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Abstract 
 

 

We examine the use of reinforcement learning (RL) to hedge barrier options. We find that, when 

the hedger’s objective is to minimize value at risk or conditional value a risk, RL is an attractive 

alternative to traditional hedging approaches. RL requires an assumption about the stochastic 

process followed by the underlying asset during the life of the exotic option, but our tests show 

that the results from using RL are fairly robust to this assumption. We do not consider 

transaction costs in this research. However, we show that RL involves less trading than 

traditional hedging approaches. As a result, the existence of transaction costs can be expected 

to increase the attractiveness of RL. 
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1. Introduction 
 

 

Exotic options trade less actively than vanilla options, but attract higher bid-offer spreads. They 

are therefore potentially profitable to a market maker if hedging is handled well. Some exotic 

options such as Asian options are relatively easy to hedge while others are more difficult. Barrier 

options, which will be the focus of this paper, present particular problems to the hedger 

because the delta of the option usually exhibits a discontinuity when the asset price crosses the 

barrier. 

 

As an example, consider a down-and-in put option where the barrier is at 10, the strike price is 
 

11, and the time to maturity is 10 trading days. Assume geometric Brownian motion for the 

asset price with zero risk-free rate, zero dividend yield, and volatility equal to 30%. When the 

asset price is 10.1 and the barrier has not been passed, the delta is −1.308. When the asset 

price moves to 9.9 so that the instrument becomes a regular put, delta jumps by 0.35 to 

−0.958. (By contrast, for a vanilla put option, delta changes from −0.919 to −0.958 as the asset 

price changes from 10.1 to 9.9.) 

 

One heuristic sometimes used by practitioners to handle barrier options is known as the 
 

“barrier shift.” The trader hedges as though the barrier is different from that in the contract. An 

argument consistent with this is provided by Broadie et al. (1997). Option pricing formulas 

assume that there is continuous monitoring to determine whether a barrier has been hit. When 

there is discrete monitoring (e.g., once a day), as is usually the case, Broadie et al. show that it 

is correct to value down (up) barrier options by decreasing (increasing) the barrier level in a 

model that assumes continuous monitoring. 

 

A recent attempt to develop a discrete hedging strategy for barrier options is provided by Baule 

and Rosenthal (2022). These authors investigate the performance of different hedging 

strategies when the asset price is close to the barrier. However, they assume a mean-variance 
 

objective function for the hedger. Hedgers are naturally more concerned about outcomes 

where losses rather than gains result. We therefore choose different setup from Baule and 

Rosenthal. Specifically, we consider two one-sided objective functions: value at risk (VaR) and 
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conditional value at risk (CVaR). We assume hedges are rebalanced daily and use 

reinforcement learning to investigate whether multi-period strategies give better results than 

traditional hedging approaches for these objective functions. 

 

Reinforcement learning has been used for hedging in other contexts.  Buehler et al (2019, 
 

2022), Halperin (2017), and Cao et al (2021) consider how reinforcement learning can improve 

the delta hedging of an option portfolio, particularly when trades in the underlying asset are 

subject to transaction costs. Cao et al (2023) use reinforcement learning for gamma and vega 

hedging when a market maker is faced with hedging a portfolio of options and new options 

arrive stochastically. RL has also been used in portfolio management by Zhang and Aaraba 

(2022). Our current research complements that of Wu and Jaimungal (2023) and Jaimungal et al 

(2022) who consider how reinforcement learning can be used in conjunction with objective 

functions that reward gains while protecting against downside risks. 

 

RL approaches have a number of potential advantages over traditional hedging approaches. As 

we will show, RL has the advantage that it requires less trading on average than other hedging 

approaches and therefore leads to less transaction costs being incurred. It gives the user 

flexibility as far as the objective function is concerned. Furthermore, the multi-period approach 

that underlies reinforcement learning is consistent with the way the performance of a trader is 

usually assessed. We show that RL strategies are robust to the assumptions made about the 

process for the underlying asset and perform relatively well in stressed environments. 
 

 

The rest of this paper is organized as follows. Section 2 introduces the RL approach. Section 3 

presents our main results. Section 4 considers the use of vanilla options for hedging. 

Conclusions are in Section 5. 
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2. The RL Approach 
 

 

Reinforcement learning is a procedure for choosing the actions that should be taken when 

particular states are encountered in multi-period decision making. In our case, the actions are 

the hedging decisions (taken once a day) and the states are the time to maturity, the current 

holdings, and the underlying asset price. Typically, the decision maker starts with a random 

policy and iteratively updates the policy so that the objective function is improved. 

 

The methods we use are those described in Cao et al (2023) and will not be explained in detail 

here. They involve the use of an actor neural network (NN) in conjunction with a critic NN. The 

actor NN implements the current hedging strategy at each iteration. The critic NN estimates the 

P&L distribution at the hedging horizon for the current hedging strategy and computes 

gradients that lead to changes in the actions so that the objective function (VaR or CVaR in our 

case) is improved. We use a quantile representation of the P&L distribution at the hedging 

horizon with 1% intervals so that the distribution is represented by 100 points. The error 

between the empirical P&L distribution and the critic NN’s estimate is measured using the Huber 

quantile loss. 

 

The calculated gradients are used to iteratively update the actor NN’s parameters, such that 

after each iteration the actor hedging policy improves. In early training stages, the critic’s 

estimate is generally poor and thus the actor’s hedging policy is far from optimal. As the critic 

improves so does the actor’s policy to the point where both NNs converge to an optimum. 

 

Our focus in this research is on non-breached barrier states. Upon breach, we switch to Black- 

Scholes-Merton delta hedging till expiry. This setup results in variable episode lengths for RL 

training, reflecting the steps before a breach. Two terminal conditions of an episode exist: 1) 

breach before expiry, and 2) mature without breach. For the latter, we follow the usual 

simulation and daily reward scheme as per Cao et al (2023). For the former, the last step 

reward is the step P&L plus the cumulative P&L from Delta hedging post-breach. 

 

It takes approximately one hour to train the RL strategy, involving 50,000 episode simulations 

using single Nvidia RTX 4090 card. 
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3. Hedging Using the Underlying Asset 
 

Barrier options are popular exotic options. When the asset price crosses the barrier level, the 

nature of the option changes. For example, a down-and-in-put option becomes a vanilla put 

option when the barrier is breached from above. Barrier options are often used in structured 

products. For example, in Japan a popular structured product called Uridashi includes barrier 

options. Barrier options are less expensive than the corresponding vanilla options because they 

provide the same payoff as the vanilla options only in some circumstances. (In the case of an 

“in” barrier option, the barrier must be hit for the option to become a vanilla option; in the case 

of an “out” barrier option, crossing the barrier leads to the option disappearing.) However, the 

barriers make it harder for market makers to hedge their risks when the asset price is close to 

the barrier. This is illustrated by Figure 1 which shows the delta of the down-and-in put option 

considered in the introduction as a function of the asset price. 

 

Figure 1: Delta given by the Black-Scholes-Merton model for a down-and-in-put as a 

function of the asset price. The barrier is at 10, the strike price is 11, volatility is 30%, and 

time to maturity is 10 days. 
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In this section, we compare reinforcement learning (RL) with traditional hedging approaches. It 

sometimes assumed that a hedger’s objective should be to minimize the mean of the loss (gain) 

plus a constant times the standard deviation of the loss (gain). This assumes (somewhat 
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unrealistically) that the hedger is equally averse to results in the two tails of the loss (gain) 

distribution. One advantage of RL is that the hedger has a great deal of freedom in the choice of 

the objective. We assume that the hedger’s main concern is to avoid large losses. We consider 

two different objective functions (both to be minimized). These are: 

 

(a) VaR95. This is the 95th percentile of the loss (gain) distribution over the life of the 

option, and 

 

(b) CVaR95. This is the expected loss over the life of the option when the loss is larger than 

the 95th percentile of the loss (gain) distribution 

 

RL procedures can be used for other objective functions. For example, they could be used for 

objective functions suggested in Wu and Jaimungal (2023), where results in the gain tail of the 

distribution are rewarded and those in the loss tail are penalized. 

 

We consider three different strategies for hedging a short down-and-in put option for a 

particular objective function. These are: 

 

(a) Delta hedging. Each day the trader takes a position in the underlying asset to neutralize 

the delta of the option, 

 

(b) Myopic hedging. Each day the trader looks one day ahead and chooses the strategy that 

is optimal for the objective function being assumed, and 

 

(c)  RL Hedging. The trader uses reinforcement learning to choose a strategy, involving daily 

rebalancing, that is optimal for the objective function over the life of the option 

 

When the barrier is breached so that the position being hedged is a short vanilla put option, it is 

assumed that the hedger switches to delta hedging. 

 

3.1 Illustrative Results 
 

We illustrate our results by considering a situation where the asset price is 10.6, the barrier is at 
 

10, the time to maturity is 20 days, the underlying put option is on 100 units of the asset, and 

hedges are adjusted once a day. We assume geometric Brownian motion for asset price 

movements with a volatility of 30%. For convenience, we assume a risk-free rate and dividend 

yield of zero. VaR95 and CVaR95 for a number of different strike prices are shown in Table 1. 
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Table 1: Values of the objective function when a short position in a down-and-in put barrier 

option is hedged in three different ways. The initial asset price is 10.6, the barrier is 10, and the 

volatility is 30%. 
 

 

Strike Price Objective Function Delta Myopic RL 

10.2 VaR95 11.60 11.64 10.80 

 CVaR95 16.91 16.59 15.82 

10.4 VaR95 13.62 14.07 13.07 

CVaR95 20.76 19.66 18.56 

10.6 VaR95 16.65 17.02 14.41 

CVaR95 26.16 23.96 20.56 

10.8 VaR95 19.38 20.91 16.63 

CVaR95 32.69 29.29 24.75 

11.0 VaR95 23.13 25.85 18.90 

CVaR95 39.72 35.57 27.98 

 
 
 

 
The table shows that RL improves the objective function when compared with simpler 

strategies. The amount of improvement increases as the strike price increases. This is because 

the hedger’s potential liability from a breach of the barrier increases as the strike price 

increases and there is more to be gained from handling the hedging well. Interestingly, myopic 

hedging is an improvement over delta hedging when CVaR95 is used as the objective function, 

but the reverse is true for VaR95. 

 

Figure 2 shows the terminal P&L distributions for the three hedging strategies. It illustrates that 

RL clearly outperforms at the left tail. This is achieved by accepting a slightly lower expected 

return. 
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Figure 2: Terminal P&L distributions when a short position in a down-and-in put barrier option 

is hedged in three different ways. The initial asset price is 10.6, the barrier is 10, the strike price 

is 10.8 and the volatility is 30%. 

 

 
 
 
 
 

Figure 3 examines the RL hedging strategy as a function of asset price and time to maturity. The 

top row compares the asset holdings of RL strategies with delta hedging. (Higher asset holdings 

are indicated by darker shades.) It shows that there tends to be less variation in asset holdings 

when the RL strategy is used than when delta hedging is used. This is indicative of less frequent 

trading, a point discussed further discussed in Section 3.3. 

 

The hedging ratio heat maps in the lower part of Figure 3 show that there is a tendency for RL to 

hedge less than delta as the asset price nears the barrier and to hedge more than delta as it 

moves away. This tendency is more pronounced for CVaR95 than VaR95. The RL strategy 

recognizes that delta will decline if the barrier is breached and therefore under-hedges relative 

to delta when near the barrier. It also recognizes that the cost of over-hedging when away from 

the barrier is small when compared to potential benefits. In the upper right corner, where the 

asset price surpasses a certain level and time to maturity is less than five days, both strategies 

involve virtually no hedging. 

 

Figure 4 considers different P&L ranges: the top 10% cumulative loss, mid-range (quantile 45% 

to 55%), and top 10% cumulative profit. We select a representative asset price path closest to 

the highest density path at each time step using a Euclidean distance measure. For the top 10% 

cumulative loss, the asset price begins high and gradually descends, often crossing the barrier 
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near expiry, leading to a significant loss, as shown in the representative path. RL's over-hedging 

for these paths, as depicted in Figure 3, somewhat mitigates these extreme losses. In the mid 

P&L range, the asset price exhibits two modes, either descending and breaching the barrier 

mid-life or ascending. In both cases, RL and Delta hedging perform similarly, with minor P&L 
 

differences, but RL hedging holdings are less variable. For the top 10% cumulative profit, the 

asset price oscillates above the barrier, corresponding to the under-hedging area in Figure 3. The 

RL portfolio benefits from adopting a more static hedging approach, characterized by fewer 

variations in the holding of the underlying asset. 

 

Figure 3: RL and Delta hedging strategies for a short down-and-in put option. In the top row, 

the heat maps show the short positions in different states. The bottom two heat maps show 

the ratio of short positions under RL to that under delta.1 In these ratio heat maps, white 

indicates a ratio of 1, blue indicates a ratio less than 1, and red indicates a ratio greater than 1. 

The initial asset price is 10.6, the barrier is 10, the strike is 10.6, initial time to maturity is 20 

days, and the volatility is 30%. 
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1 We apply a floor of 0.5 share on the asset holding to avoid zero denominator in division when calculating the 
hedging ratio. 
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Figure 4: The upper charts show representative asset price trajectories and density distributions 

for different P&L Quantile Ranges. The middle charts show the cumulative P&L for the quantile 

ranges and the lower charts show the holdings. 
 
 

Top 10% Loss P&L in Q45 – Q55 
Move Down Path 

P&L in Q45 – Q55 
Move Up Path 

Top 10% Profit 

 

 

 
 

 
 
 
 
 

3.2 Robustness Tests 
 

A potential disadvantage of RL is that it requires an assumption about the stochastic process 

that will apply to the asset price during the whole life of the exotic option. Delta hedging and 

myopic hedging are more flexible in that they can be based on the latest information on 

parameters of the stochastic process such as volatility.2   Our robustness test assumes that RL is 

implemented on the assumption that volatility will be 30% when in fact other volatilities are 

observed. It is assumed that delta and myopic hedging are implemented using the observed 

volatilities. 
 
 
 
 
 
 

2 It may be possible to update RL strategies in a changing environment. In the tests we describe we assume there is 
no updating. 
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In Table 2, we explore scenarios where the observed values of implied volatility are between 
 

10% and 50%. This means there is a potential mismatch between the volatility used during 

training and the actual market volatilities. Despite this mismatch, the results indicate that RL's 

hedging performance compares well with the delta and myopic strategies. For observed 

volatilities of 20% and 40%, RL produces better results for both objective functions. For the 

more extreme volatilities of 10% and 50%, RL underperforms slightly when VaR95 is the 

objective function but still produces improvements for CVaR95. Note that as the observed 

volatilities increase, the values of the objective functions increase for all hedging procedures. 

Hedging cannot completely neutralize the impact of a wider range of asset price movements. 

Table 2: Values of the objective function when a short position in a down-and-in put barrier 

option is hedged in three different ways. The initial asset price is 10.6, the barrier is 10, and the 

strike is 10.8. Training for RL uses 30% volatility. 
 
 

Volatility Objective Function Delta Myopic RL 

10% VaR95 6.64 6.76 7.18 

CVaR95 16.56 16.34 15.31 

20% VaR95 17.31 19.87 15.39 

 CVaR9
5 

29.59 26.65 22.82 

30% VaR95 19.38 20.91 16.63 

CVaR95 32.69 29.29 24.75 

40% VaR95 21.38 22.86 19.68 

CVaR95 35.77 32.39 29.50 

50% VaR95 24.03 24.46 24.93 

CVaR95 37.91 35.71 34.98 
 

 
 

3.3 Volume of Trading 
 

A key advantage of RL over delta and myopic hedging is that it involves less trading. To give a 

simple example of how this happens, assume a two-period binomial model. Suppose that the 

asset price moves so that delta increases from 0.5 to 0.7 in the first period and that the next 

Electronic copy available at: https://ssrn.com/abstract=4566384



12  

asset price movement will lead, with equal probability, to delta returning to 0.5 or increasing to 
 

0.9. Suppose further that the hedger wants to be fully delta-hedged at the end of the second 

period. When delta hedging is used the expected total of the changes to delta during the two 

periods is 
 

0.2+0.5×(0.2+0.2) = 0.40 
 

An RL hedger, looking two periods ahead, might choose not to hedge on the first day. The 

expected total of changes to delta during the two days is then 

0.0+0.5×(0.0+0.4) = 0.20 
 

This shows that the RL hedger does half as much trading on average. 
 

 

In practice delta is a non-linear function of the asset price. This can give extra potential 

benefits from RL. If we change the above example so that delta increases to 0.8 or reduces to 

0.5 with equal probability during the second period, the expected amount of trading done by 

the RL hedger is only 43% of that done by delta hedging. 

 

Table 3 compares the volume of trading when RL is used with the volume of trading for delta 

and myopic hedging for the examples in Table 1. It can be seen that RL leads to between 20% 

and 30% less trading than the other strategies. It is worth noting that Table 1 assumes zero 

transaction costs. The improvements from using RL can therefore be expected to be even 

greater than those in Tables 1 when transaction costs are considered. The results in Cao et al 

(2021) and Cao (2023) illustrate the benefits of RL when there are transaction costs. 

 
 
Table 3: Average number of units of the asset traded during life of option for the examples in 

 

Table 1 (Option is on 100 units of the asset) 
 
 
 

 Delta Myopic RL 

VaR95 254.85 259.65 184.95 

CVaR95 254.85 238.50 181.62 
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3.4 Stress Testing Results 
 

We now evaluate the performance of different hedging strategies during extremely stressful 

periods. Scenarios that banks often utilize for stress testing purposes are those encountered 

during the covid pandemic. Specifically, banks consider what are termed the L- Shape and V-

Shape scenarios. In the L-Shape scenario, asset price movements closely resemble those of the 

S&P500 index from February 19th to March 18th, 2020. In the V-Shape scenario 

they closely resemble those during the March 13th to April 13th period where the S&P500 
 

experienced a rebound after the central bank announced monetary support on March 23rd. 

Figure 5 provides a visual representation of the price changes observed throughout these two 

windows. 

 

We continue to assume a Black-Scholes-Merton model with a 30% constant volatility. Table 4 

presents our findings. It shows that under both the L-Shape and V-shape scenarios RL 

outperforms both the Myopic and Delta strategies by about 20%. One interesting observation is 

that CVaR95 RL outperforms VaR95 RL in terms of P&L for both scenarios. This illustrates a 

general result that CVaR95 tends to perform better in severely adverse scenarios. 
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Figure 5: S&P500 price changes during the covid period  
 

 

 

Table 4:  Losses when a short position in a down-and-in put barrier option is hedged in three 

different ways. The initial asset price is 10.6, the barrier is 8.7, the strike is 10.8. and the 

volatility is 30%. 

 

Scenario Window Delta VaR95 Myopic CVaR95 Myopic VaR95 RL CVaR95 RL 

L-Shape 150.69 158.56 148.42 125.25 116.29 

V-Shape 210.64 226.50 213.00 179.64 163.14 
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4. Using Vanilla Options 

We now consider how the hedging of barrier options can be improved by using vanilla options. We 

consider the same 20-day options as in Table 1. We assume that the hedger can bring at-the-money 

options with five days to maturity into the portfolio each day. We consider two alternatives: 

(a) The hedger uses RL to determine the option position taken each day.  

(b) The hedger takes the option position to neutralize gamma each day 

In both cases, after the option position has been taken, the underlying asset is traded to neutralize delta. 

The results are shown in Table 5. Just as Table 1 shows that using RL to determine positions taken in the 

underlying asset is an improvement on delta hedging, Table 5 shows that using RL to take positions in 

options is an improvement on gamma hedging.  Both alternatives are improvements on the best 

alternative for using only the underlying for hedging.  

Table 5: Value of objective function when RL is used to determine positions in a vanilla option for 

hedging. Results are compared with the strategy where gamma is fully hedged each day and the strategy  

in Table 1 where RL is used to determine positions in the underlying asset. The position is made delta-

neutral each day when options are used for hedging.  

Strike Price Objective Function 
RL:  vanilla option 

with delta neutrality 

Gamma plus 

delta neutrality 

RL using underlying 

(Table 1) 

10.2 
VaR95 8.01 9.77 10.80 

CVaR95 13.64 14.8 15.82 

10.4 

VaR95 9.02 11.09 13.07 

CVaR95 14.72 17.52 18.56 

10.6 
VaR95 11.98 13.48 14.41 

CVaR95 18.47 21.61 20.56 

10.8 

VaR95 13.99 15.96 16.63 

CVaR95  23.29 26.73 24.75 

11.0 
VaR95 16.22 18.99 18.90 

CVaR95 28.49 32.51 27.98 
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As illustrated in Table 3, RL leads to a non-trivial saving in transaction costs when the underlying is used 

for hedging. In our tests we found that a similar result holds when options are used for hedging. Option 

transaction costs are less than half as great when strategy (a) is used is less than that when strategy (b) is 

used.    

Transaction costs associated with trading options are much higher than those associated with trading the 

underlying asset. When transaction costs are taken into account, RL using the underlying can give better 

results. In tests, for example, we found that a 1% transaction cost on options makes RL using underlying 

more attractive than RL using options.    
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5. Conclusions 
 

Traditionally, hedging derivatives has involved taking actions to manage the current values of 

the Greek letters (delta, gamma, vega, etc). Reinforcement learning (RL) is a tool that allows 

the hedger to develop strategies that look several periods ahead. It has a number of 

advantages. It leads to strategies that involve less trading and therefore save transaction costs. 

It takes account of the frequency with which hedges will be adjusted. (Delta hedging assumes 

continual rebalancing.) It allows the hedger to specify an objective function that reflects more 

fully her risk preferences. (Potential gains and potential losses do not need to be treated 

symmetrically.) It can also be used to align the trader’s objectives with the way the trader’s 

performance is assessed. (For example, if the trader’s performance is assessed over the next 

month, the hedging strategy can be based on a one-month time horizon.) 

 

In earlier research we have demonstrated the superior performance of hedging strategies 

derived from RL when there are transaction costs. This paper demonstrates that RL can be 

useful in hedging exotic options where delta is liable to be discontinuous even if there are no 

transaction costs. The existence of transaction costs makes RL a potentially even more 

attractive tool for the exotic options we consider. The performance of RL strategies are robust 

to the assumptions about the stochastic process followed by the underlying asset and our tests 

indicate the RL-generated strategies handle stressed scenarios such as those seen in February- 

April, 2020, better than traditional strategies. 
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