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Abstract

This paper studies an M/G/1 production system serving several customer classes. We
show that the Multilevel Rationing (MR) policy, that has been shown to be optimal in
the M/M/1 case is not optimal in general. We propose another policy, which we call
the extended MR (EMR). The EMR policy exploits the information on the number of
all waiting customers at arrival epochs to assess the residual service time. We establish
conditions under which the EMR policy is optimal and extend the conditions under
which the MR policy is optimal.

1 Introduction

Consider a single machine that produces a single item in an M/G/1 environment. Customers
arrive according to a Poisson process and production times are i.i.d. and independent of the
arrival process. Each customer’s demand is for a single unit and demand arriving when there
are no items in stock is being backlogged. There are n classes of customers defer from each
other only by their backlog costs. Also, there is a linear (in both time and items) inventory
holding cost. A central planner faces two types of decisions: allocation–whether to allocate
an item and to whom and production –whether to produce another item or to idle. The
central planner’s objective is to minimize the average cost per unit of time. In particular, a
policy is optimal if no other policy has a smaller average cost per unit of time.

Due to the stationary nature of the problem and memoryless of the arrival process, a simple
regeneration argument establishes that the optimal production policy is a stationary base
stock level policy. In such policies items are make-to-stock until the base stock level, S is
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reached and production is stopped only when there are S items in stock. Of course, finding
the optimal base stock level, S∗, still remains a question.

Three policies that were considered in the literature to control make-to-stock systems are
the First Come First Served (FCFS), the Multi-level rationing (MR), and the strict priority
policies. In the FCFS policy, when a decision to allocate an item is made, the items are
allocated to the customer who is waiting the longest independent of this customer’s type.
The FCFS policy is not optimal because, for example, when there are backlogs and an
item is allocated, it is better to allocate the item to the customer with the highest backlog
cost. The MR policy is defined by a base stock level S and a sequence of rationing levels
0 = L1 ≤ L2 . . . ≤ Ln ≤ Ln+1 = S, such that an item is allocated to a class j ≥ i
customer if and only if the stock level is at least Li. Within classes j ≥ i items are allocated
in a FCFS fashion. The strict priority policy is a special case of the MR policy where
0 = L1 = L2 . . . = Ln ≤ Ln+1 = S. That is with a strict priority policy items are allocated
FCFS as long as there is inventory and are prioritized when there is backlog.

The problem of minimizing the average cost of a make-to-stock system with priorities was
first investigated by Ha (1997). His work and much of the following one focused on the
M/M/1 settings. de Vericourt et al. (2002) show that the MR policy is optimal for the
M/M/1 make-to-stock queues. Recently, Abouee-Mehrizi et. al. (2012) provided the exact
analysis of the strict priority and MR policies for the M/G/1 settings. They characterize
the backlog cost for each customer class by considering a M/G/1 backlog queue for this
class. These backlog queues were calibrated to have backlog cost identical to the one in the
original system by extending the results of Kerner (2008) with respect to the distribution
of the residual service time observed by arrivals. Recently, Economou and Manou (2015)
provided a more intuitive derivation for these distributions. Abouee-Mehrizi et. al. (2012)
note that the MR policy may not be optimal in these settings.

While in the M/M/1 settings information on the time spent in a specific inventory and
backlog levels has no value due to memoryless of the arrival and production processes, such
information may be valuable in the M/G/1 settings. For example, consider the case of
deterministic service time of length M = 5 hours. Assume that we observe that an hour
after production starts a low priority customer arrives and that the inventory level is such
that it is optimal to backlog this customer. If there are no additional high priority arrivals
after 3 more hours we know that the next production will be completed within an hour. In
such a situation, we may reduce the cost by allocating an item from stock to a low priority
customer (even before the next production completion). While such a control that relay on
full information may be optimal, it requires a continuous review of the system and thus is hard
to implement. We therefore focus on finding the optimal policy within the class of policies
that only take actions at arrival and service completion times, based on the information on
the inventory and backlog positions at these times. Such policies are more applicable than
polices that require full information. We further note that policies within this class are
static and they do not use a watch, that is the information on the time passed since the



last arrival or production completion is not kept. However, such policies could still use
the information on the inventory and backlog to estimate the time to the next production
completion and then use this estimation to reduce costs. Furthermore, the analysis and
results below can be extended to cases with full information where a watch (i.e., information
on the time elapsed since the last production starts) is available in a straight forward manner
using the distribution of residual service time. Applying the resulting controls would reduce
costs in these settings. This extension is straight forward and we comment to it in the paper‘s
conclusion.

We propose the Extended MR (EMR) policy that takes allocation and production decisions
only at arrivals and departures based upon the inventory and backlog positions at these
times. This policy exploits the information on the residual service time given the level of
backlog (queue length) to improve the control of the system. We use queue decomposition
of the M/G/1 system with state dependent arrival rate, in the spirit of Abouee-Mehrizi and
Baron (2015). We show that the EMR policy may reduce the costs of an M/G/1 make-to-
stock system and that it is optimal when production times distributions are with Increasing
Failure Rate (IFR). We further discuss the optimality of this policy for other service time
distributions.

We describe the EMR policy in section 2. In section 3 we express the cost function for a given
EMR policy, discuss cases where the EMR policy is optimal, and demonstrate numerically
the benefit of the EMR policy over the MR policy. In section 4 we summarize the paper.

2 The EMR Policy

There are n classes of customers. The arrival process of class i is Poisson with rate λi and the
total arrival rate is λ =

∑n
i=1 λi. The backlog cost of a class i customers is bi per customer

per unit of time. We assume, without a loss of generality, that b1 > b2 > ... > bn. The
holding cost is h per item per unit of time. Let G(·) be the cumulative distribution of the
production time and let M =

∫∞
0
xdG(x) be the mean production time. Assume for stability

that ρ = λM < 1. The objective is to minimize the long run average holding and backlog
cost per time unit. For any given stationary policy (for convenience we omit the dependency
in the policy from the notation), let Bi be a random variable having the distribution of the
number of class i backlogged customers and I be a random variable having the distribution
of the stock level, both under steady state. The optimization problem is to find a policy that
minimizes the steady state cost

min

{
hE (I) +

n∑
i=1

biE(Bi)

}
.

We observe that because the problem is stationary and the only information known at any



arrival or departure time t is the inventory level I (t) and the backlog levels Bi (t) i = 1, ..., n,
there is an optimal policy that is stationary with a base stock level. This observation holds
because for any positive integer S, production completions epochs that leave the stock with
level S are renewal epochs. Thus, if not producing at some level S is optimal once, it is
always optimal. Note also that, given this objective function, once it is optimal to allocate
an item when two customers are backlogged it is better to allocate the item to the customers
with the higher backlog cost. However, deciding when it is optimal to allocate an item to
customers is not as clear. This allocation decision captures the tradeoff between reducing
costs for holding and backlog of low priority customers and the potential reduction of backlog
cost for (future) high priority arrivals.

In the MR policy, this tradeoff is reflected in the sequence of rationing levels 0 = L1 ≤ . . . ≤
Ln < Ln+1 = S, such that an existing or arriving class i customer receives an item if and
only if at her arrival time, t, the inventory level is strictly above Li, i.e., I (t) > Li. The MR
policy controls the risk of backlogging future i−priority arrivals by only allocating inventory
to classes j ≤ i if I (t) > Li.

We define the EMR policy as follows: the production policy is according to a base stock level
S, i.e., items are produced if and only if the stock level is less than S. The EMR policy is
further characterized by n − 1 rationing levels 0 ≤ L2 ≤ . . . ≤ Ln < S as in the MR policy
and, in addition, n − 1 sets of integers Ã1, . . . , Ãn−1. At production completion epochs the
EMR policy behaves exactly as the MR policy – it allocates the item to the highest priority
customer class that requires it in a FCFS manner within this class whenever the MR policy
does. However, at arrival epochs, at time t, an item is allocated to a class i customer if and

only if (i) I (t) > Li, as in the MR policy, or (ii) I (t) = Li and
n∑
j=i

Bj ∈ Ãi. An important

example for the set Ãi is Ãi = {qi, qi + 1, ...}, i.e., an item is allocated to class i customer if
the stock level is Li and the total number of backlogged customers is at least qi.

We note that: when I (t) = Li, we have
∑n

j=1Bi (t) =
∑n

j=iBi (t). The allocation in case
(ii) is the extension of the MR policy. In this case, the EMR policy may reduce the inventory
level, I (t) to Li − 1 due to an allocation to a class i arrival; this is in contrast to the MR
policy that allocates items to class i only if the inventory level after this allocation is Li or
higher. This choice of the MR policy is equivalent to letting Ãi = ∅, ∀i in the EMR policy
(alternatively, setting LEMR

i = LMR
i −1 and Ãi = {0, 1, . . .} ∀i, also reduces the EMR policy

to an MR one).

The motivation behind the EMR policy is that while the MR policy ignores the number of
backlogged low priority customers, this information is valuable when production follows a
general distribution. The EMR policy uses the number of backlogged customers to better
quantify the risk of backlogging future high priority customers. It can better quantify this
risk because at any arrival epoch the probability of backlogging a future customer depends
on the distribution of the residual production time of the current item. In the M/G/1
queue several authors e.g., Boxma (1983) and Kerner (2009), show that the distribution of



this residual production time depends on the total number of customers in the system. The
EMR policy uses this improved information to refine the thresholds of the MR policy as
above.

It is important to point out that unlike the M/G/1 with priorities and class dependent
service times, assessing the remaining production time only depends on the total number of
backlogged customers. That is the distribution of the residual production time depends on
the total number of backlogged customer and not on their types. An intuitive justification
for the latter is that our M/G/1 can be looked at as an M/G/1 with a single arrival process,
where upon arrival each customer is assigned to a class with probability that is proportional
to the class arrival rate. This assignment holds for the Poisson arrival case and is independent
of the remaining production time.

3 Cost of the EMR Policy

In this section we derive the optimal EMR policy and its corresponding cost in two steps.
First, we find the optimal MR policy as in Abouee-Mehrizi et. al. (2012). In the second step

we investigate cases where the inventory level is Li and
n∑
j=i

Bj > 0. In these cases, violating

the MR policy and allocating items to class i customer may imply a backlog cost of future
high priority arrivals, but saves holding and backlog costs. We derive the difference between
the expected cost and saving implied by violating the MR policy. The set Ãi contains all
the integers where this difference is negative; And the EMR policy allocates items to type i
customers (assuming such exists) whenever the total backlog is in this set.

We present here the method for the case n = 2 and explain the generalization for n > 2
later. We refer to class 1 as the high priority class and to class 2 as the low priority class. For
simplicity of the exposition, and to avoid trivialities, we assume that the system’s parameters
are such that L2 < L3 = S > 0.

Remark: The description of the two steps procedure above is helpful in conceptually under-
standing the idea behind the EMR: calculate the cost difference of deviating from the MR
policy and change the allocation if this difference is negative. This description focuses on
cases where it is beneficial to allocate items before the MR policy does. Similarly, there are
cases in which it is beneficial to allocate items later than the MR policy does. Such cases may
occur when the queue length indicates that the remaining production time is significantly
long.



3.1 Cost Difference

Assume the stock level L2 and a positive number of low priority customers, i.e., B2(t) > 0.
Also, assume that the residual production time upon a low customer arrival has a CDF F (·)
with mean mF . This distribution is that of the residual service time in the corresponding
M/G/1 queue. Being more concrete, given the number of the low priority customers present
B(t), and the inventory level I(t), the distribution F is the distribution of the residual service
time in M/G/1 queue, given that the number of customers present is B(t)+S−I(t). Explicit
formulas for such distribution are given in Kerner (2008). (One might think that the fact
that all backlogged customers are low priority customers should bias the distribution. Yet,
due to the memoryless property of the arrival process and that each arrival can be assigned
to a priority class randomly and independently, such a bias does not exist.)

Upon a low priority arrival there are two alternatives. The first is to allocate an item to the
arriving customer and the second is to follow the MR policy. A key observation here is that
the time until the stock level would return to L2, under the EMR policy (when allocating
the item) is identical to the time until the item is allocated to this customer under the MR
policy. In other words, the impact of deviating from the MR policy on the future is limited
to a time that is distributed as a busy period in an M/G/1, serving only class 1 customers
(i.e., with arrival rate λ1) the exceptional service level, distributed as F , and regular service
times distributed as G. First, the time until we will have another unit in the inventory is a
busy period of an M/G/1 queue, but the first service time in this busy period is distributed
differently (because it is a residual production time). This is because some high priority
customers may arrive before the next production completion. Second, at the end of this busy
period, the inventory level will be L2 independently of the current allocation decision: if we
allocated to this low priority customer at the beginning of the busy period, the inventory
went down to L2 − 1 but another unit was added to the inventory at the end of the busy
period (because the demand of this low priority customer was already satisfied); and if we
didn’t allocate to this customer at the beginning of the busy period, we will allocate this
unit at the end of the busy period, that is instead of letting the inventory climbed to L2 + 1
a unit is allocated to this low priority customer.

In the sequel, the term system refers to the M/G/1 queue with exceptional first service time
described above and the term customers refers only to high priority customers. (The analysis
ignores the number of low priority customers because it does not decrease before the end of
the busy period under either policy.)

We denote a random variable with the distribution of such a busy period by τF and recall
that E(τF ) = mF

1−ρ1 , see e.g., Takagi (1991) . Also, let τ−F,L be the expected amount of time
during τF when the number of customers in the system is strictly less than L2, i.e., the
expected time that there is no backlog of high priority customers. Finally, Let Q1 be the
number of (high priority) customers in the system under the EMR policy.



Before stating and proving theorem, we provide the cost of deviating from the MR to the
EMR.

Theorem 3.1. The cost savings of deviating from the MR to the EMR-policy, i.e., the cost
implied by violating the MR policy and allocating an item to a low priority customer is,

Cd(F ) = b2E(τF ) + hτ−F,L − b1(E(τF )− τ−F,L), (1)

where
τ−F,L =

mF

1− ρ1
P (Q1 < L2). (2)

Proof: When the controller allocates an item to a low priority customer, the direct saved
cost is b2E(τF ) from the backlog cost plus hτ−F,L from the holding cost. Yet, there is an
opportunity cost–a high priority customer might be backlogged as a consequence of the
inventory reduction. The expected opportunity cost is b1 multiplied by the expected time
during the busy period τF when the number of customers in the system is at least L; this
expected time is E(τF )−τ−F,L. Finally, (2) follows by a renewal argument, , where P (Q1 < L2)
can be obtain from e.g., Takagi (1991).�

Figure 1 clarifies the statement in Theorem 3.1 using a sample path argument. As long as the
queue length does not exceed L2, (τ−F,L time units in expectation), there is no backlog of high
priority customer. Thus, an holding cost and a backlog cost of a single high priority customer
are saved. However, when the queue length exceeds L2 (above the horizonal line in the figure)
there is a backlog of high priority customers, while a backlog of one low priority customer
could be saved by allocating to her. Thus, the expected cost difference is the holding cost
and backlog cost of a single low priority customer, minus a potential backlog cost of a high
priority customer. In case the above cost deviation is negative, the EMR will allocate an
item and its updated cost is that of the MR policy minus the cost difference in (1).

We next address the question of whether the EMR policy is optimal among the policies that
only take actions at arrival and production completion times given the inventory and backlog
positions at these times. It is clear from Theorem 3.1 that the optimal EMR policy leads to
a lower cost than the optimal MR one. However, while the EMR’s initial allocation decision
is done as early as profitable (at the beginning of the relevant busy period), it is possible
that additional allocation within such busy periods would further reduce costs. We note
that, such cases might occur only when production times have a distribution with extremely
non-smooth hazard rate function (that cause non-monotone behavior); thus we conjecture
that such cases are rare. In Section 3.3 we establish that the EMR policy is optimal for a
family of production time distributions.

We point out that there is no guarantee that the optimal base stock level under the MR
policy is also optimal under the EMR policy. Furthermore, in the M/M/1 case, the optimal
EMR coincides with the optimal MR policy. This is because the The EMR is based on
the conditional distribution of the reaming production time, which in the M/M/1 case, is
independent of the queue length.
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Figure 1: Sample path of the shortfall (S-inventory) level under EMR during a busy period

3.2 Comparing States

In this subsection we characterize a partial order between states in terms of their cost differ-
ences, and specify the cases of production times distribution in which this order is complete.

Theorem 3.2. Consider two M/G/1 queueing systems, each with an exceptional first service
time in each busy period. The two queues have the same arrival rate and the same service
time distributions (beside the first, exceptional, service in each busy period). Let Fi be the
CDF of the exceptional service time in queue i. If F1 is stochastically larger1 than F2 then
Cd(F1) > 0⇒ Cd(F2) > 0.

Proof: First, dividing (1) by E(τF ) = µF
1−ρ1 , we get

Cd(F )

E(τF )
= (h+ b1)

τ−F,L
E(τF )

+ b2 − b1.

Also, recall that
τ−Fi,L

E(τFi
)

= P (Qi < L).

Thus, the statement in Theorem 3.2 is equivalent to the statement P (Q1 < L) < P (Q2 < L).

We prove the latter by coupling the two queueing processes. Let Qi(t) be the number of
customers in system i at time t. Assume that Qi(0−) = 0 and Qi(0+) = 1, i = 1, 2. Let

1F1 is said to be stochastically larger than F2 if F1(x) ≥ F2(x) ∀x, with strict inequality at least at one
point.



Aij, i = 1, 2, j = 1, 2, . . . be the jth exceptional service time of Qi(·). We construct A1j and
A2j coupled. More precisely, let F−1i be the inverse of Fi (or the pseudo inverse if the inverse
does not exist2) and let Uj, j = 1, 2, ... be a sequence of i.i.d. U(0, 1) random variables. We
have Aij = F−1i (Uj), i = 1, 2 and j = 1, 2, ... and note that A1j ≥ A2j with probability 1.
Furthermore, there are nonnegative random variables Xj such that A1j = A2j + Xj . The
other service times in both queues are according to the same sample path. The processes
Q1(t) and Q2(t) are not ordered. (An easy way to see this is by observing that sometime the
first system may be empty while the second is not, whereas sometimes it is the other way
around.) Next, we define the two processes Q̃1(t), Q̃2(t) as follows. Take Qi(t) and change
the order of busy and idle periods by first putting all busy periods one after the other and
then all idle periods one after the other. That is, push all the idle periods that occurred
before time t forward after all the busy periods. Now, we have Q̃1(t) ≥ Q̃2(t) with probability
1. Moreover, the fractions of the levels of the original Qi processes and the new Q̃i processes
coincide. That is,for each L > 0,

lim
T→∞

1

T

T∫
0

I{Qi(t)<L}dt = lim
T→∞

1

T

T∫
0

I{Q̃i(t)<L}dt , i = 1, 2, . . .

Since the fraction

lim
T→∞

1

T

T∫
0

I{Qi(t)<L}dt

tends to the stationary probability P (Qi < L), our proof is completed.�

The application of Theorem 3.2 is as follows. Consider an arrival instant when n backlogged
customers are present and let Hn be the CDF of the random variable with the distribution
of a residual service time given n backlogged customers. By Theorem 3.2, if Cd(Hn) > 0
then for every m such that Hm is stochastically smaller than Hn we have Cd(Hm) > 0. We
next characterize the cases in which, for a given level L, the set of numbers n such that
Cd(Hn) > 0 is connected.

3.3 Monotone Failure Rates

In this Section we apply Theorem 3.2 to establish that threshold type EMR is optimal for
production times with monotone failure rate distributions. Specifically, as in Barlow and
Prochan (1996) we define:

Definition 3.1. A non-negative random variable X is said to be with Increasing (Decreasing,
respectively) Failure Rate (IFR, DFR, respectively) if P (X > t + s|X > t) is decreasing
(increasing, respectively) with t.

2The pseudo inverse of F is defined to be inf{x|F (x) ≥ y}.



Proposition 3.1. Let Li be the rationing level of class i according to the MR policy. That
is, according to the MR policy, an item is to be allocated to a class i customer if and only if
the inventory level is above Li.

If the production time is IFR then the optimal EMR policy is to allocate an item to a class

i customer if and only if: (i) I(t) > Li, or (ii) I(t) = Li and
N∑
j=1

Bj ≥ qi, where

qi = arg min
q
Cd(Hq) > 0.

Proof: It has been shown in Kerner (2009) that if the service time is IFR then Hn is
stochastically decreasing with n and in particular smaller than the service time distribution.
Thus, by Theorem 3.2, if there exists a q such that Cd(Hq) > 0, then Cd(Hq′) > 0 for any
q′ > q.�

Observing Proposition 3.1, we can see that in the IFR case, the optimal EMR policy is
globally optimal (among the policies we consider). This follows because the distribution of
the time required for the inventory to reach level L2 + 1 from a state (I (t) ≤ L2, B2 (t) > 0)
is monotone in both I (t) and B (t). The latter is true because the IFR property of the
production time, which implies that the remaining production time, given any information
is stochastically smaller than a new production time. Thus, following Theorem 3.2 and the
regeneration feature of the production completion times, there is no policy that improves
the optimal EMR.

One might think that in the DFR case, the optimal EMR policy would have an opposite
structure to the one in the IFR case. That is, since a small number of backlogged customers
indicates short elapsed production time and hence (due to the stochastic order of the DFR,
see Kerner, 2009) a short residual production time, the optimal EMR is to allocate when the
number of backlogged customers is small. However, a small number of backlogged should
only be considered when the inventory level is above the rationing level. But above the
rationing level there are no backlogs, so that the optimal policy for DFR is simply the MR
policy. To demonstrate this consider two cases regarding the optimal EMR. These two
cases differ at arrival epochs of a low priority customer who finds an empty system and
I (t) = L2 + 1. In the first case, the optimal action according to the EMR policy is not
to allocate. Then, because the residual production time is stochastically increasing in the
number of customers present and Theorem 3.2, the optimal action is not to allocate also when
there are more than one low priority customers present. So, the EMR would be equivalent
to MR with a higher rationing level (but this higher rationing level is suboptimal within
the MR policy class). In the second case the optimal action according to the EMR policy
is to allocate. We claim that this case is also equivalent to an MR policy (but with the
same rationing level). Letting F1 denote the residual production time at the first arrival,
the optimality of this allocation decision implies that Cd(F1) > 0. By the end of the busy
period (serving high class customers), the inventory and backlog positions will be I = L2



and B2 ≥ 0. Say that B2 = 1, upon the next production completion another allocation
to a class 2 customer is feasible or the inventory level could be raised. We observe that
upon production completion the distribution of the residual production time is simply G, the
distribution of a regular service time. We next claim that Cd(G) > 0 implies not to allocate
the item. This is true because after the production completion, you can choose between not
allocating the item and stay with I = L2 + 1 and B2 ≥ 1 or to allocate the item and move
to I = L2 with a backlog B2 − 1. However, by definition Cd(G) > 0 implies that allocating
the item when I = L2 + 1 is optimal, so that I = L2 with a lower backlog is better. Finally,
we recall that for DFR F1 ≥st G and thus by Theorem 3.2 that Cd(G) > 0 so for this EMR
policy it is optimal to satisfy the class 2 backlog rather than to increase inventory just as in
the original MR policy.

With the discussion in this section we conclude that the exponential production case, which
is both IFR and DFR and where it is established that MR is optimal has a special property.
This distribution is the last IFR distribution where MR is always optimal. For any other
IFR production distribution there may be some backlog cost and arrival and production
rate combinations where the EMR policy may reduce cost. In contrast for any other DFR
distribution the MR policy is optimal.

3.4 Numerical Examples: Erlang Service Times

To demonstrate the potential benefit of the EMR we consider several examples with IFR
production times: The Erlang distribution with 10 phases. In these examples we find the
optimal EMR policy for the case N = 2. For each example, we followed Proposition 3.1
and first derive the optimal MR policy using the method introduced in Abouee-Mehrizi et
al. (2012). The system’s analysis was done using Matrix Geometric technique. Then, we
calculate Cd(Hq) for each value of q ≥ 1. By proposition 3.1, the optimal threshold queue
length to allocate items to class 2 customers when I (t) = L1, q

∗, is the first with positive
cost difference.

We present two sets of experiments. In the first, we examined four cases with 15 tests in
each. Cases 1 and 2 are with system utility ρ = 300/301 = 0.99668. In case 1, 90% of the
total arrival rate is high priority and in case 2 the two arrival rates are equal. In Cases 3 and
4 the system utilization is ρ = 0.95. In case 3, 90% of the total arrival rate is high priority
and in case 4 the two arrival rates are equal. In all cases the holding cost is h = 1 and the
low priority backlog cost is b2 = 5. For each case we computed the optimal MR and EMR
policies and their costs for 15 values of the high priority backlog cost b1 = 6, 7, ..., 20. We
provide the results S (the base stock level), L1 (the rationing level), MR cost (the cost of
the MR policy), q∗, and cost saving with h = 1, for b = 6, 10, and 20 in Table 1 below.
These results are representative of all 15 tests. Figure 2 depicts the relative cost saving for
all 60 = 4 ∗ 15 experiments. We observe that the average cost savings is 1.8%. The cost
savings increase with the utilization and with the backlog cost b1.



In the second set of experiments, we simulated the holding cost h from the U(1, 5) distribu-
tion, for each of the above cases. This simulation was repeated 100 times. The mean and
standard deviation (SD) appear in the last two columns of Table 1 (again these results are rep-
resentable of all 15 tests). We observe that the average cost savings are 1.85%,2.17%,1.02%
and 1.12% for cases 1-4 respectively, and based on the standard deviation of these savings,
they are substantially different than 0.

Table 1: Summary of numerical results
Case b1 L S MR cost q cost saving w. h = 1 mean w. h random SD w. h random

1 6 1 19 336 1 0.78% 1.34% 0.03%
1 10 2 80 427 1 1.42% 2.06% 0.02%
1 20 4 163 615 2 2.64% 3.41% 0.05%
2 6 1 12 287 1 1.11% 1.61% 0.02%
2 10 1 27 355 1 1.73% 2.11% 0.04%
2 20 3 52 519 1 2.91% 3.63% 0.03%
3 6 3 9 191 1 0.49% 0.93% 0.01%
3 10 4 13 224 2 0.84% 1.25% 0.01%
3 20 6 18 298 2 1.42% 2.21% 0.02%
4 6 2 6 147 1 0.62% 1.14% 0.01%
4 10 2 8 183 1 1.02% 1.43% 0.01%
4 20 4 11 230 1 1.60% 2.32% 0.03%

0

0.5

1

1.5

2

2.5

3

3.5

5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

R
EL

A
TI

V
E 

C
O

ST
 S

A
V

IN
G

 (
%

)

HIGH PRIORITY BACKLOG COST

RELATIVE COST SAVING 

case 1 case 2 case 3 case 4

Figure 2: Relative cost saving varying with b1



From all of our experiments we observe that the EMR usage of the extra information on the
number of backlog is beneficial–it reduces the costs by an average of 1.4% and may be up
to 4% in our examples. As these cost reduction are gained with little effort and because
in practice most production times are close to IFR, we recommend using the EMR control
policy rather than the MR one.

4 Conclusions

In this paper we introduced and analyzed the EMR policy for the control of make to stock
queues with backlog and two priority classes. We establish that this policy that only takes
actions at arrival and service completion times, based on the information on the inventory
and backlog positions at these times–and is thus simple to implement, outperforms policies
previous such policies, such as the MR policy. When the production times are IFR, we
establish, numerically, that the EMR policy can reduce the average costs of such systems
by 1-2%. The main contributions of this paper are threefold. We establish that the EMR
control policy is a better, yet simple, control policy for make to stock queues under general
production times; we show that when production times are IFR and DFR the structure of
the optimal EMR policy is simple (in the DFR case it is simply MR); and we proved that
the optimal EMR policy is optimal for both the DFR and IFR cases (again, in the DFR
case the optimal EMR is simply MR). Extending the use and analysis of the EMR policy
to more customer classes is not hard. In particular, it can be done by deriving sequentially
the states for which it is fruitful to deviate from the MR policy, starting from the second-
highest priority level and going downwards. However, establishing its optimality for more
than two classes requires careful consideration of the different states the system can reach
under the EMR policy. With more than two classes, the difference between the MR and
EMR policies involves several different M/G/1 queues with first exceptional service time in
each busy period (for each queue). Thus, we leave the issue of optimality in such cases as
well as the extension of the EMR policy to the lost sales case for future research.

For M/G/1 make to stock system under more general policies-with continuous information
and controls-our approach and analysis suggest that EMR policies based upon the conditional
residual distributions of the service, G(x− t)/ (1−G(t)), as the exceptional service time in
each busy period, are optimal. That is, knowing the elapsed time since the beginning of
the production (instead of the queue length as an indicator for it), allows us to use the
conditional distribution of the remaining production time given the elapsed time. However,
establishing the optimality of this policy formally is outside the scope of this paper.
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