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This paper, motivated by a collaboration with a healthcare service provider, studies dynamic scheduling

policies (DSPs) for stochastic open-shop service networks with two objectives: more traditional macro-level

measures such as minimizing total system time or minimizing total tardiness and the atypical micro-level

measure of reducing the incidents of excessively long waits at any workstation within the process. While

work-conserving policies are optimal for macro-level measures, scheduling policies with strategic idleness

(SI) might be helpful for the micro-level measure. Using the empirical data provided by the service provider,

we give detailed statistical evidence that SI is used by its schedulers to effectively manage the micro-level

measure. However, the company has no specific rules on implementing SI and the schedulers make decisions

based on their own experience. Our primary goal is to develop a systematic framework for the joint usage of

DSPs with SI. We provide an efficient way to intelligently combine the SI and DSP such that the resulting

policies can simultaneously address both macro- and micro-level measures. We use a simulation model based

on empirical data to demonstrate that an open-shop service network can be managed in a systematic fashion

to deliver improved service level by the joint usage DSPs and SI.
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1. Introduction

The primary goal of this paper is to develop effective dynamic scheduling policies for

stochastic open-shop processes operating under multiple objectives. The system objectives
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may include a combination of the more traditional “macro-level” measures (such as mini-

mizing total system time and minimizing total tardiness) with the “micro-level” objective

seeking to limit the number of incidents where a customer experiences an “excessively

long” wait at a workstation within the process. This combination of objectives is moti-

vated by the understanding that customer’s perception of service quality is affected by

both “macro” and “micro” level factors.

Open-shop service networks, where customers need to visit a set of stations without a

specific service order (other than some possible precedence constraints), are quite com-

mon in modern service industry in both, the “brick and mortar” and “virtual service”

operations. Examples of the former include retail stores, where customers may visit sev-

eral departments before proceeding to the cashier, and hospitals, where patients often go

through several diagnostic and treatment stations. Examples of virtual systems include

contact centers, where calls may be served by a mixture of automated response units and

human agents with different levels of expertise, and on-line websites, where customers

typically visit a number of pages before proceeding to the checkout page.

This paper was motivated by the example of an open shop in the healthcare service

industry operated by XYZ (the real name of the company is removed and relevant data

has been disguised for confidentially reasons) – one of the leaders in preventive healthcare

services in North America. Their flagship service is composed of 10-20 different medical

tests, each test performed in a different station. This service provides customers with a

comprehensive evaluation of their current state of health and allows them to actively man-

age their health care. The order in which customers take most of these tests is immaterial

(there are only a few precedence constraints), so XYZ actually operates an open-shop

service system. XYZ’s service is primarily targeted towards busy professionals who are

willing, for a fee, to have a complete assessment of their health performed in just a few

hours. It should be noted that under the Canadian medical system, most of the tests can

be done for free, but would likely take days or even months to schedule and complete.

Thus, convenience is the main selling feature, and delivering excellent customer service is

of paramount importance for XYZ. Tight management of customer waiting time in the

system is deemed to be essential. While, due to the inherent variability of the times it takes
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to perform the different tests and procedures, some waiting time is unavoidable, the goal is

to minimize waiting times and maximize customer perception of service quality. To study

the waiting times in XYZ we interviewed their key personal and collected two months of

data, comprising 41 business days with just over 2000 customers and about 24,000 station

visits.

While there are many determinants of service quality in service networks, the link

between customer waiting times and the perceived service quality is well-recognized (Fried-

man and Friedman, 1997; Taylor, 1994). Waiting times, that are easily quantifiable, have

long been the focus of much of the queueing literature. The most common measure of

waiting time is the expected overall waiting time for service. A related measure is the

probability that the total system time or the total waiting time exceeds a certain pre-

determined threshold. XYZ uses both of these service level measures (SLMs) with the

following stated targets: mean system time of less than four hours, and the probability of

system time longer than four hours of less than 50%.

The two SLMs described above take a “macro” view of the service network, essentially

treating it as a one-stage system and looking at the overall system or waiting time. Such

SLMs may be sufficient in the manufacturing context, where customers, after placing an

order, remain “outside the system” and essentially view the system as a “black box”.

However, in service contexts the customer is not just an outside observer: they experience

the internal performance of the system as well, i.e., waiting times in front of individual

workstations. A poor experience at a given workstation may lead to a poor perceived

service quality, even when the macro-level SLM (e.g., the overall waiting time) does not

indicate a problem.

In fact, XYZ’s senior management noticed that there have been two types of complaints

about the service experience: the first one is with respect to the total time customers

spend in the system and the second, more prevalent one, is with respect to a long wait

for a particular station. Specifically, from customer satisfaction surveys XYZ found that

customers whose wait for service at any station exceeded 20 minutes were substantially

less satisfied with their service than others. This led XYZ to define a “micro-level” SLM:

the waiting time in front of any station should not exceed 20 minutes. This measure is
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taken very seriously: when a customer wait time at a station reaches 15 minutes an anxious

“yellow face” appears on process schedulers’ screens, alerting them to a potential issue.

Once the waiting time reaches 20 minutes, an angry “red face” appears, and a service

breakdown is considered to have occurred. The total number of red faces is carefully

tracked: the goal is to keep this number below 100 per month.

The importance of such micro-level measures has been observed in other settings. For

example, Bouch, Kuchinsky and Bhatti (2000) show that for an on-line service, when a

single web page takes longer than 8 seconds to load, customer service quality ratings fall

off dramatically. The adverse impact of long waiting time at a particular station is further

supported by the marketing literature, e.g., Soman and Shi (2003) show that, given the

total system time and price, people prefer a situation in which they are constantly making

progress towards their goal; and by the psychology of queueing literature, e.g., Larson

(1987) shows that customers’ perception of the queueing experience may vary nonlinearly

with the delay.

Nevertheless, the systematic treatment of such micro-level SLMs in queuing literature

is relatively new. The only prior paper we are aware of is Baron, et al. (2013), where it

was demonstrated analytically for a two station tandem queue network, that a scheduling

policy with Strategic Idling (SI) might be helpful in reducing the probability of long waits.

The idea behind SI policies is that when a downstream station accumulates a long queue,

continuing to operate upstream stations at the normal rate may lengthen the queues

downstream and increase the probability of long waits (i.e., the expected number of red

faces). A better idea may be to idle the upstream stations (or to temporarily reduce

their service rate), allowing the downstream queues to dissipate. A wise use of such idling

effectively re-distributes the waiting times more evenly among the stations and reduces

the number of red faces. We note that the scheduling policies employing SI violate one

of the more common assumptions in queuing analysis: the “work conserving” property,

which states that a workstation should continue to operate as long as there are customers

waiting to be served. However, the potential payoff of SI may be very attractive. Indeed the

“classical” way of reducing probabilities of long waits is by adding capacity to the system

(e.g., adding a doctor in the healthcare setting), which is often quite expensive. However,
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using a dynamic scheduling policy with SI can potentially achieve the same objective at a

negligible (or even a negative) cost: by simply idling some resources in the system.

Given the results from Baron et al. (2013) discussed above, and the fact that the number

of red faces is used as part of performance evaluation for process schedulers at XYZ, one

may expect that the schedulers will use the SI strategy. While our interviews with XYZ’s

management team indicate that such use of SI is not company’s policy, our analysis of the

empirical data points to convincing statistical evidence that XYZ’s schedulers in fact do

employ SI quite effectively to manage the number of red faces - simulation results indicate

that the current scheduling rules without the use of SI would likely result in more than

twice the current number of red face incidents.

Our primary interest is to study the benefit of dynamic scheduling policies (DSPs) and

SI for open-shop service networks, such as the one operated by XYZ. We start by devel-

oping a framework that allows us to represent and implement general dynamic scheduling

policies as simple scoring rules. A variety of different DSPs based on intuition and known

theoretical results for stylized systems are proposed to address the macro-level SLMs. We

then show how a threshold-based policy approach can be used to intelligently inject SI into

a given DSP, resulting in a policy that can potentially address both macro and micro-level

objectives simultaneously.

To test our policies we develop a simulation model for the XYZ process. The need for

the simulation-based approach is driven by both, the complexity of stochastic open-shop

networks, making analytical results very hard to obtain, and by the transient nature of

real-life systems, such as the one operated by XYZ: since the system starts each workday

with an empty queue and ends it in the same state after seeing relatively few customers,

the steady-state regime may never set in. We use the empirical data on arrivals and service

times to first understand the service process at XYZ and then to calibrate a detailed

simulation model. Using this model we investigate the performance of several DSPs with

and without SI and compare them to the performance of the empirical scheduling policies

used in XYZ. We show that the automated policies achieve very promising results: the

best DSPs are able to significantly outperform the actual schedules with respect to the

macro-level measures. While without the use of SI the DSPs tend to perform poorly on the
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micro-level measures (the same effect is demonstrated for the actual scheduling policies),

after the SI modification, DSPs are able to perform very competitively on the micro-level

SLM, while maintaining their advantage with respect to macro-level SLMs.

To summarize, the paper makes several key contributions: (1) we narrow the gap between

theory and practice on scheduling in open-shop service networks; (2) we shed light on the

need for effective and systematic implementation of DSPs and SI to improve the SLM in

such networks; (3) we provide a framework for developing algorithms for the joint usage of

DSPs and SI in open-shop service systems; (4) using such algorithms and the simulation

model of XYZ we demonstrate that an open-shop service network can be managed in a

systematic fashion to deliver improved service level by jointly using DSPs and SI; and (5)

we establish the usage of SI in practice (using statistical tests).

The plan for the remainder of the paper is as follows. In Section 2, we provide a brief lit-

erature review, focusing on known results for open-shop systems. In Section 3, we introduce

the frameworks for using DSPs and SI in a stochastic open-shop service network. Then,

using these frameworks, we propose several stylized DSPs and SI policies that are likely

to be successful in practice. In Section 4, we analyze the empirical data provided by XYZ

and present evidence for the usage of SI in XYZ. In Section 5, we use a simulation model

to demonstrate the effect of SI and evaluate some of the DSPs and SI policies suggested

in Section 3. In Section 6, we present conclusions and suggestions for future research.

2. Literature Review

Open shops were studied extensively in manufacturing settings (see, e.g., Roemer 2006),

such as airplane maintenance, fire engine assembly, just-in-time systems, supply chain

assembly systems, paper processing, and part kitting. A few papers consider service sys-

tems, such as accounting services, but they still consider common manufacturing measures

as the service objective.

Open-shop problems are typically NP-hard and only consider macro-level measures (i.e.,

see Pinedo 2012 and reference therein). For the deterministic open shop with preemptions,

polynomial time algorithms are available for the makespan objective, and maximum late-

ness objective. Without preemptions, for the makespan objective, only open shop with
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m= 2 stations has the polynomial-time optimal policy (the Longest Alternate Processing

Time first policy), and open shop with m≥ 3 stations is known to be NP-hard. For the

maximum lateness objective, open shop with m= 2 stations is already strongly NP-hard.

Furthermore, very little can be said about the total completion time objective
∑n

i=1Fi;

open shops with this objective is NP-hard for all m≥ 2 cases, with or without preemptions.

For the stochastic open shops, theoretical results are limited to the m= 2 case. Pinedo

and Ross (1982) proved that the Longest Expected Remaining Processing time first

(LERP) policy minimizes the expected makespan of a stochastic two-station open shop.

Pinedo (1984) showed that the preemptive Shortest Expected Remaining Processing time

first (SERP) policy minimizes the total expected completion time in a two-station open

shop within the class of preemptive dynamic policies.

Alcaide et al (2006) developed a predictive-reactive approach to minimize expected

makespan in an open shop with m ≥ 3 stations; the approach is based on dynamically

modifying a heuristic schedule, based on Alcaide et al. 1997, whenever an unexpected event

occurs.

A vast literature is focused on the analysis, design, and control of queueing networks;

see Stidham (2002) for a thorough survey of this research. Another important stream of

queueing literature is focused on scheduling policies, which assign priorities to customers

(or jobs) based on the current state of the system and the attributes of all customers.

Scheduling policies can be categorized into two classes: static and dynamic. Static schedul-

ing policies assign priority to each customer by a static rule which does not change while

the customer is in the system. For example, to minimize customers’ average waiting cost

in a system with linear waiting cost rates, the cµ rule (see, e.g., Smith 1956) assigns static

priority levels to customer k in an increasing order of ckµk where c is the cost of waiting

and µ−1 is the expected service time. Dynamic scheduling policies, in contrast, assign pri-

orities that may be changed while customers are in the system. For example, to minimize

customers’ waiting cost in a system with convex waiting cost, the generalized cµ rule (see,

e.g., Van Mieghem 1995) assigns dynamic priority levels to each customer k according to

c′k (Wk (t))µk (t), where Wk (t) is customer k’s waiting time at time t, and c′k (·) is the first

derivative of ck (·).
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Harrison (1996) used fluid models to provide asymptotically optimal scheduling heuris-

tics under different objectives. This approach was extended by Maglaras (2000) who pro-

posed discrete-review policies to translate the solution of the fluid optimal control into an

implementable control policy in the stochastic network. For the job-shop scheduling prob-

lem with holding cost objective, Bertsimas et al. (2003) provided an efficient algorithm to

round an optimal fluid solution such that the resulting schedule is asymptotically optimal.

Dai and Lin (2005) proved that maximum pressure policies are throughput optimal in a

class of stochastic processing networks. We do not use asymptotic approaches and directly

consider scheduling in the stochastic network.

By far, the most popular objective in the literature employs is the total system time

(see e.g., the survey by Gans, Koole, and Mandelbaum, 2003). A related measure is the

probability that the total system time or the total waiting time exceeds a certain pre-

determined threshold. Baron, Berman, and Krass (2008), Baron and Milner (2009), de-

Véricourt and Jennings (2011) and references therein also focused on the probability of

long waiting time SLM.

Several other papers looked beyond the traditional measures. For example, de-Véricourt

and Zhou (2005) analyzed a call-routing problem while considering both the call resolution

probability and the average service time in the macro-level service level measure. Mehrotra

et al. (2012) considered a similar problem with heterogeneous servers. Saghafian, Hopp,

and Van Oyen (2012) analyzed the service policy in Emergency Departments while con-

sidering the weighted average of the expected length of stay and the expected time to first

treatment.

The systematic study of the micro-level SLM focusing on the instances of excessive waits

originates with Baron, et al. (2013), who demonstrate the advantage of policies with SI by

applying a Threshold Based Policy (TBP). The idea behind the TBP is to compare the

difference between queue lengths at different stations and to idle some upstream stations

if this difference is larger than a predetermined threshold. They demonstrate the exact

potential advantage of applying TBP in a tandem queue system with two servers.

There are two other settings where intentionally idling a capacitated resource has been

previously considered. Strategic delays were first discussed in the literature in Afèche
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(2013), who showed how such delays can allow a service provider to differentiate between

customer types and thus improve the overall profit. The manufacturing process control

literature also considers intentional idleness. The most prominent example is the Kanban

manufacturing system where the total inventory between two stations is restricted to be

lower than a threshold - for further details see Masin, Herrar, and Dar-el (2010) and

references therein. In this case the motivation for idling is the need to control inventory and

its cost without sacrificing too much capacity. In both cases, the motivation for intentional

idling is significantly different from the current paper, which is motivated by improving

the customer service experience. This difference leads to completely different analysis and

implementation challenges.

3. Dynamic Scheduling Policies and Strategic Idleness
Modification

We start by introducing stochastic open shop with precedence constraints in Section 3.1.

We next develop a framework of completely reactive Dynamic Scheduling Policies (DSPs)

that allow us to represent different DSPs in terms of simple scoring rules in Section 3.2.

Using this framework, in Section 3.3, we propose several simple DSPs that have the poten-

tial to perform well in practice with regards to the macro-level Service Level Measures

(SLMs). In Section 3.4, we show how any completely reactive DSP can be modified to

“inject” Strategic Idleness (SI), allowing the policy to take into account our micro-level

“red faces” SLM.

3.1. Stochastic Open Shop with Precedence Constraints

We consider a general stochastic open-shop problem with precedence constraints described

as follows: a set of n customers C = {1, . . . , n}, who arrive at (possibly random) release

dates rc1, . . . , r
c
n, wish to finish service within T o time units after arrival (i.e., their due

dates are rc1 + T o, . . . , rcn + T o). The customers need to obtain service from a set of

m stations S = {1, . . . ,m} that open at pre-scheduled release dates rs1, . . . , r
s
n and close

when all customers have finished service. For simplicity, we assume that rci < rci+1, for

i = 1, . . . , n − 1, and rsj < rsj+1, for j = 1, . . . ,m − 1, i.e., this implies no batch arrivals

or stations openings at the same time. Customer i requires service from some subset
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Si ⊆ S of stations, and she must visit every station in Si exactly once. The order in

which customer i receives services from stations in Si is immaterial, as long as it satis-

fies precedence constraints Ui = {(h,k) , . . . |h,k, . . . ∈ Si}, where constraint (h,k) means

that customer i must visit station h before becoming eligible for station k. For example,

Ui = {(1,2) , (1,3) , ..., (1,m) |1,2, ...,m ∈ Si} means that customer i needs to visit station

1 before visiting any other stations. Note that, if Ui = ∅ for all i, the problem becomes a

classic open-shop problem (see, e.g., Pinedo 2012). Customer i’s service time at station j

(for j ∈ Si), Xij, is a continuous random variable with distribution Gj. We assume that

Xij are independent and identically distributed for all j. The realization xij only becomes

known upon service completion. We consider the problem without preemptions (i.e., cus-

tomers are not allowed to leave the service at the current station before completion, nor

is a station allowed to accept new customers before finishing the service of the current

customer). The time customer i finishes service and exits the system is denoted by Fi,

which is also a random variable.

We treat the scheduling problem as a multi-objective problem. Specifically, we consider

two macro-level SLMs as our objectives: minimize the expected total lateness,

E

[
n∑

i=1

(Fi − (rci +T o))

]
, (1)

and minimize the expected number of tardy customers,

E

[
n∑

i=1

1 (Fi > (rci +T o))

]
. (2)

Note that since rci and T o are independent of the scheduling policy, the expected total

lateness objective is equivalent to the more typical expected total system time objective,

E [
∑n

i=1 (Fi − rci )], or the expected total completion time objective, E [
∑n

i=1Fi].

In addition to the macro-level SLMs above, we consider a micro-level SLM as our third

objective: minimize the expected number of “red faces” (i.e., the number of instances

of unacceptably long waits),

E

[ ∑
i,j∈Si

1 (Wij >T s)

]
, (3)
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where T s is the threshold used to identify “red faces” and Wij is the random variable

denoting the time customer i spent in the waiting room before entering station j.

In the manufacturing literature, DSPs that consider unexpected real-time events (e.g.,

station breakdown, defective material, job cancelation, etc.) have been classified into three

categories (see, e.g., Ouelhadj and Petrovic, 2009): (1) a completely reactive scheduling

policy generates no firm schedule in advance and makes decisions locally in real-time; (2)

a predictive-reactive scheduling policy develops a schedule first and revises it in response

to real-time events following some scheduling/rescheduling methods; and (3) a robust pro-

active scheduling policy follows a pre-set schedule that satisfies performance requirements

predictively in a dynamic environment. Note that this taxonomy can also be applied in

stochastic scheduling models with uncertainties caused by stochastic service times, as well

as other of unexpected events.

Since, as we detailed in the literature review above, polynomial time algorithms for

deriving the optimal scheduling policy in open shops are not available, it is hard to generate

any firm schedule in advance. Therefore the advantage of predictive-reactive or robust pro-

active DSPs is difficult to see for the open-shop service network we are interested in. Thus,

we focus our investigation on completely reactive DSPs. We will initially consider only

work-conserving DSP, i.e., a customer cannot be waiting for a station which is currently

idle.

3.2. Work-conserving Dynamic Scheduling Policies in Open Shops

The completely reactive work-conserving DSPs in an open-shop environment take actions

at three types of events: service completions, customer arrivals, and station openings. At

these points, either a customer, or a station, or both, free up and must be “matched

up” with the available customers/stations for the next stage of processing. In fact, by

introducing dummy stations and customers, it suffices to only consider service completion

events. We can imagine that the system starts with n dummy stations serving n customers

with service completion times equal to customer arrival times rc1, . . . , r
c
n, and m stations

serving m dummy customers with service completion times equal to station opening times

rs1, . . . , r
s
n. Henceforward, we only consider decisions at service completions events.
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Following a common simplifying assumption in queueing and stochastic scheduling lit-

erature, we assume that no two service completions happen at the same time, i.e., there

exists an ϵ > 0, such that the time interval between any two service completions is at least

ϵ. This assumption fits XYZ and simplifies the discussion and rules below.

Consider a service completion involving customer i and station j occurring at some

time t. We assume that at this time customer i enters the “waiting room” (either physical

or virtual) and station j becomes idle. Let Ωj ⊆ C be the set of eligible customers (i.e.,

satisfy all precedence constraints) that still require service from station j and who are

in the waiting room at time t, and Ψi ⊆ Si be the set of idle stations at time t whose

services are still required by customer i. Since any customer i only visits stations in Si

once, we have j /∈ Ψi and i /∈ Ωj at time t. Also, for any waiting customer h other than

customer i, Ψh is either ∅ or equal to {j}, so we have Ψi ∩Ψh = ∅ (note that if k ∈ Ψh

for some k ̸= j then customer h was waiting while station k was idle, violating the work-

conserving assumption). Similarly, for any idle station k ̸= j, Ωk is either ∅ or {i}, so we

have Ωj∩Ωk = ∅. This indicates that, at each service completion, the DSP needs to perform

at most two assignments: assign a customer h ∈ Ωj to station j (assuming Ωj ̸= ∅) and

assign a station k ∈Ψi to customer i (assuming Ψi ̸= ∅); no other assignments are possible.

These observations allow us to represent a DSP with two scoring rules, where higher is

better. We assign a score, PT c
h ≥ 0, to customers h∈Ωj, and a score, PT s

k ≥ 0, to stations

k ∈Ψi. To make PT c
i and PT s

j general enough, we define them as arbitrary non-negative

functions of the history of the system up to time t.

Definition 1. Completely reactive and work-conserving DSP in stochastic open-shop

networks is defined by scoring rules PT c
i and PT s

j as follows:

Suppose customer i completes service on station j at time t:

1) For the station assignment, if Ωj ̸= ∅ we assign customer h∗ = argmaxh∈Ωj
PT c

h to be

the next customer of station j; let station j stay idle if Ωj = ∅.
2) For the customer assignment, if Ψi ̸= ∅ we assign station k∗ = argmaxk∈Ψi

PT s
k to be

the next station of customer i; let customer i join the waiting room if Ψi = ∅.
Once these two assignments are made, the service process continuous until the next service

completion event; then similar assignments are taken.
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Note that the assumption that no two service completions occur simultaneously ensures

that the definition above is complete. If, instead, several service completions occur at once,

we can no longer assume that customer i is the only eligible waiting customer for any

station in Ψi, nor that station j is the only idle station needed by any customer in Ωj;

there may be several customers “competing” for the same station and several stations

“competing” for the same customer. Therefore, in addition to scoring rules, one must

provide tie-breaking rules in order to specify the DSP in this case.

From Definition 1, we see that any DSP is completely determined by the selections

of PT c
i and PT s

j . We next discuss different choices of these scoring rules that result in

different DSPs.

3.3. Dynamic Scheduling Policies

To describe a DSP (or, more precisely, the scoring rules defining the policy) formally, we

introduce the following notation (we omit t for convenience):

SF
i : the set of stations customer i has visited by time t;

SU
i : the set of stations customer i still requires service from at time t;

(Note that SF
i (t)∪SU

i (t) = Si, ∀t.)
uj: the number of customers who still need service from station j at time t, i.e., uj =∑n

i=1 1 (j ∈ SU
i );

wTS
i : customer i’s total system time until time t, i.e., wTS

i = t− rci ;

wTW
i : customer i’s total waiting time since she entered the system until time t;

wi: customer i’s current waiting time (i.e., the time since the last service completion of

customer i and until time t);

s̄j: the average service time of station j;

nj: the number of servers at station j.

Using the definitions above, for any k ∈Ψi, the quantity uk s̄k
nk

represents the remaining

average workload of station k. Since stations with the higher remaining average workload

at time t can be thought of as “bottlenecks” over the remainder of the process, it seems

reasonable to perform customer assignment so as not to keep more valuable resources idle.

Thus, all DSPs we consider employ the same station scoring rule: PT S
k = uk s̄k

nk
, assigning

customer i to the station with the highest remaining workload.
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Our DSPs do differ with respect to station assignment rules (i.e., deciding which cus-

tomer should be assigned next to the freed-up station j).

1. Longest System time first (LS) policy assigns to station j the customer in Ωj who has

the longest system time among all waiting customers who still require service from this

station, i.e., PT c
i =wTS

i .

This rule is motivated by the idea that the customer who has already accumulated a

long system time (because of waits or long processing times) is more likely to be tardy,

and thus should be prioritized.

2. Longest Mean Overage Processing time first (LMOP) policy assigns to station j

the waiting customer in Ωj who has the longest mean overage service time, i.e., PT c
i =

1

|SF
i |

∑
k∈SF

i
(xik − s̄k).

Similar to the LS policy, LMOP policy prioritizes the customer who experienced longer

than usual service times (represented by a longer mean overage service time). This customer

thus has a higher risk of being tardy.

3. Longest Accumulated Waiting time first (LAW) policy assigns the waiting customer

in Ωj who has accumulated the longest waiting time, i.e., PT c
i =wTW

i .

This policy is also motivated by prioritizing customers who have a higher risk of being

tardy. By counting only waiting time we are giving preference to customers who have

already been “victimized” by long waits.

4. Longest Current Waiting time first (LCW) policy assigns the waiting customer in Ωj

who has the longest current waiting time, i.e., PT c
i =wi.

This policy follows the spirit of first-come-first-serve policy and prioritizes customers

who enter the centralized waiting room earlier.

5. Shortest Expected Remaining Processing time first (SERP) policy assigns the waiting

customer in Ωj who has the shortest total expected remaining processing time, i.e., PT c
i =(∑

k∈SU
i
s̄k

)−1

.

This policy is motivated by the optimality of preemptive SERP policy in a two-station

open shop with the total expected completion time objective (see, e.g., Pinedo 1984).

6. Longest Expected Remaining Processing time first (LERP) policy assigns the waiting

customer in Ωj who has the longest total expected remaining processing time, i.e., PT c
i =∑

k∈SU
i
s̄k.
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This policy is motivated by the optimality of LERP policy in a two-station open shop

with the expected makespan objective (see, e.g., Pinedo and Ross 1982).

3.4. Strategic Idleness Modification - Generalized TBP

Recall that in addition to the two macro-level objectives (SLMs), the total lateness and

the total number of tardy customers, we are also interested in the micro-level objective:

the total number of “red faces” (incidents of long waits). Since such incidents often occur

at bottleneck stations, one strategy to reduce their number is to intentionally delay service

at stations that are upstream from the bottlenecks when there is already a long queue in

front of the bottleneck station. We call such intentional delays “Strategic Idleness” (SI).

The overall idea is to modify a given work-conserving DSP so that when the DSP assigns

a free customer to a free station, instead of starting the service immediately, they both

stay idle for a certain time period (which is determined by the SI policy and could be zero)

prior to the service start. Note that with this modification the station remains assigned to

a customer during SI period; thus customer and station assignments can be implemented

using the same rules that are used to specify the original work-conserving DSPs. Note

that non-idle policy can be thought of as a special SI modification where the idling time

is always zero.

There are many possible policy classes that may involve SI. Baron et al. (2013) intro-

duced a specific family of Threshold Based Policies (TBP). As mentioned earlier, the idea

behind the TBP is to compare the difference between queue lengths at different stations

and to idle some upstream stations if this difference is larger than a predetermined thresh-

old.

While defining a TBP in the two station tandem queue setting is straightforward, as

there is only one upstream and one downstream station, it is already more difficult for

a n-station tandem queue. The difficulty grows further in an open-shop service network,

where not every customer may need to go through every station, and each customer may

take a unique path through the network. Thus the “upstream” and “downstream” stations

may not be clearly defined. To extend the definition of the TBP to this setting, we proceed

as follows. Recall that at each time period, uk gives the number of customers still requiring
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service from station k. For station j and customer i we define δij to be a function of

u1, . . . , um which is decreasing in uj, non-increasing in uk for all k ∈ {1, . . . ,m}, k ̸= j, and

δij(0, . . . ,0) = 0. To make δij customer-specific, we allow it to depend on the set SU
i . For

every station j, we also define a non-negative threshold THj.

Definition 2. Modified policy DSP+TBP

When customer i is ready to enter station j under DSP, delay the service starting time as

long as δij(u1, . . . , um)≥ THj.

We say that customer i is stopped (at station j) if this customer is assigned to station

j while this station is idled. Intuitively, the TBP modification will idle station j if the

number of customers who still require this station is low compared to other stations in the

system. Several examples are presented below.

When customer i is stopped at station j under the TBP, there are, in principle, two

options: (1) we can serve the next customer waiting for station j, allowing this customer

to overtake customer i (provided this customer is not stopped under the TBP) - we call

this “TBP with overtaking”1; (2) we can simply idle station j until the block is released

under the TBP - leading to “Overtake-free TBP” (note that the latter option is more in

line with the goal of minimizing excessive waits for the current customer).

The definition of TBP above is very flexible. The following specification of TBP will be

used in the numerical experiment in Section 5.3:

Maximum workload TBP: the difference between the number of customers who need

service from station j and the number of customers who need service from the busiest

station still required by customer i, i.e., δ (u1, ..., um, i, j) =maxl∈SU
i
ul −uj.

Of course, there are many other possible specifications of TBP. For example:

Maximum workload Kanban: the number of customers who need service from the busiest

station still required by customer i, i.e., δ (u1, ..., um, i, j) =maxl∈SU
i
ul.

For stations with more than one server, we can also consider the number of servers in

the specification:

1 We note that overtaking does not arise for serial queues, since in such systems all customers have exactly
the same service set SU

i , and thus all customers waiting for station j would either be stopped or not stopped
under the TBP.
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Normalized Maximum workload TBP: the difference between the number of customers

who need service from station j and the number of customers who need service from the

busiest station still required by customer i normalized by the number of servers at the

respective stations, i.e., δ (u1, ..., um, i, j) =maxl∈SU
i

ul
nl
− uj

nj
.

It is also possible to normalize either of the above rules by the expected service time

required at each station.

4. Case Study - Data Collection and Analysis

In the previous section, we defined a number of different dynamic scheduling policies

(DSPs) for a stochastic open shop and showed how they can be modified to incorporate

the threshold-based strategic idleness delays. We next apply these ideas to the case of the

medical clinic operated by XYZ Inc. The background of this case study and the data used

in our analysis is described in the current section.

4.1. Company Background and Description of Data

The clinic operated by XYZ consists of up to 21 different medical tests. These include a

series of routine diagnostic tests, including blood and urine lab tests, chest X-ray, Abdom-

inal Ultrasound, Fitness Test, Treadmill Test, Physician Exam, Audio Visual Test, Nutri-

tion and Review with doctors. While the stations above are required by almost every

customer, there are add-on assessments that can be requested, such as Optometry, Echocar-

diogram, Genetic Risk Assessment, etc. Each test is conducted at a specific station with

possibly multiple (up to 8) servers.

On average, each customer visits 10 stations, including all nine routine diagnostic tests

and one add-on. The incoming customers are directed through the process by specially

trained schedulers. Every time a customer finishes a test she is led to the waiting room

from which she will be picked up for the next test.

As discussed above, XYZ considers three SLMs as their objectives: the expected average

total system time, the expected number of tardy customers, and the number of red faces,

given by (1-3), respectively. The company’s goal is to complete the service in four hours

(i.e., in (2) T o = 4 hours) and a “red face” is defined as a wait exceeding 20 minutes at

any given station (i.e., in (3) T s = 20 minutes).
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We first focus on obtaining a detailed picture of XYZ’s actual service and waiting time

performance. We obtained two months of data from XYZ. For each customer visit, the data

contains the basic information of the appointment, such as the customer’s appointment

time, arrival time, and departure time. For each specific test, the data also contains the

customer number, station number, starting time, ending time, and service time. During

these two months, there were 41 business days, in which just over 2000 customers visited

the clinic, and about 24,000 tests were performed. The number of customers who visited

the clinic each business day ranged from 25 to 61 (with a mean of 49 and a standard

deviation of 7.2).

4.2. The IT System at XYZ

XYZ’s main selling point is convenience: instead of having to wait for weeks or months

for all tests to be scheduled and performed, the customer can have the full assessment

completed in a matter of a few hours, and have the results reviewed by the doctor who has

a comprehensive view of the customer’s current state of health. XYZ’s clients are mostly

busy executives and professionals who are willing to pay several thousand dollars for this

convenience.

Not surprisingly, XYZ is extremely customer-focused, promising to complete the assess-

ment in four hours. “Red face” incidents are regarded as significant service failures and

are carefully tracked by the IT system. When a customer’s wait reaches 15 minutes at

any station, an anxious “yellow face” appears on the schedulers’ screen, alerting them to

bring this customer into service. When a customer’s wait reaches 20 minutes, an angry

“red face” flashes on the scheduler’s screen, which typically triggers an immediate response

- the customer is offered an apology, and the customer’s service is expedited as much as

possible. The number of red faces that occur during each day is tracked and used as part

of performance reviews for process schedulers and their supervisors.

4.3. Operational Procedures at XYZ

XYZ schedules the arrivals of its customers at different times throughout the morning of

each day. The clinic opens at 7:00am, and closes when all customers leave, typically around

16:00pm. Figure 1 illustrates the histograms of average daily scheduled arrivals alongside
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Figure 1 The Histogram of Average Daily Arrivals.

the histogram of average daily realized arrivals. Note that, the resulting arrival pattern

is not stationary (contrary to the assumptions of traditional queueing models). On aver-

age, XYZ schedules 5 customers every half hour starting from 7:00am and typically until

10:30am. Then, from 10:30am to 12:00pm, the number of scheduled arrivals is gradually

reduced.

We next investigate the order of service. While the order in which services are performed

differs by customer, some dominant flows can be ascertained. To this end, we define pi,j as

the probability that a customer visits station i before station j, given that station i and j

are both visited by this customer:

pi,j =
Number of times station i is visited before station j

Total number of visits containing both station i and j
.

For example, suppose that three customers, A, B and C, visit the clinic. Customers A and

B visit station i before station j, while customer C visits station j before station i. In this

example, we have pi,j = 67%, pj,i = 33%.

Table 1 presents pij for the nine routine stations. These values allow us to identify some

dominant work flows For example, the 98% in the first row (Lab Work) and second column

(Abdominal Ultrasound) means that 98% of the time Lab Work is completed before the

Abdominal Ultrasound.

Note that pi,j+pj,i = 100% may not always hold, because of the occasional need to re-do

a test (this affects less than 1% of all customers). The same reason causes the non-zero
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Labwork Ab Ultra PhyExam Treadmill Nutrition FitnessTest Xray AuViTest ReviewDr.
Lab Work 1% 98% 99% 99% 100% 100% 95% 100% 100%
Ab Ultra 3% 1% 73% 84% 100% 98% 82% 96% 100%
PhyExam 2% 27% 1% 69% 64% 68% 59% 69% 100%
Treadmill 1% 16% 29% 1% 59% 67% 55% 73% 99%
Nutrition 1% 0% 34% 37% 0% 56% 49% 58% 82%
FitnessTest 1% 3% 31% 32% 40% 1% 44% 52% 85%

Xray 5% 14% 31% 35% 38% 44% 9% 46% 63%
AuViTest 1% 5% 30% 26% 37% 46% 41% 1% 93%
ReviewDr. 0% 0% 0% 0% 13% 14% 19% 7% 1%

Table 1 The Service Order Matrix

items on the diagonal. In addition, some customers may choose not to perform all tests,

resulting in pi,j + pj,i < 100% for some stations i and j.

There are three main observations from Table 1:

1. The two tests Lab Work and Abdominal Ultrasound are visited before any other

stations in almost all cases. Since these two tests need to be performed on an empty

stomach, the schedulers attempt to put them at the beginning of each customer’s visit, so

that customers can have a snack as soon as possible. Note that Lab Work, which is faster,

is done before Abdominal Ultrasound 98% of the times.

2. The procedure “Review with a Doctor” is typically done after the customer finishes

most tests. In this station, the doctor receives reports from all other stations and thus

have a comprehensive view of customer’s health situation. Although customers are given

the option to skip this step and receive the test results via email, most of XYZ’s customer

choose to attend this station.

3. The order of customers’ visits to all other stations is quite random - substantiating

the view of this system as a open shop with only a few precedence constraints.

In view of these three observations, the network operated by XYZ can be loosely sep-

arated into three parts: starting with Lab Work, Abdominal Ultrasound and breakfast;

continuing with the other required or optional tests in some random order; and concluding

with reviewing results with the doctor. The network is illustrated on Figure 2; all three

triangles marked with “W” represent the same centralized waiting room.

4.4. Waiting Time Distribution

Figure 3 illustrates the histogram of waiting times with bin interval of a minute. The label

above each column represents the relative frequency of waiting times in the bin [t−1, t), for
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Figure 3 The Histogram of Waiting Times.

t= 1,2, ...,30. The mean and standard deviation of the waiting times are 5 and 7 minutes

respectively.
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Observe that the frequency of W decreases with t smoothly, except at two points: t= 16

and 21. At t = 16, the histogram of W breaks the decreasing pattern and showing an

unusual peak. At t= 21, the histogram decreases steeply to 0.1% (from 0.5% at t= 20),

and it stays at a fixed level 0.1%. These two sudden changes in Figure 3 appear to be

related to the appearance of yellow faces (at 15 minutes) and red faces (at 20 minutes) on

the schedulers’ screen.

The schedulers try their best to keep the number of red faces low. Our hypothesis is

that these sudden changes in the histogram of W are reflections of these two alarm signals.

No special action is taken before the first alarm. Once a yellow face appears, schedulers

attempt to expedite, causing density concentration at 15 minutes. From this point, the

customer is watched very carefully, and, for the most part, not allowed to get beyond 20

minutes. This causes the dip at 20 minutes. Discussions with the personal at XYZ further

supports this hypothesis.

These observations demonstrate that the schedulers manage the waiting time to control

not only the macro-level SLMs, like the total system time, but also the micro-level SLM,

i.e., the number of red faces.

4.5. Performance Analysis

In this section, we analyze the performance of XYZ’s open-shop network focusing primarily

on the nine routine stations. To calculate the utilization of each station, we first focus on

each of its servers, and calculate the average starting time (when the first customer arrives)

and the average closing time (when the last customer leaves). Then, for each station, based

on the statistics of its servers, we derive the average time span (the time between starting

and closing) and the average busy time in it. At last, each station’s utilization is obtained

as the ratio of its average busy time and its average time span. We attribute the waiting

time to the station that immediately followed the wait.

Table 2, sorted by utilization, summarizes the performance of these nine routine stations

over the two months. The table also provides the three main SLMs and average total

waiting time.

Based on the empirical data, the service levels were already quite good. The current

average total system time is just over four hours. The average total waiting time is about
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Stations\Ave. # Servers/day Waiting Time Service Time Utilization # Red Faces

FitnessTest 7.4 5:46 20:28 78% 45

PhyExam 7.7 4:50 32:45 73% 59

Doc Review 7.7 7:06 14:36 73% 173

Treadmill 4 4:48 21:50 72% 20

Ab Ultra 4 5:23 16:16 71% 10

Nutrition 3.9 4:42 19:49 69% 18

AuViTest 3.9 6:57 16:51 63% 55

Xray 1 5:23 6:14 50% 6

Labwork 1 4:19 3:23 48% 2

Ave.SystemTime 4:04:26
SystemTime≥4hrs 52.5%
Ave.TotalWaitTime 1:01:08

# Red Faces 456

Table 2 Summary of CHA Stations in the Empirical Data.

an hour, i.e., less than a quarter of the total time a customer spends in the system. The

incidence of red faces (waits more than 20 minutes) is 456: with 10 stations per visit on

average (9 routine stations and 1 “add-on” station), this corresponds to less than 2.5% of

all tests and about 25% of customers experiencing a “red face”.

From Table 2, we see that the overall utilization, between 48% and 78%, and the waiting

time, averaging between 4-7 minutes per station, are not high. In a service network with

moderate variability (observed coefficient of variations were between 0.24 and 0.6 and close

to 0.5 on average), we expect relatively low utilizations to be required to maintain short

waiting times. This confirms the customer-centric emphasis of XYZ.

We also observe that Review with Doctor, Fitness Test, and Audio Visual Test account

for most of red faces incidents; these stations also have the longest average waiting times.

The Review with Doctor is the one contributing the largest number of red faces (38% of

the red faces). Although it seems like a good idea for XYZ to hire more doctors to improve

the SLMs, the cost of this action may be prohibitive.

The Fitness Test and Audio Visual Test together generate 100 red faces (21%) in total.

The main problem at these two stations appear to be late starting times. On average, the

Fitness Test and the Audio Visual Test start 2.5 hours and 1.5 hours, respectively, after

the clinic opens. Moreover, they are often not at full capacity as some operators arrive

even later.
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We note that while the Fitness Test and Review with Doctor may be considered bot-

tleneck stations of the network, since they both have high capacity, utilization and large

associated waiting times. The Audio Visual Test, with a relatively low utilization, does not

meet the standard definition of a bottleneck station. Therefore, for lack of a better name,

we call Fitness Test, Review with Doctor, and Audio Visual Test problematic stations, and

other stations “non-problematic”.

4.6. Evidence of Strategic Idleness in Practice

As discussed earlier, Baron, et al. (2013) demonstrated analytically, in a two-station tan-

dem queue network, that a scheduling policy incorporating Strategic Idleness (SI) might

be helpful in reducing the number of red faces. The basic idea is that when a long queue

accumulates at the downstream station, it may be better to idle the upstream stations

to allow the downstream queues to dissipate. However, in service operations, we are not

aware of any empirical evidence of the use of SI in practice. As discussed below, the data

obtained from XYZ strongly suggests that this technique is, in fact, practiced by XYZ’s

process schedulers (largely without the knowledge of management).

From the empirical data provided by XYZ, we discovered a number of instances where

a customer was waiting for a station that was free and waiting for this customer. In other

words, certain part of customers’ waiting time is spent waiting for an idle station that

appears to be waiting for this customer; we call such period an Overlapped Waiting (OW)

time.

Initially, we thought that the existence of OW is a data error, but OWs are quite

abundant and accompany 78.7% of services. Figure 4 depicts the histogram of the OW with

bin intervals of one minute. The average OW is 2.5 minutes with a Standard Deviation of

4.5 minutes. About 50% of the OWs are less than one minute. However, 16.3% of OWs

are more than five minutes, i.e., more than the average waiting per station.

One explanation is that OW might be a result of routine procedures, like room cleaning,

writing reports, etc. However, as verified by our partner at XYZ, room cleaning or report

writing typically do not take that long, so while these may explain the shorter OWs

observed, they do not explain OWs of over 1-2 minutes.
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Figure 4 The Histogram of Overlapped Waiting.

As discussed earlier, SI can be an effective strategy for reducing the occurrence of long

waits within the process. Thus given the importance placed by XYZ on minimizing the

number of “red faces”, an alternative explanation is that longer OWs provide the evidence

of the usage of SI by the schedulers at XYZ. Of course, the mere presence of OW does

not necessarily indicate that SI is being used. However, the prevalence of longer OWs in

situations where SI policy would be most useful does provide support for this hypothesis.

Below, we use statistical hypothesis testings to demonstrate that the timing of longer OWs

provides evidence for the usage of SI at XYZ.

4.6.1. Statistical Evidence of the Use of Strategic Idleness Based on our intu-

ition and the earlier discussion, if SI is indeed used, we would expect this to be reflected

in OWs as follows. When station A is ready to serve customer i, and customer i’s next

station is station B, which is congested, station A would use longer OWs to balance cus-

tomer i’s waiting time at both stations. The congestion at station B can be indicated by

the fact that station B is a problematic station (Fitness Test, Review with Doctor, and

Audio Visual Test), or that station B’s previous customer (served just before customer i)

experienced a long waiting time (e.g., ≥ 15 minutes) just before entering station B. In the

later case, we say that station A precedes a “potential long wait”. Similar logic suggests

that to avoid wasting capacity in problematic stations, these stations should use shorter

OWs than other stations. Specifically, we anticipate:
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1. OWs at problematic stations are shorter than OWs at non-problematic stations;

2. OWs at stations preceding problematic stations are longer than OWs at stations

preceding non-problematic stations;

3. OWs at stations preceding “potential long waits” are longer than OWs at other

stations.

The statements above can be investigated using the standard t-tests. First, we test if

problematic stations have different mean OW than non-problematic stations:

Null Hypothesis (H0): The difference between the mean OW at problematic stations and

the mean OW at non-problematic stations is zero;

Alternative Hypothesis (HA): The difference between these two mean OWs is not zero.

The two-tailed t-test (with p-value 2.9× 10−15) indicates that H0 is rejected, and the

non-problematic stations have significantly longer mean OW (with mean 2:42) than the

problematic stations do (with mean 2:13).

Second, we test if the last station preceding problematic stations have different mean

OW than stations preceding non-problematic stations:

H0: The difference between the mean OW at stations preceding problematic stations and

the mean OW at stations preceding non-problematic stations is zero;

HA: The difference between these two mean OWs is not zero.

The two-tailed t-test (with p-value 1.3× 10−18) indicates that H0 is rejected, and the

stations preceding problematic stations have significantly longer OWs (with mean 2:55)

than the stations preceding non-problematic stations (with mean 2:23).

Third, we test if stations preceding “potential long waits” have different mean OW than

other stations:

H0: The difference between the mean OW at stations preceding “potential long waits”

and the mean OW at other stations is zero;

HA: The difference between these two mean OWs is not zero.

The two-tailed t-test (with p-value 3.2× 10−19) indicates that H0 is rejected, and the

stations preceding ‘potential long waits’ have significantly longer OWs (with mean 3:38)

than other stations do (with mean 2:09).

Thus, the statistical results strongly suggest that the schedulers are indeed attempting

to reduce the number of red faces by using SI.
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5. Evaluation of Dynamic Scheduling Policies and Strategic
Idleness

The service system operated by XYZ, just as many real-life service systems, is inherently

transient (each day starts with an empty system and ends after processing 49 customers on

average) and it is not clear that the steady-state regime is ever achieved. Since analytical

methods run into significant difficulties when analyzing transient behavior, we developed

a simulation model of XYZ to gain better understanding of the system and to test the

performance of different policies described in Section 3.3 and 3.4 above. The simulation

model was implemented in MATLAB and validated using the empirical data. Specifically,

we used real service and arrival times in the model. With the simulation model, we are able

to: 1) Analyze the transient behavior of XYZ’s service network. By simulating the system

operations over one day for 100 times (from arrival of the first customer and until the

departure of the last customer at the end of the day), we can ensure that the distribution of

system’s performance is captured by the simulation model. 2) Simulate scheduling decisions

that depend on the state of the system. Both the customer and station assignments rules

can be replaced with one of the policies described in Section 3.3. 3) Measure the macro-level

and micro-level SLMs: the expected average total system time, the expected probability

of total system time longer than four hours, and the number of red faces. 4) Simulate

the performance of scheduling policies that incorporate strategic idleness (as described in

Section 3.4).

The simulation recorded the resulting three SLMs for each scheduling policy. For each

working day, we keep the available resources (station availabilities and opening times),

customers’ service needs and customers’ service times at different stations the same as in

the real data, and only change the scheduling policy.

In Section 5.1, we investigate the performances of DSPs without SI modifications (work-

conserving) to evaluate the benefit of automated DSPs with respect to the global per-

formance measures. In Section 5.2, we compare the performance of the actual scheduling

policies used by XYZ with and without OWs. Next in Section 5.3, we compare DSP+TBP

policies with the actual ones.
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5.1. Performance of Work-conserving Dynamic Scheduling Policies

The simulated performance of various dynamic scheduling policies described in Section 3.3

is presented in Table 3. The third row of the table contains the Empirical Data (ED), i.e.,

the results for the actual scheduling policy used by XYZ. We start by comparing the vari-

ous Dynamic Scheduling Policies (DSPs) without the Strategic Idleness (SI) modification

introduced in Section 3.4 - we call these the “non-idle” versions of the respective policies.

The results for all policies can be found in rows 5-10 of the table.

We first observe that the Shortest Expected Remaining Processing Time first (SERP)

policy dominates the LAW, LCW, and LERP policies: SERP has a lower average total

system time, a lower probability of spending more than four hours in the system, and a

lower number of red faces. Comparing SERP policy with the Longest System time first

(LS) policy shows that LS outperforms SERP with respect to the number of red faces,

while SERP policy performs better on the other two SLMs.

We also observe that all of the DSPs outperform the actual (ED) scheduling policy with

respect to both macro-level SLMs used by XYZ: they reduce the average total system time

by about 40 minutes (16%), and the proportion of customers experiencing total system

times of over four hours from 52.5% to around 21%.

However, for all DSPs the incidence of red faces is substantially higher than for the ED

policy. Even the best-performing Longest Mean Overage Processing time first (LMOP)

policy experiences an increase in this measure by 34.2% to 612 vs. the ED policy - a clearly

undesirable outcome. We suspect that the reason that the DSPs we proposed perform

poorly with respect to the number of red faces measures is that they are work-conserving

(non-idle) policies, while, as discussed in Section 4.6.1, it appears that the XYZ’s sched-

ulers are actively using Strategic Idleness to manage the number of red faces. We further

investigate this issue in the following section.

5.2. Effect of Overlapped Waiting Times: Another Indication of Strategic
Idleness

To investigate the usage of Overlapped Waiting (OW), we define the “non-idle” version of

the actual scheduling policy by eliminating the OWs. For example, suppose customer A

finishes service at station i. To find the next customer for station i, we examine the data
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and find that customer B is the next customer of station i. If customer B is in the waiting

room and station i is her next station (based on data), she is immediately taken to station

i; otherwise, station i stays idle until the arrival of customer B. We follow a similar rule

when choosing the next station for customer A. We call this non-idle version of the actual

scheduling policy “ED+Non-idle”. The corresponding results are presented on row 4 of

Table 3.

Our simulation results indicate that if the clinic was operated under ED+Non-idle pol-

icy during the two month in our data, the average total system time would drop by 18

minutes to 3:46:37, and the proportion of customers with system time of over four hours

would decrease by 14.3% to 38.3%. Thus, both of the macro-level SLMs would improve

substantially (though the improvements still fall far short of those observed under the

DSPs described earlier). However, the total number of red faces would increase to 1094

(140% increase). Out of the 456 red faces observed in the data, 217 disappear in the sim-

ulation under the ED+Non-idle policy, while 855 new ones emerge. Shorter waiting time

at previous stations, i.e., elimination of SI in the form of OW, causes 705 of these new red

faces.

The mean and standard deviation of the waiting time from the simulation result for

ED+Non-idle policy are 3.5 minutes and 7.5 minutes respectively. Figure 5 shows the

histogram of W (waiting time) for the ED+Non-idle policy alongside the histogram for the

ED policy. We see that the histogram of W from ED+Non-idle policy is much smoother

than the histogram from the actual scheduling policy. Those odd jumps at the t= 16 or

21 minutes observed in the empirical data disappear, while the number of waits of more

than 15 minutes is at the same level (about 2000) for both ED and ED+Non-idle policies.

Comparing the ED+Non-idle policy with the ED policy indicates that by intentionally

holding back customers at non-problematic stations when a customer is likely to experience

a long wait at the problematic station downstream, the ED policy effectively re-distribute

the waiting times more evenly within the network. These observations further support the

conclusions from our statistical hypothesis tests that XYZ’s schedulers are using SI.

To summarize, the results above indicate that the reason that ED policy outperforms

those proposed policies in the number of red faces is that these policies are non-idle policies,
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Figure 5 Histogram of Waiting Times under Different Scheduling Policies.

while the XYZ’s schedulers are using SI in their scheduling policy. However, the schedulers

of XYZ are using their own intuitions to insert OW. There were no official policies to this

effect - as discussed earlier, the upper management seemed to be unaware of this practice.

In the following section, we introduce SI into our proposed DSPs by using the Maximum

Workload Threshold Based Policy (TBP) as discussed in Section 3.4 earlier.

5.3. Performance of DSPs with Strategic Idleness Modification

In this section, we add the SI to the different DSPs. Specifically, we use the generalized TBP

modification to the LAW, LS, LMOP, LCW, SERP and LERP policies. We demonstrate

that this modification can reduce the number of red faces substantially without a significant

deterioration in the values of the macro-level SLMs. We employed the “MaximumWorkload

TBP”, described in Section 3.4, to the six proposed DSPs, and implemented the Overtake-

free SI. This ensures that, after the SI period, customers would not be delayed once station

resumes working. The results can be found in the last six rows of Table 3.

Comparing rows 5-10 to rows 11-16 reveals that in all six DSPs, the SI policy results in

a small 5-7% increase in total system times (by about 11 minutes in the LAW, LS, LMOP

and SERP policies, and about 13 minutes in LCW and LERP policies) and 8-10% increases

in the probability of experiencing total system times of over four hours versus the non-idle

version of these policies. However, the red face measure (i.e., the number of waits over 20

minutes) is reduced by around 24%. This is in line with the theoretical analysis presented
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System Time Red Faces
Policies \ Measures Mean Stdev ≥4hrs #(≥ 15mins) #(≥ 18mins) #(≥ 20mins) #(≥ 22mins) #(≥ 25mins)
Empirical Data 4:04:26 1:00:51 52.5% 1645 749 456 397 327
ED+Non-idle 3:46:37 56:53 38.3% 1846 1340 1094 880 645

LAW+Non-idle 3:23:53 49:55 21.3% 958 822 730 661 541
LS+Non-idle 3:24:21 47:44 21.3% 873 743 665 607 520

LMOP+Non-idle 3:24:28 52:01 20.4% 807 683 612 543 457
LCW+Non-idle 3:24:19 50:07 21.2% 972 816 729 653 554
SERP+Non-idle 3:23:17 50:57 20.6% 929 784 687 606 507
LERP+Non-idle 3:25:22 50:58 20.9% 926 791 705 633 528

LAW+MaxWrkldTBP 3:34:32, 51:46 28.0% 828 647 551 477 393
LS+MaxWrkldTBP 3:35:03 51:29 28.2% 841 622 518 444 360

LMOP+MaxWrkldTBP 3:35:55 53:40 28.9% 707 539 476 427 355
LCW+MaxWrkldTBP 3:37:17 52:54 30.7% 845 640 551 478 380
SERP+MaxWrkldTBP 3:34:25 52:35 28.2% 792 618 525 464 380
LERP+MaxWrkldTBP 3:38:58 53:16 31.7% 878 692 609 541 445

Table 3 Performance of Different Scheduling Policies with and without SI.

in Baron et. al. (2013): the SI policy is able to significantly reduce the probability of long

waits (an equivalent measure to red faces), while only slightly increasing the total system

times. Note that the SERP+TBP policy again dominates LAW+TBP, LCW+TBP and

LERP+TBP policies.

While the numbers of red faces under our DSPs with TBP modification are greater

than under the ED policy (476 vs. 456), a significant reduction in total system times, as

well as an automated DSP without any supervision presents an attractive trade-off to the

decision-maker. Incidentally, the difference in the number of red faces versus the ED policy

may be due to the fact that in real system expediting action appears to be taken by process

managers somewhat before the waiting time reaches 20 minutes (which is natural, given

that red faces incidents are used in performance reviews). If we redefine “excessive waits”

to be 15 or 18 minutes, rather than the current 20 minutes, the incidence of such waits

under all six DSP+SI policies falls below that in the empirical data.

Our main finding from this comparison is that the use of strategic idleness in conjunction

with the dynamic scheduling policies, such as our LS, LAW and SERP policies, can be used

to improve the SLM in practice. Moreover, due to the simple and transparent structure,

the cost of implementing such policies should be low. In addition to supporting the main

theme of the paper on the joint usage of DSPs and SI, this finding is also encouraging for

the usage of decision support systems for managing service network in practice.
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6. Summary and Open Questions

In this paper we investigated the performance of Dynamic Scheduling Policies in a stochas-

tic open-shop service network. The unique feature of the system we examined is the need

to balance between the more traditional “macro-level” service level measures, such as the

total system time, and the customer-focused “micro-level” measure related to excessive

waits within the system. The incidence of excessive waits can be managed by introducing

“strategic idleness” where intentional (small) waits are introduced in upstream stations to

prevent (longer) waits at busy downstream stations. Our work was motivated by the data

from a real-life medical clinic. Through process analysis and statistical hypothesis tests we

demonstrate that (largely unbeknownst to management), system schedulers appear to use

strategic idleness to minimize instances of excessive waits.

We developed a flexible framework allowing us to represent “completely reactive”

dynamic scheduling policies by defining simple scoring rules. We also showed how a given

policy can be modified with a “strategic idleness” component allowing it to account for

both micro- and macro-level measures. By developing a simulation model based on the

real data for the XYZ system we showed that these automated scheduling policies appear

to be quite promising: achieving substantial improvements on the macro-level measures

while essentially matching the performance of actual policies on the micro-level measure.

Due to the complexity of the underlying system, our results are mostly computational.

Analytical substantiation of some of our conclusions would be quite interesting. A step in

this direction was taken by Baron et al. (2013) who investigated policies with strategic

idleness analytically for a tandem queue. An extension of their results to more complex

stochastic networks remains open.
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