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We analyze the problem of optimal location of a set of facilities in the presence of stochastic demand
and congestion. Customers travel to the closest facility to obtain service; the problem is to determine

the number, locations, and capacity of the facilities. Under rather general assumptions (spatially distributed
continuous demand, general arrival and service processes, and nonlinear location and capacity costs) we show
that the problem can be decomposed, and construct an efficient optimization algorithm. The analysis yields
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and near-optimal capacities, and robust class of solutions that can be constructed for this problem.
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1. Introduction
Two key issues that must be addressed when locating
service facilities are ensuring convenience and ensur-
ing sufficient capacity. From the customer’s point of
view, convenience means not having to travel too far
to obtain service, and sufficient capacity means being
able to obtain service without an overly long wait at
the facility. From the decision maker’s point of view,
these two aspects are related because the same budget
could be used to locate a larger number of smaller-
capacity facilities (focusing on convenience) or a
smaller number of larger-capacity facilities (enjoying
capacity-pooling effects and thus focusing on suffi-
cient capacity). These issues arise in a variety of appli-
cations, ranging from location of public facilities such
as hospitals, medical clinics, or government offices to
location of private facilities such as stores, service cen-
ters, and warehouses.
This problem, which is rather fundamental in the

facility location theory, has received a significant
amount of attention in the literature; the interplay
of locational and stochastic (queuing) aspects makes
it particularly challenging. The problem belongs to
the general class of location problems with stochastic
demand and congestion with fixed servers, reviewed
in Berman and Krass (2002). The study of models of

this type originated with Marianov and Serra (1998).
For further discussion of this class of problems, we
refer the reader to Berman et al. (2006), Marianov
and Rios (2001), Marianov and Serra (2002), Wang
et al. (2002), as well as references in Berman and
Krass (2002). Due to the complexity of the underlying
problem, all papers listed above make very strong
assumptions: The demand is assumed to be discrete.
Either the number or the capacity of the facilities (or
both) are assumed to be fixed. The set of potential
facility locations is assumed to be discrete and finite.
The demand arrival process is assumed to be Poisson,
and the service process is usually assumed to be
exponential.
We will consider the problem under a much more

general setting: allowing for general spatial distribu-
tion of the demand, arrival, and service processes,
and without fixing in advance either the number or
the capacity of the facilities, or their potential loca-
tions. In fact, our model belongs to the class of con-
tinuous facility models with continuously distributed
demand—to the best of our knowledge, no prior
work on multifacility stochastic location problems has
been attempted in this setting. Specifically, we assume
that customer demand is distributed over a certain
space (special cases include demand distributed over
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a line, planar region, or a network) and that both
the demand and service processes are stochastic. As
a result, congestion may occur at the facilities. Two
types of constraints are imposed to ensure adequate
service at the facilities: (a) the maximum travel dis-
tance constraint that ensures convenience, and (b) the
service-level constraint that limits the waiting times at
the facilities. Costs are incurred for locating new facil-
ities and for adding capacity to the facilities. Initially,
we assume that all the facilities must have identical
capacity and that customers always travel to the clos-
est facility to obtain service; both of these assumptions
are relaxed later. We seek to simultaneously optimize
three types of decision variables: (a) the number of
facilities to be located, (b) the location of the facilities,
and (c) the service capacity of each facility. We will
refer to this problem as the Stochastic Capacity and
Facility Location Problem (SCFLP).
We show that, under some mild assumptions, the

SCFLP with a given number of facilities M can be
decomposed into two subproblems: the determinis-
tic Equitable Location Problem (ELP), which seeks
to find facility locations that ensure that consumer
demand is fairly distributed among the facilities,
and the stochastic single-facility capacity determina-
tion problem, which computes the minimal required
capacity at the busiest facility to ensure that the
service-level constraint is met. By conducting a lin-
ear search with respect to the number of facilities M ,
the optimal number, locations, and capacities of the
facilities can be determined. While the capacity deter-
mination problem cannot be solved in closed form
for general service distributions, we develop efficient
approximations of the required capacity using large-
deviation results.
A key concept of this paper is an EFC—a location

vector that ensures identical customer demand at all
facilities. We show that if a feasible EFC location vec-
tor exists, it is optimal. We present conditions for the
existence and feasibility of EFC for the case where
demand is distributed over a line segment.
A series of computational experiments are con-

ducted to assess the solvability of the SCFLP (and the
ELP) and to develop managerial insights on the prop-
erties of the optimal solutions. We observe that, in the
majority of cases, the optimization procedures select
the minimal number of facilities for which a feasible

EFC location vector exists. This leads to a simple and
robust heuristic decision rule for SCFLP that is inde-
pendent of the cost structure.
The paper is organized as follows: The SCFLP

model and the required notation are formally defined
in §2. In §3, we present key structural results that
allow us to decompose the SCFLP, and the solution
algorithm. The proofs of these and all other results
that are not straightforward appear in the technical
appendix available online.1 Section 4 deals with the
solution of the ELP and the existence and feasibil-
ity of EFC vectors. Section 5 presents computational
experiments and discusses properties of optimal solu-
tions and a heuristic decision rule. Section 6 describes
several direct extensions and generalizations of the
SCFLP model. In addition to a summary, §7 contains
concluding remarks and directions for future research.

2. SCFLP Model
We formulate the SCFLP over a bounded space
P ⊂RN equipped with some norm �·�. Note that since
a graph can always be embedded in R3, this includes
problems on a network with the shortest distance
norm.
On this space, the demand for service at any point

x ∈ P (where small bold letters denote vectors) is
assumed to follow a general renewal process. We
assume that at each arrival epoch there is a single
arrival with probability 1, and that the total demand
over the space is � with 0 < � < �. We denote
the number of calls for service at x up to time t

by Nt�x	 and the average demand arrival rate at x
by limt→� Nt�x	/t = �dF��x	. Thus, the proportion
of demand at any point x ∈ P is given by dF��x	
such that the Lebesgue integral is well defined and∫
x∈P

dF��x	= 1. Finally, if lim→0
∫ x+

x
dF��x	 > 0, we

require that the demand at x follows a Poisson pro-
cess, but we allow demand to follow a general renewal
process whenever lim→0

∫ x+

x
dF��x	= 0. Observe that

lim→0
∫ x+

x
dF��x	= 0 implies that the general renewal

process has an infinitesimal rate. Mathematically, the
latter requirement is that the interrenewal time at x

1 An online appendix to this paper is available on the Manufactur-
ing & Service Operations Management website (http://msom.pubs.
informs.org/ecompanion.html).
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with lim→0
∫ x+

x
dF��x	= 0 is distributed with a cumu-

lative distribution function (CDF) Fx�t	 such that for
any � > 0 and t > 0 we have Fx�t	≤ �.
We consider the location of M identical service

facilities, indexed i = 1� � � � �M , where M is a deci-
sion variable. The cost for locating M facilities is
CM > 0 dollars. We assume Cj ≤Cj+1 ∀ j = 1�2� � � � and
limM→� CM =�.
We assume first come–first serve (FCFS) service dis-

cipline and an infinite buffer size. Service require-
ments are assumed to be independent and identically
distributed (i.i.d.) with a CDF FS�s	, a well-defined
moment generating function (MGF) GS��	 (service
time), and a mean ES�S	= 1. This assumption is made
with no loss of generality since it simply rescales time.
There are two common methods to model flexible

capacity of a queuing system. One is to assume multi-
ple parallel servers each with a given service rate ��= 1
(in accordance with our assumption that ES = 1 and
without loss of generality). The decision variable is N ,
for the number of servers. For the second method, we
assume a single server with a flexible service rate �.
The control variable is this server’s capacity �. In this
case, the mean service time is 1/�, and it is easy to
show that the CDF and the MGF of the service time
are FS��s	 and GS��/�	 for � > 0, respectively. If the
system utilization is reasonably high, a system with
N = � parallel servers will perform similarly to a
single server with capacity � (assuming integer �).
Thus, the main difference between a single adjustable-
capacity server and multiple unit servers is that the
system capacity can be adjusted continuously in the
former case, and in identical discrete steps in the latter.
While the discrete-capacity model may be more ac-

curate for a simple facility (e.g., a car wash, where
adding capacity means adding bays), we regard the
continuous-capacity model as more suitable for more
complex facilities: For example, it is not clear what a
“server” represents in the case of a hospital, where
capacity can be adjusted in a variety of ways (through
better technology, more nursing support, more exam-
ination rooms, as well as more doctors). We consider
both types of capacity models in this paper.
When we have M facilities, adding one unit of ca-

pacity to each facility costs cM > 0 dollars. One could
think of cM/M as the discounted operation cost of
a unit capacity when M facilities are operating; we

assume cj ≤ cj+1 for all j . While all facilities are ini-
tially assumed to be identical, this assumption can be
relaxed in some cases; see §6 for further discussion.
Let xj ∈ P represent the location of facility j , for j =

1� � � � �M . We assume that collocation is not allowed,
i.e., there exists some minimal interfacility distance
� > 0, such that

�xi�xj� ≥ � ∀ i� j ∈ �1� � � � �M�� i �= j� (1)

To obtain service, customers are assumed to travel,
at a fixed velocity v with 0< v <�, to a closest facil-
ity, with ties broken arbitrarily. Let I j

x = 1 if customers
from x are served by the jth facility and I

j
x = 0 other-

wise. Note that every facility location vector induces
a Voronoi partition of V1� � � � �VM of P , where x ∈ Vj

implies that xj is the closest facility to x for j =
1� � � � �M . The indicator function I

j
x = 1 if and only if

x ∈ Vj . We note that a Voronoi partition on a line is
trivial and that efficient methods exist for obtaining
Voronoi partitions on a plane and higher-dimensional
spaces: see, e.g., Aurenhammer (1991) and Suzuki and
Okabe (1995). While we believe that the closest assign-
ment rule is the most realistic for many customer ser-
vice facilities, and assume this rule throughout the
paper, we discuss the relaxation of this assumption
in §6.
With these definitions, the arrival rate to the jth

facility is given by

"xj =�
∫
x∈P

I j
x dF��x	 ∀ j = 1� � � � �M� (2)

We assume that the different stochastic elements
described above are independent of each other. For
example, the renewal processes that describe cus-
tomer demand for service are independent of each
other, of the location of the closest facility, and of the
service processes.
We include two types of constraints to ensure ade-

quate customer service: (a) the coverage constraint
that requires a facility to be within a certain coverage
radius of customer location, and (b) the service-level
constraint to ensure that, on average, customers do
not wait too long once they arrive at the facility.
Let r > 0 be the exogenous coverage radius of a

facility. The coverage constraint requires that

min
j=1�����M

�xj �x� ≤ r� ∀x ∈ P�
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Alternatively, denote by R�xj 	 the maximum travel
distance for customers patronizing facility j (note that
R�xj 	 is the radius of the jth Voronoi region Vj ). Then
the coverage constraints can be rewritten as follows:

R�xj 	=max
x∈P

�x�xj�I j
x ≤ r� j = 1� � � � �M� (3)

The service-level constraint requires that the proba-
bility of waiting in a queue for more than d time units
does not exceed $ for some finite d > 0 and $ ∈ �0�1	.
We discuss additional service-level measure in §6. Let
W

j
i be the waiting time of the ith customer that arrives
to the jth facility. Any control policy that satisfies the
service-level constraint must ensure that the steady-
state waiting time at the jth facility exists: that is, the
arrival rate to each facility is lower than the service
rate. We denote the steady-state waiting time at the
jth facility by W j .
Then the service-level constraint can be expressed

as follows:

P�W j > d	≡ lim
n→�

1
n

n∑
i=1

I�W
j
i > d�≤ $� j = 1� � � � �M�

(4)
where I�·� is the indicator function.
Let ' be an indicator variable that equals one if a

single-server queue is considered and zero if a mul-
tiple-server queue is considered. Then, the stochastic
capacity and facility location problem (SCFLP) is

min
M�x��

CM +'cM�+�1−'	cMN (5)

subject to (1, 3, 4) and

xj ∈P� j=1�����M�M−positive integer�
�>0� N −positive integer�

There are several challenges in solving this prob-
lem. First, the service-level constraint (4) must be re-
formulated as a function of the decision variables.
Another difficulty is that the decision variable M

appears in all constraints as the upper limit of the
index j . In fact, it is not at all clear how to solve
SCFLP using standard mathematical programming
techniques. In the following sections, we show how
SCFLP can be decomposed into a series of subprob-
lems, and discuss solution approaches for each sub-
problem.

3. Decomposition of SCFLP
In this section, we establish important structural
results for SCFLP and use them to decompose SCFLP
into three subproblems: (a) given the number of facili-
tiesM , find optimal facility locations; (b) givenM and
optimal locations, specify optimal processing capacity
� or N ; and (c) find the optimal value of M .

3.1. Equitable Location Problem and Equitable
Facility Configuration

We letW�"��	 be distributed as the steady-state wait-
ing time in a single-server queue with service rate �

and arrival rate " whenever such a steady state exists.
Similarly, we let W�"�N	 be distributed as the steady-
state waiting time in an N -server queue whenever
such a steady state exists. We define

��"	 = inf�� > " � P�W�"��	 > d	≤ $�� (6)

N�"	 = min�N—positive integer
� P�W�"�N	 > d	≤ $�� (7)

"��	 = sup�" > 0 � P�W�"��	 > d	≤ $�� and (8)

"�N	 = sup�" > 0 � P�W�"�N	 > d	≤ $�� (9)

In §3.2, we show that our model results in a Poisson
arrival process to facilities, and consequently that
Assumption 1 below holds for our model.

Assumption 1. In the single-server case, ��"	 is
strictly increasing with " and "��	 is strictly increasing
with � for each facility and each pair of facilities.
In the multiple-server case, N�"	 is increasing with "

and "�N	 is strictly increasing with N for each facility and
each pair of facilities.

Note that, in general, Assumption 1 may not hold.
Indeed, if all facilities operate as a GI/G/N queue,
then the “for each facility” part of Assumption 1
might look intuitive from a queueing theory view
point. However, because demand follows a general
renewal process and the aggregation of that process
is not necessarily a renewal process, facilities are not
necessarily GI/G/N queues. Moreover, the “for each
pair of facilities” part of Assumption 1 is fairly restric-
tive. Consider two facilities facing general arrival
renewal processes with rates "1 and "2 > "1. Observe
that if the variance of the arrival process to Facility 1



Baron et al.: Facility Location with Stochastic Demand and Constraints on Waiting Time
488 Manufacturing & Service Operations Management 10(3), pp. 484–505, © 2008 INFORMS

is higher than that to Facility 2 we might have ��"1	 >

��"2	, and similarly N�"1	 > N�"2	.
A direct consequence of Assumption 1 and that the

per-unit capacity cost cM is positive is

Corollary 1. Let "max denote the highest arrival rate
to any facility in an optimal solution of SCFLP. Then, if
Assumption 1 holds, in the single-server case the service-
level constraint in any facility with arrival rate "max is
active, i.e., P�W�"max��	 > d	 = $, and in the multiple-
server case for any facility with arrival rate "max there
is a unique N such that P�W�"max�N 	 > d	 ≤ $ and
P�W�"max�N − 1	 > d	 > $.

For a fixed number of facilities M , we use Corol-
lary 1 to replace the stochastic model SCFLP with
a simpler deterministic problem. Suppose the total
number of facilities M is fixed, and let SCFLP�M	

represent the corresponding version of the stochastic
location problem defined in §2.
Consider the following optimization problem,

which we call the equitable location problem, ELP�M	

min "max

subject to �1�3	 and

"max ≥ "xj � j = 1� � � � �M

xj ∈ P� j = 1� � � � �M� (10)

The objective of the ELP�M	 is to locate M distinct
(i.e., separated by at least �) facilities so that the cov-
erage constraint is satisfied and the demand faced by
the busiest facility (i.e., the facility with the largest
arrival rate) is as small as possible. Minimizing the
demand faced by the busiest facility reduces the dif-
ferences in arrival rates between the busiest and the
least busy facilities—hence the name of the problem.
Note that ELP�M	 is a deterministic location prob-

lem since "xj represents the total demand in the region
assigned to facility j and does not depend on the
behavior of the queuing system. The following result
shows the equivalence of ELP�M	 and SCFLP�M	.

Theorem 1. Consider M > 0.
1. ELP�M	 is feasible if, and only if, SCFLP�M	 is

feasible.
2. Suppose ELP�M	 is feasible and let x∗�"max be the

optimal location vector and objective function value in
ELP�M	, respectively. Let ��"max	 and N�"max	 be defined

in (6) and (7), respectively. Then, if Assumption 1 is sat-
isfied, x∗ is an optimal location vector for SCFLP�M	

leading to an optimal objective function value z∗ = CM +
'cM��"max	+ �1− '	cMN�"max	.
3. Suppose SCFLP�M	 is feasible and let x∗ be the opti-

mal location vector and �∗ and N ∗ be the optimal capacity
in the single- and multiple-server case, respectively. Then,
if Assumption 1 is satisfied, x∗ is also optimal in ELP�M	.
Moreover, for the single-server case the optimal objective
function value in ELP�M	 is "∗��∗	 and for the multiple-
server case the corresponding value satisfies "∗�N ∗ − 1	 <

"max ≤ "∗�N ∗	.

Thus, for a fixed number of facilities M , the orig-
inal stochastic model can be replaced by the equiva-
lent deterministic model ELP�M	. While the latter can
present computational challenges of its own (mostly
due to the nonlinearity implicit in the definition
of "xj ), it is relatively easy to solve in some cases, as
discussed in §4.
We point out several interesting observations. First,

the model ELP�M	 is independent of the cost struc-
ture of the SCFLP. This indicates that the costs influ-
ence only the number of facilities to be located, but
not the specific locations of the facilities. (This is,
in part, due to our assumption that location-specific
costs are similar for all locations or are dominated
by the capacity-related costs, or both.) Second, while
the equity considerations have to be enforced through
separate constraints in most location models, they
occur naturally in the SCFLP. We will return to this
point in §4.
We also point out that the feasibility of ELP�M	 is

not assured—it depends on the number of facilities
M being large enough to ensure that a facility can be
located within distance r of every point in P .
One case where the solution of ELP�M	 is trivial is

when an equitable facility configuration EFC exists.
The latter is defined as follows:
Definition 1. Equitable Facility Configuration

(EFC). We say that a location vector x represents an
EFC if the arrival rates to all facilities are the same,
i.e., "xj =�/M for all j ∈ �1� � � � �M�.
The following result now follows immediately since∑
j "

xj =� for any feasible location vector x, and thus
the value of the maximal summand is minimized by
setting all terms to the same value.
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Corollary 2. Suppose a feasible EFC location vector
exists in the ELP�M	 model. Then this location vector is
optimal.

While it is easy to check whether a certain loca-
tion vector represents EFC, it may be harder to find
a feasible EFC vector (or to determine that one does
not exist). These issues are further discussed in §4.

3.2. Arrival Process and Waiting Times
We show in Theorem 2 that the arrival process to each
facility is Poisson, and thus each facility can be ana-
lyzed as an M/G/N queue. We then establish that
Assumption 1 and therefore Theorem 1 hold for our
model.

Theorem 2. The arrival process to facilities in the
SCFLP is Poisson.

Therefore every facility operates as an M/G/N
queue, and establishing the “for each” facility part
of Assumption 1 will also prove the “for each pair”
of facilities part. We now move to proving the strict
changes in the waiting time assumed in Assump-
tion 1. We denote the interarrival time of the ith
customer to the jth facility by A

j
i for i = 1�2� � � � � By

Theorem 2, Aj
i are i.i.d. and A

j
1 ∼ exp�"xj 	.

We start with the single-server case where Propo-
sition 1 below is somewhat more general than we
require. Consider a GI/G/1 queue with an FCFS ser-
vice discipline, let Ai ∼ FA�a	 be the i.i.d. interarrival
periods with expectation E�A	 < �, and let Si ∼ FS�s	
be i.i.d. service requirements with expectation E�S	 <
�. Suppose that the interarrival and service rates are
set to " and �, respectively, (such that the interar-
rival and service times of the ith customer are ai/"
and si/�, respectively). If E�A	/" > E�S	/� a steady-
state distribution for the waiting time in this GI/G/1
queue exists and, as before, we let W�"��	 be a ran-
dom variable with this distribution. Then, extending
the result from Weber (1983),

Proposition 1. If either A or S are continuous random
variables, then for every " and � that satisfy E�A	/" >
E�S	/� and P�A/" < S/�	 > 0, we have that W�"��	 is
well defined and for any d > 0, P�W�"��	 > d	 is strictly
decreasing with respect to � and strictly increasing with
respect to ".

For the multiple-server case, we establish the fol-
lowing result for GI/G/N queue.

Proposition 2. If either A or S is a continuous ran-
dom variable, then for every " and N that satisfy E�A	/" >

E�S	/N , P�A/" < S/N	 > 0, and P�A/" > S	 > 0, we
have W�"�n	 is well defined for each n ≥ N and for any
d > 0, P�W�"�N	 > d	 is strictly decreasing with respect
to N and strictly increasing with respect to ".

Since, by Theorem 2, the arrival processes to queues
at each facility are Poisson, and for the single-
server case satisfying the service-level constraints (4)
require E�A	/" > 1/�, Proposition 1 is satisfied for
any facility. Thus, the strict changes of ��"	 and
"��	 assumed in Assumption 1 follow from the strict
changes in P�W�"��	 > d	. For the multiple-server
case, Assumption 1 follows from Proposition 2 in a
similar manner.

3.3. Determining the Optimal Service Capacity in
SCFLP�M	

In this section, we assume that the number of facili-
ties M has been fixed and that the optimal solution
to the ELP model defined in the previous subsection
is available. We address the question of how to deter-
mine the optimal capacity.

3.3.1. Single-Server Case. Here capacity is �. Let
"max be the optimal solution to ELP for a specific value
of M . It follows from Theorem 1 that the optimal ser-
vice capacity is given by

�∗ =��"max	� (11)

When the service time is exponential, the distri-
bution of waiting times is available in closed form,
allowing us to solve (11) directly. In this case, each
facility operates an M/M/1 queue, and for the facility
with the maximal arrival rate we have

P�W�"max��	 > d	= �"max/�	exp�−��−"max	d	�

Thus, Equation (11) is equivalent to

�"max/�	exp�−��−"max	d	= $� (12)

The capacity that satisfies (12) is

�∗ = LW��d/$	"max exp �d"max		

d
� (13)

where the LW�x	 denotes the Lambert W�x	 function
that satisfies LW�x	exp�LW�x		 = x, and is discussed
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in Corless et al. (1996). This function is imple-
mented in several common mathematical packages;
there are also standard techniques for evaluating it
numerically.2

How can Equation (11) be solved in general? Since
each facility (in particular the one corresponding
to the maximal arrival rate) operates as an M/G/1
queue, we can, in principle, determine the MGF for
the waiting time W�"��	 and then invert it to find
the probability distribution of the waiting times, sub-
stitute it into the service-level constraint (which we
know is active at "max), and then solve for � to find
the value of �∗. However, this approach may be dif-
ficult to implement because, in most cases, the inver-
sion of the MGF above can only be done numerically,
and thus the substitution into the service-level con-
straint may be difficult to execute. For this reason,
we present an alternative approach based on large-
deviation bounds.
In the following discussion, we focus on the single

facility with the arrival rate "max located at x; there-
fore, we drop the superscript j . As before, we let Ai,
i = 0�1�2� � � � represent the interarrival periods and Si,
i = 0�1�2� � � � the service requirements. Let S0 = 0 and
given capacity � we define Yi ≡ Si−1/�−Ai. We recall
that any optimal policy to SCFLP�M	 will guaran-
tee the existence of a steady-state distribution for the
waiting times in each facility, thus it will choose �
such that "max = 1/E�A	 < � or E�Y 	 = E�S	/� −
E�A	 < 0. Moreover, if Si−1/� ≤ Ai for every i there is
some � > 0 such that for any d > 0 the service-level
constraint (4) will also hold for �� =�− �. Therefore,
any optimal control will choose � such that FY �0	 < 1.
Assuming that the zeroth customer arrives to an

empty server, the embedded waiting time in a G/G/1
queue can be described as a one-sided regulated ran-
dom walk that is regulated at zero, known also as the
Lindley recursion:

W0 = 0 and Wi =max�Wi−1+Yi�0�

for i = 1�2� � � � � (14)

Using (14), we can interpret the event that a customer
in a queue with infinite waiting room waits more than

2 The zero branch of the Lambert W�x	 is needed because it is the
only branch with positive real values for positive arguments of the
function.

d time units as the event that a one-sided regulated
random walk with a negative drift crosses a threshold;
e.g., see Cohen (1982).
There is extensive literature developing bounds for

the threshold-crossing probability of regulated ran-
dom walks provided that FY �0	 < 1 and that the con-
jugate point defined below exists. Let GY ��	 represent
the MGF of Y and suppose

�∗ = arg�� > 0 �GY ��	= 1�� (15)

then �∗ is called the conjugate point of Y . The con-
jugate point exists whenever there is some �0 such
that 1< GY ��0	 <�, which is true for most commonly
used distributions, including exponential and normal
(see, e.g., Chapter 7 of Gallager 1996). Under these
assumptions, the service-level constraint (4) can be
rewritten as

P�W�"max��	 > d	≤ e−�∗d = $� (16)

where we used the fact that the service-level con-
straint is tight at the facility corresponding to "max.
Using (16), we can write

�∗ =− ln$

d
� (17)

Because the MGF of Yi at the conjugate point �∗ sat-
isfies (15) (i.e., GY ��∗	= 1), we have

GS��
∗/�	

"max

"max+�∗ = 1� (18)

Therefore, the (approximate) optimal service capacity
is given by

�∗ = arg
{
GS

(
− ln$

d�

)
"max

"max− ln�$	/d
= 1

}
� (19)

which can be solved numerically.
We note that further improvements can be made

by tightening the bound in (16) using the techniques
of Ross (1974). However, as shown in §5, the bounds
above already provide very accurate estimates of the
required capacity of the facilities, thus further tighten-
ing is unlikely to result in major improvements. Thus,
in view of the lack of generality of the tighter bounds
and the minor improvements they could bring, we
chose to use the bounds above in the remainder of
the paper.
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It is interesting to analyze the optimal capac-
ity obtained under the large-deviation approxima-
tion (19) when the service is exponential. In this case,
GS�.	= 1/�1− .	. Thus, from (19) we obtain

�∗ = "max+�∗� (20)

implying that the optimal capacity is equal to the ar-
rival rate to the busiest facility plus a safety factor
that depends on the required service level.

3.3.2. Multiple-Server Case. Here capacity is N
(recalling, ��= 1) and we denote by W�"max�N	 a ran-
dom variable that is distributed as the steady-state
waiting time in an M/G/N queue with arrival rate
"max. We observe that by (4) and (5) of Abate et al.
(1995) for an M/G/N queue we can approximate for
N > "max (under similar conditions on the service dis-
tributions as in the single-server case)

P�W�"max�N 	 > d	≤ e−�∗�N 	d� (21)

where �∗�N 	 in (21) is given similarly to (15) by

�∗ �N 	= arg
{
� > 0

∣∣∣∣GS

(
�

N

)
GA �−�	= 1

}
� (22)

Because the arrival rate is Poisson with rate "max, we
have, similar to (18), that �∗�N 	 is the unique positive
solution of

GS

( �

N

) "max

"max+�
= 1�

Moreover, due to the discrete nature of capacity it is
likely that the service-level constraint would not be
active at either of the facilities. Because it is econom-
ical to reduce the number of servers to the minimal
number of facilities that will result in �∗�N 	 larger
than the one in (17), we have

N ∗=min
{
N >"max�N integer

∣∣∣∣�∗�N 	≥ −ln$

d

}
� (23)

For example, when service is exponential, using (22)
we have

1
1−�/N

= "max+�

"max

�∗�N 	 = N −"max�

Thus, we look for the smallest N that holds

N −"max ≥ − ln$

d

N ≥ "max− ln$

d
and N ∗ =

⌈
"max− ln$

d

⌉
� (24)

where �x� denotes the smallest integer larger than x.
Comparing (20) with (24) for exponential service, we
observe that the service-level constraint dictates a uti-
lization level of / = "max/�"max− �ln$	/d	. However,
when capacity is continuously adjustable, this uti-
lization can be achieved exactly, whereas the discrete
nature of the multiple-server case may lead to a lower
utilization level.
For many other service types, ��N	 that solves (22)

can be found numerically for each N > " and used to
find the smallest N such that (23) holds.

3.4. Determining the Optimal Number of
Facilities

Suppose that for any value of M we can solve the
ELP�M	 to find the optimal maximal arrival rate
"max�M	 and then apply the results of the previ-
ous subsection to find the optimal service capacity
��"max�M		 or N�"max�M		. In the current section we
discuss how to search for the optimal value ofM , thus
completing the solution of the original SCFLP model.
For a particular M > 0, let

Z�M	=CM + 'cM��"max�M		+ �1− '	cMN�"max�M		1

if ELP�M	 is not feasible for thisM , we set Z�M	=�.
Similarly,

ZE�M	=CM + 'cM���/M	+ �1− '	cMN��/M	�

Note that when the EFC location vector exists, ZE�M	
provides the corresponding value of the objective
function. We will represent the optimal number of
facilities with M∗, and use ME to represent the value
ofM for which ZE�M	 is minimized. (Clearly, we only
consider values of M for which ELP�M	 is feasible.)
Before presenting the algorithm for determining M∗,
we make several useful observations.

Lemma 1.
1. ZE�M	≤Z�M	 for any M > 0.
2. Let

M0 =min�M > 0 � ELP�M	 is feasible�� (25)

Then, the problem ELP(M) (and SCFLP(M)) is feasible if,
and only if, M ≥M0.

3. Suppose SCFLP(M) is feasible for a certain M . Define

M1�M	= argmin�M ′ > M2 CM ′ > Z�M	�� (26)

Then M∗ < M1�M	.
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We note that to find the minimal M0 for which
ELP�M	 is feasible in Part 2, it suffices to solve the
min-cover problem with radius r over space P , for
which several algorithmic approaches are available—
see Suzuki and Drezner (1996) and Plastria (2002).
We are now ready to present the algorithm for

determining M∗ (as well as the optimal location vec-
tor and optimal capacity of facilities). In addition to
the properties listed above, the algorithm also uses
the fact that evaluation of ZE�M	 is cheaper computa-
tionally than the evaluation of Z�M	, since the latter
requires us to solve ELP�M	, as well as (19), while
only the solution of (19) is required for the former
(since "max =�/M in this case). We use ME—the opti-
mal number of facilities when EFC exists—as a start-
ing point for our search, and M0, MU = M1�M0	 as
lower and upper bounds, respectively.

Algorithm 1.
Step 1. Initial Guess2 Determine ME . Compute M0

by (25) and MU = M1�M0	 by (26). Let ME =
argminM0≤M<MU ZE�M	. Set M∗ = ME�Z∗ = Z�M∗	.
Find M1�M∗	 from (26) and set MU =M1�M∗	.
Step 2. Main Search; Upper Branch
Step 2.1. Set M =ME + 1.
Step 2.2. Set ZLB =minM≤L<MU ZE�L	. If ZLB ≥ Z∗,

proceed to Step 3.
Step 2.3. If Z�M	 < Z∗ then set Z∗ =Z�M	� M∗ =

M , MU =M1�M∗		.
Step 2.4. IfM ≥MU −1 go to Step 3, Else setM =

M + 1 and repeat Step 2.2.
Step 3. Main Search; Lower Branch
Step 3.1. Set M =ME − 1. If M =M0, STOP.
Step 3.2. Set ZLB =minM0≤L≤M ZE�L	. If ZLB ≥ Z∗,

STOP.
Step 3.3. If Z�M	 < Z∗, set Z∗ =Z�M	� M∗ =M .
Step 3.4. If M = M0, STOP. Else, set M = M − 1

and repeat Step 3.2.

Upon exiting the algorithm, M∗ contains the opti-
mal number of facilities and Z∗ the optimal value of
the objective function. The algorithm proceeds as fol-
lows. In Step 1, the initial upper and lower bounds
are computed, as well as the optimal number of facil-
ities ME for the EFC case. We then re-adjust the
upper bound (note that upper bound can be tightened
whenever an improved solution is found) and initial-
ize the search for the optimal solution, using ME as

the first guess. The search is split up into two in-
tervals: the upper branch (Step 2) searches over
the ME� � � � �MU − 1 values, while the lower branch
searches over M0� � � � �ME −1. In either case, Part 1 of
Lemma 1 implies that the search can stop as soon as
ZLB ≥Z∗, where ZLB represents the lowest value of ZE

over the remaining search interval, and Z∗ is the value
of the best feasible solution found so far. Note that
the optimal location vector and the optimal capacity
are computed implicitly—in the process of determin-
ing Z�M∗	.
Our experience with Algorithm 1 (as reported

in §5) indicates that ME usually provides an excellent
approximation to the optimal number of facilities M∗.
Thus, the optimal number of facilities is found quite
quickly, the bulk of the running time is spent in prov-
ing that this value is, in fact, optimal. The proof pro-
cess would be much faster if we could establish that
Z�M	 is unimodal. (In that case, the searches in the
upper and lower branches could stop as soon as the
values of Z�M	 begin to increase.) In fact, even uni-
modality of ZE�M	 would help because it would sim-
plify Step 1, and allow us to simply set ZLB = ZE�M	

in Steps 2 and 3. In §3.5.1, we further discuss the uni-
modality of Z�M	 and ZE�M	.

3.5. Further Results for the Single-Server Case
For the single-server case we discuss the unimodal-
ity of ZE�M	 and Z�M	 and show that the small-
est feasible number of facilities is optimal when the
per-unit capacity costs are increasing. Generalizing
these results to the multiple-server case requires a
careful consideration of the integrality in the num-
ber of servers and adds no insight, thus we do not
pursue it.

3.5.1. Unimodality of the Objective Functions for
the Single-Server Case. In our computational results
we used the cost function

Z�M	=CM4 + cM5� (27)

for some 4�5 ∈ �0�1	. This cost function presents
increasing returns to scale in the number of facilities.
We will assume this cost structure for the remainder
of §3.5.
For every problem instance solved for the single-

server case, we observed that ZE�M	 was unimodal;
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when the arrival at each point has an infinitesimal
rate, Z�M	 was also unimodal. Nevertheless, it ap-
pears to be very hard to prove unimodality of either
ZE�M	 or Z�M	. We therefore state the following
conjecture.
Conjecture: For the single-server case, ZE�M	 is

unimodal in M . Moreover, when the arrival process
at each point has an infinitesimal rate, Z�M	 is also
unimodal.
This conjecture likely holds under more general

conditions on the cost function than (27). Proposi-
tion 3 substantiates this conjecture for ZE�M	 for the
single-server case with exponential service.

Proposition 3. Suppose the cost function is given
by (27), the service time is exponential, and the large-
deviation bound (20) is used to determine the optimal
capacity. Then, ZE�M	 = CM4 + cM5���/M	 is uni-
modal, and its unique minimum �M satisfies the first-order
condition (FOC)

0=C4M4−1+ c�5− 1	�M5−2− c5
ln$

d
M5−1� (28)

Note that the minimizer �M in the preceding result
may not be an integer; the optimal number of facil-
ities ME (provided EFC exists) is obtained by check-
ing the two integer values � �M� and � �M�. As will be
discussed, a closed form solution to FOC (28) can be
obtained in some cases, yielding interesting insights
into the behavior of the optimal number of facilities
and the optimal service capacity.
Using �= 4−5 we can rewrite (28)

C �5+ �	M�+1− c5
ln$

d
M + c �5− 1	�= 0� (29)

In general, the closed-form solution for (29) does not
exist and the root �M must be found numerically.
However, in the case of 5 = 4 (i.e., � = 0), the closed
form solution for �M is

�M = cd �1−5	�

5�dC − c ln$	
� (30)

Since the optimal number of facilities in the EFC
case, ME , is within 1 of �M , and the optimal number
of facilities M∗ is usually well approximated by ME ,
the expression above yields some insights into the
sensitivity of the optimal number of facilities to the

problem parameters when the cost function is given
by (27) and 5≈ 4.
It is not hard to see that �M is linearly increasing

with the total arrival rate �, and linearly decreasing
with the facility cost parameter C. The behavior with
respect to other problem parameters is less obvious,
but after taking derivatives it can be verified that �M is
increasing with the capacity cost c, threshold value d,
and the service measure $, and is decreasing with
the returns-to-scale parameter 5 = 4 (in all cases the
rate of change is less than linear). We can conclude
that the optimal number of facilities should be fairly
robust with respect to changes in the required ser-
vice level and the cost of service capacity (particularly
since M∗ and ME are both integers, and thus small-
scale changes in �M have no effect on them).
From (19) and (30) we can also obtain a closed-

form expression for the (approximate) optimal capac-
ity when 5≈ 4

�∗ ≈��"max� �M		= 5�dC − c ln$	

cd�1−5	
− ln$

d
�

It can be seen that �∗ is independent of �; decreas-
ing with c�d� and $; linearly increasing with C; and
increasing with 5 = 4. Thus, changes in the service-
level requirements and capacity costs are likely to
be reflected in the optimal capacity level, whereas
changes in the total demand rate � will lead to open-
ing or closing of the facilities, but will not affect their
capacity. Changes in the facility cost C may lead to
both changes in the number of facilities and in their
capacity.

3.5.2. Optimal Number of Facilities When Per-
Unit Capacity Costs Are Increasing. To simplify the
notation throughout this section, we use ��M	 ≡
��"max�M		. Observe that the main trade-off repre-
sented by the objective function of the SCFLP is
between the facility cost CM that grows as the num-
ber of facilities is increased, and the system capac-
ity cost cM��M	 that could decrease because as more
facilities are added, less capacity � is required at the
busiest facility. Note, however, that the system capac-
ity cost is a function of total system capacity M��M	.
In fact, we may think of the total capacity cost as
�cM/M	 ∗ �M��M		, where the first term represents
per-unit capacity cost and the second term represents
overall system capacity. As discussed below, it can be
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shown in some cases that the overall system capacity
M��M	 is nondecreasing with M . Thus, if the per-
unit capacity cost cM/M is also nondecreasing, then it
can never be optimal to increase the number of facili-
ties beyond the minimal level required for feasibility.
Therefore,
Observation. Let M0 be the minimal number of

facilities for which ELP�M	 is feasible. Suppose the
system capacityM��M	 and the per-unit capacity cost
cM/M are both nondecreasing in M . Then the optimal
number of facilities is M∗ =ME =M0.
It is difficult to draw conclusions about the system

capacity in the general case: since the determina-
tion of ��M	 requires the solution of ELP�M	 to find
"max�M	. However, the situation is different when
EFC location vectors exist (i.e., with respect to the
determination of ME), since we know that "max�M	=
�/M in this case. Indeed, for the case of exponential
service, if the large-deviation bound (20) is used to
determine system capacity, we observe that

ME��ME	 = ME�+ME�∗ ≤ �ME + 1	�+ �ME + 1	�∗

= �ME + 1	 ∗��ME + 1	�
showing that the system capacity is nondecreasing
in M . Proposition 4 extends this result to the more
general case.

Proposition 4. Suppose the large-deviation bound (20)
is used to determine the optimal capacity ��M	. Let �E�M	

be the optimal server capacity when "max = �/M . Then
the system capacity M�E�M	 is nondecreasing in M .

The previous two results now lead to Corollary 3.

Corollary 3. Suppose the large-deviation bound is
used to determine the optimal system capacity and the per-
unit capacity cost cM/M is nondecreasing in M . Then
ME =M0, where M0 is the smallest M for which ELP(M)
is feasible.

Note that it is not necessary to solve ELP�M	 to
find M0. As discussed above, it suffices to solve the
(often much simpler) min-cover problem. Since ME

usually provides a good approximation to M∗, it fol-
lows that when the per-unit capacity costs are nonde-
creasing, the approximate solution to the SCFLP can
often be obtained quite easily, without resorting to
Algorithm 1. Moreover, if there is a feasible EFC vec-
tor for M =ME , then M∗ =ME .

Intuitively, nondecreasing per-unit capacity cost
implies that there are no economies of scale with
respect to the capacity cost. The results of this sec-
tion suggest that, in this case, it is typically optimal
to keep the number of facilities as small as possible.

4. ELP and Existence of EFC
We now take a closer look at the ELP model defined
in (10) of §3.1. Recall that for a given number of facil-
ities M , this model identifies facility locations that
minimize the demand assigned to the busiest facil-
ity (i.e., the arrival rate at the busiest facility). The
general ELP model (i.e., defined over an arbitrary
space P and with a general demand distribution "�x	)
appears to be quite difficult to solve. However, when
specialized to particular topologies P (and, possibly,
with certain additional assumptions with respect to
"�x		, ELP leads to an interesting family of problems
that, to the best of our knowledge, are largely unex-
plored in location literature. In this section, we discuss
two members of this family: the discrete location case
where P is assumed to be a finite set, and a linear
case where P is a line segment. In the latter case, we
also present some results related to the existence of
the EFC vector. The solution of the ELP over a finite
plane is discussed in the follow-up paper by Baron
et al. (2007). Remember that the results presented in
this section hold for both the single- and multiple-
server cases due to the decomposition of the SCFLP
discussed in §3.

4.1. Discrete ELP
Suppose the set of customer demand points is dis-
crete, i.e., lim→0

∫ x+

x
dF��x	 > 0, with P = �1� � � � � �P ��.

Assume that a facility can be located at any point in
P and that the distance between any two points of P

is at least  (i.e., any M-dimensional subset of P can
serve as a valid facility set). For a customer demand
point k ∈ P , let "�k	 be the arrival rate of calls for ser-
vice from k, with

∑
k∈P "�k	=�.

For k ∈ P , we define the following set of facility
locations from which k can be covered

Rk = �j ∈ P � d�j� k	≤ r��

where d�j� k	 is the distance between j and k. Let
xj = 1 if a facility is located at point j and 0 otherwise
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for j ∈ P , and let ykj = 1 if customer k is assigned to
facility j and 0 otherwise for k ∈ P and j ∈ Rk. The
discrete version of the ELP can now be formulated as
follows (we will refer to this model as ELPd).

min "max

subject to "max ≥ ∑
�k∈P � j∈Rk�

"�k	ykj� j ∈ P (31)

ykj ≤ xj k ∈ P� j ∈Rk (32)∑
j∈P

xj =M (33)

∑
j∈Rk

ykj = 1� k ∈ P (34)

∑
�j ′∈Rk �d�j ′�k	≤d�k�j	�

ykj ′ ≥ xj� kj ′ ∈ P (35)

ykj� xj ∈ �0�1�� k� j ∈ P�

Constraint (31) defines "max as the maximum arrival
rate to any facility. Constraint (32) ensures that a cus-
tomer can only be assigned to an open facility. Con-
straint (33) sets the total number of facilities to M ,
and (34) ensures that a customer is assigned to exactly
one facility. Constraint (35) enforces the requirement
that a customer must be assigned to the closest open
facility. (See Gerrard and Church 1996 and Berman
et al. 2006 for alternative forms of closest assignment
constraints.)
To get some idea of the difficulty of ELPd we

ran problem pmed1—the smallest-size problem from
Beasley (1990) for the p-median problem, which is a
network with 100 nodes and five facilities. We used
CPLEX 9.1 to solve the problem on a Pentium 4 com-
puter with 256 MB RAM. We vary the radius r from
127 to 133 because there is no feasible solution for
problem with r ≤ 126, and problems with r ≥ 134

Table 1 Solution of ELPd with a Network of 100 Nodes and Five Facil-
ities

n p Radius (dist) CPU �max

100 5 127 1�260�91 1,454.29
100 5 128 4�407�61 1,385.58
100 5 129 6�058�45 1,163.19
100 5 130 5�129�23 1,162.34
100 5 131 10�327�46 1,162.34
100 5 132 4�323�96 1,162.34
100 5 133 5�248�87 1,081.48

could not be solved in less than three hours. As can
be seen in Table 1, none of the instances can be solved
in less than 35 minutes.
We believe that the difficulty in solving the ELPd

problem can be in part attributed to the closest assign-
ment constraints. We suggest development of a spe-
cial algorithm for this problem in future research. A
possible direction can be to exploit the similarity of
the problem to the maximal weight cover problem,
e.g., Church and ReVelle (1982); and the M-center
problem, e.g., Courrent et al. (2002).

4.2. Linear ELP
In this section, we assume that P is a line seg-
ment with lim→0

∫ x+

x
dF��x	= 0 for each x ∈ P . With-

out loss of generality, we assume P to be of unit
length—with the corresponding rescaling of the cov-
erage radius r and the minimal separation distance �.
We begin by formulating the version of ELP for this
case.
As before, we assume that there are M facilities to

locate and denote the location of the jth facility by xj

for each j = 1� � � � �M , where xj < xj+1 for all j < M .
The no collocation constraints are

xj − xj−1 ≥ � ∀ j = 2� � � � �M�

Since customers must be assigned to the closest
open facility, customers from y ∈ 90� �x1 + x2	/2: are
assigned to the facility at x1, customers from y ∈
9�x1+ x2	/2� �x2+ x3	/2: are routed to the facility at x2,
and so on. With this assignment rule, the total arrival
rate to the jth facility is

"xj =�

[
F�

(
xj +xj+1
2

)
−F�

(
xj +xj−1
2

)]
∀j=1�����M�

(36)
where we defined x0 =−x1 and xM+1 = 2− xM .
Using (36), the ELP for the linear case (ELPl) is

min "max

s.t. �

[
F�

(
xj + xj+1
2

)
− F�

(
xj + xj−1
2

)]
≤ "max

∀ j = 1� � � � �M (37)

0≤ x1�xM ≤ 1
xj − xj−1 ≥ � ∀ j = 2� � � � �M (38)

xj+1− xj ≤ 2r ∀ j = 0� � � � �M (39)

x0 =−x1� xM+1 = 2− xM� (40)
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Constraint (38) ensures that the minimal distance
between facilities is at least �. Constraint (39) enforces
the coverage requirement: Due to the closest assign-
ment rule, ensuring that every point in 90�1: is within
distance r of a facility is equivalent to ensuring
that no two facilities are more than 2r apart. Con-
straint (40) defines x0 and xM+1 in a way that makes
the preceding constraints applicable for x1 and xM .
Observe that (ELPl) cannot be feasible unless the

following basic feasibility condition holds
1
�
≥M ≥ 1

2r
� (41)

We note that Constraint (37) is typically nonlin-
ear. Moreover, investigation of the Hessian matrix of
(37) shows that these constraints are only convex if
F��x	 is uniform, in which case the problem can be
solved easily without the use of mathematical pro-
gramming techniques (see Example 1 below). There-
fore, (ELPl) should be solved using nonconvex opti-
mization techniques.
This discussion demonstrates that ELP is nontrivial

even in the linear case. (We note that, as discussed
in §5, standard nonlinear solvers appear to be able
to handle this problem successfully for some com-
mon distributions F��x	 and small-to-moderate values
of M .)
In the remainder of this section, we suggest some

alternative solution approaches that may be used
when F��x	 satisfies certain constraints. Recall that if
a feasible EFC location vector exists, then it must be
optimal. In some cases, candidate EFC vectors are
fairly easy to characterize, as demonstrated in the fol-
lowing example.
Example 1 (Uniformly Distributed Demand).

Suppose the demand distribution density F��x	 is uni-
form, i.e., F��x	 = x for x ∈ 90�1:. Then it is clear that
an EFC vector is given by

xj =
2j − 1
2M

for j = 1� � � � �M� (42)

with the resulting "max = �/M . Note, however, that
the location vector given above is not the only EFC
vector in this case. In fact, there are an infinite number
of EFC vectors that can be characterized as follows

xj =
2j − 1
2M

+ �−1	j.

for j = 1� � � � �M� and . ∈
(
− 1
2M

�
1
2M

)
� (43)

An EFC vector is feasible only if it satisfies the cov-
erage and minimal separation constraints, i.e., if

�≤ xj+1− xj ≤ 2r for all j ∈ �0� � � � �M�� (44)

where, as before, we set x0 =−x1� and xM+1 = 2− xM .
It is easy to see that the EFC vector given by (42), cor-
responding to setting . = 0 in (43), has the property
that the maximum distance between any two adjoin-
ing facilities is as small as possible and the minimum
distance between any two adjoining facilities is as
large as possible. Thus, if this vector fails to satisfy
the feasibility condition (44), no feasible EFC vector
exists for the current value of M .
Since, for the EFC vector given by (42), xj+1 − xj =

1/M , we observe that if (44) is not satisfied, then
1/�2r	 > M or M > 1/�, violating the basic feasibility
condition (41). On the other hand, if this condition is
satisfied with a strict inequality, it will also be satis-
fied by an infinite number of EFC vectors correspond-
ing to a nonempty range of . in (43)—in effect, the
coverage and minimal distance constraint (44) can be
interpreted as constraints on ..
Thus, we conclude that in the case of uniform

demand, the (ELPl) is quite easy to solve: As long as
M satisfies the basic feasibility condition (41), the EFC
vector given by (42) is feasible and optimal. Moreover,
if (41) is satisfied as a strict inequality, the optimal
location vector is not unique—there exist an infinite
number of feasible EFC vectors.
This example gives the flavor of the results devel-

oped in the following section for general demand
densities: Feasible EFC vectors, when they exist, are
typically not unique, and the conditions for the exis-
tence of such vectors are relatively easy to check.

4.2.1. Conditions for the Feasibility of EFC Vec-
tors. Let y0 ≡ 0, y1� � � � � yM−1 be breakpoints such
that F��yj+1	− F��yj	=�/M for i = 1� � � � �M − 1� and
yM = 1. Suppose x is an EFC vector. Then the cover-
age area of each facility xj must be 9yj−1�yj :, for j =
1� � � � �M . By the closest assignment constraints, it fol-
lows that the conditions for x to be a feasible EFC are
given by

yj−1 ≤ xj ≤ yj j = 1� � � � �M (45)

yj − xj = xj+1− yj j = 1� � � � �M − 1 (46)
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�/2≤ xj+1− yj ≤ r� j = 1� � � � �M − 1

x1 ≤ r� xM ≥ 1− r�

(47)

The first two conditions (45 and 46) ensure that x is
an EFC vector, and condition (47) enforces the cover-
age and minimal separation constraints. In Proposi-
tion 5 we rewrite the conditions above in terms of x1
only, yielding a set of inequalities in one variable that
only need to be checked for consistency, which can be
accomplished in O�M2	 time.

Proposition 5. A feasible EFC exists if, and only if,
∃x1 ∈ 90�min�y1� r�: such that

yj ≤ 2
j∑

k=1
�−1	j−kyk + �−1	jx1 ≤ yj+1� j = 0� � � � �M − 1

(48)
and 



�/2≤ yj + 2
j−1∑
k=1

�−1	j−kyk + �−1	jx1 ≤ r�

j = 1� � � � �M − 1

2
M−1∑
k=1

�−1	M−1−kyk + �−1	M−1x1 ≥ 1− r�

(49)

We will refer to the vector that satisfies (48) above
as an EFC vector and the vector that satisfies both
(48) and (49) as a feasible EFC vector. While it is not
hard to see that an EFC vector must exist for M = 2,
the existence is not ensured for M = 3 or higher, as
demonstrated in the following example.
Example 2 (Existence of an EFC Vector

in the Linear Case). Suppose M = 3 and F��x	 =
Beta�a� a	—which, for 0 < a < 1, is a symmetrical
U-shaped distribution with mean of 0.5. The parame-
ter a is the shape parameter—the closer it is to zero,
the steeper the U-shape.
Since "�x	 is symmetrical on 90�1:, we know that

for breakpoints y1 and y2 we have y1 = 1− y2. From
(45) and (46) we know that x1 ≤ y1, x3 ≥ y2, and x2
must satisfy




y1− x1 = x2− y1�

y2− x2 = x3− y2�

It is clear that this system has an infinite number
of solutions if y1 ∈ �0�0�25	, a unique solution if y1 =
0�25 (in this case, x1 = 0�x2 = 0�5�x3 = 1), and no solu-
tions if y1 ∈ �0�25�1	. Since M = 3� y1 represents the
33rd percentile of the Beta�a� a	 distribution has the
following properties

0< y1 < 0�25 if a ∈ �0�0�5	1

y1 = 0�25 if a= 0�51
0�25< y1 < 0�5 if 0�5< a < 1�

Thus, we conclude that EFC vector exists in this case
if, and only if, 0< a ≤ 0�5. Moreover, for a = 0�5, this
vector is unique, while for 0 < a < 0�5, there are an
infinite number of EFC vectors. (Of course, even when
EFC vectors exist, they may not be feasible due to the
coverage and minimal distance constraints.)
Motivated by the preceding example, it is natural

to ask whether there are families of demand den-
sities F��x	 for which the existence of EFC vectors
is ensured. Theorem 3 establishes sufficient condi-
tions that are satisfied by many common probability
distributions.

Theorem 3. (1) Suppose F��x	 is nonincreasing on
90�1:. Then any x1 ∈ 90�y1	 satisfies (48) and thus can be
used to generate an EFC vector.
(2) Suppose F��x	 is nondecreasing on 90�1:. Let xM ∈

�yM�1: and define xj = 2yj − xj+1 for j = M − 1� � � � �1.
The resulting vector is EFC.
(3) Suppose F��x	 is nondecreasing on 90� z: and non-

increasing on 9z�1: for some z ∈ 90�1:. Let j ′ ∈ �1� � � � �M�

be such that the difference yj ′ −yj ′−1 is minimized. Let xj ∈
�yj ′−1�yj ′	 and define all other components of x by (46).
Then the resulting location vector is an EFC.

We observe that many common distributions—e.g.,
the Normal distribution (truncated to 90�1:)—satisfy
the conditions of Proposition 3. On the other hand,
this result does not work for distributions where a
decreasing part is followed by the increasing part—as
demonstrated by Example 2.
The preceding results established some sufficient

conditions for the existence of EFC vectors. What
about the existence of feasible EFC vectors? Observe
that the minimal distance constraints are satisfied by
the EFCs in Theorem 3 as long as xj ′ is at least �/2
away from both yj ′−1 and yj ′ . On the other hand,
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because the breakpoints are farthest apart at either
end of the interval, as long as the coverage constraint
holds there, it will hold everywhere else as well. This
leads to Corollary 4.

Corollary 4. Under the conditions of Theorem 3, sup-
pose that yj ′ − yj ′−1 ≥ �, and y1 ≤ r , yM ≥ 1− r . Then
a feasible EFC vector is obtained by taking xj ′ ∈ �yj ′−1 +
�/2�yj ′ − �/2	 and generating all other components using
(46).

Theorem 3 and Corollary 4 demonstrate that, when
P is a line segment, an EFC vector exists for many
common distributions, and both the existence of an
EFC vector and the existence of a feasible EFC vec-
tor are relatively easy to check. When an EFC (or a
feasible EFC) vector exists, it is usually not unique—
indicating that infinitely many optimal location vec-
tors often exist in the linear case. The solvability of
(ELPl) is further investigated in §5.

5. Computational Results: The
Importance of Being Fair

In this section, we present the results of several sets
of computational experiments. The first set investi-
gates the solvability of (ELPl) and the properties of
the optimal solutions for different spatial distributions
of demand over the line segment 90�1:. The second set
investigates the overall performance of Algorithm 1
for the SCFLP, the efficiency of large-deviation bounds
for estimating the capacity in the single-server case,
and the properties of the optimal solution.
The solvability of ELP on the plane is discussed in

Baron et al. (2007). We note that our experiments on
the efficiency of large-deviation bounds for estimat-
ing capacity were focused on the single-server case.
Similar experiments for the multiple-server case can
be presented, although we believe they would not
provide further insight. Furthermore, while a linear
topology is assumed, the results related to the effi-
ciency of capacity estimation are, in fact, applicable to
any topology. Finally, we consider exponential, nor-
mal, and deterministic service distributions. For all
these, (19) leads to a closed form expression for ��"	.
In the first set of computational experiments we

analyze three issues related to the linear ELP under
different coverage radii and different spatial distribu-
tions of demand: (a) the solvability of the nonlinear

programming formulation of ELPl given by (37–40),
(b) the likelihood of obtaining a feasible EFC solu-
tion, and (c) the degree of deviations from the EFC
solutions when a feasible EFC solution does not exist.
We set the total demand over the line to � = 1

and consider three spatial distributions of demand
over the line segment 90�1:: Beta�2�2	—a symmetri-
cal distribution centered at 0.5 with a Normal-like
shape, Beta�0�25�2	—a sharply decreasing distribu-
tion with 68% of demand falling between 0 and 0.1,
and Beta�0�5�0�5	—a deep bathtub-shaped distribu-
tion centered at 0.5. These shapes were designed to
represent different levels of difficulty for ELPl. For
comparison, we also computed the results for the uni-
form distribution, where a feasible EFC is guaranteed
to exist (as discussed in Example 1).
The number of facilities M was set to 5, 10, and 20.

Recall that the basic feasibility condition for ELPl is
that the coverage radius r must satisfy r ≥ 1/�2M	.
In our experiments, we set r = �1 + .	/2M for . =
0�1�0�2�0�3�0�5�0�75�1�2�3�4�5—generating 10 dif-
ferent coverage radii for each value of M and each
distribution shape (for a total of 120 instances); the
coverage constraints are very tight for small values
of . and quite loose for large values of .. The min-
imal required distance between facilities was set to
 = 1/�1�000M	.
An ELPl model was formulated for each instance

and solved using the Frontline Systems Premium NLP
Solver for MS Excel. The results are presented in
Table 2. The first column of the table contains the
coverage radius. The next four columns contain the
value of the optimal solution—i.e., the arrival rate at
the busiest facility. The cases where feasible EFC exist
can be identified by comparing the value of the opti-
mal solution with the value for the uniform distri-
bution (where a feasible EFC is guaranteed to exist).
Recall that the capacity of the busiest facility has two
components: "max, and the safety capacity required to
meet the service-level constraint. Assuming that the
safety capacity is (nearly) identical in all cases, the gap
between the optimal value for a given case and an
EFC solution (which is always equal to 1/M) can be
used as a measure of the excess capacity of the busiest
facility. Since all facilities are identical, the estimated
total amount of excess capacity is given by

EFC Gap≡ M ∗"max−�

�
� (50)
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Table 2 Experimental Results for Linear ELP

Amount of excess capacity
�max�M� Arrival rate for the busiest facility (vs. EFC case)

Coverage radius Beta�2�2� Beta�0�5�0�5� Beta�0�25�2� Uniform Beta�2�2� Beta�0�5�0�5� Beta�0�25�2�

M = 5 facilities
0.110 0.253 0.271 0.718 0�2 0.263 0.353 2.590
0.120 0.245 0.244 0.654 0�2 0.227 0.221 2.271
0.130 0.240 0.225 0.571 0�2 0.200 0.126 1.853
0.150 0.228 0.205 0.365 0�2 0.140 0.024 0.824
0.175 0.217 0.200 0.311 0�2 0.084 0.000 0.554
0.200 0.205 0.200 0.277 0�2 0.023 0.000 0.385
0.300 0.200 0.200 0.232 0�2 0.000 0.000 0.159
0.400 0.200 0.200 0.226 0�2 0.000 0.000 0.132
0.500 0.200 0.200 0.220 0�2 0.000 0.000 0.099
0.600 0.200 0.200 0.211 0�2 0.000 0.000 0.055

M = 10 facilities
0.055 0.132 0.158 0.599 0�1 0.324 0.575 4.987
0.060 0.125 0.128 0.527 0�1 0.254 0.282 4.273
0.065 0.122 0.109 0.406 0�1 0.219 0.086 3.062
0.075 0.115 0.101 0.263 0�1 0.146 0.010 1.632
0.088 0.112 0.100 0.207 0�1 0.121 0.000 1.073
0.100 0.110 0.100 0.178 0�1 0.098 0.000 0.779
0.150 0.102 0.100 0.136 0�1 0.019 0.000 0.360
0.200 0.100 0.100 0.122 0�1 0.000 0.000 0.224
0.250 0.100 0.100 0.115 0�1 0.000 0.000 0.147
0.300 0.100 0.100 0.112 0�1 0.000 0.000 0.121

M = 20 facilities
0.028 0.077 0.081 0.232 0�05 0.535 0.627 3.645
0.030 0.071 0.062 0.144 0�05 0.418 0.241 1.878
0.033 0.057 0.055 0.112 0�05 0.145 0.099 1.245
0.038 0.055 0.050 0.088 0�05 0.098 0.008 0.768
0.044 0.053 0.050 0.088 0�05 0.063 0.000 0.768
0.050 0.052 0.050 0.088 0�05 0.049 0.000 0.768
0.075 0.051 0.050 0.088 0�05 0.011 0.000 0.768
0.100 0.050 0.050 0.088 0�05 0.000 0.000 0.768
0.125 0.050 0.050 0.088 0�05 0.000 0.000 0.768
0.150 0.050 0.050 0.088 0�05 0.000 0.000 0.768

which is presented in the last three columns of Table 2
(we omit the uniform case for which the gap is always
zero). Note that the EFC Gap is normalized by �.
In all cases, the solution times were essentially

instantaneous and thus are not presented. Although
due to the nonlinearity and nonconvexity of the con-
straints the solutions may only be locally optimal,
starting the solver from multiple starting points did
not result in better solutions. Overall, it appears that
ELPl is relatively easy to solve.
It can be seen from Table 2 that the quality of

the solutions is highly dependent on the shape of
the spatial distribution of demand, with Beta�0�25�2	
(sharply decreasing shape) leading to worst-quality

solutions, and normal-like Beta�2�2	 leading to the
best solutions for the tight coverage radii (exclud-
ing the uniform case, of course). As expected, the
solution quality decreases as the coverage radius gets
smaller. When the coverage radius is tight, optimal
solutions may require four to five times more sys-
tem capacity than the EFC case. The feasibility of
EFC locations depends on both the tightness of the
coverage radius and the distribution shape. For the
hardest cases (tight radii, Beta�0�25�2	 distribution, or
both), EFC is never feasible. For the other two distri-
butions, EFC tends to become feasible for larger cov-
erage radii. It should be noted that the infeasibility in
case of larger radii for Beta�0�25�2	 is usually caused
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by the required minimal separation constraints. This
is due to the rather extreme levels of concentration of
demand for this distribution.
It is interesting to observe how the solution qual-

ity varies with the number of facilities (for the same
spatial distribution and coverage radius). For both
Beta�2�2	 and Beta�0�5�0�5	 cases, the total amount
of excess capacity in the system tends to increase
with the number of facilities. However, in the case of
Beta�0�25�2	 distribution, the total system capacity is
larger for M = 10 than for M = 20, indicating that a
system with more facilities may be more efficient in
this case.
Note that in the experiments described above the

number of facilities M was fixed and the coverage
radius r was adapted to M to generate more or less
tight coverage constraints, which led to a lot of excess
capacity in the system. However, in the process of
solving the SCFLP using Algorithm 1, the opposite
mechanism is in play: The coverage constraint is
specified first, and then the algorithm has to select the
optimal value of M . By electing to have a larger num-
ber of facilities for a given value of r it is always pos-
sible, in effect, to make the coverage constraint loose.
This increases the likelihood of EFC location vectors
to be feasible (at the cost of having more facilities). As
will be seen next, this is the trade-off that appears to
be nearly always optimal in the SCFLP.
To evaluate the solvability of the SCFLP, we gen-

erated a number of problem instances with different
service time distributions, spatial demand distribu-
tions, coverage radii r , waiting time limits d, and
cost functions. For each instance we let � = 100 and
applied Algorithm 1 with two different estimates of
the required capacity ��"max	. The first estimate was
based on the large-deviation bound (19). The second
estimate was based on the optimal capacity (13) for
the case of exponential service and, for nonexponen-
tial service, on estimated capacity based on an M/G/1
queuing simulator to determine the capacity. The test
problem instances had the following characteristics:
Service distributions: Exponential(1), Determinis-

tic(1), Normal�1�0�12	, Normal�1�0�32	; the first value
in parentheses refers to the average service time, the
second value (for Normal distributions) to the stan-
dard deviation of service times.

Demand and its spatial distributions: Beta�2�2	
and Beta�0�5�0�5	 distributions on 90�1:.
Coverage radii: r was set to 0�1 and 0�5; the min-

imal required separation of the facilities was set to
 = 0�0001.
Waiting time limits: d was set to 2 and 10; with

$= 0�05 in all cases. Because the average service time
is 1, the service-level constraint requires the waiting
time to be no larger than two (or 10) service cycles
with probability 95%.
Cost function: we used Z�M	=CM4 + cM5� form

of the cost function (as in (27)), with 4 = 5 = 0�9 and
the ratio C/c set to 0.5, 1, and 2. Note that the larger
the C/c ratio, the higher the fixed costs of opening a
new facility compared to the cost of increasing capac-
ity at the existing facilities.
Algorithm 1 was implemented in Visual Basic for

MS Excel. The queuing simulator was written in C
and called from MS Excel as a DLL object. The
embedded ELPl instances were solved with Front-
line Systems’ Premium Solver for MS Excel. The algo-
rithm was very fast, typically converging in fewer
than 10 iterations and requiring fewer than two sec-
onds of CPU time for the approximate case and exact
case with exponential service. The running times
were much slower for the nonexponential exact cases
where the queuing simulator had to be used: ranging
from four to seven hours of CPU time. A summary of
the results is presented in Tables 3–5.
For each combination of waiting time bound d

and spatial distribution of demand, Table 3 presents
the average percentage difference in optimal costs

Table 3 Percent Difference in Optimal Costs for the Capacity
Computed Using Large-Deviation Bound vs. Optimal Costs
for the Capacity Computed Using Exact Formula for the
Exponential Service and Using a Queuing Simulator for the
Nonexponential Service

Spatial distribution of demand

Waiting time Beta�0�5�0�5� Beta�2�2� Average
bound �d� (%) (%) (%)

Exponential 2 0�26 0�34 0�30
service time 10 0�04 0�03 0�04

Average 0�15 0�19 0�17

Nonexponential 2 −4 −3 −3
service time 10 −1 −1 −1

Average −3 −2 −2
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Table 4(a) Properties of the Optimal Solution (Averages) for Different
Service Time Distributions and Waiting Time Bounds

Opt. no. of Optimal Safety
Distribution of Waiting time fac. if EFC Opt. no. of cost capacity
service times bound �d� feasible ME fac. M∗ Z�M∗� (%)

Detm(1) 2 6�5 8�25 93�84 6
10 10�667 12�08 89�42 2

EXP(1) 2 4�833 6�67 98�47 10
10 9�333 10�25 90�7 3

Norm�1�0�1� 2 6�5 9�17 94�6 7
10 10�667 13 89�88 2

Norm�1�0�3� 2 6�5 10�17 95�46 8
10 10�5 12�83 90 2

Average 8�069 9�97 92�9 5

Table 4(b) Properties of the Optimal Solution (Averages) for Cost
Ratios and Coverage Radii

Opt. no. of Optimal Safety
Cost ratio Coverage fac. if EFC Opt. no. of cost capacity
C/c radius �r � feasible ME fac. M∗ Z�M∗� (%)

0.5 0�1 11�917 14�25 88�16 8
0�5 12 12 87�5 5

1 0�1 7�667 11�75 92�98 6
0�5 7�5 7�5 91�24 3

2 0�1 5 10 101�54 5
0�5 4�333 4�33 95�98 2

Average 8�069 9�97 92�9 5

between the approximate solutions (with the facility
capacity obtained using the large-deviation bound)
and the optimal solutions. (For nonexponential ser-
vice, the capacity was obtained via simulation as
described above.) Because the large-deviation bound
always overestimates the required capacity, the ap-
proximate solutions should always have higher costs.
This is indeed the case for exponential service. How-
ever, the differences between optimal and approxi-
mate solutions are very small: less than 1% in all cases.
For nonexponential service, the differences between

approximate and optimal costs are actually negative,
because we used simulation-based estimates of opti-
mal capacity. While the simulation was run for a long
time (the stopping criterion was that the difference
between the required and simulated service levels
should be less than 0.05%), the quality of the result-
ing approximation is evidently not as good as that
of the approximation provided by the large-deviation
bound.

Table 5 EFC Properties of the Optimal Location Vector

Solution not EFC Gap (for
Cost ratio Coverage EFC (% cases) Solution is EFC non-EFC
C/c radius �r � (%) (% cases) (%) cases only)

0.5 0�1 0 100 N/A
0�5 0 100 N/A

1 0�1 17 83 6%
0�5 0 100 N/A

2 0�1 25 75 6%
0�5 8 92 6%

Average 8 92 6%

Note. For the cases where the optimal vector is not EFC, EFC Gap measures
the excess Structural Capacity in the system.

The same results were observed in further compu-
tational tests designed to evaluate the efficiency of
the large-deviation bound. In these tests, we assumed
existence of EFC and used � ∈ �50�100�200�, d ∈
�5�10�20�, $ ∈ �0�9�0�95�0�99�, C/c ∈ �0�5�1�2�, 4 ∈
�0�9�0�95�0�99�, and 5 ∈ �0�9�0�95�0�99� (a total of
729 cases for each service distribution). We selected
the following service time distributions with a coef-
ficient of variation between zero and one: determin-
istic service, normal distributed service time with
standard deviation = ∈ �0�1�0�2�0�3�, and exponential
distributed service time. While the detailed results of
these tests are not shown, the difference in optimal
costs between the solutions with capacity obtained
using the large-deviation bound, and the optimal
solutions (simulation based for nonexponential ser-
vice) did not exceed 2.25% and was often negative for
simulation-based solutions.
We thus conclude that using Algorithm 1 together

with the large-deviation bound (19) to estimate the
required capacity is highly effective for the SCFLP
model—the quality of the resulting solutions is excel-
lent and the running times are quite small. Of course,
if the exact expressions for the required capacity are
available (as in the exponential case) there is no need
to use the large-deviation bound. We emphasize that
these results are independent of the linear topology
used to generate demand: It appears that the large-
deviation bound is a very accurate and efficient way
to estimate the required capacity of the facilities.
Thus, the key determinant of how efficient Algo-

rithm 1 is for the SCFLP is whether there exists an
effective way of solving the ELP (which Algorithm 1
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calls as a subroutine). While this is indeed the case
for the linear ELP, the situation is quite different when
the demand is distributed over a region of the plane;
in this case, the ELP presents serious difficulties even
for the uniform distribution of demand. We refer the
reader to Baron et al. (2007) for further discussion.
The properties of the optimal solutions are summa-

rized in Tables 4(a) and 4(b). Table 4(a) is stratified by
the distribution of service times and the values of the
waiting time limit d. For each combination of the ser-
vice time distribution and d, we displayME—the opti-
mal number of facilities assuming the corresponding
EFC vector is feasible (recall thatME is used as the ini-
tial guess for the number of facilities in Algorithm 1),
M∗—the optimal number of facilities, Z�M∗	—the cor-
responding optimal cost, and the

safety capacity (%)≡ 100M
∗��M∗	−�

�
�

where M∗��M∗	 is the total capacity in the system.
Table 4(b) displays the same information stratified by
the cost ratio C/c and the coverage radius r .
Overall, the results are quite intuitive: The optimal

costs are generally driven by the service-level con-
straint (costs are higher for smaller value of d) and
by the variability of service times. (For the same level
of d, the costs are highest for the exponential case,
which has the highest coefficient of variation, and
lowest for the deterministic case.) The optimal num-
ber of facilities is larger and the safety capacity is
smaller when the service-level constraint is loose (i.e.,
d = 10). When the service-level constraint is tight it is
more economical to use the pooling effects by build-
ing fewer, but larger, facilities. Also, the number of
facilities is larger when the C/c ratio is low (corre-
sponding to lower fixed costs for opening new facili-
ties) and when the coverage radius is small.
It is interesting to note two effects: (a) The value of

the initial guess ME is generally close to the value of
M∗—validating the assumption made in Algorithm 1
that ME is a good starting point for the search, and
(b) the optimal number of facilities M∗ is always
substantially larger than the minimal number 1/�2r	
required to satisfy the coverage constraint. In effect,
the algorithm always selects the number of facilities
for which the coverage constraint is quite loose.

This effect is further explored in Table 5, which is
organized similarly to Table 4(b). For each combina-
tion of the cost ratio and coverage radius, we indicate
the percentage of cases for which the optimal location
vector is EFC (i.e., for which "max = �/M∗). For the
cases where the optimal location vector is not EFC,
we compute the EFC gap from (50).
The obvious (and unexpected) observation is that in

the majority of cases the optimal facility vector is EFC.
Moreover, in cases where the optimal facility vector is
not equitable, it is very close to EFC: The excess sys-
tem capacity (measured by the EFC gap) is only 6%.
Recall from the results of the first set of experiments

that a feasible EFC vector tends to exist only when the
coverage constraint is loose. Thus, the optimization
algorithm always loosens the coverage constraint by
increasing the number of facilities to the point where
an EFC (or nearly EFC) location vector is feasible.
Moreover, as observed in Conjecture 1, the function
Z�M	 tends to be unimodal with minimum at ME ,
implying that the costs corresponding to EFC loca-
tion vectors tend to grow with M for M ≥ME . Thus,
when the optimal location vector is EFC, it will corre-
spond to the smallest value of M for which a feasible
EFC vector exists. To summarize, the computational
results suggest that the optimal solution to the SCFLP
should generally be as fair as possible. This suggests
the following very simple heuristic decision rule for
the SCFLP:

Heuristic decision rule:
Step 1. Find the minimal number of facilities M for

which a feasible EFC location vector exists in ELP(M).
Set M∗ =M and location vector to EFC.
Step 2. Determine the capacity of each facility by

using the large-deviation bound (19).
Note that this decision rule is very robust because

it is completely independent of the facility costs. The
only implementation requirement is to have an effi-
cient way of solving the ELP�M	 for different values
of M (This may not be easy for general space P ).
While this decision rule has a lot of intuitive appeal,
further computational and theoretical work is needed
to substantiate it.
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6. Extensions and Generalizations of
the SCFLP

In this section, we discuss several generalizations and
extensions of the SCFLP model.
Nonlinear capacity costs: The SCFLP model formu-

lated here assumes that the capacity cost is linear for
a fixed M . In fact, all of the results (with the excep-
tion of §3.5.2) continue to hold for a more general
capacity cost, as long as it is nondecreasing in the
facilities’ capacity and in M . We chose to use the sim-
plified form (5) of the objective function throughout
the paper for ease of exposition.
SCFLP with general assignment rules: The SCFLP

formulation used in this paper assumes that cus-
tomers always obtain service from the closest facil-
ity. An alternative assumption is to consider directed
or general assignments where a customer can be
assigned to any facility located within radius r . We
point out that this does not materially change our
model—any assignment of customers to facilities can
be used to define the maximum travel distances R�xj	

in the formulation presented in §2. All of the results
in §3 apply to the SCFLP with directed assignments.
The ELP�M	 problem in §4 is simplified in the case of
directed assignments. For example, in the linear case
an EFC always exists and can be constructed by using
the breakpoints yk� k = 1� � � � �M , defined in §4.2.1 as
the facility locations. Of course, this EFC may not be
feasible, but contrary to the closest assignment SCFLP,
its existence is not an issue.
SCFLP with nonidentical facilities: Consider an

SCFLP model where the requirement that all facilities
have identical capacity is dropped. Let �j and Nj be
the capacity of facility j , for the single- and multiple-
server case, respectively, and replace Objective Func-
tion (5) with

min
M�x���N

CM + 'cM

M∑
j=1

�j + �1− '	cM

M∑
j=1

Nj� (51)

We show that, under some assumptions, if a feasible
EFC vector exists, it is optimal for this model as well.
We relax the problem in (51) by replacing the coverage
constraint (4) and the no-collocation constraints with
a single constraint that all customers are accepted to
the system, i.e.,

∑M
j=1 "

xj = �. It is clear that at each
facility we will select the lowest capacity required to

satisfy the service-level constraint, thus the results of
Corollary 1 apply, and the functions ��"	 and N�"	,
from (6) and (7), respectively, are well defined and
nondecreasing in ". Then

Proposition 6. Consider the SCFLP with nonidenti-
cal facilities and with the number of facilities fixed to M .
Suppose an EFC vector exists and is feasible for this M .
Then, for the single-server case, if ��"	 is differentiable
and convex, the optimal location vector is given by EFC
and all facilities in the optimal solution are identical with
capacities set to ���/M	. Similarly, for the multiple-server
case, if N�"	 is differentiable, the optimal location vector is
given by EFC and all facilities in the optimal solution are
identical with capacities set to N��/M	.

In view of the results presented in §5 showing that
EFC are typically optimal for the SCFLP with identi-
cal facilities, Proposition 6 shows that these solutions
would remain optimal even if facilities were allowed
to be nonidentical (as long as the number of facilities
M was unchanged). Obviously, if EFC exists and is
feasible for every M (as would, for example, be the
case for a demand distribution satisfying Theorem 3
and if the coverage constraints are loose), then the
optimal solutions to SCFLPs with identical and non-
identical facilities are the same.
For the single-server case, the assumption that ��"	

is differentiable and convex does not appear to be
too stringent. In particular, it holds for the case of
exponential service. Moreover, if the large-deviation
bound (19) is used to set capacities of the facilities
(which, according to our numerical results, provides
near-optimal capacities) then this assumption holds
as well. (This can be verified using the Implicit Func-
tion Theorem.) For the multiple-server case, N�"	 is
likely a step function that is almost always differen-
tiable, which should be enough for Proposition 6 as
well. Clearly, more work remains to be done on the
SCFLP with nonidentical facilities for the cases where
a feasible EFC may not exist.
SCFLP with different service-level measures: Our

SCFLP model uses the probability of waiting time to
exceed a given threshold as the service-level measure.
However, there are alternative measures. We observe
that for such measures it is enough to establish that
Assumption 1 holds in order to establish that Theo-
rem 1 holds. For example, consider a service-level con-
straint that requires that the mean waiting time will
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not exceed a given threshold. Denoting the mean
waiting time in a queue with arrival rate " and service
rate � by E�W�"��		, we can define

��"	= inf�� > " � E�W�"��		 > d��

Analogously, we define N�"	, "��	, and "�N	 similar
to (7–9). We note that

E�W�"��		=
∫ �

0
P�W�"��	 > x	dx�

thus similar results to Propositions 1 and 2 follow.
Thus,

Proposition 7. Assumption 1 and Theorem 1 hold for
the SCFLP with constraints (4) replaced by

E�W j	≡ lim
n→�

1
n

n∑
i=1

W
j
i ≤ d j = 1� � � � �M�

Given a method to optimally choose capacity for
the SCFLP with constraints on the expected wait-
ing time, the results of this paper substantially sim-
plify this problem and similar problems with different
service-level measures.

7. Summary
In this paper, we investigated the SCFLP—a ver-
sion of the location problem with stochastic demand
and congestion where customers travel to facilities
to obtain service. Service level and maximum travel
distance constraints are included to ensure that ade-
quate service is provided to customers. Customers
are assumed to travel to the closest facility. Facilities
are modeled as single- or multiple-server queues with
capacity as one of the decision variables in the model.
Facilities are assumed to be identical.
We address this problem under a significantly more

general setting than previously attempted in the liter-
ature: The service process is allowed to be general, the
demand is assumed to be spatially distributed follow-
ing a general renewal process or a Poisson process (for
the discrete location version) over a bounded space
with a norm, and facilities can be located anywhere
in that space. We decompose the problem into several
simpler subproblems, allowing us to develop an effi-
cient algorithm for determining the optimal number,
location, and capacity of the facilities.

Our results point to the importance of the equitable
facility locations that ensure that each facility is fac-
ing approximately the same demand. This leads to the
deterministic ELP and the associated concept of EFC,
which is an ideal solution to the ELP. Our computa-
tional results indicate that the optimal solutions often
possess EFC (or near-EFC) properties, suggesting a
robust heuristic decision rule for the SCFLP. More-
over, we show that the equitable facility locations may
be optimal even when the requirement that all facili-
ties be identical is dropped.
This research can be extended in several ways. First,

the ability to successfully solve the SCFLP critically
depends on the ability to solve the ELP. The latter
appears to be a new form of the deterministic facil-
ity location problem, with a clear relationship to the
p-center problem. While we provide some analysis of
the ELP and existence of EFC vectors for the case of
linearly distributed demand, much work remains to
be done in more general settings. A follow-up paper
(Baron et al. 2007) is a first step in this direction. Sec-
ond, while some generalizations of the SCFLP model
have been presented here, several strong assumptions
remain. In particular, more work is needed on relax-
ing the assumption that the fixed location costs are
uniform, as well as on the more complete analysis
of the problem with non-identical facilities. Third, as
mentioned, a special purpose algorithm to solve ELPd
is required.
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