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Abstract. Problem definition: Ride-hailing platforms, which compete over drivers and riders,

assert that autonomous vehicles (AVs) will transform their operations by reducing variable cost

payments to drivers. This paper explores the implications of competition and access to AVs for the

management of ride-hailing platforms. Academic/Practical Relevance: Ride-hailing, which has

been transformed by platforms’ use of independent driver-workers, has the potential to be trans-

formed again by AVs. Methodology: We employ a game-theoretic model that captures platforms’

AV fleet size, price and wage decisions. Results: A platform’s access to supply-side (namely, AV)

technology changes prescriptions for its demand-side (namely, pricing) decisions: The intuitive pre-

scription from the setting without AVs, that price increases in the intensity of competition in the

labor market, is reversed. The presence of demand-side competition changes prescriptions for a

platform’s supply-side (namely, AV fleet size) decisions: The intuitive prescription from the setting

without demand-side competition, that the AV fleet size increases in the intensity of competition in

the labor market, is reversed. We characterize the conditions under which these reversals occur and

explain the driving forces behind the reversals. Finally, whether a platform benefits from its rival’s

access to AV technology depends on a simple comparison between the relative wage sensitivity of

labor and the relative price sensitivity of demand. Managerial Implications: Competition and

access to AVs each reverse intuitive prescriptions for the management of ride-hailing platforms.

–––––––––––––––––––––––––––––––––––––––––––

1 Introduction

A central feature of ride-hailing platforms, such as Lyft and Uber, is that they simultaneously

compete over a common pool of supply—namely, independent driver-workers—and a common pool

of demand—namely, rider-consumers. Driver (rider) decisions are influenced by wage (price) as

well as other factors. For example, some drivers (riders) might prefer to serve (seek service from)

a platform with more-friendly or more-professional positioning (Dessaint 2015, Bhuiyan 2019b).

Similar, some drivers and riders may prefer a platform because of the distinctive features of the

smartphone application through which they access the platform (Dessaint 2015, Wisniewski 2017).

The intensity of competition over drivers and riders depends on the degree of differentiation between

the platforms.
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Perhaps no development is perceived to have a larger potential for transforming the operations

of ride-hailing platforms than the introduction of autonomous vehicles (AVs). Wage payments

to drivers constitute the largest expense for ride-hailing platforms. With the specific purpose of

eliminating the variable cost of payments to drivers, Lyft and Uber have aggressively pursued the

development of AVs, with each investing billions in their efforts (Siddiqui and Bensinger 2019). Uber

and Lyft comprise 98% of the U.S. ride-hailing market (Bosa 2018), and both platforms anticipate

that AVs will be an important component of their operating model (Siddiqui and Bensinger 2019).

Uber has said that AVs are “existential” to its future. Uber initiated its AV efforts in 2015. In

late 2017, Uber agreed to purchase 24,000 AVs from Volvo, stating that “everything we’re doing

right now is about building autonomous vehicles at scale” (Boston 2017, Isaac 2017). Uber invested

$457 million in AV development in 2018 and announced a $1 billion investment in 2019 (Conger

2019). Lyft launched its in-house development of AVs in 2017, devoting one-tenth of its engineers

to the effort. The goal of Lyft’s AV efforts in-house and with industry partners (e.g., Waymo) is

to bring “hundreds of thousands” of AVs to its platform (Bensinger 2017). Lyft intends to launch

AVs by 2024, and intends AVs to provide the majority of its trips by 2029 (Lyft 2019). It is unclear

which platform will be first to overcome the technological barriers to deploying AVs. In terms of

in-house development, Uber has invested more and for a longer period of time. In terms of the

broader industry, Lyft’s partner Waymo is viewed as being farthest ahead in developing AVs (Welch

2018).

Each platform anticipates that after initially launching AVs, it will, for a period, serve customers

with a mix of AVs and human-driven vehicles (Lyft 2019, Uber 2019). Uber intends to own and

operate its own AVs (Isaac 2017, Uber 2019). Lyft has said it will “most likely” lease AVs if it does

not own them outright (Murphy 2016). Lyft envisions that its AV offering will be “asset intensive,”

which is consistent with Lyft owning AVs (Lyft 2019). Although Lyft and Uber’s in-house efforts

are each aimed at developing technology for the platform’s own AVs, each platform has expressed

an openness to allowing AVs it does not wholly own on its network (Murphy 2016, Isaac 2017). One

possibility is that a ride-hailing platform would partner with an outside entity that would put AVs

on the platform’s network. A second possibility is that a platform would allow AVs fully owned by

external parties on its network. In the setup we explore, the platform determines its AV fleet size

and incurs an associated cost. This is consistent with the platform owning or leasing the AVs on

its network. It is also consistent with the partnership model, to the extent that the partners make

decisions with the objective of maximizing their combined profit. To the extent that independent

AV fleet owners with market power seek to put their AVs on a platform’s network, a different setup
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would be required. Because examining this scenario would require a significant level of speculation

about how the various entities (including the fleet owners, which do not as yet exist) would interact,

we defer its discussion to §5.

What are the implications of competition and access to AV technology for the management of

ride-hailing platforms? While competition over consumers is common in many settings, competition

over independent-contractor workers that provide the service is a more novel feature of ride-hailing

platforms. As such, we focus on the intensity of competition in the labor market, or more precisely,

the cross-wage sensitivity of labor (i.e., the sensitivity of a platform’s labor supply to changes in its

rival’s wage). We examine prescriptions for how the intensity of competition in the labor market

influences the platforms’ price and AV fleet size decisions.

The intensity of competition in the labor market can vary temporally and geographically. For

example, initially Lyft and Uber’s brand positioning was quite distinct, but over time the distinc-

tion may have lessened (Bhuiyan 2019a). Similarly, the degree of differentiation in the platforms’

smartphone applications has evolved over time (Wisniewski 2017). In the same way, the degree

to which drivers perceive the platforms to be distinct varies by geographic market. At times and

in markets where drivers perceive the platforms as being quite distinct (similar), the cross-wage

sensitivity of labor will tend to be low (high), consistent with low (high) intensity of competition

in the labor market.

We focus on the setting where one platform obtains access to AV technology, which enables it

to procure AVs. We consider how this access affects the platform’s decisions and its rival’s profit.

Next, we state three research questions and summarize our findings.

First, how does a platform’s access to supply-side (namely, AV) technology change prescriptions

for its demand-side (namely, pricing) decisions? In the benchmark scenario where the platforms

do not have access to AV technology, the platforms’ equilibrium prices increase in the intensity of

competition in the labor market. Intuitively, intensified competition in the labor market pushes

up the marginal cost of supply, prompting the platforms to increase their prices. When a platform

has access to AV technology, this intuitive benchmark result is reversed. That is, a platform’s

equilibrium price decreases in the intensity of competition in the labor market—provided that simple

sufficient conditions hold. We identify the drivers behind and explain the intuition for how the

presence of AVs reverses the intuitive result.

Second, how does the presence of demand-side competition change prescriptions for a platform’s

supply-side (namely, AV fleet size) decisions? In the benchmark scenario without demand-side

competition, a platform’s equilibrium AV fleet size increases in the intensity of competition in the
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labor market. Intuitively, intensified competition in the labor market pushes up the marginal cost

of labor supply, prompting a platform to increase her AV fleet size, so as to reduce her reliance on

the more costly labor. The presence of demand-side competition reverses this intuitive benchmark

result. That is, a platform’s equilibrium AV fleet size decreases in the intensity of competition in

the labor market—provided that simple sufficient conditions hold. We identify the drivers behind

and explain the intuition for how the presence of demand-side competition reverses the intuitive

result.

Third, how is a platform affected by its rival’s access to AVs? It may be natural to conjecture

that a platform would be hurt by its rival’s access to AV technology. We provide a simple, easy to

interpret necessary and sufficient condition under which a platform benefits by its rival’s access to

such technology.

This paper is related to three streams of literature on competition: competition between ride-

hailing platforms, supply chain competition with a common supplier, and capacity investment

decisions of competing firms.

Ride-hailing platforms have been widely studied in the operations management literature. A

large share of this work has focused on pricing, including dynamic pricing (Banerjee et al. 2015,

Cachon et al. 2017, Bai et al. 2018, Hu et al. 2018), spatial pricing (Castro et al. 2018, Bimpikis et

al. 2019), and the impact of uncertainty (Taylor 2018). Other dimensions of ride-hailing platforms

that have received attention are labor and staffing considerations (Hu and Zhou 2017, Afeche et

al. 2018, Allon et al. 2018, Benjaafar et al. 2018, Gurvich et al. 2019), matching mechanisms

(Benjaafar et al. 2015, Ozkan and Ward 2017) and routing (Su 2018). Chen et al. (2018) surveys

research opportunities exploring ride-hailing and other platforms.

Competition between ride-hailing platforms has received relatively little attention. Cohen and

Zhang (2017) examines profit sharing contracts between duopolist ride-hailing platforms, and char-

acterize conditions under which such agreements benefit both platforms. Bai and Tang (2018)

identifies key factors that determine whether competing platforms earn strictly positive profit.

Bernstein et al. (2018) considers how equilibrium outcomes in a duopoly depend on whether

drivers work for one or both platforms, and show that all parties may be worse off when drivers

work for both platforms. Nikzad (2018) examines the welfare effects of competition, finding that

competition increases driver welfare, but may reduce customer welfare. Lin et al. (2018) shows

that mergers between competing platforms can be beneficial for both customers and drivers. Liu

et al. (2019) examines platforms that compete over independent-contractor workers by offering

bonuses for multi-period participation. Our work differs substantively from the existing literature
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on ride-hailing platform competition in that we focus on the impact that access to AVs has on

the ensuing equilibrium. Competition in two-sided markets has been extensively studied in the

economics literature (e.g., Rochet and Tirole 2003, 2006); in contrast to our work, firms do not face

capacity constraints in those papers.

This paper also builds on literature in which competing firms source from a common supplier.

Salop and Scheffman (1987) considers a setting where the cost of an input increases in the total

quantity purchased by competing firms, and show that it can be advantageous for a firm to “over-

buy” so as raise the input’s cost to the firm’s competitors. Similarly, Schrader and Martin (1998),

Arya et al. (2008), Chen and Guo (2014) and Wu and Zhang (2014) consider competitive settings

where a firm’s supply decisions affects its rival, and show that higher supply costs can lift profits,

either due to the cost implications for the rival firm or the softening of competition. Qi et al.

(2019) study competing buyers that reserve capacity at a common supplier. Our work is related

to these papers in the sense that the labor market serves as a common supply source for both

platforms. A key distinction of our work is that we focus on how the intensity of competition over

the shared supply source affects firm decisions in equilibrium, and how these prescriptions depend

on the availability of AVs.

Lastly, our paper is also related to research on capacity decisions made by firms in competi-

tion. Van Mieghem and Dada (1999) and Anupindi and Jiang (2008) consider settings where firms

compete by making capacity, price and production decisions, and characterize the value of post-

poning production decisions after the realization of demand uncertainty. Additional aspects of this

setting that have been addressed include forecast quality (Chod and Rudi 2006), multiple capacity

types (Goyal and Netessine 2007) and investment timing (Swinney et al. 2011). A related set of

literature focuses on competition with “reactive” capacity, in which firms have the ability to secure

additional capacity following the realization of demand uncertainty (Caro and Martinez de Albeniz

2010, Afeche et al. 2014). In all the aforementioned papers, a firm’s supply costs are invariant to

its competitor’s decisions. In contrast, we consider a setting in which firms compete over a shared

supply source in addition to making independent capacity decisions, which introduces externalities

that are absent in the existing literature on capacity investment and competition.

2 Model

A platform’s decision of its AV fleet size is made over a longer-term horizon than its price and wage

decisions. As such, we divide the time horizon into two periods. Long-term decisions are made in

the first period: Platform 1 chooses the size of its AV fleet 1, incurring cost (1), where   0

and (1) is weakly convex, strictly increasing, twice differentiable and satisfies (0) = 0; we refer
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to  as platform 1’s AV cost. AVs are prohibitively costly for platform 2, so its AV fleet 2 = 0.

Each platform  ∈ {1 2} observes the AV fleet of its rival platform  6= ,  . Short-term decisions

are made in the second period: Platform  ∈ {1 2} chooses its price  and wage . Platform ’s

demand under prices p =1 2 is (p) =  −  +  , where    ≥ 0; we refer to  as

the demand state. Platform ’s labor supply under wages w =1 2 is (w) =  −  ,

where    ≥ 0. Parameter  is the cross-wage sensitivity of labor supply, and as such is a

measure of the intensity of competition in the labor market ; we use the latter label because of

its more managerial interpretation. Parameter  can be interpreted as reflecting the degree of

differentiation of the platforms from the perspective of prospective workers, with differentiation

decreasing in  such that  = 0 corresponds to no competition in the labor market. Similarly, 

can be interpreted as reflecting the degree of differentiation of the platforms from the perspective

of prospective customers, with differentiation decreasing in , such that  = 0 corresponds to no

competition in the consumer market. The assumption that labor supply is linear in wages has been

used in the labor economics literature (e.g., Hamilton et al. 2000, Bhaskar et al. 2002) and parallels

the commonly used assumption that demand is linear in prices. A unit of demand can be fulfilled

by a unit of AV, which was obtained in the first period, or a unit of labor, which is obtained in the

second. Accordingly, we restrict attention to the natural parameter range (pw) wherein platform

 sources labor to satisfy the demand unmet by its AVs: (w) = max{(p) −  0}, where
(p) ≥ 0 for  ∈ {1 2} That is, if the platform’s demand outstrips its AV supply (p)  , the

platform sources labor to make its total supply  + (w) meet the demand (p).

Platform  chooses its price and wage ( ) to maximize its second-period contribution

(pw) = (p)− (w)

where, as noted above, (w) = max{(p)− 0} Let p∗(1) =
∗
1(1) 

∗
2(1) andw

∗(1) =

∗1(1) 
∗
2(1) denote equilibrium prices and wages under platform 1 AV fleet 1. Platform ’s

second-period contribution under AV fleet 1 and equilibrium prices and wages (p∗(1)w
∗(1))

is
(1) = (p

∗(1)w
∗(1)) (1)

Platform 1 chooses its AV fleet to maximize its (first-period) profit

1(1) = 1(1)− (1)

Platform 2’s (first-period) profit is 2(1) = 2(1). Let
∗
1 be the maximizer of platform 1’s profit

1(1). Hence, (
∗
1 p

∗w∗) denotes an equilibrium in platform 1’s AV fleet and the platforms’

prices and wages, where, for compactness, we drop the argument in p∗(∗
1) and w

∗(∗
1)

In §4, we extend the model to allow the demand state  to be uncertain, AVs to have tech-

nological limitations such that they can only serve a portion of the market, and both platforms
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to acquire AVs. Because our focus is on high-level, strategic decisions (namely, AV fleet size), we

abstract away from the more detail-level issue of rider waiting times, in the same spirit as Cachon

et al. (2017), Su (2018), Bimpikis et al. (2019), Gurvich et al. (2019) and Liu et al. (2019). Proofs

of all results are in the appendix, with the exception of the results in §4.2 and §4.3, which are in

the electronic companion.

3 Results

§3.1 establishes “building block” equilibrium results which are used to address our research questions

in §3.2, §3.3 and §3.4. The reader interested more in managerial issues than in technical details

can skip ahead to §3.2.

3.1 Equilibrium Prices, Wages and Autonomous Vehicle Fleet

This section establishes the equilibrium in platform 1’s AV fleet and the platforms’ prices and wages

(∗
1 p

∗w∗) is unique, and characterizes the equilibrium.

We begin by considering the platforms’ price and wage decisions, for a given platform 1 AV

fleet 1. If platform 1’s price is low 1  (+ 2 −1) then its demand exceeds its AV fleet

1(p)  1 which implies the platform sources labor to satisfy the demand unmet by its AV fleet

1(w) = 1(p) −1  0, which implies the platform’s wage 1 = [1(p) −1 + 2] In this

case, platform 1’s second-period contribution is

(p 2) = 11(p)− [(1(p)−1 + 2)][1(p)−1]

If platform 1’s price is high 1 ≥ ( + 2 −1), then 1(p) ≤ 1 and the platform does not

source labor 1(w) = 0. In this case, platform 1’s second-period contribution is

(p) = 11(p)

Thus, platform 1’s second-period contribution is

1(p 2) =

(
(p 2) if 1  (+ 2 −1)

(p) if 1 ≥ (+ 2 −1)
(2)

where the argument 1 is eliminated. By parallel argument, platform 2’s wage 2 = [2(p)+1]

and second-period contribution is

2(p 1) = 22(p)− [(2(p) + 1)]2(p) (3)

Lemma 1 characterizes the platforms’ equilibrium prices and wages under platform 1 AV fleet

1. Let ̃

1(1) = [( + 2)(2 + ) − 21 + 2][2( + )], ̃1(1) = ( + 2 − 1),

̃1(1) = ( + 2)(2), ̃

1(1) = [( + 2 − 21) + ( + 2)2][2( + )], ̃

1(1) =

̃
1(1) = 2 ̃2(1) = [(+1)(2+ )+1][2(+ )] and ̃2(1) = [(+1)+(+

2)1][2(+ )]. Let (1(1) 

1 (1) 


2(1) 


2 (1)) denote the unique solution to 


1(1) =

̃1(1), 

1 (1) = ̃

1 (1) 2(1) = ̃2(1) and 
2 (1) = ̃2(1), where  ∈ {  } Let

7



p(1) =

1(1) 


2(1) and w(1) =


1 (1) 


2 (1), where  ∈ {  }. Further, let

 =
(42 − 2)(2 − 2) + (22 − 2)(22 − 2)− 2

[( + )(2+ ) + (2 + )(+ )](− )
(4)

 =
(42 − 2)(2 − 2) + (22 − 2)(22 − 2)

[( + )(22 − 2) + (2 + )(2 − 2)]
 (5)

Note 0   ≤ , where the weak inequality is strict if and only if   0

Lemma 1 Under platform 1 AV fleet 1 the equilibrium prices and wages are unique and given

by

(p∗(1)w
∗(1)) =

⎧⎪⎨⎪⎩
(p(1)w

(1)) if 1  

(p(1)w
(1)) if 1 ∈ [ ]

(p(1)w
(1)) if 1  .

(6)

Platform 1’s equilibrium AV fleet deployment and labor sourcing decisions depend on its fleet

size in a natural way. We say that platform 1 deploys its full AV fleet if 1 ≤ 1(p
∗(1)) and

sources labor if 1(w
∗(1))  0; recall 1(w) = min{1(p)−1 0} If its AV fleet is small, then,

under the equilibrium prices and wages, platform 1 deploys its full AV fleet and sources labor, i.e.,

1  1(p
∗(1)). If its fleet size is moderate, then platform 1 deploys its full AV fleet but does

not source labor, i.e., 1 = 1(p
∗(1)). If its fleet size is large, then platform 1 deploys only

a portion of its AV fleet and does not source labor, i.e., 1  1(p
∗(1)). The superscript  is

mnemonic for sourcing labor,  for slack AV capacity, and  for equating AV fleet with demand.

Lemma 2 characterizes platform 1’s equilibrium AV fleet. For the case in which there is com-

petition in the consumer market   0 ensuring that the platform 1’s profit 1(1) is well be-

haved requires that the intensity of competition in the labor market not be too large. Let ̃ =

[

q
4 + 42(22 + 3 + 2)−2][2(+)] if   0 and ̃ =  otherwise. Note if   0 then ̃ 

[
p
2 + 82 − ](2) Let  = argmax1≥0{1(p(1)w

(1)) − (1)}, where  ∈ { }.
Let  = lim1↓(){(1)1(1)(1)(1)} and  = lim1↑(){(1)1(1)

(1)(1)}. Let 0 = lim1→0{[(1)1(1)][(1)(1)]} if lim1→0(1)(1) 

0, and 0 =∞ otherwise. Let ̂ = sup∈[0) 
0. Note ,  and 0 depend on , , , , and .

Lemma 2 If the intensity of competition in the labor market   ̃, then platform 1’s profit 1(1)

is quasi-concave in 1 and platform 1’s equilibrium AV fleet is unique and given by

∗
1 =

⎧⎪⎨⎪⎩
 if   

 if  ∈ [ ]
 if  ∈ ( 0)

(7)

where  ≤   0, where the first inequality is strict if and only if   0. There exists  such that

  0 if and only if   . Further,  = 0 if  = 0, and  ∈ (0 ̃) if   0 Further, ∗
1 = 0 if and

only if  ≥ 0; ∗
1 = 0 for  ∈ [0 ) if and only  ≥ ̂
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Together, Lemmas 1 and 2 characterize the unique equilibrium in platform 1’s AV fleet and

the platforms’ prices and wages (∗
1 p

∗w∗) Platform 1’s equilibrium AV fleet and labor sourcing

decisions depend on the intensity of competition in the labor market and the AV cost in a natural

way. If the intensity of competition in the labor market is low  ≤  or the AV cost is high   ,

then platform 1 chooses a sufficiently small AV fleet ∗
1 such that it subsequently sources labor

∗1  0 If instead, the intensity of competition in the labor market is high  ∈ ( ̃) and the AV
cost is low  ≤  then platform 1 chooses a sufficiently large AV fleet ∗

1 such that it subsequently

does not source labor ∗1 = 0

In the sequel, for analytical tractability, we assume that   ̃. (Note this assumption is non-

restrictive when there is no competition in the consumer market,  = 0 because in that case ̃ = )

In a numerical study that relaxes the   ̃ restriction, we observe that the results are consistent

with our Propositions; see Appendix E in the electronic companion.

3.2 Impact of Intensity of Competition in Labor Market on Price

This section focuses on the impact of the intensity of competition in the labor market on platform

1’s price.

How does a platform’s access to supply-side (namely, AV) technology change prescriptions for its

demand-side (namely, pricing) decisions? It is natural to conjecture that platform 1’s price increases

in the intensity of competition in the labor market. Increasing the intensity of competition in the

labor market increases the marginal cost of labor, which makes it attractive for the platform to

decrease its labor supply. Reducing its labor supply pushes the platform to serve a smaller market,

which the platform accomplishes by setting a higher price. Proposition 1i confirms this intuition

for the case in which the AV cost is prohibitive. Proposition 1ii reveals how this prescription is

reversed when AV technology becomes accessible.

Proposition 1 (i) Suppose the AV cost is high  ≥ ̂. Then platform 1’s equilibrium AV fleet

∗
1 = 0 and platform 1’s equilibrium price ∗1 strictly increases in the intensity of competition in

the labor market  on  ∈ (0 ). (ii) Suppose the AV cost is low   ̄, where ̄ ∈ (0 ̂] Then there
exist ̄  0,  ≥ 0 and ̄   such that platform 1’s equilibrium price ∗1 strictly decreases in the

intensity of competition in the labor market  on  ∈ ( ̄) for all  ∈ [0 ̄].

Proposition 1ii provides sufficient conditions under which platform 1’s equilibrium price de-

creases in the intensity of competition in the labor market  That the conditions do not require

the presence of competition in the consumer market   0 reveals that the decreasing-price result

is not driven by demand-side competition. To isolate the driving force behind the decreasing-price
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result, we begin by considering the setting with no competition in the consumer market  = 0

(One can show  = 0 implies  = 0)

To see the intuition, observe that increasing the intensity of competition in the labor market 

has two effects on platform 1’s equilibrium price: a price-increasing labor cost effect and a price-

decreasing fleet size effect

∗1


=
∗1
|{z}
 0

labor cost effect

+
∗1
1

∗
1

| {z } 
 0

fleet size effect

As noted before Proposition 1, increasing the intensity of competition in the labor market increases

the marginal cost of labor. This makes it attractive for platform 1 to decrease its labor supply and

so serve a smaller consumer market, which is accomplished by setting a higher price (the labor cost

effect).

The effect of the intensity of competition in the labor market on the price through the AV fleet

size is more subtle. Increasing the intensity of competition in the labor market  makes the labor

market comparatively less attractive as a source of supply, prompting platform 1 to increase its

AV fleet in period one, ()∗
1  0. Platform 1’s price decreases in its AV fleet, (1)

∗
1  0.

To see why, let 1 = 1 + 1(w) denote platform 1’s total supply in period two, and observe that

platform 1’s price decision (equivalently, its quantity decision of how much demand to serve) is

driven by its marginal cost of total supply in period two. Increasing the AV fleet reduces the labor

quantity required to achieve a given total supply 1(w) = 1 −1, which drives down the cost of

supply because the marginal cost of labor increases in the labor quantity. Hence, as platform 1’s

AV fleet increases, its marginal cost of total supply in period two decreases, prompting the platform

to serve a larger market, which it does by setting a lower price. When there is competition in the

consumer market,   0 a second force emerges to reinforce the effect of platform 1’s AV fleet

expansion decreasing its marginal cost of total supply in period two. Platform 1 increasing its AV

fleet in period one commits the platform to compete more aggressively in the consumer market,

making that market less attractive to platform 2, which pushes platform 2 to source less labor and

offer a lower wage. Platform 2 reducing its wage pushes down the platform 1’s marginal cost of

total supply in period two.

When the AV cost is prohibitively high  ≥ ̂ such that platform 1’s equilibrium AV fleet

∗
1 = 0 only the labor cost effect is at work, and, consequently, platform 1’s equilibrium price

∗1 strictly increases in the intensity of competition in the labor market  (Proposition 1i). In

contrast, when the AV cost is low   ̄, platform 1’s equilibrium AV fleet is sensitive to the
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intensity of competition in the labor market, and the price-decreasing fleet size effect dominates

the price-increasing labor cost effect, for a range of  (Proposition 1ii). (When the AV cost is

moderate  ∈ (̄ ̂) both effects are at work, and, depending on the parameters, either effect can
dominate.) The restriction in Proposition 1ii that the cost AV be low   ̄ need not be onerous.

For example, when the cost of an AV fleet is linear in the fleet size 1 (i.e., (1) = 1), the

AV cost threshold ̄ = 0; thus, the condition   ̄ is equivalent to the very mild condition that

the AV cost be sufficiently low that platform 1’s equilibrium AV fleet is strictly positive ∗
1  0

(see Lemma 2).

A purpose of this paper is to identify what factors drive reversals in intuitive prescriptions for

platform decisions. As noted above, the presence of demand-side competition is not necessary for

the reversal in price prescription. The next section identifies a prescription whose reversal is driven

by the presence of demand-side competition.

3.3 Impact of Intensity of Competition in Labor Market on AV Fleet

This section focuses on the impact of the intensity of competition in the labor market on platform

1’s AV fleet.

How does the presence of demand-side competition change prescriptions for a platform’s supply-

side (namely, AV fleet) decisions? Proposition 2 characterizes how platform 1’s equilibrium AV fleet

∗
1 changes with the intensity of competition in the labor market  Because, when the AV cost is

high  ≥ ̂ ∗
1 = 0 and so is invariant to  (see Lemma 2), in Proposition 2, we restrict attention

to the interesting case   ̂

Increasing the intensity of competition in the labor market  increases the marginal cost of

labor, which makes labor a less attractive supply source relative to AVs and pushes platform 1 to

increase its AV fleet. Proposition 2i confirms this intuition for the case with no competition in

the consumer market  = 0 Proposition 2ii reveals how this prescription is reversed when there is

competition in the consumer market   0

Proposition 2 (i) Suppose there is no competition in the consumer market,  = 0. There exist

̂  ̌ ≥ 0 such that platform 1’s equilibrium AV fleet ∗
1 increases in the intensity of competition

in the labor market , strictly so if and only if  ∈ (̌ ̂). (ii) Suppose there is competition in the
consumer market,   0. There exists ̄  0,   0, and ̄   such that if the AV cost is small

  ̄ then platform 1’s equilibrium AV fleet ∗
1 strictly decreases in the intensity of competition

in the labor market  on  ∈ ( ̄).

Platform 2ii provides sufficient conditions under which platform 1’s equilibrium AV fleet ∗
1

strictly decreases in the intensity of competition in the labor market  To understand how this
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can occur, it is useful to understand the forces that drive platform 1’s choice of AV fleet ∗
1 

in equilibrium. Platform 1’s expanding its AV fleet has two potentially-opposing effects on the

platform’s second-period contribution. In the absence of competition in the consumer market,

 = 0, a larger fleet always increases platform 1’s contribution by reducing its need to source costly

labor. We refer to this as the supply substitution effect. Increasing the intensity of competition in

the labor market increases the marginal cost of labor, magnifying the supply substitution effect,

making it attractive for platform 1 to reduce it total supply cost via a larger AV fleet.

In the presence of competition in the consumer market,   0, selecting a large AV fleet in

period one commits platform 1 to compete aggressively in period two, and excessive competition

erodes the platform’s revenue. We refer to this as the price competition effect. Increasing the

intensity of competition in the labor market increases platform 2’s marginal cost of labor, making

platform 2 a less formidable rival. Facing a less formidable rival makes it attractive for platform 1

to soften competition by choosing a smaller AV fleet.

When the AV cost  is small, platform 1 tends to source little labor relative to platform 2.

Because platform 1 sources little labor, increasing the intensity of competition in the labor market

has a small effect on platform 1: the fleet-increasing supply substitution effect is weak. Because

platform 2 sources a larger labor quantity, increasing the intensity of competition in the labor market

has a comparatively large effect in making platform 2 a less formidable rival: the fleet-reducing

supply substitution effect is strong. The net result is that the fleet-reducing effect dominates, for a

range of .

The interesting result wherein platform 1’s equilibrium AV fleet ∗
1 strictly decreases in the

intensity of competition in the labor market  occurs when platform 1’s AV cost is “low.” This

occurs when a platform quite successful in developing (and driving down the cost of) AV technology

competes in a market with a rival lacking access to AVs. The rival could lack such access because

it lacked capital to invest in AV technology development, chose not to invest in such development,

or invested but failed. To the extent that critical technological advances made by the successful

platform are proprietary and granted strong intellectual property protection, the rival’s access would

be further thwarted. Nonetheless, the phenomenon that a platform’s equilibrium AV fleet strictly

decreases in the intensity of competition in the labor market does not require a sharp technological

imbalance between platforms. §4.3 considers the setting in which both platforms have access to

AVs and provides sufficient conditions under which the phenomenon occurs (see Proposition 2Cii).

3.4 Impact of AV Cost on Platform Profit

This section focuses on the impact of platform 1’s AV cost on platform 2’s profit.
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How is a platform affected by its rival’s access to AVs, or more precisely, a reduction of the

rival’s AV cost? Because a reduction in its AV cost makes platform 1 a more formidable rival, one

might expect platform 2 would be hurt. Proposition 3 provides a simple necessary and sufficient

condition for platform 2 to benefit from a reduction in platform 1’s AV cost. Because  is the

cross-wage and  is the own-wage sensitivity of labor,  is the relative wage sensitivity of labor.

Because  is the cross-price and  is the own-price sensitivity of demand,  is the relative price

sensitivity of demand.

Proposition 3 Platform 2’s equilibrium profit 2(
∗
1) strictly decreases in platform 1’s AV cost 

on  ∈ ( 0) if and only if the relative wage sensitivity of labor is greater than the relative price
sensitivity of demand

   (8)

Further, 2(
∗
1) weakly increases in platform 1’s AV cost  on  ∈ (0 ) ∪ (0∞)

A reduction of platform 1’s AV cost  has two opposing effects on platform 2: a harmful

consumer market effect and a beneficial labor market effect. Platform 1 responds to a reduction

in its AV cost by expanding its AV fleet. This commits platform 1 to compete more aggressively

on price in the consumer market (the consumer market effect), hurting platform 2. An increase

in platform 1’s AV fleet reduces platform 1’s marginal value of labor, so platform 1 competes less

aggressively on wage in the labor market (the labor market effect), benefiting platform 2.

Whether the consumer market effect or labor market effect dominates depends on platform 1’s

AV cost and the parameters that govern the demand and supply functions. In particular, the labor

market effect is present if and only if platform 1 sources labor, which (by Lemma 2) occurs when

the AV cost is moderate  ∈ ( 0). In that case, which effect dominates depends on a simple
comparison of the relative wage sensitivity of labor and the relative price sensitivity of demand

(inequality (8)). When the relative wage sensitivity of labor is large, platform 2’s marginal cost

of labor is sensitive to platform 1’s wage. Consequently, a small decrease in platform 1’s wage

translates to a relatively large reduction in platform 2’s labor cost (the beneficial labor market

effect is large). Conversely, when the relative price sensitivity of demand is small, a small decrease

in platform 1’s price translates to relatively small reduction in platform 2’s revenue (the harmful

consumer market effect is small). Thus, when the AV cost is moderate  ∈ ( 0) platform 2

benefits from a reduction in platform 1’s AV cost if and only if the relative wage sensitivity of labor

is greater than the relative price sensitivity of demand. In contrast, if platform 1’s AV cost is small

   such that the platform does not source labor, then the only effect of reducing platform 1’s

AV cost is to push the platform to compete more aggressively in the consumer market, hurting

platform 2.
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Currently, no platforms use AVs, which corresponds in our setting to platform 1’s equilibrium

AV fleet ∗
1 = 0 or equivalently, platform 1’s AV cost being prohibitive  ≥ 0 (see Lemma 2).

When the first platform to obtain AVs initially does so, it is likely that AVs will be sufficiently

costly that the platform will continue to employ labor alongside AVs (Lyft 2019, Uber 2019), which

corresponds to the case where the AV cost  ∈ ( 0) Thus, inequality (8) is the key condition
which determines whether a platform will benefit by its rival’s initially obtaining AVs.

The contribution of Proposition 3 is not in showing that is possible for a platform to benefit

by its rival’s access to AVs. Rather, the contribution is in providing a simple, readily interpretable

necessary and sufficient condition under which a platform does benefit by its rival’s access.

4 Extensions

In this section, we extend the model to allow the demand state  to be uncertain, AVs to have tech-

nological limitations such that they can only serve a portion of the market, and both platforms to

acquire AVs. For each extension, we present analogues to Propositions 1, 2 and 3 that demonstrate

the robustness of our central results.

4.1 Demand Uncertainty

This section considers an extension of our base model wherein the demand state  is uncertain at the

time of platform 1’s AV fleet size decision. Consistent with the practice of ride-hailing platforms of

setting prices and wages in response to market conditions (Cachon et al. 2017), platform  ∈ {1 2}
chooses its price  and wage  after observing the realized demand state . At the time of making

its long-term AV fleet decision in the first period, platform 1 anticipates repeatedly observing the

demand state and making short-run state-dependent price and wage decisions. For simplicity, we

collapse the platforms’ short-run demand state observations and decisions into a single second

period. Let () denote the density function of the demand state; we assume  is continuously

differentiable on the function’s support [ ̄], where   0 Let (1) denote platform ’s

second-period contribution under platform 1 AV fleet 1 realized demand state  and equilibrium

prices and wages (p∗(1)w
∗(1)), as in (1). Under AV fleet 1, platform ’s expected

second-period contribution is

(1) =

Z ̄



(1)()

platform 1’s (first-period) expected profit is Π1(1) = 1(1) − (1) and platform 2’s (first-

period) expected profit is Π2(1) = 2(1). Define ̂ = sup∈[0)
0(̄) where 0() denotes the

dependence on the demand state  in the special case where the demand state is deterministic. Let

∗1() denote platform 1’s equilibrium price under realized demand state 
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Proposition 1A (i) Suppose the AV cost is high   ̂. Then platform 1’s equilibrium AV fleet

∗
1 = 0 and platform 1’s equilibrium price ∗1() strictly increases in the intensity of competition

in the labor market  on  ∈ (0 ) for all  ∈ [ ̄]. (ii) Suppose the AV cost is low  ≤ ̄, where

̄ ∈ (0 ̂]. There exists   1 such that if ̄  , then there exist ̄  0,   0, ̄  , ̌  0,

and ̂  ̌ such that ∗1() strictly decreases in the intensity of competition in the labor market 

on  ∈ ( ̄) for all  ∈ [0 ̄] and  ∈ (̌ ̂).
Parallel to Proposition 1ii, Proposition 1Aii provides sufficient conditions under which platform 1’s

equilibrium price strictly decreases in the intensity of competition in the labor market. Proposition

1Aii adds one condition: that the ratio of lower to upper limit of the support of the demand state

̄ not be too small. Similarly, in providing conditions under which platform 1’s equilibrium AV

fleet either increases or decreases in the intensity of competition in the labor market, Proposition

2A imposes this condition. The restriction on ̄ is a technical condition that ensures the quasi-

concavity of platform 1’s profit Π1(1). Appendix E in the electronic companion provides numerical

evidence that the assumption is not particularly restrictive in that Propositions 1Aii and 2A hold

in examples where ̄ is relatively small.

Proposition 2A There exists   1 such that if ̄  , then the following statements hold. (i)

Suppose there is no competition in the consumer market,  = 0. Then platform 1’s equilibrium AV

fleet ∗
1 increases in the intensity of competition in the labor market  on  ∈ (0 ). (ii) Suppose

there is competition in the consumer market,   0. There exists ̄  0,   0, and ̄   such

that if the AV cost is small   ̄ then platform 1’s equilibrium AV fleet ∗
1 strictly decreases in

the intensity of competition in the labor market  on  ∈ ( ̄).
Proposition 3A reveals that the key necessary and sufficient condition under which platform 2

benefits by a reduction in platform 1’s AV cost is unchanged by the extension to uncertain demand.

Proposition 3A There exists ̄    0 such that platform 2’s expected equilibrium profit Π2(
∗
1)

strictly decreases in platform 1’s AV cost  on  ∈ [ ̄] if and only if the relative wage sensitivity
of labor is greater than the relative price sensitivity of demand (i.e., inequality (8) holds).

4.2 Limited Sophistication of Autonomous Vehicles

This section considers an extension of our base model wherein AVs are limited in their sophistication

such that they cannot serve all customers. Ride-hailing platforms (e.g., Lyft, Uber) anticipate

that, at least initially, AVs will not be sufficiently sophisticated technologically to safely serve all

customer origin-and-destination requests. AVs will not be able to serve origin-destination pairs

that require routes that are particularly complex or challenging (e.g., involving bridges, tunnels,
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vehicle speed in excess of 35 miles per hour, heavy traffic, difficult pick-up or drop-off locations);

these origin-destination pairs can only be served by human drivers. Origin-destination pairs which

are less technologically demanding can be served by AVs as well as human drivers. Thus, AVs

may be limited to geographic areas which involve low vehicle speeds and are well-mapped and

well-understood by the platform in terms of routes and pick-up and drop-off locations (Lyft 2019,

Uber 2019).

To capture that AVs are limited in their sophistication, we let  ∈ { } index two markets,
where  represents the market that AVs can serve, and  represents the market that AVs cannot. Let

 denote platform ’s price in market . Let p =1 

2 and p =1 


1 


2 


2. Platform ’s

market  demand 
 (p

) = (− + ) and market  demand 
 (p

) = (1−)(−+),
where  ∈ (0 1) reflects the relative size of the market that AVs can serve. Platform  sources labor

to satisfy the demand unmet by its AVs (w) = max{
 (p

)− 0}+
 (p

), allocating labor

max{
 (p

) −  0} to market  and labor 
 (p

) to market  Platform  chooses its prices

(  
0
 ) and wage  to maximize its second-period contribution

(pw) = 

 (p

) + 

 (p

)−(w) (9)

where (w) = max{
 (p

) −  0} + 
 (p

) Platform ’s second-period contribution under

platform 1 AV fleet 1 and equilibrium prices p∗(1) =
∗
1 (1) 

∗
1 (1) 

∗
2 (1) 

∗
2 (1) and

wages w∗(1) =
∗
1(1) 

∗
2(1) is (1) = (p

∗(1)w
∗(1)). Under platform 1 AV fleet

1 platform 1’s (first-period) profit is 1(1) = 1(1) − (1) and platform 2’s (first-period)

profit is 2(1) = 2(1).

Define 0 = sup{  0|∗
1  0}. Note that 0 depends implicitly on . Let ̂ = sup∈[0) 

0().

Proposition 1B (i) Suppose the AV cost is high   ̂. Then platform 1’s equilibrium AV fleet

∗
1 = 0 and platform 1’s equilibrium price ∗1 in market  ∈ { } strictly increases in the

intensity of competition in the labor market  on  ∈ (0 ). (ii) Suppose the AV cost is low   ̄,

where ̄ ∈ (0 ̂] Then there exists ̄ ∈ (0 1) such that for all   ̄ , there exist ̄  0,  ≥ 0 and
̄ ∈ ( ̃) such that platform 1’s equilibrium price ∗1 in market  ∈ { } strictly decreases in the
intensity of competition in the labor market  on  ∈ ( ̄) for all  ∈ [0 ̄].
Parallel to Proposition 1ii, Proposition 1Bii provides sufficient conditions under which platform 1’s

equilibrium price ∗1 in market  ∈ { } strictly decreases in the intensity of competition in the
labor market. Proposition 1Bii adds one condition: that the size of the market AVs can serve  is

sufficiently large. This condition is necessary for platform 1’s price to decrease in the intensity of

competition in the labor market. To see why, recall that increasing the intensity of competition in

the labor market  has a price-increasing labor cost effect and a price-decreasing fleet size effect.
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If the size of the market that AVs can serve  is very small, then the AV fleet size and the fleet

size effect are small, and the price-increasing labor cost effect dominates. For the interesting price-

decreasing result to occur, it must be that the size of the market that AV can serve is sufficiently

large such that AVs play a non-trivial role in platform 1’s decisions. Nonetheless, the restriction

that the size of the market AVs can serve   ̄ need not be overly restrictive; Appendix E in the

electronic companion provides a numerical example in which ̄ = 01

Proposition 2B (i) Suppose there is no competition in the consumer market,  = 0. There exists

̂  ̌  0 such that if  ∈ [̌ ̂], then platform 1’s equilibrium AV fleet ∗
1 strictly increases

in the intensity of competition in the labor market  on  ∈ (0 ). (ii) Suppose there is limited
competition in the consumer market,  ∈ (0 ̄], where ̄  0. There exists ̄   ≥ 0 and ̄  0

such that if the AV cost is moderate  ∈ ( ̄], then platform 1’s equilibrium AV fleet ∗
1 strictly

decreases in the intensity of competition in the labor market  on  ∈ (0 ̄).
Parallel to Proposition 2ii, Proposition 2Bii provides sufficient conditions under which platform 1’s

equilibrium AV fleet strictly decreases in the intensity of competition in the labor market.

Proposition 3B reveals that the key necessary and sufficient condition under which platform 2

benefits by a reduction in platform 1’s AV cost in unchanged by the extension in which AVs can

only serve some customers.

Proposition 3B Platform 2’s equilibrium profit 2(
∗
1) strictly decreases in platform 1’s AV cost

 on  ∈ ( 0) if and only if the relative wage sensitivity of labor is greater than the relative price
sensitivity of demand (i.e., inequality (8) holds).

4.3 Both Platforms Can Acquire Autonomous Vehicles

This section considers an extension of our base model wherein both platforms can acquire AVs.

More precisely, in the first period, platform  ∈ {1 2} chooses the size of its AV fleet , incurring

cost () In the definitions of the second-period equilibrium prices p
∗ and wagesw∗ and platform

’s second-period contribution under the equilibrium prices and wages , we replace the argument

1 with the vector of AV fleets K =12. Platform ’s first-period profit is (K) = (K)−
()

We begin by considering the case where the platforms are symmetric 1 = 2 =  In the

electronic companion we show that if the intensity of competition in the labor market is not too

large  ∈ [0 ̃) where ̃  0 then only one symmetric equilibrium, ∗
1 = ∗

2 = ∗ exists.

Accordingly, we restrict attention to  ∈ [0 ̃) and symmetric equilibria. It is straightforward to
verify that under the symmetric AV fleet equilibrium, there exists a unique equilibrium in prices

and wages, and that equilibrium is symmetric: ∗1 = ∗2 = ∗ and ∗1 = ∗2 = ∗.
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While Proposition 1 examines the effect of the intensity of competition in the labor market

on platform 1’s equilibrium price, the parallel result in Proposition 1C applies to both platforms’

equilibrium prices. Define 0 = sup{  0|∗  0}. Note that 0 depends implicitly on . Let

̂ = sup∈[0) 
0().

Proposition 1C (i) Suppose the AV cost is high   ̂. Then platform 1’s equilibrium AV fleet

∗
1 = 0 and the equilibrium price ∗ strictly increases in the intensity of competition in the labor

market  on  ∈ (0 ). (ii) Suppose the AV cost is low   ̄, where ̄ ∈ (0 ̂]. Then there exist
̄  0,   0 and ̄   such that the equilibrium price ∗ strictly decreases in the intensity of

competition in the labor market  on  ∈ ( ̄) for all  ∈ [0 ̄].
The conditions in Proposition 1C under which the equilibrium price strictly increases (or decreases)

with the intensity of competition in the labor market are unchanged from those in the base model;

see Proposition 1.

Proposition 2C (i) Suppose there is no competition in the consumer market,  = 0. The equi-

librium AV fleet ∗ strictly increases in the intensity of competition in the labor market  on

 ∈ (0 ). (ii) Suppose there is limited competition in the consumer market,  ∈ (0 ̄], where
̄  0. There exists ̄  0 and ̄  0 such that if AV cost is small  ∈ (0 ̄], then the equilibrium
AV fleet ∗ strictly decreases in the intensity of competition in the labor market  on  ∈ (0 ̄).
Parallel to Proposition 2ii, Proposition 2Cii provides sufficient conditions under which platform 1’s

equilibrium AV fleet strictly decreases in the intensity of competition in the labor market. The

next Proposition allows for the platform’s AV costs to be asymmetric, 1 6= 2

Proposition 3C Platform 2’s equilibrium profit 2(
∗
1 

∗
2) strictly decreases in platform 1’s AV

cost 1 only if the relative wage sensitivity of labor is greater than the relative price sensitivity of

demand (i.e., inequality (8) holds).

Proposition 3C is weaker than Proposition 3 in that condition (8) is necessary but not sufficient for

platform 2 to benefit by a reduction in platform 1’s AV cost. More precisely, there exist parameters

in which inequality (8) holds and yet platform 2’s equilibrium profit 2(
∗
1 

∗
2) strictly increases

in 1

To see why inequality (8) is not sufficient to ensure that platform 2 benefits from a reduction in

platform 1’s AV cost 1 recall that such a reduction benefits platform 2 through the labor market

effect (platform 1 competes less aggressively in the labor market) and hurts platform 2 through the

consumer market effect (platform 1 competes more aggressively in the consumer market). When

platform 2 lacks access to AVs (the setting of Proposition 3), the labor market effect dominates the

consumer market effect if and only if the relative wage sensitivity of labor is greater than the relative
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price sensitivity of demand (inequality (8)). Platform 2’s access to AVs reduces the platform’s

dependence on the labor market, dampening the beneficial labor market effect. Consequently,

even if inequality (8) holds, the beneficial labor market effect can be outweighed by the harmful

consumer market effect. This occurs, for example, when platform 2’s AV cost 2 is small, such that

the platform has a large AV fleet, finds labor relatively unattractive, and consequently benefits

little from platform 1 competing less aggressively in the labor market.

5 Discussion

This paper provides three insights into the implications of competition and access to AV technology

for the management of ride-hailing platforms. First, a platform’s access to supply-side (namely,

AV) technology changes prescriptions for its demand-side (namely, pricing) decisions: The intuitive

prescription from the setting without AVs, that price increases in the intensity of competition in

the labor market, is reversed. Second, the presence of demand-side competition changes prescrip-

tions for a platform’s supply-side (namely, AV fleet size) decisions: The intuitive prescription from

the setting without demand-side competition, that the AV fleet size increases in the intensity of

competition in the labor market, is reversed. We characterize the conditions under which these

reversals occur and explain the driving forces behind the reversals. Third, whether a platform ben-

efits from its rival’s access to AV technology depends on a simple comparison between the relative

wage sensitivity of labor and the relative price sensitivity of demand.

Our results are driven by the key feature that makes AVs attractive to ride-hailing platforms: the

elimination of the variable cost payment to human drivers. The reduction in variable cost is most

profound when a platform owns the AV fleet which provides rides on its network. However, as noted

in §1, a ride-hailing platform may allow independently-owned AVs on its network. One possibility

is that individual consumers own AVs, and a ride-hailing platform offers to pay a “wage” to AV

owners for each ride the owner’s AV provides (Higgins 2019). This scenario is similar to current

practice, but with an additional class of “workers” alongside human drivers. A second possibility

is that firms independent from the platform own AV fleets. Such firms might seek to compete with

ride-hailing platforms by directly offering rides to consumers. Alternately, fleet-owning firms might

negotiate with ride-hailing platforms to put their AVs on the platform’s network. In contrast to the

relatively simple arms-length financial transactions between a ride-hailing platform and a human

driver (or an individual AV owner), the structure of the financial arrangement between a platform

and a fleet-owning firm might be quite complex, specifying when and how many AVs the fleet owner

would make available, how the platform would allocate consumer requests to the fleet owner’s AVs

versus other vehicles, fixed payments, revenue-dependent payments, etc. As AV technology develops
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and the manner in which AVs integrate with and/or compete against ride-hailing platforms comes

into sharper focus, future research opportunities should abound.
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Appendix A: Base Model

The following lemma is useful in the proof of Lemma 1.

Lemma 3 Under platform 1 AV fleet 1 platform 2’s best response price and wage to platform 1’s

price and wage (1 1) is (̃2(1) ̃2(1)). Platform 1’s best response price and wage to platform

2’s price and wage (2 2) is

(̃1(1) ̃1(1)) =

⎧⎪⎨⎪⎩
(̃1(1) ̃


1(1)) if 1  (+ 2 − 2)2

(̃1(1) ̃

1(1)) if 1 ∈ [(+ 2 − 2)2 (+ 2)2]

(̃1(1) ̃

1(1)) if 1  (+ 2)2

Further, 1  1(̃1(1) 2) if and only if 1  ( + 2 − 2)2; 1 = 1(̃1(1) 2) if

and only if 1 ∈ [( + 2 − 2)2 ( + 2)2]; and 1  1(̃1(1) 2) if and only if

1  (+ 2)2

Proof of Lemma 3: It is straightforward to show that platform 2’s second-period contribution

2(p 1), as given in (3), is strictly concave in 2 Platform 2’s best response price is the unique

solution to the first-order condition (2)2(p 1) = 0, namely, 2 = ̃2(1) Further, platform

2’s best response wage 2 = (2(1 ̃2(1))+1) = ̃2(1). It is straightforward to show that

platform 1’s second-period contribution 1(p 2), as given in (2), is strictly concave in 2 Fur-

ther, lim1↑̃1(1)(1)1(p 2)  lim1↓̃1(1)(1)1(p 2) If 1  ( + 2 − 2)2

then lim1↑̃1(1)(1)1(p 2)  0 and platform 1’s best response price is the unique so-

lution to the first-order condition (1)
(p 2) = 0, namely, 1 = ̃1(1); further, 1 

1(̃

1(1) 2). If 1 ∈ [(+ 2 − 2)2 ( + 2)2] then lim1↓̃1(1)(1)1(p 2) 

0  lim1↑̃1(1)(1)1(p 2) and platform 1’s best response price 1 = ̃1(1); further,

1 = 1(̃

1(1) 2) If 1  (+ 2)2 then lim1↓̃1(1)(1)1(p 2)  0 and platform 1’s

best response price is the unique solution to the first-order condition (1)
(p 2) = 0, namely,
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1 = ̃1(1); further, 1  1(̃

1(1) 2). If 1  (+ 2 − 2)2 then, platform 1’s best

response price is sufficiently small that the platform sources labor 1(w)  0; thus, platform 1’s

best response wage is 1 = (1(̃

1(1) 2)−1+2) = ̃

1(1) If 1 ≥ (+2−2)2
then, platform 1’s best response price is sufficiently large that the platform does not source labor

1(w) = 0; thus, platform 1’s best response wage 1 = 2. ¤
Proof of Lemma 1: Lemma 3 implies that under platform 1 AV fleet 1: prices and wages

(pw) = (p(1)w
(1)) is an equilibrium if and only if1  1(p

(1)); (pw) = (p
(1)w

(1))

is an equilibrium if and only if 1 = 1(p
(1)); and (pw) = (p

(1)w
(1)) is an equilibrium

if and only if 1  1(p
(1)) Further, it is straightforward to verify: 1  1(p

(1)) if and

only if 1  ; 1 = 1(p
(1)) if and only if 1 ∈ [ ]; and 1  1(p

(1)) if

and only if 1  ¤
Proof of Lemma 2: Using equation (2) and Lemma 1, we can write platform 1’s second-

period contribution under AV fleet 1 and equilibrium prices and wages (p∗(1)w
∗(1)) as

1(1) = (p(1) 

2(1))1{1

} + (p(1))1{1∈[]} + (p(1))1{1
} It

is straightforward to verify the following: 1(1) is continuous in 1; 1(1) is strictly concave

in 1 for 1   and 1 ∈ ( ); 1(1) is invariant to 1 on 1  ; if  = 0,

then  = ; and    if and only if   0 and   ̃. Thus, 1(1) is concave in 1 for

1   and 1 ∈ ( ); 1(1) is concave and strictly decreasing on 1  .

Further, if  = 0 or   ̃, then lim1↑()(1)1(1) ≤ lim1↓()(1)1(1), which

implies that 1(1) is quasi-concave in 1. If   , then lim1↓()(1)1(1)  0,

which implies ∗
1 ∈ ( ], which in turn implies ∗

1 =  (by Lemma 1). If  ∈ [ ],
then lim1↓()(1)1(1) ≤ 0 ≤ lim1↑()(1)1(1), which implies 

∗
1 = .

If  ∈ ( 0), then lim1↑()(1)1(1)  0  lim1→0(1)1(1), which implies

∗
1 ∈ (0 ), which in turn implies ∗

1 =  (by Lemma 1). Because  ≥ 0 if and only if

lim1→0(1)1(1) ≤ 0,∗
1 = 0 if and only if  ≥ 0. Using Lemma 1, it is straightforward to

verify that  has the same sign as (   ) = (2−)[(2−)+2(−)]−2(2−)[(22−
2) + (2 − 2)]. Suppose  = 0; then (   ) ≥ 0 where the inequality is strict if and only if
  0; this implies   0 if and only if   0 Suppose for the remainder of the proof that   0

Note (33)(   )  0, which implies that there exists  ∈ [0 ] such that (   )
is convex in  for  ∈ [0 ] and concave in  for  ∈ [ ]. It is straightforward to verify that
lim→0()(   )  0 and lim→0 (   )  0  lim

→[
√
2+82−](2) 

(   ).

This implies existence of  ∈ (0 [
p
2 + 82 − ](2)) such that   0 if and only if   .

Further, ̃  [
p
2 + 82 − ](2) implies   ̃ Because ∗

1 = 0 if and only  ≥ 0 ∗
1 = 0 for

 ∈ [0 ) if and only  ≥ ̂¤
Proof of Proposition 1: (i) If  ≥ ̂ then for  ∈ [0 ) ∗

1 = 0 (by Lemma 2), which implies

()∗
1 = 0. Therefore, ()∗1 = [(1)

∗
1][()

∗
1 ] + ()

∗
1 = ()∗1. Because

∗
1 = 0, 

∗
1(

∗
1) = 1(

∗
1) = 1(0), where the first equality follows by Lemma 1. It is straightfor-
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ward to verify that ()1(0) = (
22)[(−)(2−)+(2−)(−)]2  0. (ii) Let0∗

1 and

0∗1 denote platform 1’s equilibrium AV fleet and price in the special case where (1) = 1. The

proof proceed in three steps. First, we show that 0∗1 = 1(
0∗
1 ) if  ∈ [0 ()] and  ∈ [0 ()]

for some ()  0 and ()  0. Second, we show that if (1) = 1, then there exists ̃  0

such that for any  ∈ (0 ̃), there exist ̄  0 and ̄   ≥ 0 such that ()1(0∗
1 )  0 for

all  ∈ [0 ̄] and  ∈ ( ̄). Third, we show the result from the second step extends to when

(1) is convex, increasing, when ̃ is replaced by ̄ Step One: Let  = lim1→0(1)(1).

Suppose   0 Then 0 = lim1→0[(1)1(1)]. Let ̃ = [( + )] Because   0

Lemma 1 implies 0 = lim1→0[(1)
(p∗(1) 

∗
2(1))] Further, it is straightforward to

show algebraically that lim→0 lim→0 lim1→0[(1)
(p∗(1) 

∗
2(1))] = ( + ) Because

lim→0 lim→0 0 = ̃, lim→0 lim→0  = 0 (by Lemma 2), and 0 and  are continuous in 

and  for any  ∈ (0 ̃) there exist ()  0 and ()  0 such that  ∈ ( 0) for all

 ∈ [0 ()] and  ∈ [0 ()]. Let  ∈ (0 ̃). It follows that 0∗1 = 1(
0∗
1 ) if  ∈ [0 ()]

and  ∈ [0 ()]. We have assumed   0; if instead  = 0 then the preceeding sentence holds

by argument parallel to that above, where expressions with  in the denominator are replaced by

∞ Step Two: It is straightforward to show algebraically that lim→0 lim→0()1(
0∗
1 ) = 0

and lim→0 lim→0(22)1(
0∗
1 ) = −( + 2)(4( + )2)  0 This implies that there ex-

ists ̄ ∈ (0 ()) such that lim→0()1(
0∗
1 )  0 for all  ∈ (0 ̄). Because ()1(0∗

1 )

is continuous in  and , there exist ̄ ∈ (0 ()) and   ̄ such that ()1(
0∗
1 )  0 for

all  ∈ [0 ̄] and  ∈ ( ̄). The result follows because 0∗1 = 1(
0∗
1 ) for  ∈ [0 ()] and

 ∈ [0 ()]. Step Three: Let ∗
1 and ∗1 denote platform 1’s equilibrium AV fleet and price,

when (1) is convex, increasing. We first show that for all   0, there exists ̄()  0 such that

|()0∗1 − ()∗1|   if  ∈ [0 ̄()]. To do so, we show that lim→0 |()0∗1 − ()∗1| = 0
and that ()0∗1 and ()∗1 are continuous in . Define  = argmax1≥0 1(1). Note

that |0∗
1 − ∗

1 | ≤ |0∗
1 − | + |∗

1 − | by the triangle inequality. Next, 0 ≤ 1(
∗
1) −

1(
) = 1(

∗
1) − 1(

) + [() − (∗
1)] ≤ [() − (∗

1)], where the first inequality fol-

lows because 1(
∗
1) ≥ 1(

) (by definition of ∗
1) and the second inequality follows because

1(
∗
1) ≤ 1(

) (by definition of ). Note that 0 ≤ 1(
∗
1) − 1(

) ≤ [() − (∗
1)]

implies lim→0 |1(∗
1) − 1(

)| = 0. Because ∗
1 is the unique maximizer of 1, it must be

that lim→0 |∗
1 − | = 0. By an identical argument, lim→0 |0∗

1 − | = 0. It follows that

lim→0 |0∗
1 −∗

1 | = 0. Because ∗1 = ∗1(
∗
1) 

0∗
1 = ∗1(

0∗
1 ) and ∗1(1) is continuous in 1, it

follows that lim→0 |()0∗1 −()∗1| = 0We now show continuity of ()∗1 and ()0∗1 in
. Note ()∗1 = {[(1)

∗
1][()

∗
1 ]+()

∗
1]}|1=

∗
1
. By the implicit function theorem,

()∗
1 = −{(21)1(1)[(

22
1)1(1)− (22

1)(1)]}|1=
∗
1
. Therefore,

()∗1 = {−[(1)
∗
1][(

21)1(1)][(
22

1)1(1)−(22
1)(1)]+()

∗
1]}|1=

∗
1


(10)
Using the equilibrium expressions in Lemma 1, it is straightforward to show that (22

1)1(1)

and (21)1(1) are continuous in 1. Because (1) is twice differentiable, the right hand
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side of (10) is continuous in1. Because
∗
1 is continuous in , it follows that ()

∗
1 is continuous

in . Continuity of ()0∗1 in  follows immediately. Because lim→0 |()0∗1 − ()∗1| = 0,
and ()0∗1 and ()∗1 are continuous in , it follows that for any   0, there exists ̄()  0

such that |()0∗1 − ()∗1|   if  ∈ [0 ̄()]. Lastly, from step one of the proof, there exists

̃  0 such that for any  ∈ (0 ̃), there exist ̄  0,   0, and ̄  0 such that ()0∗1  0 for

all  ∈ [0 ̄] and  ∈ ( ̄). The result follows from selecting  to be sufficiently small and defining

̄ = min(̄() ̃)¤
Proof of Proposition 2: (i) Because  = 0,  =  (by Lemma 2). It is straightforward to ver-

ify that: ()  0, lim→0  = 0 and lim→ 
 = . Let  = lim1→0(1)(1).

Suppose   0 Then 0 = lim1→0[(1)1(1)]. It is straightforward to verify that:

()0  0, lim→0 0 = [( + )] and ̂ = lim→ 
0 = (). Because   0, the

previous results imply that for any  ∈ (0 ̂), there exist 0 ≤ ̌  ̂ such that:   0 if and

only   ̌;  ∈ ( 0) if and only if  ∈ (̌ ̂); and    if and only if   ̂. There-

fore, ∗
1 = 0 if   ̌, ∗

1 =  if  ∈ (̌ ̂), and ∗
1 =  if   ̂ (by Lemma 2). We

have assumed   0; if instead  = 0, then the previous sentence holds by parallel argument,

where ̌ = 0 (because 0 = ∞). It is straightforward to verify that () = 0 Therefore,

()∗
1 = 0 if   ̌ or   ̂. Because ∗

1 is continuous in , to establish the result, it is

sufficient to show that ()  0 for  ∈ (̌ ̂) By the implicit function theorem, () =

−[(21)1(1)][(
22

1)1(1)]|1= , where 1(1) = 1(p
(1)w

(1)) − (1).

Using Lemma 1, it is straightforward to verify (22
1)1(1)|1=  0 It remains to show

that (21)1(1)|1=  0 It is straightforward to verify that (32
1)1(1)  0 and

lim1→(
21)1(1)  0 Because

 ≤ , this establishes (21)1(1)|1= 

0, which in turn implies ()  0 (ii) First we show that there exists ̄ ∈ (0 ̃) such that   0
if and only if   ̄. Using Lemma 1, it is straightforward to verify that  has the same sign as

(   ) = (2+)3[(22−2)+2(2−2)]−2(+)[((2−)+2(−)][(22−2)+
(2− 2)]− 3[(22− 2)+ (2− 2)]2. Note (33)(   )  0, which implies that there

exists  ∈ [0 ] such that (   ) is convex in  for  ∈ [0 ] and concave in  for  ∈ [ ].
It is straightforward to verify that lim→0()(   )  0 and lim→0 (   )  0 

lim
→[
√
2+82−](2) 

(   ). This implies existence of ̄ ∈ (0 [
p
2 + 82 − ](2)) such

that   0 if and only if   ̄. Further, ̃  [
p
2 + 82 − ](2) implies ̄  ̃. Next we show

that ̄  . Because ̄  ̃, at  = ̄,    = 0, where the inequality follows from Lemma 2.

Because   0 if and only if    (by Lemma 2), |=̄  0 implies ̄  . We conclude that for

 ∈ ( ̄),   0  . Let  ∈ ( ̄) and ̄ = inf∈(̄) ; note ̄  0. Because  ∈ ( ̄) implies
  0    , it follows from Lemma 2 that ∗

1 =  . It is straightforward to verify that

()  0 It immediately follows that ()∗
1  0 for  ∈ ( ̄). ¤

Proof of Proposition 3: Note ()2(
∗
1) = (1)2(1)|1=

∗
1
()∗

1 . Suppose  ∈
( 0) First we show ()∗

1  0. Because  ∈ ( 0) 0  ∗
1 =  (by Lemma 2). By
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application of the implicit function theorem, ()  0. Therefore, ()∗
1  0. It remains

to show that (1)2(1)|1=
∗
1
 0 if and only if   . Because  ∈ ( 0) 2(∗

1) =

2(p
(∗

1) 

2(

∗
1)) (by Lemma 2). By straightforward algebra, (1)2(1)|1=

∗
1
= ( −

)(    ∗
1)

(   )2 for some non-zero functions (·) and (·). Note that if (·) 
0, then (1)2(1)|1=

∗
1
has the same sign as ( − ). Therefore, it suffices to show

(    ∗
1)  0. Writing (·) explicitly, (    ∗

1) = ( − )[( + )(2 + ) +

(2 + )( + )] + (2 + )( − )∗
1 . If  ≥ , then (·)  0. Suppose   . Then

(·)  0 if and only if∗
1 ≤ (−)[(+)(2+)+(2+)(+)][(2+)(−)]. Because

∗
1 ≤ , it suffices to show 1 ≤ (−)[(+)(2+)+(2+)(+)]((2+)(−)).

This inequality can be verified algebraically. If   0 then ∗
1 = 0 (by Lemma 2), which implies

()∗
1 = 0 and, hence, ()2(

∗
1) = 0 If  ∈ [ ] then ∗

1 =  which implies

()∗
1 = 0 and hence ()2(

∗
1) = 0 If    then ∗

1 =   0 (by Lemma 2). By

application of the implicit function theorem, ()  0. Therefore, ()∗
1  0. It remains to

show that (1)2(1)|1=
∗
1
 0 It is straightforward to verify that (1)2(1)|1=

∗
1
=

−[( + ) − ∗
1 ]

(   )2 for some non-zero function (·); therefore, it remains to show
∗
1  ( + ). By Lemma 1, 1(1) is strictly decreasing in 1 on 1   which implies

∗
1 ≤  Thus, to establish ∗

1  ( + ) it suffices to show   ( + ), or

equivalently, ( + ) −   0. Note ( + ) −  = (2 + )[(2 − 2)(22 − 2) + (22 −
2)(2−2)]{[(+)(22−2)+(2+)(2−2)]}  0, where the inequality follows because
   and   .¤

Appendix B: Demand Uncertainty

It is useful to introduce notation for the special case where the demand state is deterministic:

let ̆1( ) denote platform 1’s equilibrium fleet size under deterministic demand state  and AV

cost ; we write 0() to make the dependence on the deterministic demand state explicit.

Lemma 4 Suppose   ̃. Then ̆1( ) increases in . If ̆1( )  0, then ̆1( ) strictly

increases in  on  ∈ [ ̄].
Proof of Lemma 4: We prove the two statements in order. Because   ̃, 1(1) is

strictly quasi-concave in 1 (by Lemma 2), and thus has a unique maximizer, ̆1( ). There-

fore, by Berge’s maximum theorem, ̆1( ) is continuous in . By Lemma 2, there are four

cases to consider: ̆1( ) = , ̆1( ) = , ̆1( ) = , and ̆1( ) = 0. For the

first case, an application of the implicit function theorem yields ()̆1( ) = () =

−[(21)1(1)][(
22

1)1(1)]|1= . Note (22
1)1(1)|1=  0 be-

cause is the maximizer of 1; therefore, ()̆1( ) has the same sign as (
21)1(1).

The result follows because (21)1(1)|1=  0 for all   0 The case where ̆1( ) =

 follows by parallel argument to the ̆1( ) =  case. For the third case, ()̆1( ) =

() = 1  0 because   0. For the fourth case, ̆1( ) = 0 and is therefore in-

variant to . It follows that ̆1( ) is nondecreasing in . The second statement follows by
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a parallel argument to the first, with the exception that ̆1( )  0 eliminates the case where

̆1( ) = 0.¤
Lemma 5 If   ̃, then Π1(1) is strictly concave on 1 ∈ (0 ) and any maximizer is

attained on the interval [̆1() ̆1(̄)].

Proof of Lemma 5: Suppose   ̃ Let ∗
1 be a maximizer of Π1(1). First, we show that

∗
1 ∈ [̆1() ̆1(̄)] The argument is by contradiction. Suppose 

∗
1  ̆1(). Because 0 ≤ ∗

1 

̆1(), ̆1() strictly increases in  on  ∈ [ ̄] (by Lemma 4). Therefore, ∗
1  ̆1() for all

 ∈ [ ̄] . Because   ̃, following the proof of Lemma 2, 1(1) can be shown to be strictly

quasi-concave in 1 on 1 ∈ (0 ) for all  ∈ [ ̄]. Because ̆1() ≤ ̆1() ≤  for all

 ∈ [ ̄], this implies 1(1) is strictly increasing in 1 on 1 ∈ (0 ̆1()) for all  ∈ [ ̄].
It follows that 1(

∗
1)  1( ̆1()) for all  ∈ [ ̄]. Integrating over both sides of the

preceding inequality yields
R ̄

1(

∗
1)() 

R ̄

1( ̆1())(), which contradicts the

optimality of ∗
1 . By a parallel argument, if 

∗
1  ̆1(̄), then 1(1) is strictly decreasing

in 1 on 1 ∈ (̆1(̄)∞) for all  ∈ [ ̄], which leads to a similar contradiction. It follows
that ∗

1 ∈ [̆1() ̆1(̄)] Second, we show that Π1(1) is strictly concave on 1 ∈ (0 )

Because (1) is weakly convex for 1 ≥ 0, it suffices to show that 1(1) is strictly concave

in 1 for 1 ∈ (0 ̄). By Lemma 1, if 1 ≤ , then 1(1) = (  
2). It is

straightforward to show that (22
1)

(  
2)  0 for 1 ∈ (0 ). For 1 ∈ ( ),

1(1) = ( ). By straightforward algebra, (22
1)

( )  0. Further, because  

̃, lim1↓(1)
( )  lim1↑(1)

(  
2). Therefore, 1(1) is strictly

concave in 1 on 1 ∈ (0 ). This implies 1(1) is strictly concave in 1 on 1 ∈
(0 0) for any 0 ≤ . It follows that for any  ∈ [ ̄], 1(1) is strictly concave in 1 on

1 ∈ (0 ). It immediately follows that 1(1) is strictly concave in 1 on 1 ∈ (0 ).¤
Lemma 6 For all   0, there exist   1 and 0  0 such that if ̄   and   0, then

∗
1() = ([] ) = ̆1([] ) ≤ ̆1(̄ ), where 

∗
1() is the unique maximizer of Π1(1).

Proof of Lemma 6: The proof proceeds in two steps. First, we show that for any   0, there

exist   1 and 0  0 such that if ̄   and   0, then ̆1(̄ )  . Second, we use the

result from the first step to prove ∗
1() = ([] ) = ̆1([] ) ≤ ̆1(̄ ). Step One: It can

be verified algebraically that lim1→ lim→0(1)1(1)  0, which by quasi-concavity

of 1(1) in 1 (Lemma 2) implies lim→0 ̆1( )   for any   0. It follows that for

any   0, there exists 0  0 such that ̆1( )   for all   0. For each   0, let ̆()

be a solution to ̆1(() ) =  if a solution exists, and let ̆() = 0 otherwise. Because

̆1( ) is continuous and strictly increasing in  (by Lemma 4), ̆() is unique and ̆()  1 for

all   0 Let  = sup∈[00] ̆(). It follows that if ̄  , then ̆1(̄ )   for   0, as

desired. Step Two: The inequality follows from Lemma 4 and [] ≤ ̄. Let ∗
1() be a maximizer

of Π1(1). We now prove the equality ∗
1() = ̆1([] ). We write 1(1) 1(1)

(  2) 
(1) and 

2(1) to denote these quantities under deterministic demand state

 First, note for all  ∈ [ ̄] and 1  , 1(1) = ( (1) 

2(1)) (by Lemma
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1), which is strictly concave in 1 on 1 ∈ (0 ). Because (1) is weakly convex, 1(1)

is strictly concave in 1 on 1 ∈ (0 ) for  ∈ [ ̄] Therefore, Π1(1) is strictly concave in

1 on 1 ∈ (0 ). Because ̆1(̄ )  , and ∗
1() ≤ ̆1(̄ ) (by Lemma 5), it follows

that ∗
1()  . Because Π1(1) is strictly concave in 1 on 1 ∈ (0 ), this implies

∗
1() is given by the unique solution to the first order condition (1)Π1(1) = 0. Expanding

Π1(1) and applying Leibniz’s rule to interchange the derivative and integral operators, it follows

that ∗
1() is the solution toZ ̄



(1)1(1)()− (1)(1) = 0 (11)

It is straightforward to show that (1)1(1) is linear in  for all 1 ∈ (0 ) and  ∈
[ ̄]. By linearity of expectation, the first term in (11) simplifies to (1)1([]1) for 1 

. Because ̆1([] )   (as established above), ̆1([] ) also solves (11). Because

∗
1() and ̆1([] ) are both solutions to (11), and because strict concavity of 1([]1)

in 1 on 1 ∈ (0 ) implies (11) has a unique solution on 1 ∈ (0 ), it must be that

∗
1() = ̆1([] ). Lastly, because ̆1([] )   ≤ [], it follows from Lemma 1

that ([] ) = ̆1([] ).¤
Lemma 7 Π1(1) is twice-differentiable for all 1  0.

Proof of Lemma 7. It suffices to show that (22
1)1(1) is continuous in 1. Suppose

̄  ; we consider the case where the inequality is reversed subsequently. Then there

are five cases: 1  ,  ≤ 1  ,  ≤ 1  ̄, ̄ ≤ 1  ̄, and

̄ ≤ 1. We consider the case where 
 ≤ 1  ̄; the remaining cases follow by similar

arguments and are more straightforward. We write (  2) 
( ) 

2(1) and (1)

where  ∈ {  } to denote these quantities under deterministic demand state  Let (1) =

( (1) 

2(1)), 

(1) = ( (1)) and (1) = ( (1)). By

Lemma 1,

(22
1)1(1) = (

22
1)

Z 1



(1)()+ (
22

1)

Z 1

1

(1)()

+ (22
1)

Z ̄

1

(1)() (12)

It suffices to show that each of the three terms on the right hand side of (12) are continuous in 1.

Consider the first term. By Leibniz’s rule,

(1)

Z 1



(1)() = (11)(
1) +

Z 1



(1)
(1)()

By a second application of Leibniz’s rule,

(22
1)

Z 1



(1)() = (
)2 0(1)

(11) + (1)(1)
(11)

+(1)(1)
(11) +

Z 1



(22
1)

(1)()
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Because  0() is continuous and  is continuous in both arguments, (22
1)
R 1


(1)()

is continuous in 1. It can be shown by a parallel argument that the second and third terms on

the right hand side of (12) are each continuous in 1. Therefore, (
22

1)Π1(1) is continuous

at 1. The case where ̄
 ≤  follows by a parallel argument. ¤

Proof of Proposition 1A: (i) For brevity, in what follows, we drop the second argument in

̆1( ) Because  ≥ ̂ ̆1(̄) = 0 for all  ∈ [0 ) (by Lemma 2). Because ∗
1 ≤ ̆1(̄) by

Lemma 5, this implies ∗
1 = 0 for all  ∈ [0 ). It follows that ()∗

1 = 0 over  ∈ [0 ).
The remainder of the proof follows by a parallel argument to the proof of Proposition 1(i). (ii)

It is useful to introduce notation for the special case where the demand state is deterministic: let

̆1() denote platform 1’s equilibrium price under deterministic demand state ; we write ̆1()

1() and 

1(1) to make the dependence on the deterministic demand state  and AV fleet 1

explicit. We write ∗1(1) to denote the equilibrium price under AV fleet 1. By Lemma 6, for

all   0 there exists   1 and 0  0 such that if ̄   and   0, then 
∗
1() = ̆1([] ).

This implies that ∗1([]
∗
1) = ∗1([] ̆1([])) = ̆1([]), where the first equality follows

because ∗
1 = ̆1([]) and the second equality follows by definition of ̆1([]). Therefore,

()∗1([]
∗
1) = ()̆1([]) if ̄   and   0. Next, by Proposition 1(ii), there exists

̄  0 such that for all  ∈ (0 ̄], there exist ̄  0,  ≥ 0 and ̄   such that ()̆1([])  0

for  ∈ ( ̄) and  ∈ [0 ̄]. Following the proof of Proposition 1(ii), it can be shown that

̄  0. Combining the preceding three statements yields the following: There exists ̄  0 such

that for all  ∈ (0 ̄], there exists   1, ̄  0,   0 and ̄   such that if ̄  , then

()∗1([]
∗
1)  0 for all  ∈ [0 ̄] and  ∈ ( ̄). The result follows from continuity of

()∗1(
∗
1) in . ¤

Proof of Proposition 2A: (i) The proof proceeds in two steps. First, we show that Π1(1)

is strictly concave in 1 on 1 ∈ (0 ̄) and has a unique maximizer ∗
1 ∈ [0 ̄]. Sec-

ond, we show that ()∗
1 ≥ 0 for all  ∈ (0 ). Step One: Note that because  = 0,

̃ =  by definition.Then by Lemma 5, Π1(1) is strictly concave in 1 on 1 ∈ (0 ).

It remains to show that (22
1)1(1)  0 for 1 ∈ ( ̄). We write (p 2)

(p) 
2(1) and p

(1) where  ∈ {  } to make explicit the dependence on the
demand state  Let (1) = (p(1) 


2(1)), 

(1) = (p(1)) and

(1) = (p(1)). By Lemma 1,

(1)1(1) = (1)

Z 1



(1)()+ (1)

Z 1

1

(1)()

+ (1)

Z ̄

1

(1)()

It is straightforward to show that (11) = (11), 
(11) = (11) and

(1)
(1) = 0. Applying Leibniz’s rule and these equalities yields
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(1)1(1) =

Z 1

1

(1)
(1)()+

Z ̄

1

(1)
(1)()

Next, it is straightforward to show that  = 0 implies (1)
(11) = 0 and

(1)
(11) = (1)

(11) Applying Leibniz’s rule and these equalities yields

(22
1)1(1) =

Z 1

1

(22
1)

(1)()+

Z ̄

1

(22
1)

(1)()

It is straightforward to show that (22
1)

(1)  0 and (22
1)

(1)  0 There-

fore, (22
1)1(1)  0 for all 1 ∈ ( ̄). Because (22

1)1(1)  0 for 1 ∈
(0 ) ∪ ( ̄), and because (22

1)1(1) is continuous in 1 (by Lemma 7),

(22
1)1(1)  0 for 1 ∈ (0 ̄). We now show that Π1(1) attains its maximum on

[0 ̄]. It is straightforward to show that (1)
(p) = 0 for 1  . Because

1(1) = (p)−(1) for1  , it follows that (1)1(1)  0 for1  .

Therefore, ̆1() ≤  for all  ∈ [ ̄]. By Lemma 5, because   ̃ = , any maximizer of

Π1(1) must lie in [0 ̄
]. Because Π1(1) is strictly concave in 1 for 1 ∈ (0 ̄), it follows

that Π1(1) has a unique maximizer, 
∗
1 . Step Two: Note that if 

∗
1 = 0, then it immediately fol-

lows that ()∗
1 ≥ 0. Suppose∗

1  0. Therefore, by the implicit function theorem, ()
∗
1 =

−
h
(21)

R ̄

1(1)()

.
(22

1)Π1(1)
i¯̄̄
1=

∗
1

. Because ∗
1 is the unique maxi-

mizer of Π1(1), (
22

1)Π1(1)|1=
∗
1
 0. Further, it is straightforward to show algebraically

that because  = 0, 1(1) is differentiable everywhere in 1 and . Therefore, by Leibniz’s

rule, (21)
R ̄

1(1)() =

R ̄

(21)1(1)(). It remains to show thatR ̄


(21)1(1)()|1=

∗
1
≥ 0 Note that (1)1(1) = −(1)(1) for

  ∗
1 , and thus (

21)1(1)|1=
∗
1
= 0 for   ∗

1 . Further, it is straightforward

to show that  = 0 implies (21)1(1) = 0 for  ∈ (∗
1  

∗
1). Because, as noted

above, 1(1) is differentiable in 1 and , it follows that (21)1(1) is continuous

at  = ∗
1 , which implies (

21)1(1) = 0 for  ∈ (0 ∗
1) If ̄ ≤ ∗

1 , then

(21)1(1)|1=
∗
1
= 0 for all  ∈ [ ̄], and thus ()∗

1 = 0. Suppose ̄  ∗
1 .

Then by Lemma 1,Z ̄



(21)1(1)()

¯̄̄̄
1=

∗
1

=

Z ̄

∗1
(21)[

(1)− (1)]()

¯̄̄̄
¯
1=

∗
1



It remains to show that there exists   1 such that if ̄  , then (
21)

(1)|1=
∗
1
≥

0 for all  ∈ (∗
1  ̄]. Following the proof of Proposition 2(i), it is straightforward to show that for

any   0, (21)
(1)  0 for all 1 ∈ [0 ]. Therefore, (21)

(̄1)  0

for all 1 ∈ [0 ̄]. Because (21)
(1) is continuous in , there exists   1 such

that if ̄ ≥ , then (
21)

(1)  0 for all  ∈ [ ̄] and 1 ∈ [0 ̄]. The result

follows because ∗
1 ∈ (0 ̄). (ii) First, we show that there exists   1, ̄  0,   0 and

¯̄   such that if ̄ ≥ ,   ̄ and  ∈ ( ¯̄), then Π1(1) attains a unique maximizer 
∗
1 ,

where ∗
1 ∈ [ ̄]. Second, we show that there exists   0, ̄  0 and  ∈ [ 1) such
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that if ̄ ≥ , then ∗
1 is strictly decreasing in  on  ∈ ( ̄), where ( ̄) ⊆ ( ¯̄). Step One:

From the proof of Proposition 2(ii), there exists   0 and ¯̄ ≤ ̃ such that ()  0  () for

 ∈ ( ¯̄) and   0. Let  = sup∈(¯̄) 
()(), and note that   1 because 

()  ()

for all   0. Note that ̄ ≥  implies ̄  ()() for any  ∈ ( ¯̄), and therefore
̄   for any  ∈ ( ¯̄). By Lemma 5, Π1(1) is strictly concave in 1 on 1 ∈ (0 ).

Because ̄   for all  ∈ ( ¯̄), 1(1) is strictly concave in 1 on 1 ∈ (0 ̄) for

any  ∈ ( ¯̄). Therefore, the maximizer of Π1(1) on 1 ∈ (0 ̄) is unique, for any   0.

Next, let ̄ = inf∈[̄] (). It remains to show that if   ̄, then any maximizer of Π1(1) must

lie on [ ̄]. By Lemma 5, any maximizer of Π1(1) must lie on [̆1() ̆1(̄)]. Therefore,

it suffices to show that ̆1() =  for   ̄ and  ∈ [ ̄]. Note ̄ ≤ () for all  ∈ [ ̄]
by definition of ̄. As noted above, ()  0 for all  ∈ ( ¯̄) and   0. It follows that if   ̄,

then by Lemma 2, ̆1() =  for all  ∈ [ ̄]. Step Two: It is straightforward to show that
()  0. Therefore, ()(¯̄)  1. Let  = max{ ()(¯̄)} and note   1. Sup-
pose ̄   Then, 

∗
1(¯̄) ≤ ̄(¯̄)  () ≤ ∗

1(), where the first and third inequalities

follow from Step One, and the second inequality follows because ̄   ≥ ()(¯̄). Note

that ∗
1 is continuous in  by Berge’s maximum theorem. Because ∗

1(¯̄)  ∗
1(), ¯̄   and ∗

1

is continuous in , there must exist   0 and ̄   where ( ̄) ⊆ ( ¯̄) such that ∗
1 strictly

decreases in  on  ∈ ( ̄). Lastly, to obtain the constant  in the proposition statement, it suffices
to set  = max{  }. ¤
Proof of Proposition 3A: Define ̄ = lim1→0{(1)1(1)(1)(1)} if

lim1→0(1)(1)  0, and ̄ = ∞ otherwise. Define  =

lim1→{(1)1(1)(1)(1)}. By Lemma 5, Π1(1) is strictly concave in 1 on

1 ∈ (0 ). Because  ≥ ,  ≤ . Therefore, Π1(1) is also strictly concave in

1 on 1 ∈ (0 ). Because Π1(1) is strictly concave in 1 on 1 ∈ (0 ),  ∈ [ ̄] im-
plies lim1→(1)Π1(1) ≤ 0 ≤ lim1→0(1)Π1(1). It follows that if  ∈ [ ̄], then
Π1(1) has a unique maximizer

∗
1 ∈ [0 ]. We wish to show that for  ∈ [ ̄] ()Π2(∗

1) 

0 if and only if    The total derivative of Π2 with respect to  is ()Π2(
∗
1) =

[(1)Π2(1)()
∗
1 ]|1=

∗
1
. First we show ()∗

1  0 for  ∈ [ ̄]. Because Π1(1)

has a unique maximizer ∗
1 for  ∈ [ ̄], we may apply the implicit function theorem to obtain

()∗
1 = −[(21)Π1(1)][(

22
1)Π1(1)]|1=

∗
1
. Note (22

1)Π1(1)|1=
∗
1
 0

because Π1(1) is strictly concave and (
21)Π1(1) = −(1)(1)  0 because (1)

is strictly increasing. It follows that ()∗
1  0 for  ∈ [ ̄]. It remains to show that

(1)Π2(1)|1=
∗
1
 0 if and only if   . Note ∗

1   because  ≥ . It is

straightforward to show that 2(1) is differentiable in 1 on 1 ∈ [0 ] for all  ∈ [ ̄]. It
follows from Leibniz’s rule that (1)Π2(1)|1=

∗
1
=
R ̄

(1)2(1)()|1=

∗
1
. It

remains to show that
R ̄

(1)2(1)()|1=

∗
1
 0 if and only if   . The proof

of Proposition 3 shows that if ∗
1 ≤  then (1)2(1)  0 if and only if    Be-
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cause ∗
1 ≤  it follows that for all  ∈ [ ̄] (1)2(1)  0 if and only if   

The result follows. ¤
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Electronic Companion

Appendix C: Limited Sophisticated of Autonomous Vehicles
Because (w) = max{

 (p
) −  0} + 

 (p
), platform 1’s optimal wage 1 = [

1(p
) +

min{
1(p

) −1 0} + 2] Platform 1 sources labor for market , 
1(p

)  1 if and only

if its market  price is sufficiently low 1  ( + 2 −1) Therefore, platform 1’s second-

period contribution is given by (2), where: in the condition on the right hand side,  replaces

 for  ∈ {1 2} and 1 replaces 1; in (p2) 

1


1(p

) + 1

1(p

) replaces 11(p) and


1(p

)+
1(p

) replaces 1(p); and 
(p2) = 1


1(p

)+1

1(p

)−[(
1(p

)+2)]

1(p

)

By a parallel argument, platform 2’s optimal wage 2 = (

2(p

) +
2(p

) + 1) and platform

2’s second-period contribution is given by (3), where 2

2(p

) + 2

2(p

) replaces 22(p) and


2(p

) +
2(p

) replaces 2(p)

Let ̃1 (1) = [(+2)+{2+2+[(1+ )2+(1− )2]−21}][2(+ )],̃1 (1) =

[(+ 2)+{2+2+ [2 +(2− )2]− 21}][2(+ )],̃1 (1) = [(+ 2)−1 ],

̃1 (1) = ̃1 (1) = {[2(1 − ) + ]( + 2) + 2}{2[(1 − ) + ]},̃1 (1) = ( +

2)(2), ̃

1(1) = [( + 2)2 + { + [2 + (1 − )2] − 21}][2( + )] ̃

1(1) =

̃
1(1) = {[(1 − ) + 2]2 + (1 − )( + 2)}{2[(1 − ) + ]},̃2(1) = [( + 1) +

{1 + 2+ [(1 + )1 + (1− )1]}][2( + )],̃2(1) = [(+ 1) + {1 + 2+ [1 +

(2 − )1]}][2( + )] and ̃2(1) = [( + 2)1 + { + [1 + (1 − )1]}][2( + )]

Let (1 (1) 

1 (1) 


1 (1) 


2 (1) 


2 (1) 


2 (1)) denote the unique solution to 


1 (1) =

̃1 (1),

1 (1) = ̃1 (1),


1 (1) = ̃

1 (1),

2 (1) = ̃2(1),


2 (1) = ̃2(1) and 

2 (1) =

̃2(1), where  ∈ {  } Let  = {(+ 2)− [2 + (2 − 2)(1− )]}{2[(1− ) + ]}
and  = (+ 2)2.

Lemma 8 Under platform 1 AV fleet 1 platform 2’s best response prices and wage to platform

1’s prices and wage (1 

1 1) is (̃


2(1) ̃


2(1) ̃2(1)). Platform 1’s best response prices and

wage to platform 2’s price and wage (2 

2 2) is

(̃1(1) ̃

1(1) ̃1(1)) =

⎧⎪⎨⎪⎩
(̃1 (1) ̃


1 (1) ̃


1(1)) if 1  

(̃1 (1) ̃

1 (1) ̃


1(1)) if 1 ∈ [ ]

(̃1 (1) ̃

1 (1) ̃


1(1)) if 1  

Further, 1  
1(̃


1(1) 2) if and only if 1  ; 1 = 

1(̃

1(1) 2) if and only if 1 ∈

[ ]; and 1  
1(̃


1(1) 2) if and only if 1  

Proof of Lemma 8: It is straightforward to show that platform 2’s second-period contribution

2(p 1) is strictly jointly concave in (

2 


2). Platform 2’s best response prices are given by

the unique solution to the first-order conditions (2)2(p 1) = 0 and (2)2(p 1) = 0,

namely, 2 = ̃2(1) and 

2 = ̃2(1) Further, platform 2’s best response wage 2 = [


2(


1 ̃


2(1))+


2(


1 ̃


2(1)) + 1] = ̃2(1) Following (9), platform 1’s second-period contribution can

be written as 1(p 1) = 1

1(p

) + 1

1(p

) − [(1)2 + 21], where 1 = 
1(p

) +

max{
1(p

) − 1 0}.The function 1

1(p

) + 1

1(p

) can be shown to be strictly concave

in (1 

1) because its Hessian is negative definite. Because max{

1(p
)−1 0} is the pointwise

maximum of two functions that are convex in (1 

1),1 is also convex in (


1 


1); further, be-

cause 21 is the composite of the convex function 1 and the convex, nondecreasing function (·)2,
21 is also convex (Boyd and Vandenberghe 2004). It follows that −[(1)2 + 21] is weakly

1



concave in (1 

1). Because 1(p 2) is the sum of strictly concave and weakly concave functions

in (1 

1),1(p 2) is strictly concave in (


1 


1). Let ̆


1 (


1) denote the unique solution to the

first-order condition (1)
(p 2) = 0 and define ̆(1p2 2) = (p 2)|1=̆1 (1). Simi-

larly, let ̆1 (

1) denote the unique solution to (


1)

(p 2) = 0 and define ̆(1p2 2) =

(p2)|1 =̆1 (1). Note that in terms of platform 1’s decision variables, platform 1’s contribution
functions ̆(1p2 2) and ̆(1p2 2) depend only on 1 Parallel to (2), let ̆1(


1p2 2) =

̆(1p2 2) if 

1  ̃1 (1) and ̆1(


1p2 2) = ̆(1p2 2) otherwise. Note ̆1(


1p2 2)

can be shown to be strictly concave in 1 by parallel argument to that in Lemma 3. If 1  ,

then lim1↑̃1 (1)(1)̆1(

1p2 2)  0 and platform 1’s best response price is the unique

solution to the first-order conditions (1)
(p 2) = 0 and (1)

(p 2) = 0, namely,

1 = ̃1 (1) and 1 = ̃1 (1). Further, 1  
1(̃


1 (1) 


2) Consequently, platform 1’s best

response wage 1 = [

1(̃


1 (1) 


2) +

1(̃

1 (1) 


2) −1 + 2] = ̃

1(1) If 1 ∈ [ ],
then lim1↓̃1 (1)(1)̆1(


1p2 2) ≤ 0 ≤ lim1↑̃1 (1)(1)̆1(


1 2 2) and platform 1’s

best response prices are 1 = ̃1 (1) and 1 = ̃1 (1). Further, 1 = 
1(̃


1 (1) 


2) Conse-

quently, platform 1’s best response wage 1 = [

1(̃


1 (1) 


2)+2] = ̃

1(1) If1  , then

lim1↓̃1 (1)(1)̆1(

1p2 2)  0 and platform 1’s best response price is the unique solution

to the first-order conditions (1)
(p 2) = 0 and (


1)

(p 2) = 0, namely, 

1 = ̃1 (1)

and 1 = ̃1 (1).Further, 1  
1(̃


1 (1) 


2) Consequently, platform 1’s best response wage

1 = [

1(̃


1 (1) 


2) + 2] = ̃

1(1)¤
Let p(1) =


1 (1) 


2 (1), p

(1) =

1 (1) 


1 (1) 


2 (1) 


2 (1) andw

(1) =


1 (1) 


2 (1), where  ∈ { } and  ∈ {  }. Define 

 = (4
2 − 2)2(2 − 2) + (1 −

)2(2 − 2)(42 − 2) + (2− )[(22 − 2)(22 − 2) − ], 
 = (− )[( + )(2+

) + (2 + )( + )], 
 = 4(42 − 2)2 + (22 − 2)(2 − )(2 + )(22 − 2)(2 − ) −

2(42 − 2)(((5 − )22 − (44 + 4))(1 − )) − 2(2(1 − )2(42 − 2) + 2(42 − 2)2),


 = (2(2 − 2)(2 − )(2 + )2 + (22 − 2)(2 + )( + (2 − )(22 − 2)) + (1 −

)2(−2(2 + ) + (42 − 2)( + )(22 − 2))). Let  = 



  where  ∈ { }.

We write (1 ) and ( ) to explicitly acknowledge dependence on  ; note that  = 1

corresponds to the model in §3. Recall that (1) for  ∈ {1 2} is defined in §3.1. Lemma 9
establishes that when platform 1 AV fleet1 is such that the platform sources labor, the equilibrium

price pair is identical in the two markets, and the prices are invariant to  .

Lemma 9 (i) Under platform 1 AV fleet 1 the equilibrium prices and wages are unique and

given by (6). Further, there exists +  0 such that  ≥   0 if  ∈ (0 +), where the first
inequality is strict if   1, and + =  if  = 0. (ii) p(1) =


1(1) 


2(1) for  ∈ { }.

(iii) If  ∈ [ 0], then platform ’s profit (1 ) = (1 1) for all  ∈ (0 1) and  ∈ {1 2}.
Proof of Lemma 9: (i) That the equilibrium is unique and given by (6) follows by the proof

of Lemma 1, where 
1(p

(1)) replaces 1(p
(1)) for  ∈ {  } With some effort one can

show that lim→0 ()  0 and lim→0 ()− () ≥ 0 where the preceding inequality is strict
if   1 It follows from the continuity of  and  in  that there exists +  0 such that

 ≥   0 for  ∈ (0 +). In the case where  = 0, it can be verified that () ≥ () for

all  ∈ (0 ), which implies + = . (ii) The result follows from the definitions of p(·)p(·)
1(·) and 2(·) (iii) Suppose  ∈ [ 0] Let p∗(1) =

∗
1 (1) 

∗
1 (1) for  ∈ { } Note

2



p∗(1) = p(1) =

1(1) 


2(1) for  ∈ { }, where the first equality follows from part

(i) and  ∈ [ 0] and the second equality follows from part (ii). Consequently, platform ’s

second-period contribution under AV fleet 1 and equilibrium prices and wages (p∗(1)w
∗(1)),

( ) = ∗ (1)

 (p

∗(1)) + ∗ (1)

 (p

∗(1)) − ∗(w
∗(1)) = (1)(p

(1)) −

(w

(1)) = ( 1) for  ∈ {1 2}; the last equality follows because p(1) and w
(1) are

invariant to  . The result is immediate.¤
Lemma 10 There exists ̃  0 such that if the intensity of competition in the labor market   ̃

then platform 1’s profit 1(1) is quasi-concave in 1 for all  ∈ [0 ), and platform 1’s equilibrium
AV fleet, ∗

1  is unique and given by (7), where 
    0 If  = 0, then ̃ = . Further, ∗

1 = 0

if and only if  ≥ 0 and ∗
1 = 0 for  ∈ [0 ) if and only  ≥ ̂.

Proof of Lemma 10: We proceed in three steps. First, to establish that ̃ =  if  = 0, we show

that if  = 0, then 1(1) is strictly quasi-concave in 1 for  ∈ (0 ). Second, we address the case
where   0 and show that there exists ̃  0 such that for all  ∈ (0 ), 1(1) is strictly quasi-

concave in 1 for  ∈ (0 ̃]. Third, we characterize ∗
1 . Step One: Let  = 0. Then by Lemma

9, () ≥ () for all  ∈ (0 ). Next, it is straightforward to verify that (22
1)(1)  0

for 1 ∈ (0 ) ∪ ( ), lim1↑(
22

1)(1)  lim1↓(
22

1)(1), and

(22
1)(1)  0 for 1  , which implies 1(1) is strictly quasi-concave for all  ∈ (0 ).

The result follows by weak concavity of (1). Step Two: First we show that for any  ∈ (0 ),
there exists ̃() ∈ (0 ) such that 1(1) is strictly quasi-concave in 1 for  ∈ (0 ̃()]. Using
Lemma 9, it is straightforward to verify that 1(1) is continuous in 1 and 1(1) is invariant to

1 on 1  . Therefore, it suffices to show that there exists ̃() ∈ (0 ) such that 1(1) is

strictly concave in1 on1 ∈ (0 ) for  ∈ (0 ̃()). It is straightforward to verify that 1(1)

is strictly concave in 1 for 1   for all  ∈ (0 ). Next, with some effort one can show that
lim→0(22

1)1(1)  0 for 1 ∈ ( ), which implies that there exists ̆()  0 such

that 1(1) is strictly concave in 1 on 1 ∈ ( ) for  ∈ (0 ̆()).It remains to show that
there exists ̃() ∈ (0 ̆()) such that lim1↑()(1)1(1)  lim1↓()(1)1(1) for

 ∈ (0 ̃()). Note lim→0
h
lim1↑()(1)1(1)− lim1↓()(1)1(1)

i
= [2( +

2)2(42− 2)][{2(− ) + (2− )}{2(84− 622+ 4) + 4(1− )2(24− 322+ 4) +

2[(2 − )(44 + 4) − (8 − 3)22]}]  0, where the inequality follows because    and

 ∈ (0 1). Therefore, there exists ̃() ∈ (0 ) such that 1(1) is strictly quasi-concave and

   for  ∈ (0 ̃()). Next, define ̃ = inf∈[0) (). It follows immediately that 1(1) is

strictly quasi-concave and    for  ∈ (0 ̃). Step Three: The characterization of ∗
1 follows

directly from the proof of Lemma 2. ¤
Proof of Proposition 1B: (i) By Lemma 10, ∗

1 = 0 for all  ∈ [0 ) if  ≥ ̂. By Lemma 9ii,

this implies ∗1 = 1(0) for  ∈ { } That 1(0) strictly increases in  follows directly from the

proof of Proposition 1. (ii) Let () = (1− )[(1− ) + 2]− (1)(1)|1=
(). The

remainder of the proof proceeds in two steps. First, we show that there exists 0  0 such that for
 ∈ (0 0], () = 0 has a unique solution ∗ on  ∈ (0 1), and ()  0 for  ∈ (∗ 1). Second,
we use the result from the first step to prove the main result. Step One: First, we show that there

exists 0  0 such that for  ∈ (0 0], () crosses 0 at least once on  ∈ (0 1). We do so by
showing that for  ∈ (0 0], () is continuous, lim→0 ()  0 and lim→1 ()  0. Continuity

3



of () follows by definition of () and continuity of () in  . Because lim→0 () = ∞,
lim→0 () = ( + 2) − (1)(1)|1=0. It follows that lim→0 lim→0 () = ( +

2)  0, which implies that there exists 0  0 such that lim→0 ()  0 for  ∈ (0 0]. Note
lim→1 () = −(1)(1)|1=

(1)  0. Therefore, () = 0 has a solution on the interval

 ∈ (0 1) for  ∈ (0 0] Call this solution ∗. We now show that ∗ is the unique solution to
() = 0 on  ∈ (0 1), and that ()  0 for  ∈ (∗ 1). Note () = −[(2 − )( − ) +

( − )(2 − )][( − )2]  0, which implies () strictly increases in  . Because (1)

is weakly convex, it follows that (1)(1)|1=
() weakly increases in  . Note also that

(1− )[(1− ) + 2] strictly decreases in  on  ∈ (0 1). It follows that () strictly decreases
in  , and therefore () crosses 0 at most once on  ∈ (0 1). Therefore, ∗ is the unique solution
to () = 0, and ()  0 for  ∈ (∗ 1). Step Two: For the remainder of the proof, fix  ∈ (0 0].
Note that ∗ depends implicitly on  and ; we write ∗( ) to make this dependence explicit.
Because  is continuous in ,  and  , (1) is continuous in 1, 

∗( ) is continuous in  and

. Therefore, for any ¯̄  0 and ¯̄ ∈ (0 ̃) ()  0 for all   sup∈[0¯̄] ∈[0¯̄] ∗( ),  ∈ [0 ¯̄]
and  ∈ [0 ¯̄]. Next, note that for any  ∈ (0 1), lim→0 lim→0 lim1↑()(1)1(1) =

(1−)[(1−)+]−(1)(1)|1=
()  (), where the inequality follows by definition

of (). Define ̄ = sup∈[0¯̄]∈[0¯̄] ∗( ). It follows that there exist ˆ̄ ∈ [0 ¯̄] and ˆ̄ ∈ [0 ¯̄] such
that lim1↑()(1)1(1)  ()  0 for  ∈ [0 ˆ̄],  ∈ [0 ˆ̄] and   ̄ . By Lemma 10,

1(1) is quasi-concave for  ∈ (0 ̃), which implies ∗
1  () for  ∈ [0 ˆ̄],  ∈ [0 ˆ̄] and

  ̄ . Because ∗
1 ≤ (), it follows from Lemma 10 that ∗

1 =  for  ∈ [0 ˆ̄],  ∈ [0 ˆ̄]
and   ̄ . Therefore, ∗1 = 1 (

) = 1(
) for  ∈ { },  ∈ [0 ˆ̄],  ∈ [0 ˆ̄] and   ̄ , where

the first equality follows by Lemma 9i because ∗
1 =   , and the second equality holds by

Lemma 9ii. The existence of ̄ ∈ [0 ˆ̄], ̄  ˆ̄ and  ∈ [0 ̄) such that 1() strictly decreases in

 on ( ̄) for all  ∈ [0 ̄] follows by a parallel argument to the proof of Proposition 1.¤
Proof of Proposition 2B: (i) Let ̌ =  and ̂ = 0, and note   0 by Lemma 10. Consider

 ∈ [̌ ̂]. By Lemma 10, ∗
1 = . Because ∗

1 is continuous in , to establish the result,

it is sufficient to show that ()  0 for  ∈ (0 ). We write 1(1 ), 
() and ()

to explicitly acknowledge dependence on  ; note that  = 1 corresponds to the model in §3.

Following the proof of Proposition 2(i), it suffices to show that (1)1(1 )|1=() 

0. By Lemma 9(iii), 1(1 ) = 1(1 1) for 1 ∈ [0 ()]. It follows from the proof

of Proposition 2(i) that (21)1(1 1)  0 for 1 ∈ [0 (1)]. It remains to show

() ≤ (1). It is straightforward to verify that (1)  (). The result follows because

() ≤ () by Lemma 9. (ii) Let ̄ = ̃, ̄ = , and  = max{ 0}. By Lemma 10,
for all  ∈ (0 ̃),    and further if  ∈ [ ], then ∗

1 = . It is straightforward

to verify that ()()  0 for all  ∈ (0 1). It remains to show that there exists ̄  0

such that   0 for all  ∈ [0 ̄] and   0 This follows because  is continuous in  and

lim→0  = {(1−)[85+164+22(−)+832−422+32]−2(3−2)22−43[+(1−
2)+(2−3)]}{[2(−)+(2−)][42(2−2)+2(2−)(22−2)+(1−)(42−2)2]}  0,
where the inequality can be verified algebraically. ¤
Proof of Proposition 3B: Note ()2(1)|1=

∗
1
= [()∗

1 ][(1)2(1)]. By Lemma

9(iii), (1 ) = (1 1) for  ∈ [ 0]. The remainder of the proof follows by a parallel
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argument to the proof of Proposition 3. ¤
Appendix D: Both Platforms Can Acquire Autonomous Vehicles
Let (̃ () ̃


 () ̃()) be given by (̃


1(1) ̃


1 (1) ̃1(1) wherein  replaces 1 and  re-

places 2 for  ∈ {  }
Lemma 11 For fixed , platform ’s best response price and wage to platform ’s price and wage

(  ) is

(̃(  ) ̃(  )) =

⎧⎪⎨⎪⎩
(̃(  ) ̃


(  )) if   (+ )2− 2

(̃ (  ) ̃

 (  )) if  ∈ [(+ )2− 2 (+ )2]

(̃ (  ) ̃

 (  )) if   (+ )2

Under platform  AV fleet  platform ’s best response price and wage to platform ’s price and

wage (  ) is (̃() ̃()) for  ∈ {1 2} and  6=  Further,   1(̃() ) if and only

if   (+  − )2;  = (̃(1) ) if and only if  ∈ [(+  − )2 (+

)2]; and   (̃() ) if and only if   (+ )2.

Proof of Lemma 11: Platform ’s second-period contribution (pw) is unchanged from the

base model, with the exception that the restriction that 2 ≥ 0 holds with equality is relaxed.

Accordingly, for  = 1, the result follows immediately from Lemma 3. That the result holds for

 = 2 holds because the platforms’ second-period contribution functions are symmetric.¤
Let (1 (1) 


1 (1) 


2 (2) 


2 (2)) denote the unique solution to 1 (1) = ̃1(1),

̃
1 (1) = ̃

1 (1) 

2 (2) = ̃2(2) and ̃

2 (2) = ̃
2(2), where { } ∈ {  }2 Further,

let

 =

(2+ )(− )

[( + )(2+ ) + (2 + )(+ )](− )


 =

(42 − 2)(2 − 2) + (22 − 2)(22 − 2)− 2

[( + )(2+ ) + (2 + )(+ )](− )


 =

(22 − 2)

( + )(22 − 2) + (2 + )(2 − 2)


 =

(42 − 2)(2 − 2) + (22 − 2)(22 − 2)

[( + )(22 − 2) + (2 + )(2 − 2)]

In Lemma 12 we assume, without loss of generality, that 1 ≤ 2. This restriction implies that

(2 − )1 ≤ 
1 + 

2 ≤ 
1 + 

2 where the inequalities are strict if and only if

1  2.

Lemma 12 (a) Assume 1 ≤ 2. Under AV fleets K the equilibrium prices and wages are unique

and given by

(p∗(K)w∗(K)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if   (2− )1

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if  = (2− )1 and 1  2

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if  = (2− )1 = (2− )2

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if  ∈ ((2− )1 


1 + 

2)

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if  ∈ [

1 + 
2 


1 + 

2]

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if   

1 + 
2

(b) If 2  (2− ) then
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(p∗(K)w∗(K)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 (1) 


2 (2) 


1 (1) 


2 (2)) if 1  (− 

2)



(1 (1) 

2 (2) 


1 (1) 


2 (2)) if (− 

2)

 ≤ 1 ≤ (− 

2)

 

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if 1  1  (− 

2)

 

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if 1 ≤ 1

where 1 = (−
2)


 if    and 1 = −∞ if  ≤ . If 2 = (2− ) then

(p∗(K)w∗(K)) =

⎧⎪⎨⎪⎩
(1 (1) 


2 (2) 


1 (1) 


2 (2)) if 1  (2− )

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if 1 = (2− )

(1 (1) 

2 (2) 


1 (1) 


2 (2)) if 1  (2− )

where  =  if  ≥  and  =  if   

Proof of Lemma 12: (a) Lemma 11 implies that under AV fleets K: prices and wages (pw) =

(p(K)w(K)) is an equilibrium if and only if   (p
(K)) for  ∈ {1 2}; (pw) =

(p(K)w(K)) is an equilibrium if and only if 1 = 1(p
(K)) and 2  2(p

(K));

(pw) = (p(K)w(K)) is an equilibrium if and only if  = (p
(K)) for  ∈ {1 2};

(pw) = (p(K)w(K)) is an equilibrium if and only if 1  1(p
(K)) and 2  2(p

(K));

(pw) = (p(K)w(K)) is an equilibrium if and only if 1  1(p
(K)) and 2 = 2(p

(K)),

and (pw) = (p(K)w(K)) is an equilibrium if and only if   (p
(K)) for  ∈ {1 2}.

Further, it is straightforward to verify:   (p
(K)),  ∈ {1 2} if and only if   (2−)1;

1 = 1(p
(K)) and 2  2(p

(K)) if and only if  = (2 − )1 and 1  2;

 = (p
(K)) for  ∈ {1 2} if and only if  = (2 − )1 = (2− )2; 1  1(p

(K))

and 2  2(p
(K)) if and only if  ∈ ((2 − )1 


1 + 

2); 1  1(p
(K)) and

2 = 2(p
(K)) if and only if  ∈ [

1 + 
2 


1 + 

2]; and   (p
(K)),

 ∈ {1 2} if and only if   
1+

2. (b) By interchanging indicies in part (a), it is straight-

forward to write (p∗(K)w∗(K)) in closed form for the case where 1 ≥ 2; we refer to this,

along with part (a), as the extended part (a). If 2 = (2 − ) then  = (
 + 

)2 for

 ∈ { }; the result follows from the extended part (a). For the remainder of the proof, suppose

2  (2− ) This implies 2  ( − 
2)


 for  ∈ {} If    then 

  0

and ( − 
2)


  2  ( − 

2)

 ; the result follows from the extended part (a). If

 ≤  then 
 ≥ 0. Therefore, if 1 ≤ 2 then 

1 + 
2 ≤ (

 + 
)2   where

the last inequality holds because 2  (2− ) The result follows from the extended part (a).

¤
Lemma 13 If (p

∗(K)) ≥  and (K) is differentiable in  at K then (22
 )(K) 

(2)(K) ≤ 0. If (p
∗(K))   then (

22
 )(K) = (

2)(K) = 0

Proof of Lemma 13: We prove the statements in order. First, if (p
∗(K)) ≥ , then the

price-and-wage equilibrium must be one of six types: , , , , , or . Using the expressions

for the equilibrium prices and wages (p∗(K)w∗(K)) in Lemma 12, (K) can be written in closed
form for each of these equilibrium types. For equilibrium types , , , , and , it can

be verified algebraically that (22
 )(K)  (2)(K) and (

2)(K) ≤ 0.
For the  type equilibrium, it is straightforward to verify algebraically that (22

 )(K) 

(2)(K) lim→0(2)(K)  0 and (
3)(K)  0 for all  ∈ [0 );

the latter two imply that (2)(K) ≤ 0 Second, if (p
∗(K))  , then the price-and-

wage equilibrium must be one of three types: ,  or . For each of these equilibrium types,

6



()(K) = 0, which implies (
22

 )(K) = (
2)(K) = 0¤

Lemma 14 If ∗
1 = ∗

2 = ∗ is a symmetric equilibrium, then ∗  (2−) and (p∗w∗) =
(p(∗∗)w(∗∗)).
Proof of Lemma 14: Let ̊() = max{ : ̃() = } where ̃() denotes platform ’s

best response AV fleet to platform ’s AV fleet; in words, ̊() denotes platform ’s largest best

response. To establish that a symmetric equilibrium cannot have∗ ≥ (2−), it is sufficient to
show that ̊()   when  ≥ (2−) Suppose  ≥ (2−) Using the expressions
for (p∗w∗) given in Lemma 12a, it is straightforward to verify that (K) is invariant to  on

 ∈ [(2− )∞) Therefore, because () is strictly increasing, (K) is strictly decreasing

in  on  ∈ [(2− )∞) Therefore, ̊() ≤ (2− ). Hence, if   (2 − )

̊()    Suppose instead that  = (2 − ) Using the expressions for (p∗w∗) given
in Lemma 12b, it is straightforward to verify that lim↑(2−)()(K)  0 which implies

lim↑(2−)()(K)  0 Consequently, it cannot be that ̃() = (2 − ) is a

best response for platform  Hence, ̊()   when  ≥ (2 − ) Because 
 + 

 =

(2 − ), ∗
  (2 − ) for  ∈ {1 2} implies   


∗
1 + 


∗
2 , which by Lemma 12a

implies (p∗w∗) = (p(∗∗)w(∗∗)). ¤
For use in Lemma 15, let ¯̄ = (− 

)

 if   (2− ) and ¯̄ = (2− ) if

 = (2− ) Note ¯̄ ∈ (0∞)
Lemma 15 Suppose  ∈ [0 (2 − )]. Then there exists ̃  0 such that the following

statements hold for  ∈ [0 ̃): Platform ’s profit (K) is continuous and strictly quasi-concave in

 on  ∈ [0∞); platform ’s best response AV fleet to platform ’s AV fleet, ̃(), is unique;

̃() ∈ [0 ¯̄]; and ̃() 6=  Further, if  = 0, then ̃ = .

Proof of Lemma 15: Because () is convex and strictly increasing, to establish that (K)

is continuous and strictly quasi-concave in  it is sufficient to show that (K) is strictly quasi-

concave in  on  ∈ (0 ¯̄) invariant to  on  ∈ [ ¯̄∞) and continuous in  on  ∈
[0∞) It is straightforward to verify the latter two properties algebraically using the expressions
for (p∗w∗) given in Lemma 12a. It remains to show that there exists ̃  0 such that (K) is

strictly quasi-concave in  on  ∈ [0 ¯̄) Let  = 1 without loss of generality. First, suppose

 = (2− ) Using the expressions for (p∗w∗) given in Lemma 12b, it is straightforward to
show that (K) is differentiable in  for  ∈ [0 ¯̄) Hence, (

22
 )(K)  0 for  ∈ [0 ¯̄)

(by Lemma 13). Second, suppose   (2−) By parallel argument, (22
 )(K)  0 for

 ∈ [0)∪( (−
)


)∪(−

)

 
¯̄)Using the expressions for (p

∗w∗) given in
Lemma 12b, it is straightforward to show the following: lim→0 lim↑(−)



()(K) 

lim→0 lim↓(−)


()(K); and if    then lim→0 lim↑

()(K)  0

and lim→0 lim↓
()(K)  0 The former implies that there exists ̃

  0 such that (K)

is strictly quasi-concave in  for  ∈ (max(0)
¯̄) for  ∈ [0 ̃) The latter implies if  

 then there exists ̃  0 such that lim↑
()(K)  0 and lim↓

()(K)  0

for for  ∈ [0 ̃) This implies that (K) is strictly quasi-concave in for ∈ (0 −
2)


)

and ̃() 6=  for  ∈ [0 ̃) Thus, (K) is strictly quasi-concave in  on  ∈ (0 ¯̄) for

 ∈ [0 ̃) where ̃ = min{̃ ̃} In the special case where  = 0, it is straightforward to show

by parallel argument to the above that ̃ = ̃ = ̃ = . Uniqueness of the best response ̃()
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follows from strict quasi-concavity of (K) in on ∈ [0∞). Because is (K) is invariant to

on  ∈ [ ¯̄∞), (K) is strictly decreasing in  on  ∈ [ ¯̄∞) This implies ̃() ∈ [0 ¯̄]

¤
Lemma 16 If 1 = 2 and  ∈ [0 ̃), then only one symmetric equilibrium, ∗

1 = ∗
2 = ∗ exists.

Proof of Lemma 16: We refer to  ∈ [0 (2 − )] for  ∈ {1 2} as the truncated strat-
egy space and  ∈ [0∞) for  ∈ {1 2} as the full strategy space. The proof proceeds in three
steps. First, we show that there exists only one equilibrium on the truncated strategy space,

and that it is symmetric. We denote this equilibrium by 
1 = 

2 = . Second, we show

that  is also an equilibrium on the full strategy space. Third, we show that  is the only

symmetric equilibrium on the full strategy space. Step One: Because the game is symmetric,

the truncated strategy space  ∈ [0 (2 − )] is compact and convex for  ∈ {1 2}, and
the profit functions (K) are continuous and quasi-concave in  on  ∈ [0 (2 − )] for

 ∈ {1 2} (from Lemma 15), there exists at least one symmetric equilibrium, , on the trun-

cated strategy space (Cachon and Netessine 2004). Next, we show that  is the only equilibrium

on the truncated strategy space. By Lemma 15, ̃() is unique for  ∈ [0 (2 − )]. It

follows from Berge’s maximum theorem that the best response ̃() is continuous in  on

 ∈ [0 (2 − )] for  ∈ {1 2}. Because an equilibrium exists on the truncated strategy

space, to prove uniqueness, it suffices to show that the magnitude of the slopes of the best re-

sponse functions are strictly less than one everywhere on the truncated strategy space (Cachon and

Netessine 2004). Because the platforms are symmetric, and because ̃() is continuous in  on

 ∈ [0 (2− )], it is sufficient to show that |()̃()|  1 for  ∈ (0 (2− )).

First, consider the case where (2)(K) exists at K = (̃()). Because ̃() is

continuous and ̃() ∈ (0 (2− )), by the implicit function theorem the slope of ̃() is

given by |()̃()| = |[(2)(K)][(
22

 )(K) − (22
 )()]=̃()

|.
We say that under AV fleets K a price-and-wage equilibrium is of type  if (p∗(K)w∗(K)) =
(1 (1) 


1 (1) 


2 (2) 


2 (2)) where { } ∈ {  }2 Let  = 1 without loss of generality.

Because ̃() ∈ [0 ¯̄] (by Lemma 15), ̃() ∈ (0 (2 − )) and  ∈ [0 (2 − )]

under K =(̃()), the price-and-wage equilibrium must be of one of the following types  

or  (by Lemma 12b). Under these equilibrium types, (p
∗(̃())) ≥ ̃() There-

fore, |()̃()| ≤ |[(2)(K)][(
22

 )(K)]=̃()
|  1, where the first

inequality follows because (·) is weakly convex, and the second inequality follows from Lemma

13 because the existence of (2)(K) at K = (̃()) implies (K) is differen-

tiable in  at K = (̃()). Therefore, if (
2)(K) exists at K = (̃())

|()̃()|  1 Second, consider the case where (2)(K) does not exist at

K = (̃()). By Lemma 12b, this can only occur if ̃() = ( − 
)


 for  ∈

{ } or if ̃() = . By Lemma 15, ̃() 6=  If ̃() = ( − 
)


 , then,

|()̃()| = 



  1 for  ∈ { } where the inequality follows by straightforward

algebra. It follows that 
1 = 

2 =  is the unique equilibrium on the truncated strategy space.

Step Two: By definition,  = argmax∈[0(2−)) (
) for  ∈ {1 2}. By Lemma 15,

() is quasi-concave in  on  ∈ [0∞) for  ∈ [0 (2− )] and  ∈ {1 2}. Because
 ∈ [0 (2− )], it follows that  = argmax∈[0∞) (

) for  ∈ {1 2}, which implies
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̃(
) =  for  ∈ {1 2}. Therefore, 

1 = 
2 =  is also an equilibrium on the full strategy

space. Step Three: Suppose that in addition to , there exists a second symmetric equilibrium

on the full strategy space, 
1 = 

2 = . By Lemma 14, it must be that  ∈ [0 (2− )).

However, this contradicts the result in the first step of this proof that  is the unique equilibrium

on the truncated strategy space  ∈ [0 (2− )] for  ∈ {1 2}. We conclude that ∗ =  is

the only symmetric equilibrium on the full strategy space. ¤
Lemma 17 If ∗

  0, then ()
∗
  0, for  ∈ {1 2}

Proof of Lemma 17: If ∗
  0, then ()

∗
  0, for  ∈ {1 2} For convenience, de-

fine () = (2)(
2) − (2)(

22
 ) and  () =

(22
 )(

22
 ) − (2)(

2) It follows immediately from the analy-

sis in Dixit (1986) that ()
∗
 = (∗

 
∗
 ) (

∗
 

∗
 ). It suffices to show that  (

∗
 

∗
 )  0

and (∗
 

∗
 )  0. It follows from Lemma 13 that  (∗

 
∗
 )  0. To see that (∗

 
∗
 )  0,

note that (2) = 0, because  does not appear in  , (
2) = −()() 

0 because () is increasing, and (
22) |()=(

∗
 

∗
 )
 0 by Lemma 13. ¤

Proof of Proposition 1C: Because ∗1(
∗∗) = ∗2(

∗∗) and 1 (
∗∗) = 2 (

∗∗) we
omit the subscript for conciseness. Note that if  ≥ ̂, then ∗ = 0 for all  ∈ [0 ), which implies
()∗ = 0 for all  ∈ [0 ). Because ∗ = 0, ∗(∗∗) = (∗∗) = (0 0), where

the first equality follows from Lemma 12. It is straightforward to verify that ()(0 0) =

(22)[( − )(2 − ) + (2 − )( − )]2  0 (ii) By Lemma 14, ∗ = (∗∗). The
remainder of the proof follows by parallel argument to the second and third steps of the proof of

Proposition 1(ii), with ∗ in place of ∗
1 , 

(K) in place of 1(1), and where () =  and

() = . ¤
Proof of Proposition 2C: (i) Because  = 0, ̃ =  by Lemma 15. Then for  ∈ (0 ),

by Lemma 16, only one symmetric equilibrium, ∗, exists. Note that (∗∗) is the solution
to 1(

∗∗) = 0 and 2(
∗∗) = 0 where (K) = ()(K) − ()() =

0 for  ∈ {1 2} Taking the total derivative of these two equalities with respect to  yields

[(1)()
∗+(2)()

∗+()]1=2=∗ = 0, for  ∈ {1 2} By symmetry,
(1)1 = (2)2, (2)1 = (1)2, and ()1 = ()2 when evaluated at

1 = 2 = ∗. We can therefore rewrite both equations in terms of 1. Rearranging for ()∗

yields ()∗ = −()1[(1)1 + (2)1]|1=2=∗ . Note that (1)1 +

(2)1 = [(
22

1)1−(22
1)(1)+(

212)1]|1=2=∗ . Therefore, ()
∗ =

−[(1)1][(
22

1)1−(22
1)(1)+(

212)1]|1=2=∗ . Note that
∗(p∗) 

∗ by Lemma 14. Because (22
1)(1) ≥ 0 by weak convexity of (1), (

22
1)1 −

(22
1)(1) + (

212)1  0 by Lemma 13. It follows that ()∗ has the same
sign as (1)1|1=2=∗ . Let  = 0. It can be shown that (1)1|1=2=∗ =

( − 2∗)(  )(  )2 for some functions  and , where (  ) = 42( + )[3(4 +

3) + (3− 3)(2+ )2+6(− )(+ )(2+ )][2(− ) + (2− )]3  0 and the inequality

follows because   . Because −2∗  0 (by Lemma 14), (1)1|1=2=∗  0 It follows

that if   0, then ∗  2. (ii) Set ̄ = ̃, where ̃ is defined in Lemma 15. Because 1(K)

is strictly quasi-concave in 1 for  ∈ [0 ̄) (by Lemma 15), the expression for ()∗ given in
part (i) remains valid here. It can be shown lim→0()∗ = −[(1)1][(

22
1)1 +

9



(212)1]|1=2=∗ = 2(   )(   )2 for some functions  and . There-

fore, lim→0()∗ has the same sign as . Next, lim→0 (   ) = −24{165( − )2 +

82(−)[(62−4+2)+2(32− +2)]+3(2−)2(42+2)+43(+ +)}  0
where the inequality can be verified algebraically using the fact that   . It follows that there

exists ̄  0 such that if  ∈ [0 ̄], then lim→0()∗  0. The result follows from continuity

of ∗ and ()∗ in . ¤
Proof of Proposition 3C: The proof proceeds in two steps. First, we show that if ∗

1  0,

then (1)
∗
1  0, for  ∈ {1 2} Second, we show the main result. Step One: For con-

venience, define (12) = (221)2(
212)1 − (211)1(

22
2)2 and

 (12) = (22
1)1(

22
2)2 − (212)2(

221)1 It follows immediately

from the analysis in Dixit (1986) that (1)
∗
1 = (∗

1 
∗
2) (

∗
1 

∗
2). It suffices to show that

 (∗
1 

∗
2)  0 and (∗

1 
∗
2)  0. It follows from Lemma 13 that  (∗

1 
∗
2)  0. To see that

(∗
1 

∗
2)  0, note that (

221)2 = 0, because 1 does not appear in 2, (
211)1 =

−(1)(1)  0 because (1) is increasing, and (
222)2|(12)=(

∗
1 

∗
2 )
 0 by Lemma

13. Step Two: It is sufficient to show that  ≤  implies (1)2|(12)=(
∗
1 

∗
2 )
≥ 0. The

total derivative of 2 with respect to 1 is (1)2|(12)=(
∗
1 

∗
2 )
= [(1)2(1)

∗
1 +

(2)2(1)
∗
2 + (1)2]|(12)=(

∗
1 

∗
2 )
. Note (1)2 = 0 because 1 does not

appear in 2. Also, (2)2|2=
∗
2
= 0 because ∗

2 is a maximizer of 2. It follows that

(1)2|(12)=(
∗
1 

∗
2 )
= [(1)2(1)

∗
1 ]|(12)=(

∗
1 

∗
2 )
. Because (1)

∗
1  0 by

Step One, it follows that (1)2|(12)=(
∗
1 

∗
2 )
and (1)2|(12)=(

∗
1 

∗
2 )
have opposite

signs. Thus, it is sufficient to show that  ≤  implies (1)2|(12)=(
∗
1 

∗
2 )
≤ 0 By

Lemma 12, there are nine price-and-wage equilibria types to consider: , , , ,  ,  

and . For the first six types, it is straightforward to verify algebraically that (1)2 ≤ 0
where the inequality holds with equality for the first five types. For the  equilibrium, is straight-

forward to verify algebraically that (22
1)2  0 and (1)2|1=(2−)  0 Because

for the  equilibrium, ∗
1  (2 − ) (by Lemma 12), this implies (1)2|1=

∗
1
≤

(1)2|1=(2−)  0 For the  equilibrium, it is straightforward to verify algebraically

that (22
1)2  0 Because for the  equilibrium, ∗

1 ≤ ( − 
2)


 (by Lemma 12),

this implies (1)2|1=
∗
1
≤ (1)2|1=(−2)



 Further, it is straightforward to ver-

ify algebraically that (1)2|1=(−2)


is linear in 2 (1)2|(12)=(


 0)  0

and (1)2|(12)=([−(2−)] (2−))  0 Because for the  equilibrium, ∗
2 ∈

[0 (2 − ))) (by Lemma 12), this implies (1)2|(12)=(
∗
1 

∗
2 )

 0 For the  equilib-

rium, we will show that  ≤  implies (1)2|(12)=(
∗
1 

∗
2 )
≤ 0 Suppose  ≤ 

This implies 
 ≥ 0 Note   

min(
∗
1 

∗
2) + 

 max(
∗
1 

∗
2) ≥ 

(
∗
1 + ∗

2) ≥ 


∗
1 

where the first inequality holds (by Lemma 12) because the equilibrium is of the  type, the

second inequality holds because 
  

 and the third inequality holds because ∗
2 ≥ 0 and


 ≥ 0 For the  equilibrium, it is straightforward to verify algebraically that (1)2|(12) =

0(   )+1(   )1+2(   )2, where 2(   ) = (
212)2 ≤ 0 (where

the inequality holds by Lemma 13), 0(   ) = 2(−)(−)(+)(2+)[(2+)(+
)+(+)(2+)](   )2 and 1(   ) = 2(−)2(+)(2+)2(   )2 for
some function  If  =  then 0(   ) = 1(   ) = 0 which implies (1)2 =

10



2(   )2 ≤ 0 For the remainder, suppose    Note (1)2|(12)=(
∗
1 

∗
2 )
≤

0(   ) + 1(   )
∗
1  [0(   ) + 1(   )


] = 0 where the first inequality

holds because 2(   ) ≤ 0, the second inequality holds because ∗
1  

 and the equality

holds by straightforward algebra. ¤
Appendix E: Numerical Study

We have restricted attention to   ̃ (Note that for §3 and §4, ̃ is defined prior to Lemma

2; for §4.2, ̃ is defined in Lemma 10; and for §4.3, ̃ is defined in Lemma 15.) Here we provide

evidence that when this restriction is relaxed, the results are consistent with our Propositions. The

relevant results are Propositions 3, 3A, 3B and 3C. The remaining Propositions either do not make

use of this restriction (Proposition 1(i), 1A(i), 1B(i), 1C(i), 2(i), 2A(i), 2B(i), 2C(i)) or provide

sufficient conditions in the form of additional restrictions on the parameter , which makes   ̃

non-restrictive (Propositions 1(ii), 1A(ii), 1B(ii), 1C(ii), 2(ii), 2A(ii), 2B(ii), 2C(ii)).

Let Set I denote the 80,000 combinations of parameters  ∈ {01 02     1},  = , where  ∈
{0 01     09 099}  ∈ {01 02     1}  ∈ {005 010     2}, and  ∈ {1 2} where (1) =


1 . For each result, we considered  = , where  ∈ {0 001     098 099} For Propositions 3,

3B and 3C, we considered Set I supplemented with  = 1 For Proposition 3A, we considered Set

I supplemented with  = 01 + , where  ∼ (1 2), for the 16 parameter combinations of

parameters 1 ∈ {2 3 4 5} and 2 ∈ {2 3 4 5} For each combination of parameters, we observed
numerically that the equilibrium AV fleet ∗

1 (or symmetric equilibrium AV fleet ∗) is unique.
The numerical results are consistent with the analytical results in that no parameter combination

contradicts either the sufficient condition in Proposition 3, 3A or 3B, or the necessary condition in

Proposition 3C.

Propositions 1Aii and 2A require that ̄   for some   1 Here we provide evidence that

this requirement is not particularly restrictive in that these results hold in examples where ̄ is

relatively small. Suppose  =  = 1,  = 01 and  = 01+  where  ∼ (2 2) so that  = 01

and ̄ = 11 We observed numerically that Proposition 1Aii holds with  = 001 Proposition 2Ai

holds with  = 0 and Proposition 2Aii holds with  = 08. In these examples, ̄ = 0091

Proposition 1Bii requires that   ̄ for some ̄ ∈ (0 1). Here we provide evidence that that ̄
need not be particularly large for the result to hold. In particular, under parameters  =  =  = 1,

 = 05  = 001 and  ∈ {001 002     099} we observed numerically that the result holds for
̄ = 01
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