles for different option maturities at a point in time.

They are useful in creating a complete volatility surface when market prices are available

for a relatively small number of options. In this section we consider three different rules of

thumb: the sticky strike rule, the sticky delta rule and the square root of time rule. The

first two of these rules are in the first category and provide a basis for calculating Greek

letters. The third rule is in the second category and assists with the mechanics of “filling

in the blanks” when a complete volatility surface is being produced.

5.1 The Sticky Strike Rule

The sticky strike rule assumes that the implied volatility of an option is independent of the

asset price. This is an appealing assumption because it implies that the sensitivity of the

price of an option to S is
∂c

∂S

where for the purposes of calculating the partial derivative the option price, c, is considered

to be a function of S, VTK , and t. The assumption enables the Black–Scholes formulas to

be used to calculate delta with the volatility parameter set equal to the option’s implied

volatility. The same is true of gamma.

Under the most basic form of the sticky strike rule the implied volatility of an option is

assumed to remain the same for the whole of its life. The variance VTK is a function only

of K and T . The analysis in Case 1 of the previous section shows that the only version of

this model that is internally consistent is the model where the volatilities of all options are

the same and constant. This is the original Black and Scholes (1973) model.

A rather more sophisticated version of the sticky strike rule is where VTK is independent

of S, but possibly dependent on other stochastic variables. As shown in Case 2 of the

previous section, the only version of this model that is internally consistent is the model

where the instantaneous volatility of the asset price is a function only of time. This is
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Merton’s (1973) model.

When the instantaneous volatility of the asset price is a function only of time, all Euro-

pean options with the same maturity have the same implied volatility. We conclude that all

versions of the sticky strike rule are inconsistent with any type of volatility smile or volatil-

ity skew. If a trader prices options using different implied volatilities and the volatilities

are independent of the asset price, there must be arbitrage opportunities.

5.2 The Sticky Delta Rule

An alternative to the sticky strike rule is the sticky delta rule. This assumes that the implied

volatility of an option depends on S and K through its dependence on the moneyness

variable, K/S. The delta of a European option in a stochastic volatility model is

∆ =
∂c

∂S
+

∂c

∂VTK

∂VTK

∂S

Again, for the purposes of calculating partial derivatives the option price c is considered to

be a function of S, VTK , and t. The first term in this expression is the delta calculated using

Black-Scholes with the volatility parameter set equal to implied volatility. In the second

term, ∂c/∂VTK is positive. It follows that, if VTK is a declining (increasing) function of

the strike price, it is an increasing (declining) function of S and ∆ is greater than (less

than) that given by Black-Scholes. For equities VTK is a declining function of K and so

the Black-Scholes delta understates the true delta. For an asset with a U-shaped volatility

smile Black-Scholes understates delta for low strike prices and overstates it for high strike

prices.

In the most basic form of the sticky delta rule the implied volatility is assumed to be

a deterministic function of K/S and T − t. Case 3 in the previous section shows that the

only version of this model that is internally consistent is Merton’s (1973) model where the

instantaneous volatility of the asset price is a function only of time. Again we find that the

model is inconsistent with any type of volatility smile or volatility skew. For no arbitrage,

implied volatilities must be independent of S and K.

A more general version of the sticky delta rule is where the process for VTK depends on

K, S, T , and t only through its dependence on K/S and T − t. We will refer to this as the

generalized sticky delta model. Models of this type can be consistent with the no-arbitrage

condition. This is because equation (5) shows that if each θTKi depends on K, S, T , and t
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only through a dependence on K/S and T − t, the same is true of αTK .

Many traders argue that a better measure of moneyness than K/S is K/F where as

before F is the forward value of S for a contract maturing at time T . A version on the sticky

delta rule often used by traders is that σTK(S, t)− σTF (S, t) is a function only of K/F and

T − t. Here it is the excess of the volatility over the at-the-money volatility, rather than the

volatility itself, which is assumed to be a deterministic function of the moneyness variable,

K/F . This form of the sticky delta rule allows the overall level of volatility to change

through time and the shape of the volatility term structure to change, but when measured

relative to the at-the-money volatility, the volatility is dependent only on K/S and T − t.

We will refer to this model as the relative sticky delta model. If the at-the-money volatility

is stochastic, but independent of S, the model is a particular case of the generalized sticky

delta model just considered.

5.3 The Square Root of Time Rule

A rule that is sometimes used by traders is what we will refer to as the “square root of

time rule”. This is described in Natenberg (1994) and Hull (2002). It provides a specific

relationship between the volatilities of options with different strike prices and times to

maturity at a particular time. One version of rule is

σTK(S, t)
σTF (S, t)

= Φ
(

ln(K/F )√
T − t

)

where Φ is a function, and F is the forward price at time t of the underlying with a contract

maturity of T . An alternative that we will use is

σTK(S, t)− σTF (S, t) = Φ
(

ln(K/F )√
T − t

)
(9)

We will refer version of the rule where Φ does not change through time as the stationary

square root of time model and the version of the rule where the form of the function Φ

changes stochastically as the stochastic square root of time model.

The square root of time model (whether stationary or stochastic) simplifies the specifi-

cation of the volatility surface. If we know

1. The volatility smile for options that mature at one particular time T ∗, and

2. At-the-money volatilities for other maturities
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we can compute the complete volatility surface. Suppose that F ∗ is the forward price of the

asset for a contract maturing at T ∗. We can compute the volatility smile at time T from

that at time T ∗ using the result that

σTK(S, t)− σTF (S, t) = σT ∗K∗(S, t)− σT ∗F ∗(S, t)

where
ln(K/F )√

T − t
=

ln(K∗/F ∗)√
T ∗ − t

or

K∗ = F ∗
(

K

F

)√(T ∗−t)/(T−t)

If the at-the-money volatility is assumed to be stochastic, but independent of S, the

stationary square root of time model is a particular case of the relative sticky strike model

and the stochastic square root of time model is a particular case of the generalized sticky

strike model.

6 Empirical Tests

As pointed out by Derman (1999) apocryphal rules of thumb for describing how volatility

smiles and skews change may not be confirmed by data. Derman’s research looks at options

on the S&P 500 during the period September 1997 to October 1998 and considers the sticky-

strike and sticky delta rules as well as a more complicated rule based on the IVF model.

He finds subperiods during which each of rules appears to explain the data best.

Derman’s results are based on options with three-month maturities. Options on the

S&P 500 regularly trade with maturities up to five years in the over-the-counter market. In

this section we consider a wide range of option maturities to try and obtain a more complete

picture of the rules governing the behavior of the volatility surface. We also investigate the

factors deriving the volatility surface. The multiple option maturities also allow us to test

the square root of time rule. To the best of our knowledge there are no previous tests of

this rule in the literature.

6.1 Data

The data we use are monthly volatility surfaces for 47 months (June 1998 to April 2002).

The data for June 1998 is shown in Table 1. Six maturities are considered ranging from six
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months to five years. Seven values of K/S are considered ranging from 80 to 120. A total of

42 points on the volatility surface are therefore provided each month and the total number

of volatilities in our data set is 42×47 = 1974. As illustrated in Table 1, implied volatilities

for the S&P 500 exhibit a volatility skew with σTK(t, S) being a decreasing function of K.

[Table 1 about here.]

The data was supplied to us by Totem Market Valuations Limited with the kind per-

mission of a selection of Totem’s major bank clients. Totem collects implied volatility data

in the form shown in Table 1 from a large number of dealers each month. These dealers

are market makers in the over-the-counter market. Totem uses the data in conjunction

with appropriate averaging procedures to produce an estimate of the mid-market implied

volatility for each cell of the table and returns these estimates to the dealers. This enables

dealers to check whether their valuations are in line with the market. Our data consists of

the estimated mid-market volatilities returned to dealers. The data produced by Totem are

considered by market participants to be more accurate than either the volatility surfaces

produced by brokers or those produced by any one individual bank.

6.2 Estimation of the Volatility Factors

We have assumed that the volatility surface is driven a certain number of factors. In this

part, we illustrate how how to use maximum likelihood to estimate these factors, and the

number of factors needed to describe the volatility surface. For this purpose, we consider

the special case where θTK(t, S) is of such a form that we may consider θ(T−t),F/K to be a

constant, consistent with the sticky delta rule of Section 5.1. We use our data to generate

volatility matrices where the data is spaced according to F/K rather than S/K, as originally

reported. We create this data, and the attendant changes in volatility, using interpolation.

Given this, we can consider a discretized process for log(V(T−t),F/K):

∆ log(V(T−t),F/K,t) = α̂(T−t),F/K∆t + ε(T−t),F/K,t

where

α̂(T−t),F/K =
1

T − t
(1− σ2

V(T−t),F/K
)
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−(d1d2 + 1)
4

N∑

i=1


θ2

(T−t),F/K,i +
∑

j 6=i

ρiρjθ(T−t),F/K,iθ(T−t),F/K,j




+σd2
1√

V(T−t),F/K(T − t)

N∑

i=1

θ(T−t),F/K,iρi

and the errors are distributed such that

E(ε(T−t),F/K,t) = 0

and

E(ε(T−t)i,(F/K)i,tε(T−t)j ,(F/K)j ,t) =
√

∆t
N∑

k=1


θ2

(T−t)i,(F/K)i,k
+

∑

l 6=k

θ(T−t)i,(F/K)i,kθ(T−t)j ,(F/K)j ,lρkρl




+





σ2
ε if i = j.

0 otherwise.
(10)

Note that this gives our data a block diagonal variance-covariance matrix. Changes in

implied volatilities at the same time are correlated with each other, but no two volatility

movements at different times are correlated. Assuming that the ε’s are normally distributed,

we can find the likelihood function for each volatility matrix. For θ(T−t),(F/K),i and ρi

i = 1 . . . N , along with the residual standard deviation (σ2
ε ) :

L =
M∑

i=1

−ε′tiVtiεti − log det(Vti)

where V is the variance covariance matrix described by (10) and t1 . . . tM are the times on

which volatility surfaces are observed. The ability to find the likelihood for each volatility

matrix separately follows from the block-diagonality of the variance covariance matrix.

Estimation consists of finding θ(T−t),(F/K),i and ρi i = 1 . . . N , and the residual standard

deviation (σ2
ε ) so as to minimize L.

Fitting a three factor model (N = 4) we find the following factors:

[Figure 1 about here.]

The first factor has ρ1 = 1.0000, the second factor has ρ2 = 0.965, while the third factor

has ρ3 = 0.369, and the fourth factor has ρ4 = 0.946.

[Table 2 about here.]
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[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

From these results, we can see that the first factor is common for both the underlying

index level and its implied volatility surface. The uniformly positive signs of the coefficients

suggest that the factor corresponds to a parallel shift to the volatility surface. For the

second factor, the signs for those long term, out-of-the-money put options are negative,

while they are positive for the in-the-money put options with short maturity. This factor

can be regarded as an effect on the slope of the volatility surface. The magnitude of the

coefficients are also smaller than those for the first factor. Similar observations can be made

for the third and fourth factors.

With four factors, the standard deviation of remaining errors is 0.0153.

6.3 Tests of the Volatility Rules

We first used the data to test the sticky strike rule. The most basic version of the sticky

strike rule, where the implied volatility is a function only of K and T , may be plausible in

the exchange-traded market where the exchange defines a handful of options that trade and

traders anchor on the volatility they first use for any one of these options. Our data comes

from the over-the-counter market. It is difficult to see how the basic version of the sticky

strike rule can apply in that market because there is continual trading in options with many

different strike prices and times to maturity. A more plausible version of the rule in the

over-the-counter market is that the implied volatility is a function only of K and T − t.

We tested this version of the sticky strike rule using

σTK(t, S) = a0 + a1K + a2K
2 + a3(T − t) + a4(T − t)2 + a5K(T − t) + ε (11)

where the ai are constant and ε is a normally distributed error term. The terms on the

right hand side of this equation can be thought of as the first few terms in a Taylor series

expansion of a general function of K and T−t. As shown in Table 2, the model is supported

by the data, but has an R2 of only 27%.

[Table 6 about here.]
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We now move on to test the sticky delta rule. The version of the rule we consider is the

relative sticky strike model where σTK(t, S) − σTF (t, S) is a function of K/F and T − t.

The model we test is

σTK(t, S)− σTF (t, S) = b0 + b1 ln
(

K

F

)
+ b2

[
ln

(
K

F

)]2

+ b3(T − t)

+b4(T − t)2 + b5 ln
(

K

F

)
(T − t) + ε (12)

where the bi are constants and ε is a normally distributed error term. The model is analogous

to the one used to test the sticky strike rule. The terms on the right hand side of this

equation can be thought of as the first few terms in a Taylor series expansion of a general

function of ln(K/F ) and T − t. The results are shown in Table 7. In this case the R2 is

much higher at 94.93%.

[Table 7 about here.]

If two models have equal explanatory power, then the observed ratio of the two models’

squared errors should be distributed F (N1, N2) where N1 and N2 are the number of degrees

of freedom in the two models. When comparing the sticky strike and relative sticky delta

models using a two tailed test, this statistic must be greater than 1.12 or less than 0.89

for significance at the 1% level. The value of the statistic is 32.6 indicating that we can

overwhelmingly reject the hypothesis that the models have equal explanatory power. The

relative sticky delta model in equation (12) can explain the volatility surfaces in our data

much better than the sticky strike model in equation (11).

The third model we test is the version of the stationary square root of time rule where

the function Φ in equation (9) does not change through time so that σTK(t, S)− σTF (t, S)

is a known function of ln(K/S)/
√

T − t. Using a similar Taylor Series expansion to the

other models we test

σTK(t, S)− σTF (t, S) = c1
ln(K/F )√

T − t
+ c2

[ln(K/F )]2

T − t
+ ε (13)

where c1 and c2 are constants and ε is a normally distributed error term. The results for this

model are shown in Table 8. In this case the R2 is 97.12%. This is somewhat better than

the R2 for model in (12) even though the model in equation (13) involves two parameters

and the the one in equation (12) involves six parameters.

[Table 8 about here.]
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We can calculate a ratio of sums of squared errors to compare the stationary square

root of time model in equation (13) to the relative sticky delta model in equation (12). In

this case, the ratio is 1.11. When a two tailed test is used it is not quite possible to reject

the hypothesis that the two models have equal explanatory power at the 1% level, but it

is possible to reject this hypothesis at the 5% level. We conclude that equation (13) is an

improvement over equation (12).

In the stochastic square root of time rule, the functional relationship between σTK(t, S)−
σTF (t, S) and

ln(K/F )√
T − t

changes stochastically through time. A model capturing this is

σTK(t, S)− σTF (t, S) = c1(t)
ln(K/F )√

T − t
+ c2(t)

[ln(K/F )]2

T − t
+ ε (14)

where c1(t) and c2(t) are stochastic. To provide a test of this model we fitted the model in

equation (13) to the data on a month by month basis. When the model in equation (14) is

compared to the model in equation (13) the ratio of sums of squared errors statistic is 2.01

indicating that the stochastic square root of time model does provide a significantly better

fit to the data that the stationary square root of time model at the 1% level.

[Table 9 about here.]

The coefficient, c1, in the monthly tests of the square root of time rule is always signifi-

cantly different from zero with a very high level of confidence. Interestingly, in 20 of the 47

months it was not possible to reject the hypothesis that c2 = 0 at the 5% level suggesting

an approximately linear relationship between σTK(t, S)− σTF (t, S) and3

ln(K/F )√
T − t

Figure 1 shows the level of c1 and the S&P 500 for the period covered by our data. The

coefficient of correlation between changes in c1 and changes in the level of the S&P 500 is

21.5 percent. This is statistically significantly different from zero at the 10% confidence level.

An increase (reduction) in c1 corresponds to a decrease (increase) in the skew. The positive

correlation can be viewed as an extension of the crashophobia phenomenon identified by
3The approximate linearity of the volatility skew for S&P 500 options has been mentioned by a number

of researchers including Derman (1999).
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Rubinstein (1994). When the level of the S&P 500 decreases (increases) investors become

more concerned about the possibility of a crash and the volatility skew becomes more

pronounced (less pronounced).

[Figure 2 about here.]

7 Summary

It is a common practice in the over-the-counter markets to quote option prices using their

Black–Scholes implied volatilities. In this paper we have developed a model of the evolution

of implied volatilities and produced a no-arbitrage condition that must be satisfied by the

volatilities. Our model is exactly consistent with the initial volatility surface, but more

general than the IVF model of Rubinstein (1994), Derman and Kani (1994), and Dupire

(1994). The no-arbitrage condition leads to the conclusions that a) when the volatility is

independent of the asset price there must be a U-shaped volatility smile and b) when the

implied volatility is a decreasing (increasing) function of the asset price there must be a

negative (positive) correlation between the volatility and the asset price.

A number of rules of thumb have been proposed for how traders manage the volatility

surface. These are the sticky strike, sticky delta, and square root of time rules. Some

versions of these rules are clearly inconsistent with the no-arbitrage condition; for other

versions of the rules the no-arbitrage condition can in principle be satisfied.

Our empirical tests of the rules of thumb using 47 months of volatility surfaces for the

S&P 500 show that the relative sticky delta model (where the excess of the implied volatility

of an option over the corresponding at-the-money volatility is a function of moneyness) out-

performs the sticky strike rule. Also, the stochastic square root of time model outperforms

the relative sticky delta rule.

A Proof of Equation (3)

For simplicity of notation, we assume that r and q are constants. Define F (τ) as the forward

price at time τ for a contract maturing at time t + ∆t so that

F (t) = S(t)e(r−q)∆t
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The price at time t of a call option with strike price F (t) and maturity t + ∆t is given by

c(S(t), Vt+∆t,F (t), t;F (t), t + ∆t) = e−q∆tS(t)[N(d1)−N(d2)]

where in this case

d1 = −d2 =
√

∆t

2
σt+∆t,F (t)(t, S(t))

The call price can be written

c(S(t), Vt+∆t,F (t), t; F (t), t + ∆t) = e−q∆tS(t)
∫ d1

−d1

φ(x) dx

where

φ(x) =
1√
2π

exp

(
−x2

2

)

For some x̄ ∫ d1

−d1

φ(x) dx = 2d1φ(x̄)

and the call price is therefore given by

c(S(t), Vt+∆t,F (t), t;F (t), t + ∆t) = 2e−q∆tS(t)d1φ(x̄)

or

c(S, Vt+∆t,F (t), t;F (t), t + ∆t) = e−q∆tS(t)φ(x̄)σt+∆t,F (t)(t, S(t))
√

∆t (15)

The process followed by S is

dS

S
= (r − q) dt + σ dz

Using Ito’s lemma

dF = σF dz

When terms of order higher that (∆t)1/2 are ignored

F (t + ∆t)− F (t) = σ(t)F (t)[z(t + ∆t)− z(t)]

It follows that

lim
∆t→0

1√
∆t

E[F (t + ∆t)− F (t)]+ = lim
∆t→0

1√
∆t

σ(t)F (t)E[z(t + ∆t)− z(t)]+

where E denotes expectations under the risk-neutral measure.

Because

E[F (t + ∆t)− F (t)]+ = er∆tc(S(t), Vt+∆t,F (t), t;F (t), t + ∆t)
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and

lim
∆t→0

1√
∆t

E[z(t + δt)− z(t)]+ =
1√
2π

it follows that

lim
∆t→0

1√
∆t

er∆tc(S(t), Vt+∆t,F (t), t; F (t), t + ∆t) =
σ(t)F (t)√

2π

Substituting from equation (15)

lim
∆t→0

er∆te−q∆tS(t)φ(x̄)σt+∆t,F (t)(t, S(t)) =
σ(t)F (t)√

2π

As ∆t tends to zero, φ(x̄) tends to 1/
√

2π so that

lim
∆t→0

σt+∆t,F (t)(t, S(t)) = σ(t)

This is the required result.
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Schönbucher, P.J. (1999), “A market model of stochastic implied volatility,” Philosophical

Transactions of the Royal Society, Series A, 357, pp.2071–2092

23



Stein, E. and C. Stein (1991), “Stock price distributions with stochastic volatilities: An

analytical approach,” Review of Financial Studies, 4, pp727–752

24



List of Figures

1 Estimated factors for the Totem data. The height of the surface measures
the value of θ(T−t),(S/K), for each maturity and moneyness combination. . . 26

2 Plot of the level of the S&P 500 index (unmarked line, with scale on the left
axis) and the estimates of c1 (line with diamond symbols, with scale on the
right axis) - our measure of skew in the volatility surface. Note the positive
correlations between the two series. . . . . . . . . . . . . . . . . . . . . . . . 27

25



0
1

2
3

4
5

80

90

100

110

120
0.4

0.5

0.6

0.7

0.8

0.9

1

T−t

Factor 1

K/F 0
1

2
3

4
5

80

90

100

110

120
−0.4

−0.2

0

0.2

0.4

0.6

T−t

Factor 2

K/F

0
1

2
3

4
5

80

90

100

110

120
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

T−t

Factor 3

K/F 0
1

2
3

4
5

80

90

100

110

120
−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

T−t

Factor 4

K/F

Figure 1: Estimated factors for the Totem data. The height of the surface measures the
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Time to Maturity (months)
Strike 6 12 24 36 48 60

120 15.91% 18.49% 20.20% 21.03% 21.44% 21.64%
110 18.13% 20.33% 21.48% 21.98% 22.18% 22.30%
105 19.50% 21.26% 22.21% 22.52% 22.59% 22.70%
100 20.94% 22.38% 23.06% 23.14% 23.11% 23.07%
95 22.73% 23.71% 23.92% 23.73% 23.58% 23.53%
90 24.63% 24.99% 24.78% 24.40% 24.10% 23.96%
80 28.41% 27.71% 26.66% 25.83% 25.23% 24.83%

Table 1: Volatility matrix for June 1998. Time to maturity is measured in months while
strike is in percentage terms, relative to the level of the S&P 500 index.
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Time to Maturity (months)
Strike 6 12 24 36 48 60

0.80 0.964 0.864 0.782 0.736 0.699 0.680
0.90 0.888 0.851 0.800 0.754 0.728 0.710
0.95 0.845 0.848 0.811 0.768 0.742 0.726
1.00 0.793 0.844 0.813 0.780 0.757 0.740
1.05 0.718 0.831 0.812 0.788 0.770 0.754
1.10 0.623 0.808 0.812 0.796 0.783 0.766
1.20 0.410 0.759 0.812 0.809 0.807 0.789

Table 2: Theta values corresponding to the first factor ρ = 1.0. Time to maturity is
measured in months while strike is in percentage terms, relative to the level of the S&P 500
index forward prices (i.e., K/F ).
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Time to Maturity (months)
Strike 6 12 24 36 48 60

0.80 -0.038 -0.107 -0.191 -0.226 -0.252 -0.260
0.90 0.091 -0.046 -0.173 -0.220 -0.261 -0.277
0.95 0.163 -0.023 -0.170 -0.221 -0.266 -0.288
1.00 0.244 -0.001 -0.160 -0.222 -0.274 -0.299
1.05 0.330 0.023 -0.150 -0.221 -0.282 -0.309
1.10 0.422 0.059 -0.140 -0.221 -0.289 -0.318
1.20 0.598 0.136 -0.119 -0.220 -0.303 -0.335

Table 3: Theta values corresponding to the second factor ρ = 0.965.
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Time to Maturity (months)
Strike 6 12 24 36 48 60

0.80 -0.003 -0.010 0.005 0.020 0.040 0.045
0.90 0.004 -0.009 0.004 0.022 0.041 0.046
0.95 0.009 -0.009 0.004 0.022 0.040 0.046
1.00 0.015 -0.009 0.003 0.021 0.040 0.046
1.05 0.023 -0.008 0.002 0.019 0.039 0.047
1.10 0.033 -0.009 0.000 0.018 0.038 0.047
1.20 0.053 -0.012 -0.004 0.016 0.037 0.048

Table 4: Theta values corresponding to the third factor ρ = 0.369.
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Time to Maturity (months)
Strike 6 12 24 36 48 60

0.80 -0.731 -0.670 -0.573 -0.516 -0.469 -0.448
0.90 -0.835 -0.738 -0.619 -0.545 -0.495 -0.466
0.95 -0.897 -0.773 -0.639 -0.561 -0.506 -0.475
1.00 -0.963 -0.806 -0.656 -0.576 -0.517 -0.482
1.05 -1.016 -0.835 -0.671 -0.588 -0.526 -0.489
1.10 -1.058 -0.865 -0.688 -0.598 -0.534 -0.495
1.20 -1.127 -0.928 -0.721 -0.617 -0.550 -0.507

Table 5: Theta values corresponding to the fourth factor ρ = 0.946.
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Variable Estimate Standard Error t-statistic
a0 0.4438616 0.0238337 18.62
a1 -0.0001944 0.000036 -5.40
a2 0.0000000 0.0000000 1.44
a3 -0.0262681 0.0033577 -7.82
a4 -0.0006589 0.0003454 -1.91
a5 0.0000290 0.0000022 13.30
R2 0.2672
Standard error
of residuals 0.0327

Table 6: Estimates for the version of the sticky strike model in equation (11) where volatility
depends on strike price and time to maturity.
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Variable Estimate Standard Error t-statistic
b0 0.0058480 0.0003801 15.39
b1 -0.2884075 0.0019565 -147.41
b2 0.0322727 0.0067576 4.78
b3 -0.0075740 0.0003487 -21.72
b4 0.0015705 0.0000701 22.42
b5 0.0414902 0.0009180 45.20
R2 0.9493
Standard error
of residuals 0.0057

Table 7: Estimates for the version of the relative sticky delta model in equation (12).
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Variable Estimate Standard Error t-statistic
c1 -0.2486061 0.0010002 -248.56
c2 0.0023856 0.0031146 0.77
R2 0.9712
Standard error
of residuals 0.0054

Table 8: Estimates for the stationary square root of time rule in equation (13).
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Test Statistic
Equation (11) vs equation (10) 32.65
Equation (12) vs equation (11) 1.11
Equation (13) vs equation (12) 2.01

Table 9: Comparison of Models using the ratio of sums of squared errors statistic. In a
two-tailed test the statistic must be greater than 1.123 (1.111) to reach the conclusion that
the first equation to provide a better explanation of the data than the second equation at
the 1% (5%) level
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