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We consider the pricing/lead-time menu design problem for a monopoly service where time-sensitive cus-

tomers have demand on multiple occasions. Customers differ in their demand rates and valuations per use.

We compare a model where the demand rate is the private information of the buyers to a model where

the firm has full information. The model assumes that customers queue for a finite-capacity service under

a general pricing structure. Customers choose a plan from the menu to maximize their expected utility. In

contrast to previous work, we assume customers do not differ in their waiting cost. Yet we show that in the

private information case prioritizing customers may be optimal as a result of demand rate heterogeneity.

We provide necessary and sufficient conditions for this result. In particular, we show that for intermediate

capacity, more frequent-use customers that hold a lower marginal value per use should be prioritized. Fur-

ther, less frequent-use customers may receive a consumer surplus. We demonstrate the applicability of these

results to relevant examples. The structure of the result implies that in some cases it may be beneficial for

the firm to prioritize a customer class with a lower marginal cost of waiting.
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1. Introduction

Service firms sell memberships that lower the price paid by customers, yet raise the revenue received.

And membership has its privileges. Season passes to leisure activities such as ski mountains and

amusement parks are often accompanied by perks such as access to priority queues at theme parks

(e.g., Universal Studios Express Pass) or early admission (e.g., Stratton Mountain Summit Pass).

Memberships allow line-jumping for exhibit entrance at cultural institutions and early registration

for classes at social organizations. Firms typically offer several different pricing plans, e.g., unlimited

access (a season pass), limited access (a multiple use ticket), two-part tariffs (paid-for discount

cards such as tastecard), and a pay-per-use price, and these often come with differing benefits. The

customer’s choice of which price to pay depends on the value expected to be derived from use and

the total cost including the cost of waiting. And by inducing different customers to pay different

prices, firms can increase their total revenue.
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Consider, for example, the choice of whether to purchase a season pass at a ski resort allowing

unlimited access. This may be of interest to skiers residing near the mountain (the ‘locals’). They

are likely to have a higher frequency of use than vacationers coming to the resort (the ‘aways’).

However, a local also may derive less enjoyment from any particular day of skiing than an away, as

s/he may see multiple opportunities each season, reducing the marginal value. If the mountain’s

management does not offer a season pass, the locals may reduce their skiing. But if the season

pass is priced too low, the aways may purchase them, reducing the mountain’s revenue. Thus the

mountain’s management has the problem of pricing a season pass to attract locals, but not aways.

And unless they require proving residency to purchase such a pass, it is difficult to distinguish

locals from aways. But as noted above, the firm has another tool, the perks it offers along with the

pass. In particular, priority services such as pass-holders’ lift lines and early mountain access are of

value when the system is congested. We show that these perks are not simply additional benefits

of membership, but are necessary to maximize the mountain’s revenue.

This paper considers the problem of designing price/lead-time menus and the corresponding

scheduling policy for a profit-maximizing service provider serving customers with private infor-

mation on their preferences. Customers are risk-neutral and maximize their expected utility by

choosing whether to buy service, and if so, which service class (price-leadtime option on the menu).

The key novelty is that the paper studies settings where customers have demand for multiple uses,

and they are heterogeneous in these demand rates, as is the case for example in ski resorts or

amusement parks. Most previous studies restrict attention to the case where customers have unit

demand, that is, they have identical infinitesimal demand rates. The few papers that do consider

heterogeneous demand rates typically restrict attention either to the case in which the provider

observes customer preferences, or to undifferentiated First In First Out (FIFO) service which misses

the value of differentiated service.

The paper deliberately focuses on the simplest model to understand the minimal conditions for

differentiated service to be profit-maximizing when customers have heterogeneous demand rates.

Specifically, we model the service facility as M/M/1 and consider customer types that differ only in

their demand rates and their marginal (per-use) valuations; we do not assume the customers have

differing marginal costs of waiting. Rather, we show that differences in valuation and demand rate

are sufficient in some conditions to make prioritized service optimal for revenue maximization.

Customers repeatedly use the service (if they find it economical to do so) at a given rate that

is inherent to their type. We assume the marginal value for both customer types is constant in

usage, but apply a strict ordering on the marginal value for the types. We allow the marginal

value of an additional usage for the more frequent-use type to be either higher than or lower than

that of the less frequent-use type. Both cases are possible and represent alternate orderings of the
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marginal rate of substitution between usage and price depending on the customer’s type. (This is

the constant sign assumption, cf. Fudenberg and Tirole (1991).) For example, skiing enthusiasts

may find higher marginal value than a skiing novice at all frequencies of use. Alternatively, the

marginal value of use of a visitor to a ski resort may be higher than that of a local for whom

there are multiple opportunities to ski in a season. We investigate the firm’s policy for both cases,

comparing the firm’s optimal policy under full and private information.

Hassin and Haviv (2003) provide a comprehensive literature review of research into the equi-

librium behavior of customers and servers in queueing systems with pricing. The vast majority of

pricing studies for queues restrict attention to the case where customers have unit demand, that is,

they have identical infinitesimal demand rates. Naor (1969) and Mendelson (1985) consider first-

in-first-out (FIFO) service for customers with homogeneous delay costs. Mendelson and Whang

(1990), Hassin (1995), and Hsu et al. (2009) characterize the socially optimal price-delay menu and

scheduling policy for heterogeneous customers. Some papers on the revenue-maximization prob-

lem for heterogeneous customers restrict the scheduling policy, customers’ service class choices,

or both (cf. Lederer and Li (1997), Boyaci and Ray (2003), Maglaras and Zeevi (2005), Allon

and Federgruen (2009), Zhao et al. (2012), Afèche et al. (2013)). Afèche (2004) initiated a stream

of revenue-maximization studies that design jointly optimal prices and scheduling policies in the

presence of incentive-compatibility constraints (cf. Katta and Sethuraman (2005), Yahalom et al.

(2006), Afèche (2013), Maglaras et al. (2014)). The conventional wisdom that emerges from all

of these unit-demand studies is that offering priorities has positive value only if customers have

heterogeneous delay costs. In contrast, only a few papers consider customers who have demand

for multiple uses and who are heterogeneous in this attribute: some have high, others have low

demand. Rao and Petersen (1998) and Van Mieghem (2000) consider the welfare-maximization

problem. Rao and Petersen (1998) study a model with pre-specified priority delay functions, which

eliminates the scheduling problem. Van Mieghem (2000) considers the menu design question jointly

with the optimal scheduling problem under convex increasing waiting cost functions. Papers that

consider the revenue-maximization problem under restriction to FIFO service establish the opti-

mality of fixed-up-to tariffs (Masuda and Whang 2006) or compare the performance of simpler

tariffs, namely, subscription-only versus pay-per-use pricing (Randhawa and Kumar (2008), and

Cachon and Feldman (2011) ). Finally, Plambeck and Wang (2013) consider revenue maximization

with multiple-use customers whose service valuations are subject to hyperbolic discounting. This

model captures the preference structure for unpleasant services. The optimal mechanisms they

study are tailored to such settings, which are in marked contrast to the more pleasant services that

fit our model.
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This paper makes three contributions on the design of differentiated price-service mechanisms for

queueing systems. First, we demonstrate the fundamental point that when customers differ in their

demand rates, it may be optimal to offer delay-differentiated services (through priorities) rather

than uniform service (e.g., FIFO), even though all customers are equally delay-sensitive. In fact,

it follows from our derivation that a firm may prioritize customers that are less sensitive to delay.

This result runs counter to the conventional wisdom given by the extensive literature on systems

serving customers with equal demand rates that only prioritizing customers with higher delay costs

has positive value. Second, we provide necessary and sufficient conditions, in terms of the demand

and capacity characteristics, for priority service to be optimal. In brief, priority service is optimal

only if customers with higher demand rates have lower marginal valuations than their low-demand

counterparts, a plausible condition for several applications including entertainment parks. Under

this condition, priority service is optimal if the aggregate willingness-to-pay of all potential high-

demand users is sufficiently high, and there is sufficient, but not excessive, capacity. Furthermore,

when priority service is optimal, the menu is designed such that high-demand/low-value customers

buy the high-priority service for a subscription fee. The result implies that the use of priority

queues seen in many environments such as amusement parks and ski resorts is not just a reward for

loyal, season-ticket purchasing customers, but part of the mechanism design that allows the firm

to differentiate between customer types. Third, we show that offering optimal delay-differentiated

services can generate significant profit gains, compared to FIFO service, in many cases double-digit

percentage gains.

2. Model

We consider a capacity-constrained monopoly firm that designs a menu of price-service plans for

customers that differ based on their demand rate for the service and the value they derive from

each usage. There are two customer types, indexed by i= 1,2. The market for each type consists of

a fixed, large number of potential customers, Ni. Type-i customers receive a (constant) value ri for

each service usage. Each type-i customer experiences a stream of service opportunities that arrive

at rate γi, the expected number of service opportunities per year. This rate is fixed and inherent

to the customer’s type. Without loss of generality (w.l.o.g.), we assume γ1 >γ2.

Customers are delay-sensitive and prefer faster service. We assume that all customers have the

same waiting cost, c, per unit time in the system (including service). This assumption eliminates

waiting cost heterogeneity as the driver of delay differentiation, the focus of virtually the entire

previous literature on priority pricing. Rather, we focus on identifying the conditions for optimal

delay differentiation to arise as a result of demand rate heterogeneity.
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The firm operates a service facility with fixed capacity, µ. (Our results characterize the optimal

menu as a function of µ.) For simplicity we assume that the service operates as an M/M/1 queue.

Let ΛMax = γ1N1 + γ2N2 denote the maximum potential arrival rate. We assume that ΛMax is on

the order of µ, while γi <<µ. This implies that while customers may use the service multiple times

during the year, each customer’s usage of the capacity is relatively insignificant. This assumption

is consistent with the types of service firms we are modeling (amusement parks, ski resorts, etc.).

The service provider first designs and announces a static menu of up to two service classes,

indexed by j = 1,2. Customers then choose from the menu the class of service to purchase as

detailed below. The restriction to two service classes is w.l.o.g. in our model. (If the provider offers

more than two plans and each type chooses the plan that maximizes its utility, then more than

two plans would be used only if some customers are indifferent between two or more of the plans.

However, the firm would only offer those plans that maximize its revenue, so there is no advantage

derived from offering more plans than customer types.) The menu specifies for each class a usage

rate-dependent tariff (or price function) and the expected waiting time a customer will encounter

at each visit to the facility. To be clear, “class” refers to the attributes of a service option, “type”

refers to those of a customer. We also refer to class-j service as plan j where it is natural to do so.

We assume that the firm knows the aggregate demand information (ri, γi, and Ni for i= 1,2,

and c). With respect to customer-level demand information, we consider two settings. In the Full

Information benchmark the firm can distinguish customer types. Our main results focus on the

Private Information setting where the firm cannot distinguish customer types. We formalize these

problems in Sections 2.1 and 2.2.

Let Pj(γ) be the total annual revenue generated by a customer with usage rate γ who chooses

class-j service, j ∈ {1,2}. This form is general and can represent any pricing scheme including

a service class with unlimited usage at a subscription price, a two-part tariff with or without a

maximum usage rate, or a simple per use price. If, for example, Pj(γ) were a two-part tariff with

subscription fee Fj and price per use of pj, then Pj(γ) = Fj + pjγ.

Let Wj be the expected waiting time (or lead time, including service time) for class-j service.

We require Wj’s to be consistent with the average steady-state wait times that are realized given

the provider’s scheduling policy and the customers’ purchase rates induced by the menu. This

consistency requirement may be enforced by auditors or third party review sites. Practically, for

the motivating examples, social media provides a means for customers to learn prior to purchase

the expected wait times and determine if there are any inconsistencies with the posted times. See

Afèche (2013) for further discussion.

We do not assume a specific scheduling policy but rather let the provider choose any non-

anticipative and regenerative policy. This appears to be the most general, easily described restric-

tion of admissible policies that guarantees the existence of long run waiting time averages. We allow
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preemption, which simplifies the analysis without affecting the results (under priority scheduling,

with preemption the waiting time of a given class does not depend on the arrival rate of the lower

class).

Given the menu, customers decide whether to seek service, and if so, choose a plan to maximize

their expected total (annual) utility. Customers are risk neutral. They do not observe the queue

and base their decisions on the posted expected waiting times. This assumption is common in

related papers. For the motivating applications, the notion is that the queue cannot be observed

by the customer even at the time of purchase as it may be spatially or temporally removed from

the ticket window.

We further assume that customers do not change their type based either on the menu of prices

offered or their experience of the service. In our model a customer has no incentive to switch

between service classes during the year. As such, the customers decide once, at the start of the

year (or when their first service opportunity arises), which class of service to purchase (if any).

Then customers who buy a plan have an incentive to join the facility at each service opportunity.

From these definitions, the total expected utility of a type-i customer for class-j service is

(ri− cWj)γi−Pj(γi),

where ri − cWj is her expected net value from every service opportunity. As further discussed

below, we can restrict attention w.l.o.g. to menus that sell class-i to type-i customers. We write ui

for the utility of a type-i customer for class-i.

Let ni be the number of class-i plans sold. We assume that if customers of type-i find strictly

positive utility from a plan, the firm must allow all customers of type-i to join, i.e. ni =Ni. As such

the firm does not discriminate between customers of the same type if the pricing and prioritization

policy provide a positive surplus to the class. If the firm chooses to limit the number of customers

from a type that has positive utility from joining, it could do better by raising the price for the

corresponding class of service, until the point that they are indifferent between joining and balking.

Thus, if it does not raise the price, it would not limit the number. However, if type-i customers

are indifferent between joining and balking, the firm can restrict the number of class-i plans, i.e.,

it is possible for ni < Ni. By these assumptions the firm can tailor the experience received by

different types of customers by lowering the demand from some classes while raising their price.

For simplicity, we treat ni as a continuous variable throughout, rather than as an integer; given

large Ni, this is a mild assumption.
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2.1. Full Information Setting

In the Full Information (FI) setting the firm can distinguish between the customer types. It can

therefore assign a price for each customer type and enforce the customers to pay that price if they

use the service. We assume there are two service classes and that type-i customers are offered class-i

service. In this case, the firm maximizes its profit by choosing the pricing, Pi(γi), the participation,

ni, and the prioritization that subsequently defines the waiting time, Wi, for each class. The firm’s

policy is constrained by the need for customers to see non-negative utility in joining the service.

In the FI setting the problem is:

ΠFI = max
ni, Wi, Pi(γi)

∑
i

niPi(γi) (1a)

subject to (ri− cWi)γi ≥ Pi(γi) for i= 1,2 (1b)

((ri− cWi)γi−Pi(γi))(Ni−ni) = 0 for i= 1,2 (1c)

Wi ≥
1

µ−niγi
for i= 1,2 (1d)

∑
i

niγiWi ≥

∑
i

niγi

µ−
∑
i

niγi
(1e)

0≤ ni ≤Ni for i= 1,2. (1f)

The objective function gives the total revenue of the firm. Constraint (1b) is the individual

rationality (IR) constraint. Constraint (1c) is a complementary slackness constraint that verifies

that if type-i customers have positive surplus from joining, then all customers of that type join.

Alternatively, if there is no surplus for type-i customers, any feasible number can be assigned.

Constraint (1d) ensures for each class that the waiting time is bounded below by the minimum

feasible waiting time for class-i in an M/M/1 queue. Constraint (1e) verifies that the (weighted)

average wait time for both service classes is bounded below by the minimum achievable, non-idling

waiting time. This defines the achievable region for the waiting time. Constraint (1f) enforces the

non-negativity and market size bounds for each customer type.

We can simplify the problem by eliminating the pricing, Pi(γi), and waiting times, Wi, as follows.

Observe that in maximizing the objective function, the individual rationality constraints, (1b), are

binding. Therefore letting P ∗i (γi) be the optimal price for class-i service in the FI solution,

P ∗i (γi) = (ri− cWi)γi. (2)

The objective function can then be written as

max
ni,Wi

∑
i=1,2

niγiri− c
∑
i=1,2

niγiWi (3)



Afèche, Baron, Milner, and Roet-Green: Pricing and Prioritizing Time-Sensitive Customers
8 Article submitted to Operations Research; manuscript no.

From (1e) it is evident that for any fixed n1 and n2, every work-conserving policy is optimal. In

particular, let W be the waiting time under FIFO service. That is,

W =
1

µ−
∑
i

γini

is optimal given ni. Therefore, we can reduce the Full Information problem to

(FI) ΠFI = max
n1,n2

∑
i

niγi

(
ri−

c

µ−n1γ1−n2γ2

)
subject to 0≤ ni ≤Ni for i= 1,2.

2.2. Private Information Setting

In the Private Information (PI) setting, we assume the firm cannot distinguish between customers’

types. To be specific we assume the firm cannot determine the type of a customer prior to the

season or based on their usage during the season. Alternatively, if the type may be identified during

the season, the firm cannot take advantage of that information. First, customers’ types may not

be fixed year to year, and so the firm may not be able to identify customer types before the start

of a season based on previous usage. Second, customers that purchase a season pass or otherwise

fix their service class and payment at the start of the year may reveal their true type during the

season, but that is immaterial as the firm has already been paid and differentiating service based

on a customer’s true type would be difficult as the service class has already specified the expected

waiting time. Third, customers that pay per use may do so without identifying themselves so

tracking their type may be difficult. If their type can be identified we assume the firm does not

change their service menu during the year, i.e., as assumed the menu is static.

As before we assume customers choose from the menu to maximize their expected utility. Now,

the firm can no longer designate a class of service to a particular type of customer without providing

an incentive to ensure they choose one plan over another. We restrict attention w.l.o.g. to menus

ensuring incentive compatibility (IC) that target class i to type i customers such that they weakly

prefer class i or no service over service in class j 6= i. (Based on the revelation principle (e.g.,

Myerson (1997)), mechanism design problems restrict attention w.l.o.g. to IC direct revelation

mechanisms in which each customer directly reveals her type. The mechanism described below,

while strictly speaking an “indirect mechanism”, is equivalent to a direct mechanism and more

naturally describes the purchase process.)

The IC constraints ensure that the expected annual cost for a type-i customer to use class-i

service is less than the cost to use class-k service, k 6= i.

Pi(γi) + cWiγi ≤ Pk(γi) + cWkγi for i, k ∈ {1,2}. (4)
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Further, we assume that the annual price paid is non-increasing in usage for any class of service to

ensure one cannot misrepresent one’s type by higher usage for some gain. That is we impose the

monotonicity constraint:

Pi(γ2)≤ Pi(γ1) for i= 1,2. (5)

Remark 1. If fractional service could be purchased, we may need to also eliminate the possibility

of a high-use type-1 customer representing himself as a type-2 customer by purchasing multiple

copies of class-2 service. In particular, a type-1 customer would require (γ1/γ2) copies of class-2

service. That is, we require the constraint

P1(γ1) + cW1γ1 ≤
γ1

γ2

P2(γ2) + cW2γ1. (6)

We can show that at optimality (6) is either redundant to the IC constraint (4) or to the IR

constraint (r1− cW1)γ1 ≥ P1(γ1) or both. First observe that (6) is redundant to (4) if

P2(γ1) + cW2γ1 ≤
γ1

γ2

P2(γ2) + cW2γ1

or γ2P2(γ1)≤ γ1P2(γ2).

Then, if P2(γ) = bγ for some b > 0, condition (6) holds. We show in Section 3.1.2 that P2(γ) has

this form if r1 > r2. If on the other hand r1 ≤ r2, we show in Section 3.2.2 it is possible for P2(γ)

to be a two-part tariff, i.e., P2(γ) = bγ− a for some a, b > 0. In that case, we show below that (6)

is redundant to the IR constraint. Thus, we ignore constraint (6) in our formulation.

Under these conditions we can restrict the solution to truthful revelation so that type-i customers

only purchase class-i service. As before we assume the firm does not limit the number of customers

that purchase class-i service if type-i customers see strictly positive utility, and only sets ni <Ni

if customers are indifferent between purchasing or not. The firm’s Private Information problem is

ΠPI = max
ni,Wi,Pi(γi)

∑
i

niPi(γi)

subject to (ri− cWi)γi ≥ Pi(γi) for i= 1,2 (7a)

P1(γ1) + cW1γ1 ≤ P2(γ1) + cW2γ1 (7b)

P2(γ2) + cW2γ2 ≤ P1(γ2) + cW1γ2 (7c)

Pi(γ2)≤ Pi(γ1) for i= 1,2 (7d)

(Pi(γi)− (ri− cWi)γi)(Ni−ni) = 0 for i= 1,2 (7e)

Wi ≥
1

µ−niγi
for i= 1,2 (7f)∑

i

niγiWi ≥
∑

i niγi
µ−

∑
i niγi

(7g)

0≤ ni ≤Ni for i= 1,2. (7h)
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The problem formulation is almost identical to Problem (1), with two additions: Constraints (7b)

and (7c) are the IC constraints that verify that the total cost for type-i customers from choosing

plan i is always less than choosing plan k; and constraint (7d) is the monotonicity constraint that

verifies that the total payment of the customer cannot be reduced by increasing her demand.

We can simplify the problem (7a)–(7h) as follows. As noted above, (7a) is always binding for

i = 1. That is, P1(γ1) = (r1 − cW1)γ1. Further, because γ1 > γ2, (7b) and (7d) imply P2(γ1) can

be increased arbitrarily so that pricing alone is sufficient to deter type-1 customers from buying

class-2 service. This implies that we can extract all type-1 utility and that we can drop the type-1

IC constraint (7b).

However, pricing alone may not suffice to deter type-2 customers from buying class-1 service.

Let u2 = (r2− cW2)γ2−P2(γ2) denote the type-2 expected utility from class-2 service. The type-2

IC constraint (7c) is equivalent to

u2 ≥ (r2− cW1)γ2−P1(γ2).

That is, the type-2 utility decreases in its payment for class-1 service. In other words, a given u2

provides a lower bound on P1(γ2). On the other hand, since tariffs must be increasing in usage, we

get

(r2− cW1)γ2−u2 ≤ P1(γ2)≤ P1(γ1) = (r1− cW1)γ1.

It follows that if class-1 service is offered, type-2 can be deterred from buying it if and only if

(r2− cW1)γ2−u2 ≤ (r1− cW1)γ1.

or, equivalently,

W1 ≤
r1γ1− r2γ2

c(γ1− γ2)
+

u2

c(γ1− γ2)
. (8)

Observe that if no type-1 customers are served (n1 = 0), then (7c) can be satisfied by setting

P1(γ2) arbitrarily high. Moreover, maximizing the profit implies minimizing u2. Therefore (8) need

only hold when n1 > 0. Combining these simplifications we can write the PI problem as:

(PI) ΠPI = max
ni,Wi

∑
i

(niγi(ri− cWi))−u2n2

subject to n1

(
W1−

(
r1γ1− r2γ2

c(γ1− γ2)
+

u2

c(γ1− γ2)

))
≤ 0 (9a)

Wi ≥
1

µ−niγi
for i= 1,2 (9b)

∑
i

niγiWi ≥

∑
i

niγ1

µ−
∑
i

niγ1

, (9c)
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u2(N2−n2) = 0 (9d)

0≤ ni ≤Ni for i= 1,2 (9e)

u2 ≥ 0. (9f)

Constraint (9a) expresses the conditional constraint bounding the waiting time for the type-1

customers when they are present and subsumes the incentive compatibility and monotonicity con-

straints. As noted, the individual rationality constraint is given by (9f).

Remark 2 Let

W̃ =
r1γ1− r2γ2

c(γ1− γ2)
.

Here, W̃ is a critical waiting time dependent only on the model parameters. Then (9a) implies that

if type-1 customers are served, i.e., n1 > 0, incentive compatibility requires that

W1 ≤ W̃ +
u2

c(γ1− γ2)
. (10)

Inequality (10) is the fundamental constraint governing the solution in the Private Information

case. It implies that if, for a given capacity, the FIFO waiting time, W , exceeds W̃ , then it must

be that either type-1 customers are not served, or if they are served, they are served with priority

(W1 <W2) or type-2 customers receive some surplus utility (u2 > 0), or both. Useful in determining

what is the case is the reciprocal of W̃ , the critical capacity level

µ̃=
1

W̃
=

c(γ1− γ2)

r1γ1− r2γ2

. (11)

3. Optimal Price–Service Plans

In this section we develop the solutions for the Full Information and Private Information settings.

Recall the two types are ordered by their inherent demand rates with γ1 >γ2. While the type-1 may

use the service more frequently, it is not necessarily the case that the marginal value derived from

a single usage by a type-1 customer, r1, is greater than that of a type-2 customer, r2. We consider

two cases. In the first, referred to as the Increasing Ordering, we assume r1 ≥ r2. We present the

results for this case in Section 3.1. Here customers that have a higher valuation per usage use the

service more. In this case we show that the firm can achieve the same profit in the FI and PI

settings. This is the case investigated by Masuda and Whang (2006). As the FI setting solution

provides no priority to one type of customer over another, the same holds for the PI setting. In

the second case, referred to as the Decreasing Ordering, we assume r1 < r2. In Section 3.2, we

show for this case it is possible that there is value to the information on the customer type and

a prioritization policy may be optimal in the PI setting. In all cases, we determine the customer

mix, service policy, and optimal pricing. These are dependent on the service capacity. Recall that
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for the Full Information setting, all service is FIFO and the prices are given by (2). For the Private

Information setting we provide the optimal service policy and prices. We summarize and discuss

the theoretical results in Section 3.3. All proofs appear in Appendix A.

3.1. Increasing Ordering: Transaction Value Increases in Demand Rate

We first consider the full information setting, and subsequently the private information setting.

3.1.1. Increasing Ordering, Full Information. Let n∗i be the optimal number of class-i

customers that are served in the FI setting. The solution to (FI) for the increasing ordering is

characterized by the following proposition:

Proposition 1 For r1 ≥ r2, there exist four thresholds over the capacity:

µ0 =
c

r1

,

µ1 := arg
µ
{r1 =

cµ

(µ−N1γ1)2
},

µ2 := arg
µ
{r2 =

cµ

(µ−N1γ1)2
},

µ3 := arg
µ
{r2 =

cµ

(µ−N1γ1−N2γ2)2
},

with µ0 <µ1 ≤ µ2 <µ3 such that:

1. For µ≤ µ0, the provider does not serve any customers, n∗1 = n∗2 = 0.

2. For µ0 <µ<µ1, the provider serves type-1 customers exclusively, but only partially, such that

0<n∗1 <N1, n
∗
2 = 0.

3. For µ1 ≤ µ ≤ µ2, the provider serves type-1 customers exclusively and fully, such that n∗1 =

N1, n
∗
2 = 0.

4. For µ2 < µ < µ3, the provider serves type-1 customers fully, and type-2 customers partially,

such that n∗1 =N1,0<n
∗
2 <N2.

5. For µ≥ µ3, the provider serves type-1 and type-2 customers fully, such that n∗1 =N1, n
∗
2 =N2.

Proposition 1 implies that as the capacity of the firm grows, first type-1 customers and subsequently

type-2 customers are served as would be expected for the increasing ordering. In doing so, the firm

engages in a revenue skimming policy for its capacity.

3.1.2. Increasing Ordering, Private Information. Under the increasing ordering, we

observe that the firm can achieve the same revenue under the PI setting as in the FI setting,

without offering any priorities. Observe that for FIFO waiting time W , P1 (γ1) = γ1(r1 − cW ) >

γ2(r2 − cW ) = P2 (γ2) , so type-2 has no incentive to buy class-1 (we extract all type-1 utility,

which is higher than for type-2 because of the increasing ranking) so long as we set P1 (γ2) high
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enough. Similarly, type-1 has no incentive to buy class-2 because we can set P2 (γ1) to make the

class prohibitively expensive. Formally we have:

Proposition 2 When r1 ≥ r2, the problem (PI) is maximized by offering FIFO service with Pi(γi)

set equal to the solution for the FI setting P ∗i (γi), and achieves the same revenue.

3.2. Decreasing Ordering: Transaction Value Decreases in Demand Rate

We next consider the decreasing ordering where r1 < r2, i.e., the customers with higher demand

(γ1 >γ2) have lower marginal value per use. We show that in the FI setting, the solution is similar

to that for the increasing ordering. That is, the firm should serve first the customers with the

higher valuation for the service. However, the FI solution does not hold for the PI setting.

3.2.1. Decreasing Ordering, Full Information. The solution to Problem (FI) for the

decreasing ordering is characterized by the following proposition:

Proposition 3 For r1 < r2, there exist four thresholds over the capacity:

µ0 =
c

r2

,

µ1 := arg
µ
{r2 =

cµ

(µ−N2γ2)2
},

µ2 := arg
µ
{r1 =

cµ

(µ−N2γ2)2
},

µ3 := arg
µ
{r1 =

cµ

(µ−N1γ1−N2γ2)2
},

with µ0 <µ1 ≤ µ2 <µ3 such that:

1. For µ≤ µ0, the provider does not serve any customers, n∗1 = n∗2 = 0.

2. For µ0 <µ<µ1, the provider serves type-2 customers exclusively, but only partially, such that

n∗1 = 0, 0<n∗2 <N2.

3. For µ1 ≤ µ≤ µ2, the provider serves type-2 customers exclusively and fully, such that n∗1 = 0,

n∗2 =N2.

4. For µ2 < µ < µ3, the provider serves type-2 customers fully, and type-1 customers partially,

such that 0<n∗1 <N1, n∗2 =N2.

5. For µ≥ µ3, the provider serves type-1 and type-2 customers fully, such that n∗1 =N1, n∗2 =N2.

For the FI setting for the decreasing ordering, the solution again is given by a price skimming

policy. In this case as the capacity increases, the type-2 customers are allocated capacity initially,

and type-1 customers are served only if there is sufficient capacity. We now turn to the case with

private information.
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3.2.2. Decreasing Ordering, Private Information. Under the decreasing ordering we find

that the firm may not achieve the same revenue in the PI setting as in the FI setting. As before,

the firm’s price/lead-time menu depends on the capacity. Here it also depends on the aggregate or

total valuation of the service for the year for each customer. We consider two sub-cases:

• the total valuation of a type-1 customer is less than that of a type-2 customer (r1γ1 ≤ r2γ2).

• the total valuation of a type-1 customer is higher than that of a type-2 customer (r1γ1 > r2γ2).

We refer to these as the “low total valuation” and “high total valuation” sub-cases, respectively.

In the low total valuation case, type-1 customers are not particularly attractive customers for the

firm. In contrast, the high total valuation sub-case provides an opportunity for the firm to set

prices and service priorities so as to capture the type-1 customers’ value while ensuring the type-2

customers identify themselves as such and extracts a higher marginal revenue from them.

Our main result is that for both sub-cases, we find that there may be a range of capacity where

to maximize its revenue, the firm may need to prioritize the type-1 customers (W1 <W ) and/or

provide positive consumer surplus to the type-2 customers.

Low total valuation sub-case. With both low valuation for each usage (r1 < r2) and low total

valuation (r1γ1 ≤ r2γ2), the firm would need both sufficient capacity and a sufficient number of

type-1 customers for it to find value in serving these customers. The following proposition identifies

these conditions:

Proposition 4 Suppose r1 < r2 and r1γ1 ≤ r2γ2. Let µ2 be defined as in Proposition 3.

1. If µ ≤ µ2, the FI solution solves Problem (PI): ΠPI = ΠFI , n1 = n∗1 = 0 and type-2 customers

are served under FIFO service with Pi(γi) = P ∗i (γi).

2. If µ>µ2, ΠPI <ΠFI , type-2 customers are served fully and there exists µ>µ2 such that type-1

customers are served if and only if µ>µ and

N1

N2

>
r2γ2− r1γ1

r1γ1

.

In this case type-1 get strict priority and zero utility, whereas type-2 customers receive positive

utility.

In Proposition 4 the condition in part 2.,

N1

N2

>
r2γ2− r1γ1

r1γ1

or, equivalently, (N1 +N2)(r1γ1)>N2(r2γ2),

holds for sufficiently large N1. In this case the total potential value of all customers at the lower

total value per customer r1γ1 exceeds the value of the type-2 customers alone. That is, if all

customers were to pretend to be type-1, the firm could extract higher revenue than if they served
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only the type-2 customers. This is the only circumstance in the low total valuation sub-case that

there is value to be extracted from the type-1 customers. In this case a limited number, say n1,

of the type-1 customers will be served. However, these customers are served with priority and

charged a premium price, P 1(γ1)>P ∗1 (γ1) in order to deter type-2 customers from buying class-1

service. This results in a delay for the type-2 customers, but they are compensated by receiving a

discount so their price P 2(γ) is lower than P ∗2 (γ2). The discount provides consumer surplus to the

type-2 customers and so the firm does not receive the same revenue as in the FI setting. That is,

in Lemma 3 (given in the proof) we show for µ>µ2, the prices as functions of γ are:

P 1(γ) = (r1− cW1)γ1 >P
∗
1 (γ1), (12)

P 2(γ) = (r2− cW2)γ− c(γ1− γ2)

µ−n1γ1

+ (r1γ1− r2γ2)<P ∗2 (γ2), (13)

and ΠPI <ΠFI . Observe that the price for class-1 service is independent of γ, i.e., a subscription

price, whereas that for class-2 service is a two-part tariff.

Observe that as µ→∞, W1,W2→ 0. Therefore at the limit P 1(γ1) = P ∗1 (γ1) = r1γ1 from (12).

But for type-2 customers, from (13) P 2(γ2) = r1γ1 <P
∗
2 (γ2) = r2γ2. The price that is paid by type-2

customers is reduced even when the capacity is large. In order to serve type-1, one cannot charge

more than r1γ1 when W1 = 0, but then one cannot charge type-2 more than r1γ1 as well because

otherwise they would represent themselves as type-1. As a result, ΠPI <ΠFI .

As we noted in Remark 1, if the price for class-2 service is given by a two-part tariff of the form

P2(γ) = bγ − a, for a, b > 0, a type-1 customer may prefer to purchase multiple services of class-2

service. Incentive compatibility requires (6) to hold:

P1(γ1) + cW1γ1 ≤
γ1

γ2

P2(γ2) + cW2γ1.

Substituting P1(γ1) and P2(γ2) given by (12) and (13) into the above and simplifying, implies (6)

holds if
c

µ−n1γ1

≤ r1

or, equivalently,

r1− cW1 ≥ 0,

as (17) in the proof of Proposition 4 shows that W1 = 1/(µ− n1γ1). But this is the IR constraint

for type-1 customers and therefore type-1 customers would not purchase multiple copies of class-2

service and (6) is redundant to the formulation.

High total valuation sub-case. We now consider the sub-case where r1γ1 > r2γ2. Here, the

type-1 customers are very attractive if one considers the total revenue they could provide. (They
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Form Description n1 Class-1 Priority Class-2 Price Form Class-2 Price Function

(i) PI equal to FI solution
n∗
1 No Fixed P2(γ) = (r2 − cW )γ2

ΠPI(µ) = ΠFI(µ)

(ii) Class-2 only served
n1 = 0 NA Pay-per-use P2(γ) = (r2 − cW )γ

ΠPI(µ)<ΠFI(µ)

(iii) Class-1 priority,
P2(γ) = (r2 − cW2)γ

Class-2 surplus n1 <n
∗
1 Yes Two-part tariff − c(γ1−γ2)

µ−n1γ1
+ (r1γ1 − r2γ2)

ΠPI(µ)<ΠFI(µ)

(iv) Class-1 priority
Class-2 no surplus n1 <n

∗
1 Yes Pay per use P2(γ) = (r2 − cW2)γ

ΠPI(µ)<ΠFI(µ)

(v) Class-1 priority
Class-2 no surplus n1 = n∗

1 Yes Pay-per-use P2(γ) = (r2 − cW2)γ
ΠPI(µ) = ΠFI(µ)

Table 1: Solution forms for high total valuation sub-case.

are still less attractive than type-2 who have a higher marginal value and so will be completely

served as capacity expands, i.e., n2 =N2, before any type-1 customers are served.)

The solution to the PI case can be classified as being in one of five forms. Each solution is defined

by three elements: n1, the number of type-1 customers served, W1, their waiting time, and u2, the

consumer surplus of the type-2 customers. (In all cases n2 = n∗2.) These also define W2, the class-2

waiting time, P2(γ), the class-2 price function, and ΠPI , the revenue. In particular, we show that

again there is a range of capacity where the firm will serve the type-1 customers with priority while

providing a positive surplus to the type-2 customers. The five forms are summarized in Table 1;

the details for all the solutions are given in Appendix B. As before W is the waiting time under

FIFO service. Fixed prices imply a subscription price for unlimited usage; per use prices are just

that. (Recall in all cases P1(γ) = (r1−cW1)γ1, a fixed price.) To emphasize the dependency of these

cases on the capacity, we make explicit the dependency of the revenues as functions of µ, ΠPI(µ)

and ΠFI(µ).

The solution form that holds depends on the capacity in the system. Recall from Proposition 4

that µ is the lowest capacity for which the firm would serve type-1 customers and must be at least

µ2. For µ<µ, either solution (i) or (ii) holds. Also recall IC requires

W1 ≤ W̃ +
u2

c(γ1− γ2)
.

The waiting time for a class-1 customer, if given priority, must be at least the service time, 1/µ.

Thus if 1/µ > W̃ or equivalently from (11), µ < µ̃, IC also requires that u2 > 0 which is solution

(iii). In this case, as capacity expands, at some point, W1 = W̃ . At this point, say µ̂, the firm does

not need to give additional incentive to type-2 customers, and for larger capacities, u2 = 0 and

solution (iv) holds. If µ> µ̃, then for all capacities greater than µ, u2 = 0. Let K1 = r1(µ̃−N2γ2)2/c
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and K2 = r1µ̃
2/c. These are the critical capacities that determine what happens when n1 = n∗1, i.e.,

cases (i) and (v) above. Proposition 5 summarizes all of the possibilities.

Proposition 5 Suppose r1 < r2 and r1γ1 > r2γ2. Let µ2 be defined as in Proposition 3.

1. If µ≤ µ2 or µ≥K2, solution (i) holds; the PI solution = FI solution. For µ≤ µ2, n1 = n∗1 = 0;

for µ≥K2, n1 = n∗1 > 0.

2. If µ2 > µ̃, then for µ2 <µ<K2 solution (v) holds.

3. If µ2 ≤ µ̃, there exists µ such that

a. if µ < µ̃, there exists µ̂ such that for µ < µ solution (ii) holds; for µ≤ µ < µ̂ solution (iii)

holds; for µ̂≤ µ<K1 solution (iv) holds; and for K1 ≤ µ<K2 solution (v) holds.

b. if µ≥ µ̃, then for µ< µ̃ solution (ii) holds; and for µ̃≤ µ<K1 solution (iv) holds; and for

K1 ≤ µ<K2 solution (v) holds.

In Proposition 5, the PI and FI solutions are equivalent, for both very low (µ ≤ µ2) and high

(µ>K2) capacity, in contrast to Proposition 4. In the intervening range which case holds depends

on the various model parameters. Case 3a illustrates the full range of solutions. We highlight that

for µ < µ, we do not serve type-1 customers – solution (ii), but for slightly higher capacity (µ≤

µ≤ µ̂), not only do we serve them, but we give them priority – solution (iii). As in Proposition 4,

prioritization of the high-demand rate customers will be joined with discounting for low-demand

rate customers. By prioritizing the class-1 service the firm can raise the total revenue it receives

from these customers. However, the waiting time for the class-2 service will necessarily increase.

To compensate, and continue to attract them, their price will decrease. Further, the class-2 price

is given as a two-part tariff where the fixed part of the tariff represents the surplus utility the

type-2 customers receive for this service. For higher capacity (µ̂ < µ <K1), class-1 service is still

prioritized, but no surplus is given to the type-2 customers as with sufficient priority W1 ≤ W̃ –

solution (iv). Finally for K1 ≤ µ<K2 all of the customers served in the FI solution can be served,

but prioritization is still required to ensure W1 ≤ W̃ – solution (v).

3.3. Summary of Results

To summarize, under the increasing ordering (r1 ≥ r2), the FI and PI solutions are identical. The

firm can skim the price as one would expect, allocating capacity to the higher value customers

before serving lower value ones. However in the decreasing ordering (r1 < r2) this may not be the

case. When the frequent customers do not value the service highly (the low total valuation sub-

case, r1γ1 ≤ r2γ2), the FI solution value dominates the PI solution value when there is sufficient

capacity to serve both types of customers. Some n1 of these customers will be prioritized. The type-

2 customers’ price will be lower because of their lower priority. Further, we show the price is even
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lower than required for the individual rationality constraints to hold as the incentive compatibility

constraints force the firm to provide a consumer surplus.

A similar result holds for the high total valuation sub-case (r1γ1 > r2γ2). Here, because of the

high long-term value of the type-1 customers, there are several possibilities, depending on the

capacity. In particular, the firm may choose not to serve type-1; serve a limited number of them

with priority and provide a consumer surplus to type-2; serve a limited number and provide no

consumer surplus to type-2; serve both types as in the FI setting though prioritize type-1; or simply

use the FI solution.

The main point here is that for the decreasing ordering where high frequency customers value

each interaction lower than the lower frequency customers, there are solutions where incentive

compatibility requires prioritization even when all customers value waiting equally. Firms should

be especially careful in their pricing when a class of customers would choose to frequent the service,

while deriving smaller marginal benefit from each use. As long as their marginal value is not too

low, the firm can benefit by serving them, possibly with priority. N.B., while our analysis assumes

identical sensitivity to waiting for both types, it is clear that the firm can benefit from prioritizing

type-1 customers even if their sensitivity to waiting is less than that of the type-2 customers.

4. The Value of Priority vs. FIFO Service

We compare the revenue received and the customer served under the Full Information, and Private

Information solutions. We focus on the decreasing ordering case (r1 < r2). Recall that in this case

when there is sufficient capacity (µ > µ2), all N2 type-2 customers and some of the type-1 cus-

tomers are served. Recall also that the PI solution requires adherence to the incentive compatibility

constraints, (7b) and (7c). We have shown that if the pricing menu determined in the FI solution

is applied to the PI case, these constraints will not be observed and priority service may improve

the revenue. To evaluate the benefit of prioritization, we also compare the PI solution to the best

policy under restriction to FIFO service in the private information case. The firm has a single price

and offers only FIFO service, but optimizes over the total number of customers. Let nFI1 = n∗1 be

the optimal number served under the FI solution and nPI1 be the optimal number served under

the PI solution. Let nSub1 be the optimal number of type-1 customers served under the suboptimal

policy. Let ΠSub be the suboptimal revenue.

We compare the percentage difference between the FI solution and the PI solution to measure

the value of information, and the difference between the PI solution and the suboptimal solution

to measure the benefit of prioritization. Let

∆FI
PI =

ΠFI −ΠPI

ΠFI
× 100% and ∆PI

Sub =
ΠPI −ΠSub

ΠPI
× 100%.
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Figure 1: Example 1 – Decreasing order, low
total valuation, with fewer type-1 customers
N1 = 50, N2 = 150. Here r1 = 1, r2 = 5, γ1 = 11,
γ2 = 4, and c= 15.

µ ∆FI
PI nFI1 ρFI ρPI

703 0.0 0.02 0.854 0.854

900 3.65 16.7 0.871 0.667

1100 8.5 33.8 0.883 0.545

1300 13 50 0.885 0.462

1500 14.6 50 0.767 0.4

Table 2: Example 1 – Percent-
age difference in profit, type-1
customers served, and utiliza-
tion at various capacity levels.

Let ρFI , ρPI , and ρSub the utilization under the FI, the PI and the suboptimal solutions, respec-

tively. For all of the figures and tables, we present results for µ > µ2, noting µ2, as given by

Proposition 3, depends on r1, N2, γ2 and c.

4.1. The Low Total Valuation Sub-case

In this case, the high frequency of the type-1 customers does not result in higher total value from

the type-1 customers, i.e., r1γ1 < r2γ2. We consider two examples. For both we let r1 = 1, r2 = 5,

γ1 = 11, γ2 = 4, and c= 15.

Example 1. In the first example we let N1 = 50 and N2 = 150 so that the total value from type-2

only dominates the value if all customers purchase class-1: N2r2γ2 > (N1 +N2)r1γ1 or

N1

N2

=
1

3
<

9

11
=
r2γ2− r1γ1

r1γ1

.

In this case, by Proposition 4, nPI1 = 0 so ΠSub = ΠPI . The revenue provided by the few type-1

customers does not justify serving them even if they can be prioritized. In the FI solution type-1

customers are valuable for µ>µ2 = 703. Figure 1 presents the revenues as a function of µ. Table 2

details the profit reduction percentage, the number of type-1 customers served under FI, and the

utilization at various capacity levels. The PI optimal two-part tariff, attractive to type-2 only,

provides significantly more revenue compared with providing a subscription price that would be

attractive to type-1 as well. In this example the revenue and utilization under the FI case are

substantially higher than in the PI case.

Example 2. We now let N1 = 150 and N2 = 50, reversing their values from Example 1. Now

there are sufficient type-1 customers to make selling them a subscription while prioritizing them

attractive. That is, because N1/N2 = 3> 9/11, Proposition 4 implies nPI1 > 0 when there is sufficient
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Figure 2: Example 2 – Decreasing order, high total valuation, with many type-1 customers N1 =
150, N2 = 50. Here r1 = 1, r2 = 5, γ1 = 11, γ2 = 4, and c= 15.

µ ∆PI
Sub ∆FI

PI nFI1 nPI1 nSub1 ρFI ρPI ρSub

500 0 13.3 19.4 0 0 0.827 0.4 0.4

1000 2.1 29.7 61.6 61.3 59.8 0.877 0.874 0.858

1500 1.2 23.1 104.5 104.2 103 0.9 0.898 0.889

2000 0.75 18.8 147.9 147.6 146.6 0.913 0.912 0.906

2500 0 17.5 150 150 150 0.74 0.74 0.74

Table 3: Example 2 – Percentage difference in profits, type-1 customers served, and utilization at
various capacity levels.

capacity. When capacity exceeds µ≈ 870, nPI1 > 0. The type-1 customers are prioritized and the

type-2 customers receive a positive consumer surplus. With sufficient capacity the waiting time

tends to zero and by Lemma 3, P1(γ) = P2(γ) = r1γ1. That is, the type-2 customers receive a

substantial discount of r2γ2− r1γ1 = 20− 11 = 9 or a 45% discount. This translates into the 13%–

30% difference between the FI and PI solution – see Table 3. On the other hand, there is little

difference between the profit of the PI solution and that of the Suboptimal solution that uses FIFO

(1%–2%). Prioritizing the type-1 customers is of little benefit. By comparing the number of type-1

customers served and the system utilizations in each of the solutions (FI, PI, and Sub), we observe

that almost all of the difference is attributable to the discount given to the type-2 customers in

the PI and Sub cases.

4.2. The High Total Valuation Sub-case

In this case r1 < r2 and r1γ1 > r2γ2. That is, the type-1 customers are very attractive and the firm

would want to serve as many as possible. However, the profitability from doing so depends on the

cost of waiting. In Example 3 we assume a low cost of waiting; in Example 4, a high cost. For both

examples we let r1 = 1, r2 = 5, γ1 = 21, γ2 = 4, N1 =N2 = 100.

Example 3. Here we let c= 25. Then from (11),

µ̃=
1

W̃
=

c(γ1− γ2)

r1γ1− r2γ2

=
25(21− 4)

21− 20
= 425<µ2 = 513.
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µ ∆PI
Sub nFI1 nSub1 ρFI ρSub

600 1.5 3.7 0 0.796 0.667

800 7.8 12.3 7.14 0.823 0.687

1000 11 21 16.2 0.842 0.74

1200 9.2 29.8 25.3 0.856 0.776

1800 5.8 56.6 52.6 0.882 0.836

2400 4 83.6 80 0.898 0.867

3000 0 100 100 0.833 0.833

Table 4: Example 3 – Low waiting cost, c= 25. Type-1 receives priority and is served fully. Type-2
does not receive a discount. Here r1 = 1, r2 = 5, γ1 = 21, γ2 = 4, N1 =N2 = 100.

µ ∆PI
Sub ∆PI

FI nFI1 nPI1 nSub1 ρFI ρPI ρSub

800 3 1.89 9.5 8.3 2.2 0.75 0.717 0.558

1200 14 1.2 26.4 25 20 0.796 0.773 0.683

1600 10.5 0.8 43.7 42.4 37.8 0.823 0.806 0.746

2000 8.3 0.5 59.8 61.1 55.7 0.842 0.828 0.785

2400 6.7 0.35 78.7 77.4 73.7 0.856 0.844 0.811

3000 1.82 0 100 100 100 0.833 0.833 0.833

3500 0 0 100 100 100 0.714 0.714 0.714

Table 5: Example 4 – High waiting cost, c = 50. Type-1 receives priority and is served partially.
Type-2 receives a discount. Here r1 = 1, r2 = 5, γ1 = 21, γ2 = 4, N1 =N2 = 100.
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Figure 3: Example 4 – Decreasing order, high total valuation, with high waiting cost c= 50.

In this case, from Proposition 5.2, there is no difference between the number of customers served

in the FI and PI solutions and ∆FI
PI = 0. However, in the PI solution priority service is given to the

type-1 customers. This raises the price they pay. But the corresponding gain in revenue is offset

by the reduction in the price paid by the type-2 customers. The priority differentiation only serves

to discriminate between the two classes. Without prioritizing, all customers would pay the lower

price resulting in the same waiting cost, but lowering the total revenue. This is expressed in that

∆PI
Sub > 0.

Example 4. Next we let c= 50. Then from (11),

µ̃=
1

W̃
=

c(γ1− γ2)

r1γ1− r2γ2

=
50(21− 4)

21− 20
= 850>µ2 = 569.
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In this case, for µ > µ2, case 3a of Proposition 5 holds. Because of the higher cost of waiting, in

order to encourage type-1 customers to join, they need to be given an incentive in the form of

priority service. As depicted in Table 5, however, the number is limited so that fewer are served

than under the FI-case, ensuring the effectiveness of the waiting time reduction. Similarly, the

type-2 customers would prefer such a priority, eliminating its effectiveness. To discourage them

from switching, they receive a discount, at least while µ < µ̂. In Table 5, this is demonstrated by

the small percentage loss, given by ∆FI
PI . Under the restriction to FIFO service, the suboptimal

solution (Sub) would hold and fewer type-1 customers would join, lowering the revenue significantly,

relative to the PI solution. Figure 3 illustrates the small loss vs. the FI solution and the large

gain over the suboptimal FIFO service. (From Table 5 ∆PI
Sub = 14% at µ= 1200 and stays above

6% even as capacity doubles.) Because the type-1 customers have a high total valuation, ensuring

their full participation is of value. By prioritizing them the firm can significantly increase profits

over FIFO service. We want to highlight that though some type-1 customers are excluded in the

PI solution compared with the FI solution, the capacity utilization in the example is maintained

between 70%-85%. This range may be considered moderate indicating that our example does not

result from an extreme choice of parameters.

5. Discussion

Priority queues have long been studied as a means of discriminating between customers that differ

in their cost of waiting. In this paper, we assume a common cost of waiting, and still demonstrate

that priority queues may be revenue maximizing. Our insight is that if customers differ in their

demand rate and marginal valuation of a service, prioritization provides a means of encouraging

high-frequency, low marginal value customers to pay a little more for the service while allowing

the firm to reduce the price for lower frequency customers. What may be thought of as a benefit

or privilege provided to loyal, frequent-use customers, is demonstrated to be a tool that allows

the firm to improve profitability. Moreover, our analysis implies that prioritizing customers with

higher demand rate and lower marginal value may also be optimal if they are more patient than

their low-frequency counterparts.

Using our ski resort example, the season pass that is sold to the locals is accompanied by

admission to priority queues at the lifts and early access to the mountain, not just as a perk, but

as a means of raising the price of the pass and the revenue of the firm. The higher price discourages

the aways from purchasing the season pass. Further, the price of the daily pass sold to the aways is

discounted so that they see a consumer surplus. Effectively, the locals subsidize the price paid by

the aways, and the total revenue generated grows. Of course, this result depends on the demand

and capacity of the firm. With too few locals or too little capacity, only the high-marginal value
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aways are served. Offering a season pass does not generate sufficient revenue compared with the

additional cost of waiting incurred by the aways. If the capacity is very high, all customers are

served FIFO, and a single price is charged to all. But, importantly, at moderate levels of capacity,

priority queues are optimal.

One concern may be that the policy hinges on the assumption that the firm would restrict the

number of season passes sold. As demonstrated in our example, there may be some restriction in

the number, in order to achieve the desired waiting time for the priority customers. However, the

restricted number may only be slightly lower than the number of class-1 customers that would be

served in the full information case. If one accepts the premise of revenue maximization by limiting

the total waiting time as in Cachon and Feldman (2011), then the assumption the firm would limit

the number of priority customers served should be acceptable.

In this work we have assumed that the customer classes have inherent demand rates. This would

seem to hold for the aways (the low-rate users) in our example. They have limited number of days

they can ski, and changes in pricing would likely not change their usage, but rather whether they

purchase at all (i.e., not go to the resort). For the locals (the high-rate users), this assumption

may be more one of convenience than actuality. Certainly, if a season pass is purchased, then the

assumption of a fixed expected number of ski-days is reasonable. But in our model, the high-rate

users do not modify their usage if a season pass is not sold. Rather, some purchase and others do

not. However, the fundamental point of this paper will continue to hold in a model that considers

usage rate decisions. That is, offering priority service may increase revenues as a result of demand

rate heterogeneity, even if all customers share the same delay cost.

Appendix A: Proofs

Proof of Proposition 1 For the FI setting, the solution is found by taking the derivatives of

the objective function of (FI) with respect to ni given as

∂Π(n1, n2)

∂ni
= γi

(
ri−

cµ

(µ−n1γ1−n2γ2)2

)
, i= 1,2. (14)

(Below we denote Πni ≡ ∂Π/∂ni.)

Because r1 ≥ r2 and γ1 >γ2, it follows from (14) that

Πn1 >Πn2 . (15)

Then we have the following after some algebra:

1. When µ ≤ µ0, for any n1, n2 ≥ 0, Πn1 is non-positive (Πn1 = 0 only at µ = µ0), and Πn2 is

strictly negative. Therefore the provider does not gain any positive revenue from serving any

customers.
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2. When µ0 ≤ µ<µ1, for any 0≤ n1 ≤N1 and n2 ≥ 0, Πn2 is strictly negative, and therefore the

provider does not serve class-2 customers. But Πn1 (0,0)> 0>Πn1 (N1,0), and since

∂2Π

∂n2
1

(n1, n2) =− cµγ1

(µ−n1γ1−n2γ2)3
< 0, (16)

then for every n2 ≥ 0, Π is concave in n1 and there exists a unique n∗1 between 0,N1 that

maximizes the revenue.

3. When µ1 ≤ µ ≤ µ2, Πn1(N1,0) > 0 and there exists enough capacity such that the provider

exhausts all type-1 customers. Yet, for every n2 ≥ 0, Πn2 < 0, and therefore it is not profitable

to serve any type-2 customers.

4. When µ2 <µ<µ3, Πn2(N1,0)> 0>Πn2(N1,N2). And since similar to (16) Π is concave in n2

for any n1 ≥ 0, there exists a unique n∗2 between 0 and N2 that maximizes the revenue.

5. When µ≥ µ3, as in the previous case, it is profitable to serve both classes, and since capacity

is high the provider serves all customers from both classes. �

Proof of Proposition 2 Let Λ∗ be the total arrival rate of customers under the FI setting

solution, and let W ∗ =W (Λ∗) = 1/(µ−Λ∗) be the correspondence waiting time under FIFO.

By Proposition 1, if µ≤ µ0 = c/r1, the trivial solution to serve no customers holds for both FI

and PI settings. For µ>µ0, it is optimal serve some type-1 customers in the FI setting. Therefore,

we need (9a) to hold in the PI setting, to achieve the FI solution. But from the IR constraint (1b),

r1− cW (Λ∗)> 0, which implies that µ≥Λ∗+µ0. But observe

µ0 =
c

r1

=
c(γ1− γ2)

r1(γ1− γ2)
>

c(γ1− γ2)

r1γ1− r2γ2

= µ̃,

therefore µ ≥ Λ∗ + µ̃ or equivalently W (Λ∗) ≤ W̃ . Thus the solution to the FI setting is feasible

for the PI setting, and since it is an upper bound on the objective value for the PI setting, it is

optimal. �

Proof of Proposition 3 We establish below that over each relevant capacity range we have

Πn1 < Πn2 . Then all steps in proof of Proposition 1 hold, after switching the subscripts “1” and

“2”. We distinguish between two cases:

1. If r1γ1 ≤ r2γ2, the total valuation of the type-1 customer is less than the type-2 customer. In

this case, from (14) we have:

Πn1 = r1γ1− γ1

cµ

(µ−n1γ1−n2γ2)2

< r2γ2− γ2

cµ

(µ−n1γ1−n2γ2)2
= Πn2 ,

2. If r1γ1 > r2γ2, the total valuation of the type-1 customer is higher than the type-2 customer.

Then:
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(a) If µ< µ̃= c(γ1− γ2)/(r1γ1− r2γ2), we show that Πn1 <Πn2 :

Let Λ = n1γ1 +n2γ2. For 0<Λ<µ, (µ−Λ)2

µ
<µ. Therefore

(µ−Λ)2

µ
<

c(γ1− γ2)

r1γ1− r2γ2

⇒ r1γ1− r2γ2

c(γ1− γ2)
>

µ

(µ−Λ)2

⇒ r1γ1− γ1

cµ

(µ−Λ)2
< r2γ2− γ2

cµ

(µ−Λ)2

⇒ Πn1 <Πn2 .

(b) If µ≥ µ̃, observe that

Λ>µ−
√
µµ̃

⇒ (µ−Λ)2

µ
< µ̃=

c(γ1− γ2)

r1γ1− r2γ2

⇒ (µ−Λ)2

µ
< µ̃=

c(γ1− γ2)

r1γ1− r2γ2

⇒ r1γ1− γ1

cµ

(µ−Λ)2
< r2γ2− γ2

cµ

(µ−Λ)2

⇒ Πn1 <Πn2 .

We show that this condition is either satisfied or redundant for any capacity level. Observe

that for any µ0 <µ<µ1, Λ∗ satisfies r2 = cµ/(µ−Λ∗)2, or

Λ∗ = µ−
√
cµ

r2

= µ−√µµ0 >µ−
√
µµ̃.

Therefore Πn1 <Πn2 for µ<µ1. For µ>µ1, n∗2 =N2. To increase Λ one needs to serve type-

1 customers as well, and the provider does so only when Πn1 > 0, which is when µ > µ2.

For µ2 <µ<µ3, Λ∗ satisfies r1 = cµ/(µ−Λ∗)2, or equivalently Λ∗ = µ−
√

cµ
r1
>µ−

√
µµ̃.

For µ≥ µ3, both types are fully served and therefore the condition is redundant.

�

Proof of Proposition 4 We consider two cases:

1. When µ≤ µ2, the solution given in Proposition 3 implies that n∗1 = 0. If n∗1 = 0 for the PI setting,

then constraint (9a) is not active. The remaining problem is identical to problem (FI). Therefore

the solution to the FI setting is feasible and since the PI setting value is bounded by the FI solution,

it is optimal.

2. If µ>µ2, for the FI setting n∗1 > 0. Let n1 be the number of type-1 customers that are served in

the PI setting. If n1 > 0, (9a) is active. Since r1γ1 ≤ r2γ2, W̃ ≤ 0 so for any class-1 customers to be

served (and W1 > 0), by (9a) we required u2 > 0.
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Observe further that any increase in u1 would require an additional increase in u2, both lowering

the objective value of (PI). Therefore under any optimal solution u1 = 0. Further, in any optimal

solution (9b) will be tight for class-1 customers, i.e.,

W1 =
1

µ−n1γ1

, (17)

as increasing W1 only increases u2, lowering the objective function value. So, u2 is given by solving

(9a) at equality, i.e.,

u2 =
c(γ1− γ2)

µ−n1γ1

− (r1γ1− r2γ2). (18)

Note that u2 > 0 if n1 > 0. Because µ > µ2, the argument given in (15) (reversing subscripts “1”

and “2”) holds here, so Πn1 <Πn2 . Since u2 > 0 implies that n2 =N2, we have Λ = n1γ1 +N2γ2. In

addition, because class-1 customers receive priority, there is no value in choosing a larger delay for

class-2. Therefore constraint (9c) holds at equality, i.e.,

∑
i

niγiWi =

∑
i

niγ1

µ−
∑
i

niγ1

,

which implies that

W2 =
µ

(µ−n1γ1)(µ−n1γ1−N2γ2)
.

So if n1 > 0, the objective value for (PI-2), say Π1, is

Π1 =N2γ2((r2− cW2)−u2) +n1γ1(r1− cW1).

If n1 = 0, the objective value, say Π0, is

Π0 =N2γ2(r2− cW ),

where

W =
1

µ−N2γ2

.

As Π0 and Π1 together depend on µ, we would like to find the range of µ such that Π1 >Π0. We

claim that there exists µ>µ2 such that µ<µ implies Π1 <Π0 and µ≥ µ implies Π1 ≥Π0. Let

∆Π≡Π1−Π0 =N2γ2((r2− cW2)−u2) +n1γ1(r1− cW1)−N2γ2(r2− cW ).

In Lemma 1 we find the value of n1 and show that n1 ≤ n∗1. In Lemma 2 we find that when

substituting n1, u2,W1,W2 and W as given above, for µ> µ2, ∆Π is increasing with µ. Moreover,

∆Π < 0 as µ→ µ2. We also show that if N1/N2 > (r2γ2− r1γ1)/r1γ1, ∆Π > 0 when µ→∞. The

intermediate value theorem implies that in this case, there exists µ>µ2 such that for µ>µ, ∆Π> 0

and for µ<µ, ∆Π< 0. Otherwise, if N1/N2 ≤ (r2γ2− r1γ1)/r1γ1, ∆Π≤ 0 for µ>µ2.
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Lemma 1 If r1 < r2, r1γ1 ≤ r2γ2, and µ>µ, the provider serves n1 class-1 customers, such that:

n1 : min

(
n1 : r1−

cµ

(µ−n1γ1−N2γ2)2
− N2c(γ1− γ2)

(µ−n1γ1)2
= 0, N1

)
,

where

1. n1 maximizes Π1,

2. n1 <n
∗
1 for n∗1 <N1, and n1 = n∗1 only when n1 =N1.

Proof of Lemma 1

(a) Observe

Π1 =N2γ2((r2− cW2)−u2) +n1γ1(r1− cW1)

=N2(r2γ2− cW2γ2− c(γ1− γ2)W1 + r1γ1− r2γ2) +n1r1γ1− cn1W1γ1

= (n1 +N2)r1γ1−
c(n1γ1 +N2γ2)

µ−n1γ1−N2γ2

− cN2(γ1− γ2)

µ−n1γ1

(19)

To find the n1 that maximizes Π1, we take the derivative of Π1 with respect to n1 and compare it

to 0.

∂Π1

∂n1

= γ1

(
r1−

cµ

(µ−n1γ1−N2γ2)2
− N2c(γ1− γ2)

(µ−n1γ1)2

)
= 0. (20)

Let n1 be the solution of (20). Then n1 maximizes Π1 if the second derivative of Π1 with respect

to n1 at n1 is strictly negative. Observe

∂2Π1

∂n1
2
|n1=n1 =−γ2

1

(
2cµ

(µ−n1γ1−N2γ2)3
+

2N2c(γ1− γ2)

(µ−n1γ1)3

)
< 0. (21)

Inequality (21) because for every µ> µ2, the FI solution implies that µ> n∗1γ1 +N2γ2. If n1 ≤ n∗1,

then µ > n1γ1 +N2γ2 and the inequality holds. What remains to prove is that n1 ≤ n∗1. We show

this below.

(b) For simplicity, define

f(n1) = r1−
cµ

(µ−n1γ1−N2γ2)2
− N2c(γ1− γ2)

(µ−n1γ1)2
.

As we show above, n1 is the solution of f(n1) = 0. Also define

g(n1) = r1−
cµ

(µ−n1γ1−N2γ2)2
,

h(n1) =
N2c(γ1− γ2)

(µ−n1γ1)2
.

Then f(n1) = g(n1) − h(n1). For every n1 ≤ n∗1, the FI solution implies that µ > n1γ1 + N2γ2.

Therefore, h(n1) is strictly positive for n1 ≤ n∗1. From Proposition 3, n∗1 is the solution of g(n1) = 0

if n∗1 <N1. Therefore, when substituting n∗1 into f(n1), we have

f(n∗1) =−h(n∗1)< 0
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As we proved above, f(n1), which is the first derivative of Π1 with respect to n1, is strictly decreasing

in n1 (see inequality (21)). Therefore, the solution of f(n1) = 0 has to satisfy n1 <n
∗
1. The equality

n1 = n∗1 is only possible when n1 =N1. �

Lemma 2

1. For µ>µ2, ∆Π is increasing with µ.

2. lim
µ→µ+2

∆Π< 0.

3. If N1/N2 > (r2γ2− r1γ1)/r1γ1 then lim
µ→∞

∆Π> 0. Otherwise, lim
µ→∞

∆Π≤ 0.

Proof of Lemma 2

(a)

∆Π = Π1−Π0 =N2((r2− cW2)γ2−u2) +n1γ1(r1− cW1)−N2γ2(r2− cW )

=N2(r2γ2− cW2γ2− c(γ1− γ2)W1 + r1γ1− r2γ2) +n1r1γ1− cn1W1γ1−N2r2γ2 + cN2Wγ2

= (n1 +N2)r1γ1−N2r2γ2− c(n1γ1W1 +N2γ2W2)− cN2(γ1− γ2)W1 + cN2γ2W. (22)

Recall that the definitions of W1 and W2 imply that constraint (9c) is binding, meaning:

n1γ1W1 +N2γ2W2 =
n1γ1 +N2γ2

µ−n1γ1−N2γ2

. (23)

Substituting (23) and W,W1,W2 into (22), we have:

∆Π = (n1 +N2)r1γ1−N2r2γ2−
c(n1γ1 +N2γ2)

µ−n1γ1−N2γ2

− cN2(γ1− γ2)

µ−n1γ1

+
cN2γ2

µ−N2γ2

= (n1 +N2)r1γ1−N2r2γ2−
cµn1γ1

(µ−n1γ1−N2γ2)(µ−N2γ2)
− cN2(γ1− γ2)

µ−n1γ1

.

The derivative of ∆Π with respect to µ is:

d∆Π

dµ
=
cn1γ1(µ2−N2γ2(n1γ1 +N2γ2))

(µ−n1γ1−N2γ2)2(µ−N2γ2)2
+
cN2(γ1− γ2)

(µ−n1γ1)2

+ γ1

(
r1−

cµ

(µ−n1γ1−N2γ2)2
− N2c(γ1− γ2)

(µ−n1γ1)2

)
∂n1

∂µ
(24)

The third term in (24) is the derivative of ∆Π with respect to n1 at the point where n1 = n1, times

the derivative of n1 with respect to µ. Since n1 is defined in Lemma 1 such that ∂∆Π
∂n1
|n1=n1 = 0,

this term vanishes. Therefore,

d∆Π

dµ
=
cn1γ1(µ2−N2γ2(n1γ1 +N2γ2))

(µ−n1γ1−N2γ2)2(µ−N2γ2)2
+
cN2(γ1− γ2)

(µ−n1γ1)2
(25)

All the elements in the second term of (25) are positive. Observe for every µ>µ2, the FI solution

implies that the provider has enough capacity to serve n∗1 class-1 customers, in addition to all
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N2 class-2 customers, or alternatively, µ > n∗1γ1 +N2γ2. By Lemma 1, n1 ≤ n∗1 implying that µ >

n1γ1 +N2γ2. Then the numerator of the first term in (25)

cn1γ1[µ2−N2γ2(n1γ1 +N2γ2)]> cn1γ1[µ2− (n1γ1 +N2γ2)2]

= cn1γ1[µ− (n1γ1 +N2γ2)][µ+ (n1γ1 +N2γ2)]> 0

which implies that d∆Π/dµ> 0.

(b) The FI solution implies that when µ→ µ+
2 , n∗1→ 0+. As we showed in Lemma 1, n1 ≤ n∗1 and

therefore n1→ 0+. Therefore, W2→W . But since n1→ 0+, class-1 customers are not being served

but all class-2 customers get a consumer surplus. As a result, Π1 <Π0 since

lim
µ→µ+2

∆Π = lim
µ→µ+2

(N2((r2− cW2)γ2−u2) +n1(r1− cW1)γ1−N2[r2− cW ]γ2])

=−N2 lim
µ→µ+2

u2 =−N2 lim
µ→µ+2

(
c(γ1− γ2)

µ−n1γ1

− (r1γ1− r2γ2)

)
=−N2

(
c(γ1− γ2)

µ
− (r1γ1− r2γ2)

)
< 0

(c) When µ→∞, the waiting times vanish, meaning W,W1,W2→ 0. Therefore,

lim
µ→∞

∆Π = lim
µ→∞

(
N2((r2− cW2)γ2− c(γ1− γ2)W1 + r1γ1− r2γ2)

+n1(r1− cW1)γ1−N2(r2− cW ]γ2)

)
= (n1 +N2)r1γ1−N2r2γ2.

So, if N1/N2 > (r2γ2− r1γ1)/r1γ1 then lim
µ→∞

∆Π> 0. Otherwise lim
µ→∞

∆Π≤ 0. �

Lemma 3 For µ>µ2, the price functions are:

P 1(γ) = (r1− cW1)γ1 >P
∗
1 (γ1),

P 2(γ) = (r2− cW2)γ− c(γ1− γ2)

µ−n1γ1

+ (r1γ1− r2γ2)<P ∗2 (γ2).

and ΠPI <ΠFI .

Proof of Lemma 3 The proof follows directly from the definitions of W1 in (17) and u2 in (18).

Since u2 > 0, the reduction in the price of class-2 customers is strictly larger than the increase in

the price for class-1 customers. Given that n1 < n∗1 as we proved in Lemma 1, the total revenue

ΠPI = n1P 1(γ1) +N2P 2(γ2) is strictly less then ΠFI = n1P
∗
1 (γ1) +N2P

∗
2 (γ2). �

By proving that ∆Π is increasing with µ, we can claim the following: Let µ be the largest root

of ∆Π. If µ≤ µ2, then for all µ>µ2, ∆Π> 0, and the provider serves Λ = n1γ1 +N2γ2. Otherwise,

if µ>µ2, ∆Π< 0 for all µ2 <µ<µ and ∆Π> 0 for all µ>µ. In the first case, the provider serves

class-2 customers exclusively: Λ =N2γ2, while in the second case the provider serves both classes:

Λ = n1γ1 +N2γ2. �
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Proof of Proposition 5 We prove the proposition in several steps. Step 1. shows the result

for µ≤ µ2 – part of case 1 in the proposition. Step 2. considers the case where µ2 < µ <K2 and

µ2 ≤ µ̃ and establishes case 3a. and 3b. of the proposition. Step 3. considers the case µ2 <µ<K2

and µ̃ < µ2 establishing case 2 of the proposition. Finally Step 4. considers the case µ≥K2 which

establishes the remainder of case 1.

Step 1. For µ≤ µ2 the proof is exactly the same as in Proposition 4, case 1.

Step 2. If µ > µ2, the provider serves class-2 customers fully, n∗2 = N2. The provider considers

whether or not to also serve some class-1 customers. Recall constraint (9a):

n1 > 0 ⇒ W1 ≤
r1γ1− r2γ2

c(γ1− γ2)
− u1−u2

c(γ1− γ2)
= W̃ +

u2

c(γ1− γ2)
,

that is, if n1 > 0, the inequality must be satisfied.

We now consider cases 3a. and 3b. at the same time. We determine value of µ and verify that

3a. holds for µ< µ̃ and 3b. holds if µ≥ µ̃.

Recall that µ̃ is the minimum capacity that is required in order to serve class-1 customers with

u2 = 0. For µ < µ̃, if n1 > 0, the minimum waiting time for class-1 customers does not satisfy

constraint (9a):

W1 =
1

µ−n1γ1

>
1

µ
>

1

µ̃
= W̃ .

Therefore, we require that class-2 customers receive consumer surplus, i.e., u2 > 0. Recall n1 is

the optimal number of customers that are served when u2 > 0. We argue as before that under

maximization, W1 is tight, i.e.,

W1 =
1

µ−n1γ1

.

Solving (9a) at equality we find

u2 =
c(γ1− γ2)

µ−n1γ1

− (r1γ1− r2γ2) =

(
r1γ1− r2γ2

µ−n1γ1

)[
c(γ1− γ2)

r1γ1− r2γ2

− (µ−n1γ1)

]
=

(
r1γ1− r2γ2

µ−n1γ1

)
(µ̃−µ+n1γ1)> 0.

Therefore, when µ < µ̃, the provider compares the expected revenue from serving class-2 cus-

tomers exclusively and fully (as in solution ii) and the expected revenue from serving n1 class-1

customers also (as in solution iii). We define ∆Π = Π1−Π0. In Lemma 4 we prove that there exists

a threshold µ such that for µ<µ, ∆Π< 0, and for µ>µ, ∆Π> 0.

Although µ always exists, it is not always a threshold between two different policies. When µ≥ µ̃,

the provider can satisfy constraint (9a) by serving class-1 customers with full priority and u2 = 0.

Therefore, for µ ≥ µ̃ we compare the revenue when u2 > 0 (as in solution iii, when Π = Π1) and

when u2 = 0 (as in solution iv, when Π = Π̂1 ).

We distinguish between two cases:
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a. When µ < µ̃: we show that there exist a threshold µ̂ > µ̃ such that for µ < µ̂, Π1 > Π̂1 and for

µ̂ < µ<K1, Π1 < Π̂1. Therefore, for µ< µ solution (ii) holds; for µ≤ µ< µ̂ solution (iii) holds;

and for µ̂≤ µ<K1 solution (iv) holds.

b. When µ≥ µ̃: we show that for µ̃≤ µ<K1, Π1 < Π̂1. Therefore, for µ< µ̃ solution (ii) holds; and

for µ̃≤ µ<K1 solution (iv) holds.

In Lemma 5 we find the value of n̂1, which is defined in solution (iv). In Lemma 6 we show that

both n1 and n̂1 increase with µ, although n̂1 increases faster with µ. We also show that it is not

feasible to serve n1 if n1 < n̂1.

We use Lemma 6 to prove Lemma 7. Lemma 7 states that if µ< µ̃ there exists µ̂ such that for

µ< µ̂ the optimal solution is to serve n1 with u2 > 0, and for µ> µ̂ the optimal solution is to serve

n̂1 with u2 = 0. Otherwise, if µ≥ µ̃, then for µ> µ̂ the optimal solution is to serve n̂1 with u2 = 0.

It is left to show that in both cases, the revenue is less then the revenue of the FI solution. From

Lemma 3, Π<Π∗. In Lemma 8 we show that Π̂<Π∗.

Lemma 4 Let ∆Π = Π1 − Π0. There exists µ such that for µ < µ, ∆Π = Π1 − Π0 < 0, and for

µ≥ µ, ∆Π≥ 0, where the inequality is strict for µ>µ.

Proof of Lemma 4 The proof that such µ exists is similar to the proof of Proposition 4 with

the exception that µ always exists in the current case. To be precise, the difference is in statement

iii of Lemma 2: In the current case, r2γ2− r1γ1 < 0. Therefore N1
N2
> 0> r2γ2−r1γ1

r1γ1
, and follows from

that lim
µ→∞

∆Π> 0 always. Therefore, by the intermediate value theorem, µ>µ2 is well defined. �

Lemma 5 Π̂1 is increasing with n̂1 and is maximized at

n̂1 =
µ− µ̃
γ1

. (26)

Proof of Lemma 5 From (9a) with u1 = u2 = 0:

W1 =
1

µ− n̂1γ1

≤ 1

µ̃
= W̃ ,

which implies that

n̂1γ1 ≤ µ− µ̃. (27)

Let Π̂1 be the revenue from serving n̂1 with u2 = 0. Then

Π̂1 =N2γ2(r2− cW2) + n̂1γ1(r1− cW1), (28)

where

W1 =
1

µ− n̂1γ1

,
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and

W2 =
µ

(µ− n̂1γ1)(µ− n̂1γ1−N2γ2)
.

As we argued above,

n̂1γ1W1 +N2γ2W2 = (n̂1γ1 +N2γ2)W =
n̂1γ1 +N2γ2

µ− n̂1γ1−N2γ2

.

Substituting it into (28), we get:

Π̂1 =N2γ2r2 + n̂1γ1r1−
c(n̂1γ1 +N2γ2)

µ− n̂1γ1−N2γ2

(29)

Taking the derivative of Π̂1 with respect to n̂1

∂Π̂1

∂n̂1

= γ1

[
r1−

cµ

(µ− n̂1γ1−N2γ2)2

]
(30)

From Proposition 4, for µ>µ2,

r1 =
cµ

(µ−n∗1γ1−N2γ2)2
. (31)

To show that the derivative given in (30) is positive, it is enough to show n∗1 > n̂1. From equation

(31) we get:

n∗1γ1 = µ−N2γ2−
√
cµ

r1

. (32)

From (27), n̂1γ1 ≤ µ− µ̃. Therefore, to show that n∗1 > n̂1, we require

N2γ2 +

√
cµ

r1

< µ̃. (33)

Inequality (33) is equivalent to µ< r1(µ̃−N2γ2)2/c, which is the upper bound of µ in the current

case. Therefore, we can conclude that the derivative (30) is positive, and Π̂1 is increasing with n̂1.

As a result, Π̂1 is maximized at n̂1 = (µ− µ̃)/γ1. �

Lemma 6 (a) ∂n̂1/∂µ> ∂n1/∂µ> 0 and (b) n1 < n̂1 implies u2(n1)< 0.

Proof of Lemma 6 (a) By Lemma 5, n̂1 = (µ− µ̃)/γ1. Therefore,

∂n̂1

∂µ
=

1

γ1

> 0. (34)

Recall from Lemma 1, that for n1 < N1, n1 is defined as the solution of the following implicit

equation:

r1−
cµ

(µ−n1γ1−N2γ2)2
− N2c(γ1− γ2)

(µ−n1γ1)2
= 0.

We use this equation to calculate implicitly the derivative of n1 with respect to µ:

−
c(µ−n1γ1−N2γ2)2− 2cµ(µ−n1γ1−N2γ2)(1− γ1

∂n1
∂µ

)

(µ−n1γ1−N2γ2)4
+

2N2c(γ1− γ2)(1− γ1
∂n1
∂µ

)

(µ−n1γ1)3
= 0,
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then
∂n1

∂µ
=

1

γ1

(
1− (µ−n1γ1−N2γ2)(µ−n1γ1)3

2µ(µ−n1γ1)3 + 2N2(γ1− γ2)(µ−n1γ1−N2γ2)3

)
,

and since

0<
(µ−n1γ1−N2γ2)(µ−n1γ1)3

2µ(µ−n1γ1)3 + 2N2(γ1− γ2)(µ−n1γ1−N2γ2)3

=
(µ−n1γ1)3

2 µ
(µ−n1γ1−N2γ2)

(µ−n1γ1)3 + 2N2(γ1− γ2)(µ−n1γ1−N2γ2)2

<
(µ−n1γ1)3

2(µ−n1γ1)3
=

1

2

where the second inequality follows since µ>µ−n1γ1−N2γ2 and γ1 >γ2. Therefore

1

γ1

>
∂n1

∂µ
> 0

and from (34), ∂n̂1/∂µ> ∂n1/∂µ> 0.

(b) Recall from (18) the definition of u2:

u2 =
c(γ1− γ2)

µ−n1γ1

− (r1γ1− r2γ2)> 0 if n1 > 0.

When substituting n̂1 = (µ− µ̃)/γ1 into u2, we get:

u2(n̂1) =
c(γ1− γ2)

µ− n̂1γ1

− (r1γ1− r2γ2) =
c(γ1− γ2)

µ− µ−µ̃
γ1
γ1

− (r1γ1− r2γ2)

=
c(γ1− γ2)

µ̃
− (r1γ1− r2γ2) = (r1γ1− r2γ2)− (r1γ1− r2γ2) = 0.

When n1 > n̂1, then

u2(n1) =
c(γ1− γ2)

µ−n1γ1

− (r1γ1− r2γ2)<
c(γ1− γ2)

µ− n̂1γ1

− (r1γ1− r2γ2) = 0.

Therefore when n1 > n̂1, u2(n1)< 0. u2 < 0 is a contradiction to the IR constraint (9f) and therefore

is not a feasible solution. �

Lemma 7 If n1(µ̃) = 0, then it is optimal to serve n̂1 class-1 customers. Otherwise, if n1(µ̃)> 0,

there exists µ̂ such that for µ < µ̂ it is optimal to serve n1 class-1 customers, and for µ > µ̂ it is

optimal to serve n̂1 class-1 customers.

Proof of Lemma 7 By the definition of n̂1 given in (26), n̂1(µ̃) = 0. So

Π̂1(µ̃) =N2γ2(r2− cW (µ̃)) = Π0(µ̃).

We first consider the case where n1(µ̃) = 0. The definition of µ implies Π1(µ̃) = Π0(µ̃). Therefore,

Π1(µ̃) = Π̂1(µ̃). By Lemma 6(a), ∂n̂1/∂µ > ∂n1/∂µ > 0. By Lemma 6(b) it is not feasible to serve

n1. Thus, for µ̃ < µ<K1 the provider serves n̂1.
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Next, we consider the case where n1(µ̃)> 0. The definition of µ implies Π1(µ̃)>Π0(µ̃). Therefore,

Π1(µ̃)> Π̂1(µ̃), so it is optimal to serve n1 at µ̃. By Lemma 6a, ∂n̂1/∂µ > ∂n1/∂µ > 0. Therefore,

there exists µ̂ > µ̃ such that n1(µ̂) = n̂1(µ̂), and for µ̃ < µ < µ̂, n1 > n̂1 and for µ> µ̂, n1 < n̂1. We

now show that µ̂ also satisfies Π1(µ̂) = Π̂1(µ̂). Recall from (19):

Π1 = (n1 +N2)r1γ1−
c(n1γ1 +N2γ2)

µ−n1γ1−N2γ2

− cN2(γ1− γ2)

µ−n1γ1

.

and from (29):

Π̂1 =N2γ2r2 + n̂1γ1r1−
c(n̂1γ1 +N2γ2)

µ− n̂1γ1−N2γ2

.

Then for µ= µ̂,

Π1(µ̂)− Π̂1(µ̂) =N2(r1γ1− r2γ2)− cN2(γ1− γ2)

µ− n̂1γ1

=N2

(
r1γ1− r2γ2−

c(γ1− γ2)

µ̃

)
= 0.

where from (11), µ̃= c(γ1− γ2)/(r1γ1− r2γ2).

We now prove by contradiction that µ̂ is the only intersection point between Π1 and Π̂1. Assume

that there exists µ̃ < µ̇ < µ̂ such that µ̇ is also an intersection point between Π1 and Π̂1, i.e.

Π1(µ̇) = Π̂1(µ̇). Recall n1(µ̇)> n̂1(µ̇). Let W 1 be the waiting time of class-1 when serving n1, let

Ŵ1 be the waiting time of class-1 when serving n̂1, and let W 2 and Ŵ2 be the complementary

waiting time of class-2 customers, respectively. Recall the revenues:

Π1 = n1(r1− cW 1)γ1 +N2[(r2− cW 2)γ2−u2],

Π̂1 = n̂1(r1− cŴ1)γ1 +N2(r2− cŴ2)γ2.

Note that when the number of prioritized customers increases, the waiting time for both prioritized

and non-prioritized customers increases. Further, as the waiting time increases, the price paid

by each customer decreases. Therefore if n1 > n̂1, (r1 − cW 1)γ1 < (r1 − cŴ1)γ1. Because u2 > 0,

(r2−cW 2)γ2−u2 < (r2−cW 2)γ2 < (r2−cŴ2)γ2. Therefore for µ̃ < µ< µ̇, Π1(µ)> Π̂1(µ) is a result

of n1 > n̂1. For µ̇ < µ≤ µ̂, by Lemma 6a, both n̂1 and n1 increase, but the increase in n̂1 is larger

then the increase in n1. Therefore for µ̇ < µ≤ µ̂, Π̂1 >Π1, which is a contradiction to the equality

of the revenues at µ̂. Therefore such µ̇ < µ̂ does not exist and for µ̃ < µ < µ̂ it is optimal to serve

n1.

Next, we prove that for µ̂ < µ<K1, it is optimal to serve n̂1. By Lemma 6(a), when µ̂ < µ<K1,

then n̂1 >n1. By Lemma 6(b) it is not feasible to serve n1 in this region. Thus, the optimal solution

is to serve n̂1. �

Lemma 8 Π̂<Π∗.
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Proof of Lemma 8 From (32) and (33), n̂1 < n∗1 when µ̃ ≤ µ < K1. Therefore, n̂1 is a feasible

solution for the FI problem. Noting n∗1 is the optimal solution of the FI problem

Π∗ = n∗1γ1 +N2γ2−
c(n∗1γ1 +N2γ2)

µ−n∗1γ1 +N2γ2

< n̂1γ1 +N2γ2−
c(n̂1γ1 +N2γ2)

µ− n̂1γ1 +N2γ2

= Π̂

�

It is left to show that when K1 ≤ µ < K2 solution (v) holds. Since µ ≥K1 = r1(µ̃−N2γ2)2/c,

then µ̃≤N2γ2 +
√
cµ/r1. In the FI setting, for µ > µ2, r1 = cµ/(µ−n∗1γ1−N2γ2)2. Therefore we

can write:

n∗1γ1 = µ−N2γ2−
√
cµ

r1

, (35)

and

W1 =
1

µ−n∗1γ1

=
1

N2γ2 +
√

cµ
r1

≤ 1

µ̃
= W̃ . (36)

Therefore, for µ≥K1, it is possible to satisfy constraint (9a) when serving n∗1. Note that W1 = W̃

only when µ = K1. Following (36), it is possible to serve n∗1 class-1 customers by giving them

priority W ∗
1 within the interval: [W1, W̃ ]. Letting W ∗

2 be the minimum complementary required

waiting time, we find

W2 =
µ

(µ−n∗1γ1)(µ−n∗1γ1−N2γ2)
.

Next, we show that for µ<K2, W1 <W . Recall that W is the FIFO waiting time, where

W =
1

µ−n1γ1−N2γ2

.

Substituting in n∗1 from (35),

W =
1

µ−n∗1γ1−N2γ2

=
1√
cµ
r1

.

But when µ<K2 = r1µ̃
2/c, then µ̃ >

√
cµ/r1. Therefore

W =
1√
cµ
r1

>
1

µ̃
= W̃ ≥W1.

Therefore W1 <W .

It is left to show that the value of the solution of the PI problem is equal to the value of the

solution of the FI problem:

Π = n∗1γ1(r1− cW ∗
1 ) +N2γ2(r2− cW ∗

2 ) = n∗1γ1r1 +N2γ2r2− c(n∗1γ1W
∗
1 +N2γ2W

∗
2 )

= n∗1γ1r1 +N2γ2r2− cW = Π∗.
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Step 3. Recall n∗1 as the number of class-1 customers that are optimally served in the FI problem.

If µ̃ < µ2, then for µ > µ2, µ− n∗1γ1 ≥ µ2 > µ̃. Therefore, W1 = 1
µ−n∗1γ1

< 1
µ̃

= W̃ and constraint

(9a) is satisfied.

Step 4. As in case 3., when the provider serves n∗1,

W =
1

µ−n∗1γ1 +N2γ2

=
1√
cµ
r1

.

Because µ≥K2 = r1µ̃
2

c
,
√

cµ
r1
≥ µ̃. Therefore

W =
1√
cµ
r1

≤ 1

µ̃
= W̃ .

So, when µ≥K2, constraint (9a) is satisfied with W1 =W . As a result, Π = Π∗. �
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Appendix B: Details of cases in Proposition 5

The solution classes are:

(i) n1 = n∗1, n2 = n∗2, u2 = 0, W1 = W . Prices are fixed and equal to those of the FI solution,

equation 2:

P ∗i = (ri− cWi)γi, i= 1,2,

and the revenue is Π∗(µ), which is equal to the revenue of the FI solution.

(ii) n1 = 0 and therefore W1 is not defined, n2 =N2, u2 = 0. Since r2 > r1 then r2−CW > r1−CW ,

and the provider can achieve this solution by publishing a single per-use price:

P (γ) = (r2− cW )γ.

This price per-use does not satisfy the IR constraint of class-1, and therefore they will not

join, and the revenue under this solution is designated as Π0(µ). We show that Π0(µ)<Π∗(µ).

(iii) n2 =N2, u2 > 0 and W1 <W . This solution is the same as the solution presented in Prop. 4

case 2. In the same way, we define n1 as was defined in Lemma 1, and therefore n1 <n
∗
1. The

price functions are the same as in Lemma 3:

P 1(γ) = (r1− cW1)γ1 ≥ P ∗1 (γ1),

P 2(γ) = (r2− cW2)γ− c(γ1− γ2)

µ−n1γ1

+ (r1γ1− r2γ2)≤ P ∗2 (γ2),

which means subscription price for class-1 and two-part tariff for class-2. Let the revenue

under this solution be Π1(µ). We show that Π1(µ)<Π∗(µ).

(iv) n2 = N2, u2 = 0, and W1 <W . Let n̂1 be the optimal number of class-1 customers that are

served: 0< n̂1 <n
∗
1. Then the price functions are:

P̂1(γ) = (r1− cW1)γ1

P̂2(γ) = (r2− cW2)γ,

which means subscription price for class-1 and per-use price for class-2. Let the revenue under

this solution be Π̂1(µ). We show that Π̂1(µ)<Π∗(µ).

(v) n1 = n∗1, n2 =N2, u2 = 0, W1 <W . Then prices are defined as in solution (iv):

P̂1(γ) = (r1− cW1)γ1

P̂2(γ) = (r2− cW2)γ,

but since the number of customers that are served from both classes are the same as in the

FI solution, we show that the revenue equals to Π∗(µ).



Afèche, Baron, Milner, and Roet-Green: Pricing and Prioritizing Time-Sensitive Customers
38 Article submitted to Operations Research; manuscript no.

References
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