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The Sum and Its Parts: Judgmental Hierarchical Forecasting 

 

Abstract: 

Firms require demand forecasts at different levels of aggregation to support a variety of resource 

allocation decisions.  For example, a retailer needs store-level forecasts for a particular item to manage 

inventory at the store but also requires a regionally-aggregated forecast for managing inventory at a 

distribution center. In generating an aggregate forecast, a firm can choose to make the forecast directly 

based on the aggregated data or indirectly by summing lower-level forecasts (i.e., bottom-up).  Our study 

investigates the relative performance of such hierarchical forecasting processes through a behavioral lens. 

We identify two judgment biases that affect the relative performance of direct and indirect forecasting 

approaches: a propensity for random judgment errors, and a failure to benefit from the informational 

value that is embedded in the correlation structure between lower-level demands. Based on these biases 

we characterize demand environments where one hierarchical process results in more accurate forecasts 

than the other. Further, using field data, we demonstrate how to estimate the relevant correlation structure 

of lower-level demands. 

 

Keywords: judgmental forecasting; non-stationary demand; covariation detection; behavioral 

operations; bottom-up forecasting; random judgment error 
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1 Introduction 

Accurate demand forecasts at different product levels (i.e., SKU vs. product family) and different market 

levels (i.e., regional vs. global) are needed to support operational decisions. Consider a distribution center 

(DC) storing inventory that is used to replenish multiple retail stores. Store-level forecasts are needed to 

plan store operations, but an aggregate (regional) forecast is required for the inventory decisions at the 

DC. It is not immediately clear if these aggregate forecasts should be made directly on the aggregated 

data, or indirectly by summing up lower-level forecasts. To shed light on this issue, our study investigates 

the relative performance of direct and indirect forecasting approaches. 

Empirical comparisons of direct and indirect forecasting approaches are scarce and mostly focused on 

the statistical aspects of forecasting (Armstrong 1985). The consensus in this literature is a preference for 

bottom-up forecasting (Dangerfield and Morris 1992, Armstrong 2001, Allen and Fildes 2001), or to 

forecast at both levels and reconcile them using regression (Hyndman et al. 2011). Yet forecasting in 

practice is not a purely statistical task, but remains influenced by human judgment (Fildes et al. 2009). 

The judgmental forecasting literature is vast (see Lawrence et al. 2006 for an excellent review), but has 

generally been concerned with uncovering behavioral anomalies in univariate settings, and remained 

silent on the issue of level of aggregation. As judgmental forecasting research does not study hierarchical 

forecasting, and hierarchical forecasting research does not study judgmental forecasts, the literature 

provides very little guidance on whether judgmental forecasting becomes more accurate under direct or 

indirect forecasting approaches. We therefore pursue the following research questions: what are the key 

judgment biases
1
 in the context of hierarchical forecasting, and how do these biases affect directly-

generated and indirectly-generated aggregate forecasts? Additionally, what are the demand characteristics 

that influence the relative performance of direct and indirect forecasting approaches? 

To address these research questions, we present the results from two studies based on a series of 

behavioral experiments conducted in a controlled laboratory environment. Subjects in our studies 

(undergraduate and graduate students, as well as forecasting professionals) make sequential one-period-

ahead forecasts on different levels of aggregation. Our research contains two important distinctions 

related to the demand environment. First, in contrast to the simple stationary demand environments 

typically studied in the behavioral operations literature (e.g., Schweitzer and Cachon 2000, Özer, Zheng 

and Chen 2011), we study forecasting in non-stationary demand environments. The consideration of non-

stationary processes is non-trivial, and it may change behavior (e.g., Kremer, Moritz and Siemsen 2011) 

and prescriptions (e.g., Graves 1999). Second, we systematically vary the nature of correlation between 

lower-level demand series. This allows us to capture several realistic environments, ranging from 

                                                      
1
 Throughout the paper, we use bias to refer to judgment bias as opposed to a measure of consistent over- or under-

forecasting. 
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independent to highly (positively or negatively) correlated item-level demand. Importantly, the controlled 

variation of demand correlations allows us to identify, and tease apart, two key judgment biases that affect 

forecasting accuracy on different levels of aggregation. 

We first document a propensity of human forecasters to make random judgment errors, where the 

magnitude of the error is affected by the demand environment.  Depending on the correlation structure of 

lower-level demands, the random judgment error in a bottom-up forecast (the aggregation of lower-level 

judgment errors) can be more or less detrimental to forecast accuracy than the judgment error in a forecast 

generated directly at the top level. We further document an inability of human forecasters to detect and 

exploit the correlation between lower-level demands. In environments where lower-level demand 

correlations theoretically offer valuable information (which human forecasters fail to capture in the 

bottom-up process), this judgment bias favors forecasts generated directly at the top level. Together, our 

studies identify demand environments where we expect one process to result in lower forecast error than 

the other. This allows us to gain insights that go beyond, and partially run counter to, what previous 

(mostly statistical) research on hierarchical forecasting has suggested. Importantly, the correlation 

structure between item-level demands matters, as it drives relative performance of direct versus indirect 

approaches to forecasting top-level demand in a systematic fashion. 

This paper proceeds as follows. Section 2 provides an overview of the demand environment we use in 

our study and the normative benchmark in that environment. Sections 3 and 4 present our experimental 

studies: Study 1 focuses on the effect of aggregating random judgment errors, and Study 2 focuses on the 

aggregation of biases regarding the reaction to observed forecast errors. We discuss the managerial 

implications of our results in detail in section 5, and conclude in section 6. 

2 Forecasting Environment 

In this section, we describe the forecasting environment we use in our studies and provide necessary 

definitions. Let 𝐹𝑡 denote a forecast made for period t, 𝐷𝑡 realized demand in period t, and 𝐸𝑡 = 𝐷𝑡 − 𝐹𝑡 

the corresponding forecast error. Throughout, we use mean absolute forecast error, defined as 𝑀𝐴𝐸𝑇 =

𝑇−1 ∑ |𝐸𝑡|𝑇
𝑡=1  for some horizon T, as our forecast performance metric. 

Consider i=1..M products with period t demands 𝑫𝒕 = {𝐷1,𝑡, … , 𝐷𝑀,𝑡}. Forecasters have no additional 

information on future demands beyond that which is contained either in the lower-level multivariate time 

series {𝑫𝒕, 𝑫𝒕−𝟏, 𝑫𝒕−𝟐, … }, or in the top-level series, where top-level demand in period t is simply the sum 

of all lower-level demands,  �̈�𝑡 = ∑  𝐷𝑖,𝑡
𝑴
𝒊=𝟏 . We will use  �̈�𝑡 and �̈�𝑡 to indicate the aggregated demand 

series and a forecast for that series respectively.  Our research is concerned with two processes for 

forecasting top-level demands �̈�𝑡. Top-level forecasts can be made directly on top-level series. We denote 

these forecasts, prepared for period t, by �̈�𝑡
𝐷𝑇 (DT for direct-top). Alternatively, in a bottom-up (BU) 
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process, item-level forecasts 𝐹𝑖,𝑡 are made based on item-level demand information, and then summed up 

to yield a top-level forecast �̈�𝑡
𝐵𝑈 = ∑  𝐹𝑖,𝑡

𝑴
𝒊=𝟏 . The objective of our research is an assessment of how 

human judgment affects the relative accuracy of these two forecasting processes, and how the behavioral 

advantage of one process over the other is moderated by demand conditions. 

2.1 Demand Process: Correlation and Aggregation 

Item-level demand follows a non-stationary process: 

 𝑫𝒕 = 𝝁𝒕 + 𝜼𝒕 (1a) 

 𝝁𝒕 = 𝝁𝒕−𝟏 + 𝝇𝒕 , (1b) 

where 𝜼𝒕~𝑵(𝟎, 𝑵) and 𝝇𝒕~𝑵(𝟎, 𝑪) are normally distributed, serially independent disturbances with zero 

mean and covariance matrices N and C. The vector 𝝁𝒕 represents the unobservable levels of the lower-

level series. The forecasting task in this environment essentially requires estimating the unobserved level 

𝝁𝒕. Each time series contains two random components: temporary shocks (through 𝜼𝒕 – termed noise 

throughout) and permanent shocks (through 𝝇𝒕 – termed change throughout). To simplify our exposition, 

we consider only M = 2 symmetric products, each with a standard deviation of change c and a standard 

deviation of noise n. Change random variables for the two products are correlated with correlation 

coefficient ρc; noise random variables are correlated with correlation coefficient ρn. The demand process 

in (1a)-(1b) has a number of appealing properties: it provides a flexible way for modeling substitution 

patterns, an intuitive aggregation mechanism, and a simple normative forecasting benchmark. 

Through the correlation coefficients ρc and ρn, we can represent a variety of business situations. For 

example, one might expect demands for different items in the same product family in the same location to 

be subject to the same persistent effects (positively correlated change), such as general economic 

conditions or brand-level advertising campaigns. Similarly, items may be complementary, such that 

increases in demand for one item naturally lead to increases in demand for the other. Alternatively, 

consumers may substitute among goods in the same product category. These substitution effects could be 

transient (negatively correlated noise), where a consumer chooses a particular item one day without a 

lasting effect, or permanent (negatively correlated change), where one item becomes preferred at the 

expense of another in the long run. Positively correlated noise may occur, for example, when a transient 

shock, such as a weather event, affects short-term sales of several items in a similar manner. Thus, the 

demand process defined in Eqs. (1a) and (1b) enables us to capture a rich set of complementarity and 

substitution effects between items. In Figure 1, we provide example datasets for different values of ρc and 

ρn. Positive/negative values of ρn are associated with ‘spikes’ in the time series that go in the 

same/opposite directions across time series. Positive/negative values of ρc imply that the time series move 

together/apart in the long run. 
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Figure 1: Example Demand Paths 

     

 (0) ρc = ρn  = 0 (I) ρc = 0.95, ρn = -0.95 (II) ρc = ρn  = 0.95 (III) ρc = -0.95, ρn  = 0.95 (IV) ρc =  ρn  = - 0.95 

2.2 Bottom-Up Forecasting 

Multivariate exponential smoothing provides the optimal forecasting model for the demand process 

described in Eqs. (1a) and (1b) (Jones 1966).  For two products i, j,  

 𝐹𝑖,𝑡+1 = 𝐹𝑖,𝑡 + 𝛼𝑖𝑖𝐸𝑖,𝑡 + 𝛼𝑖𝑗𝐸𝑗,𝑡 , (2a) 

 𝐹𝑗,𝑡+1 = 𝐹𝑗,𝑡 + 𝛼𝑗𝑗𝐸𝑗,𝑡 + 𝛼𝑗𝑖𝐸𝑖,𝑡 , (2b) 

where the forecast adjustment for series i (from 𝐹𝑖,𝑡 to 𝐹𝑖,𝑡+1) is a response to the observed focal forecast 

error (𝐸𝑖,𝑡) as well as the distal forecast error (𝐸𝑗,𝑡). To build some intuition for the link between demand 

process and forecasting process, consider first the case of two independent demand series. Under 

independence, Eqs. (2a) and (2b) reduce to single exponential smoothing, i.e. 𝐹𝑡+1 = 𝐹𝑡 + 𝛼𝐸𝑡 where a 

previous forecast 𝐹𝑡 is adjusted towards the current demand observation 𝐷𝑡. The direction and magnitude 

of this forecast adjustment depends on the forecast error 𝐸𝑡 = 𝐷𝑡 − 𝐹𝑡, as well as the smoothing weight 𝛼, 

which corresponds to a reaction parameter that determines how strongly a forecasting process reacts to 

observed errors. A key concept to understand how strong this reaction should be is the change-to-noise 

ratio  

 𝑊 =
𝑐2

𝑛2.  (3) 

This ratio captures the “weight of evidence” inherent in an observed demand variation, and is a measure 

of how much of an observed variation in the series is due to permanent vs. temporary shocks. Further, W 

intuitively maps into the forecasting mechanism, as the optimal smoothing constant
2
 for single 

exponential smoothing is (Harrison 1967) 

 𝛼∗ =
2

1+√1+4𝑊−1
. (4) 

Eq. (4) captures the intuition behind the key challenge of how to optimally separate true change in the 

demand level (through 𝑐) from random noise (through 𝑛). Previous forecasts should be adjusted more 

heavily (i.e., large α∗) in environments where variations in demand are indicative of level changes (large 

                                                      
2
 This smoothing constant is optimal in the sense that it produces unbiased forecast errors with minimum variance.  

Given that forecast errors are normally distributed in our setting, this value of the smoothing constant also 

minimizes mean absolute error.   
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W), while variations in demand should be mostly discarded (i.e., small α∗) when they are mostly due to 

noise (small W). 

The multivariate demand process in Eqs. 1(a) and 1(b) gives rise to an 𝑀 × 𝑀 matrix of optimal 

smoothing weights. As indicated in Eqs. (2a) and (2b), these weights include focal-error-response 

coefficients 𝛼𝑖𝑖 for the focal error 𝐸𝑖,𝑡 as well as distal-error-response coefficients 𝛼𝑖𝑗 for the distal error 

𝐸𝑗,𝑡.
3
 To see why the forecast errors from a distal series (series j, in this case) can be helpful in 

disentangling change from noise for a focal series (series i, in this case), consider the situation where 

change draws are positively correlated, but noise draws are independent (ρc > 0, ρn = 0). In this case, 

observing forecast errors (𝐸𝑖,𝑡, 𝐸𝑗,𝑡) with the same sign in the two related series provides stronger evidence 

that the observed demand variation is indicative of a persistent change in the level of the time series, 

while errors with opposite signs suggest more of the forecast error should be attributed to noise. Thus, the 

optimal exponential smoothing forecast places non-negative weights on forecast errors for both items 

(Figure 1-I above). In fact, this benefit is strengthened if the noise draws are negatively correlated; 

observing errors with the same sign provides even stronger confirmation of underlying change. 

Analogous intuition follows if the change terms are negatively correlated and noise terms are positively 

correlated; the weight placed on the distal forecast error under such conditions is negative (Figure 1-III). 

The optimal forecasting process reduces to univariate single exponential smoothing (α𝑖𝑗
∗ = α𝑗𝑖

∗ = 0) when 

the data series are independent (ρc = ρr = 0, see Figure 1-0), or when the change and noise covariance 

matrices are proportional (i.e., if C=qN) (Enns et al. 1982, Harvey 1986). Figures 1-II and 1-IV illustrate 

two such demand environments, where the distal time series provides no information for focal forecasts 

(α𝑖𝑗
∗ = 0) even though both series are strongly positively (negatively) correlated, ρc = ρn = 0.95 (=-0.95). 

In the context of a bottom-up forecasting process with two symmetric items, and letting �̈�𝑡
𝐵𝑈 = 𝐸𝑖,𝑡 +

𝐸𝑗,𝑡, the forecasts from Equations (2a) and (2b) provide the implied top-level forecast, 

 �̈�𝑡+1
𝐵𝑈 = 𝐹𝑖,𝑡+1 + 𝐹𝑗,𝑡+1 = �̈�𝑡

𝐵𝑈 + (𝛼𝑖𝑖
∗ + 𝛼𝑖𝑗

∗ )�̈�𝑡
𝐵𝑈. (5) 

2.3 Direct-Top Forecasting 

The direct-top forecast is defined by  

 �̈�𝑡+1
𝐷𝑇 = �̈�𝑡

𝐷𝑇 + �̈�∗�̈�𝑡
𝐷𝑇, (5d) 

and the optimal smoothing constant �̈�∗ depends on the top-level change-to-noise ratio �̈� through Eqn. 

(4). For our purposes, it is important to understand the structural properties of top-level demand  �̈�𝑡 as a 

                                                      
3
 For the general case, the optimal forecasting process is given by 𝑭𝒕+𝟏 = 𝑭𝒕 + 𝜜∗(𝑫𝒕 − 𝑭𝒕), where 𝑭𝒕 and 𝑫𝒕 are 

𝑀 × 1 vectors, and 𝜜∗ is an 𝑀 × 𝑀 The optimal smoothing matrix can be numerically determined as 𝜜∗ = 𝐼 −
𝑁(𝑆∗ + 𝑁)−1, where 𝑆∗ is the (unique) solution to 𝑆 = 𝑁(𝑆 + 𝑁)−1𝑆 + 𝐶 (see Jones 1966). 
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function of the properties of the lower-level demand process 𝑫𝒕. While aggregation preserves the 

structural properties of the time series (Lütkepohl 2007), the aggregation of two symmetric time series 

yields a change-to-noise ratio of the top-level series, 

 �̈� =
(1+𝜌𝑐)

(1+𝜌𝑛)
𝑊.

4 (6) 

The equation describes how the top-level demand series carries more (less) weight of evidence than a 

single item-level series, depending on the correlation structure between the item-level series. Importantly, 

there is a simple relationship between optimal direct-top and bottom-up forecasting (Lütkepohl 2007), 

 �̈�∗ = 𝛼𝑖𝑖
∗ + 𝛼𝑖𝑗

∗ . (7) 

When aggregation increases (decreases) the change-to-noise ratio �̈� (relative to 𝑊), the top-level 

smoothing parameter �̈�∗ is larger (smaller) than the item-level parameter 𝛼𝑖𝑖
∗ , and the distal smoothing 

parameter 𝛼𝑖𝑗
∗  is positive (negative). Figure 2 below illustrates this relationship succinctly. 

Figure 2: Aggregation of Demand and Forecasting Process 

 

Recall from Eq. (6) that the change-to-noise ratio of the top-level series (�̈�) is increasing in 𝜌𝑐 and 

decreasing in ρn. Intuitively, the change-to-noise ratio is large at the top-level when 𝜌𝑐 is large and/or 𝜌𝑛 

                                                      
4
 Variances of change and noise for the resulting top-level series are given by �̈�2 = 2𝑐2(1 + 𝜌𝑐), �̈�2 = 2𝑛2(1 + 𝜌𝑛) 
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is small (or negative). When 𝜌𝑐 > 𝜌𝑛 the ratio is greater at the top-level than at the lower-level (�̈� > 𝑊), 

which requires a larger smoothing parameter �̈�∗ at the top-level than at the (focal) lower-level (Figure 2- 

I). When 𝜌𝑐 < 𝜌𝑛, the change-to-noise ratio is smaller at the top-level than at the lower-level (�̈� < 𝑊), 

which requires a smaller smoothing parameter �̈�∗ at the top-level than at the (focal) lower-level (Figure 2-

III).  If the change and noise components of the lower-level series have equal correlations (i.e., 𝜌𝑐 = 𝜌𝑛), 

then �̈�=𝑊, implying that �̈�∗ = 𝛼𝑖𝑖
∗ , and 𝛼𝑖𝑗

∗ = 0 (see Figure 2, quadrants II and IV). 

In summary, our forecasting environment is characterized by the change and noise correlations among 

the lower-level series, creating a two-by-two matrix that describes how demand for lower-level items is 

inter-related. There is a diagonal across this matrix that shows the points where the optimal forecasting 

process on the item-level is univariate (single exponential smoothing), and inter-relations among items 

can be safely ignored in the bottom-up forecasting process. The farther a set of items is away from this 

diagonal, the more important multivariate forecasting becomes. Note that the four different quadrants of 

this matrix, represented by the Roman numerals I-IV in Figure 2, essentially become experimental 

conditions in our study; we use these numerals throughout our paper to refer to these quadrants. 

2.4 Judgmental Hierarchical Forecasting 

The key implication from Equation (7) is that the optimal bottom-up and direct-top forecasting processes 

result in identical performance. However, we predict relative performance differences based on judgment 

biases, and the particular way these biases aggregate. To conceptualize the ensuing arguments, suppose 

that human forecasters follow the mechanics of an exponential smoothing process when preparing their 

forecasts,
5
 but do so imperfectly. In particular, we posit that the human reaction to observed forecast 

errors systematically deviates from normative predictions (captured through 𝛼𝑖𝑖
∗ , 𝛼𝑖𝑗

∗ , and �̈�∗). Further, we 

consider the role of random judgment error as an essential component in behavioral analyses. A decision 

maker, when faced with the same decision context, randomly deviates from a decision rule in a form of 

‘trembling hands’. This notion is a cornerstone in quantal response models (Su 2008, Allon, Huang and 

Bassamboo 2013), as well as in the wisdom of crowds literature (Larrick and Soll 2006). To formally 

capture a forecaster’s tendency to randomly deviate from her exponential smoothing forecasts, we 

introduce random judgment error terms, 𝜀𝑖,𝑡~𝑁(0, 𝜎) and 𝜀�̈�
𝐷𝑇~𝑁(0, �̈�𝐷𝑇). 

Bottom-Up. Forecasts for two lower-level series (i and j) are described by 

 𝐹𝑖,𝑡+1 = 𝐹𝑖,𝑡 + �̂�𝑖𝑖𝐸𝑖,𝑡 + �̂�𝑖𝑗𝐸𝑗,𝑡 + 𝜀𝑖,𝑡, (8a) 

 𝐹𝑗,𝑡+1 = 𝐹𝑗,𝑡 + �̂�𝑖𝑖𝐸𝑗,𝑡 + �̂�𝑖𝑗𝐸𝑖,𝑡 + 𝜀𝑗,𝑡. (8b) 

                                                      
5
 Previous research shows that exponential smoothing is a reasonable description of actual forecasting behavior (Andreassen and 

Kraus 1990; Lawrence and O’Conner 1992). Further, in the econometric analysis of our data, we will relax this assumption, and 

allow for various other behaviors, such as the perception and projection of illusionary trends. 
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This set of equations assumes that human forecasters use identical parameters �̂�𝑖𝑖 and �̂�𝑖𝑗 across both 

lower-level time series, which is a reasonable assumption for the symmetric series we consider in our 

study. We can then write the implied bottom-up forecasts for the top-level series as 

 �̈�𝑡+1
𝐵𝑈 = 𝐹𝑖,𝑡+1 + 𝐹𝑗,𝑡+1 = �̈�𝑡

𝐵𝑈 + (�̂�𝑖𝑖 + �̂�𝑖𝑗)�̈�𝑡
𝐵𝑈 + 𝜀𝑖,𝑡 + 𝜀𝑗,𝑡.  (8c) 

Direct-Top. Similarly, direct-top forecasts are described by 

 �̈�𝑡+1
𝐷𝑇 = �̈�𝑡+1

𝐷𝑇 + �̂��̈�𝑡
𝐷𝑇 + 𝜀�̈�

𝐷𝑇. (8d) 

Our two studies are designed to tease apart behavioral factors that drive the relative performance of 

judgmental bottom-up forecasting (8a-c) versus direct-top forecasting (8d). Study 1 focuses on the 

aggregation of random judgment errors (𝜎𝑖, �̈�𝐷𝑇 ≠ 0). Study 2 focuses on the aggregation of biases 

regarding the reaction to observed forecast errors (�̂� ≠ 𝛼∗).  

3 Study 1: Random Judgment Error and the Aggregation of Forecasts 

To focus on the implications of random judgment errors (captured by 𝜀𝑖,𝑡  and 𝜀�̈�
𝐷𝑇 in Eqs. (8a)-(8d)), 

Study 1 focuses on demand conditions that require univariate item-level forecast (i.e., 𝛼𝑖𝑗
∗ = 0), thus 

controlling for possible performance differences (between direct and indirect forecasting approaches) that 

may arise due to the complexity of multivariate forecasting on the item-level (which requires 𝛼𝑖𝑗
∗ ≠ 0). 

3.1 Hypothesis Development 

The premise for our main hypothesis is that the magnitude of random judgment error in forecasts 

(measured by 𝜎𝑖 and �̈�𝐷𝑇) is directly related to the uncertainty inherent in the time series on which the 

forecasts are based. To measure the inherent uncertainty of a time series, we use the standard deviation of 

forecast errors obtained from optimal simple exponential smoothing (e.g., Harrison 1967): 

 𝛴𝑖 = 𝑛/√1 − 𝛼𝑖
∗ (9a) 

 �̈� = �̈�/√1 − �̈�∗. (9b) 

Because Study 1 focuses on demand conditions where univariate exponential smoothing is optimal 

(𝛼𝑖𝑗
∗ =0), the optimal reaction to forecast errors is the same on both levels of aggregation (𝛼𝑖

∗ = �̈�∗). As a 

result, the difference between item-level and top-level demand uncertainty is characterized entirely by the 

relative level of noise (𝑛 vs. �̈�). 

An important relationship for our study is that the magnitude of random judgment error inherent in a 

judgmental forecast increases in the underlying uncertainty of the time series (Harvey 1995; Harvey, 

Ewart and West 1997). This effect seems to be driven by a need of decision makers for their forecast 

series to resemble the actual time series (Harvey 1995). A key aspect of normative forecasts (such as 
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those resulting from exponential smoothing) is that they filter out noise, and thus appear much less 

variable than the underlying demand series. This creates a visual disconnect between the forecast and the 

demand series. Human judgment will try to counter this disconnect by making the forecast series appear 

more like the underlying demand series. A study that has proposed a similar relationship is Gaur et al. 

(2007), who establish that the uncertainty of a forecast actually relates to the dispersion of opinions 

among experts. Lee and Siemsen (2014) also establish that in a newsvendor decision making framework, 

the standard deviation of random judgment error in point forecasts increases in the standard deviation of 

the underlying demand series. To simplify the following exposition, let us assume for now a linear 

relationship between random judgment error and the uncertainty of a time series, 𝜎𝑖 = 𝑚Σ𝑖. 

That such a relationship between data uncertainty and random judgment error exists is perhaps not 

surprising, but the implications for hierarchical forecasting are profound. On the one hand, there is a 

single random judgment error in a direct-top forecast (𝜀�̈�
𝐷𝑇  in Eqn. 8d), with standard deviation �̈�𝐷𝑇 =

𝑚Σ̈. On the other hand, the random judgment error in a bottom-up forecast is the aggregation of item-

level judgment errors (𝜀𝑖,𝑡   + 𝜀𝑗,𝑡 in Eqn. 8c). To simplify the exposition, assume for now that item-level 

judgment errors are uncorrelated, i.e., 𝜀𝑖,𝑡~𝑁(0, 𝑚𝛴𝑖) and 𝐶𝑜𝑣(𝜀𝑖,𝑡 , 𝜀𝑗,𝑡) = 0, resulting in the standard 

deviations of random judgment error for bottom-up forecasts  �̈�𝐵𝑈 = √2𝑚Σ𝑖.  To understand where one 

forecasting process may be favored in terms of random judgment error, we calculate the ratio
6
: 

 
�̈�𝐷𝑇

�̈�𝐵𝑈 =
𝑚�̈�

√2𝑚𝛴𝑖
=√

(1+𝜌𝑛)(1−𝛼𝑖
∗)

(1−�̈�∗)
, (10) 

where a value greater than 1 would suggest bottom-up forecasting produces smaller random judgment 

errors than direct-top forecasting. Since the optimal smoothing constant for the two processes is identical 

when 𝛼𝑖𝑗
∗ = 0 (or, equivalently, �̈�∗ = 𝛼𝑖

∗), as is the case for the demand conditions considered in Study 1, 

the ratio in Eqn. (10) simplifies to �̈�𝐷𝑇

�̈�𝐵𝑈 = √(1 + 𝜌𝑛). This relationship suggests that bottom-up 

forecasting is likely to result in smaller random judgment errors than direct-top forecasting when both 

change and noise components across items are positively correlated (quadrant II in Figure 2).  Intuitively, 

this is due to the high inherent uncertainty in the direct-top series.  Conversely, in quadrant IV of Figure 

2, a direct-top series would have very low inherent uncertainty, so we would expect direct-top random 

judgment errors to be small. We hypothesize:  

                                                      
6
 The ratio expressed in Eqn. (10) assumes uncorrelated item-level judgment errors and that these judgment errors scale 

linearly with the inherent predictability of the time series.   
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HYPOTHESIS 1 (RANDOM JUDGMENT ERROR): If optimal lower-level forecasting is univariate (i.e., 

𝛼𝑖𝑗
∗ = 0 ⇔ 𝜌𝑛 = 𝜌𝑐), direct-top forecasts result in lower (higher) forecast errors than bottom-up 

forecasts when 𝜌𝑛 is negative (positive).  

The arguments to support this hypothesis were based on two assumptions that served to simplify the 

exposition: a linear relationship between random judgment error and time series uncertainty, and 

uncorrelated item-level judgment errors. As long as random judgment errors are increasing in time series 

uncertainty, the linearity assumption can be relaxed and the same directional pattern holds: bottom-up 

forecasting becomes more attractive as one moves from negative to positive 𝜌𝑛.
7
  Next, there may be 

positive correlation in the judgment errors if the same forecaster prepares lower-level forecasts.  Such 

positive correlation in judgment errors would dilute the potential benefit of bottom-up forecasting, but the 

directional pattern expressed in Hypothesis 1 should continue to hold.  As we will see in the next section, 

our experimental design includes a treatment to control for correlation in judgment errors. 

3.2 Experimental Design 

In order to test Hypothesis 1, we implement direct-top and bottom-up forecasting tasks in a laboratory 

setting. Subjects observe 80 periods of demand history prior to making their first forecast(s), and 

afterwards sequentially prepare 1-period-ahead forecasts for 30 consecutive periods.  Our experimental 

design in this study follows the main diagonal from Figure 2. We ran one condition with no change or 

noise correlation across items (0), one condition with positive change and noise correlation (II), and one 

condition with negative change and noise correlation (IV).  As shown in Table 1, these positive (negative) 

correlations imply that the top-level series has increased (decreased) uncertainty (Σ̈, defined in Eqn. 9b, is 

91.53 in condition 0, 127.81 in condition II and 20.47 in condition IV.) 

In addition to the three demand conditions summarized in Table 1, we administer four different 

treatments in Study 1. Three of these treatments correspond to different bottom-up procedures, 

distinguished by the labels BASE, INDEPENDENT, and FEEDBACK; the fourth treatment corresponds 

to direct-top forecasting (DIRECT-TOP). Besides providing important experimental controls for testing 

our hypothesis, these four treatments map into different organizational structures.  

The BASE treatment aggregates the lower-level forecast data. Participants prepare forecasts in both 

lower-level time series without seeing the implications of their decisions for the aggregate time series, and 

without being rewarded for their performance in aggregate time series forecasting. This treatment 

corresponds to a setting where lower-level and top-level forecasting is organizationally separated; 

                                                      
7
 For example, suppose 𝜎𝑖 = (𝑚𝛴𝑖)𝑎, the ratio �̈�𝐷𝑇

�̈�𝐵𝑈 = √(1 + 𝜌𝑛) becomes 2(
𝑎−1

2
)(1 + 𝜌𝑛)𝑎/2, and the same directional pattern 

holds.   
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however, the same forecaster is responsible for both lower-level forecasts. For example, the same planner 

may be responsible for forecasting multiple products in the same product family. 

Table 1: Experimental Conditions in Study 1 

 0 II IV 

Lower-Level n & c 40.00 40.00 40.00 

Change Correlation ρc 0.00 0.95 -0.95 

Noise Correlation ρn 0.00 0.95 -0.95 

Normative αii 0.62 0.62 0.62 

Normative αij 0.00 0.00 0.00 

Normative �̈�𝐵𝑈 0.62 0.62 0.62 

Bottom-up Σ (=√2*Σi) 91.53 91.53 91.53 

Top-Level Noise (=√2*n*√(1+ρn)) 56.57 78.99 12.65 

Top-Level Change (=√2*c*√(1+ρc)) 56.57 78.99 12.65 

Top-Level Uncertainty, Σ̈ 91.53 127.81 20.47 

Predicted Better Process Neither Bottom-Up Direct-Top 

In the INDEPENDENT treatment, subjects prepare a forecast for only one lower-level series (while 

being able to observe the other series). After we collected all data, we generated aggregate forecasts by 

randomly matching two subjects – one preparing forecasts for the first series, the other preparing forecasts 

for the second series. This treatment is important as an experimental control, as item-level judgment 

errors are uncorrelated by construction. Furthermore, this treatment corresponds to a situation in practice 

where lower-level forecasts across series, as well as lower- and top-level forecasts are organizationally 

separated. This situation may arise when planners are organized regionally and their (regional) forecasts 

are combined to create a global forecast. 

In the FEEDBACK treatment, subjects prepare forecasts as in the BASE treatment; however, they can 

see the implied aggregate forecast that results from their lower-level forecasts. This corresponds to an 

organizational setting where lower and top-level forecasting are organizationally integrated and 

performed by the same person. Executives engaged in Sales and Operations Planning with whom we 

corresponded during the design of our study mentioned that this situation often happens – lower-level 

forecasts sometimes do not “feel right” when aggregated, and are revised accordingly. From a 

methodological perspective, this treatment also has the advantage that we can incentivize participants that 

make item-level forecasts, according to their performance at the top-level. 

Our final treatment (DIRECT TOP) corresponds to direct top-level forecasting. Participants only see 

the top-level time-series and prepare their forecasts for this time-series directly. Table 2 contains an 

overview of these treatments. See Table B1 in the appendix for a precise breakdown of subjects into 

treatments, conditions and datasets across both of our studies. 
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Table 2: Treatments Used in Study 1 

Treatment 
Subjects  

See  

Subjects 

Forecast  

Top Level 

Forecast 
Incentive: Average of  

Forecasts/ 

Subject 

# of 

Subjects 

BASE 𝐷1 , 𝐷2  𝐹1, 𝐹2 𝐹1 + 𝐹2 
𝑀𝐴𝐸(𝐷1, 𝐹1), 

𝑀𝐴𝐸(𝐷2, 𝐹2) 
2*30 173 

INDEPENDENT 𝐷1, 𝐷2 𝐹1 or 𝐹2 

𝐹1 + 𝐹2,  

from random 

Subjects 

𝑀𝐴𝐸(𝐷1, 𝐹1) or 

𝑀𝐴𝐸(𝐷2, 𝐹2) 
30 144 

FEEDBACK 𝐷1, 𝐷2, �̈�  𝐹1, 𝐹2 𝐹1 + 𝐹2 

𝑀𝐴𝐸(𝐷1, 𝐹1), 

𝑀𝐴𝐸(𝐷2, 𝐹2), 

 𝑀𝐴𝐸(𝐷1 + 𝐷2, 𝐹1 + 𝐹2) 

2*30 131 

DIRECT TOP �̈� �̈� �̈� 𝑀𝐴𝐸(�̈�, �̈�) 30 149 

We use six different datasets in each condition resulting in a 2(conditions)×4(treatments)×6(datasets) 

between-subjects design. Due to subject pool limitations, only two datasets were used in condition IV. 

Ideally, differences across demand conditions are driven entirely by the difference in correlation structure. 

In order to create datasets that, between conditions, minimize the amount of sampling noise and 

emphasize the differences due to the correlation structure, we used the same underlying change and noise 

random draws to compose the time series presented to subjects.  Specifically, for each dataset, we 

generate 4×110 standard normal draws that are scaled according to the appropriate correlation coefficients 

for each condition to create the values for 𝜼𝒕 and 𝝇𝒕 in Eq. (1).  By appropriately scaling these change and 

noise random draws we were able to keep the first time series in each dataset (which we refer to as the 

‘blue’ series) the same across demand conditions.  The second time series for each dataset and condition 

combination (the ‘red’ series) was obtained by scaling the underlying change and noise draws so that the 

desired variances and correlations were achieved. Keeping the blue time series constant across different 

correlation structures facilitates comparisons across conditions. Figure 1 and 2 visualize this aspect of our 

experimental design; the lower of the two lower-level series is the same throughout all four graphs. 

The forecasting task was implemented in the experimental software zTree (Fischbacher 2007); a 

screenshot of the interface is given in Figure A1 in the Appendix. The study was conducted at a 

behavioral lab in a large public university in the American East. We recruited subjects from several 

sections of an undergraduate Supply Chain core course. To incentivize accurate forecasting, we used a 

between-subject random incentive system (Schunk and Betsch 2006, Langer and Weber 2008). One 

student per course section (on average, 100 students) was selected randomly and paid a substantial cash 

amount based on his/her forecast performance during the experiment. Specifically, each randomly 

selected student would be paid a base payment B minus his/her Mean Absolute Error (MAE), calculated 

by averaging all relevant absolute forecast errors across all T = 30 periods (see Table 2). The base 

payment was adjusted depending on treatment and condition, such that the expected earning was roughly 
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equal across treatments and conditions
8
. Across all experimental session reported in this paper (Study 1 

and 2, not including the practitioner and MBA treatments), 48 subjects were randomly selected for 

payment. The average earning among these subjects was $81.19, with a standard deviation of $18.56. 

Sessions lasted between 30 and 45 minutes. 

3.3 Results 

Hypothesis 1 is based on the idea that random judgment error is increasing in the inherent uncertainty in 

the data series. We first examine this behavioral foundation of Hypothesis 1, which requires a 

measurement of the magnitude of random judgment error in forecasts. We conceptualized random 

judgment error as a random term appended to an otherwise deterministic forecasting rule. To this end, we 

estimate behavioral forecasting models in each condition and treatment. In particular, we use a random 

effects model on the lower-level blue series within each condition across the bottom-up treatments BASE, 

INDEPENDENT and FEEDBACK. For each subject s, our data comprises forecasts 𝐹𝑠,𝑡 and demands 

𝐷𝑑,𝑡 for T=30 consecutive periods (t=1..T), with the understanding that demand observations are nested 

in a particular data set d. Further, let Δ𝐹𝑡 = 𝐹𝑡 − 𝐹𝑡−1, and Δ𝐷𝑡 = 𝐷𝑡 − 𝐷𝑡−1. The forecast errors in a 

focal series are denoted by 𝐹𝐸𝑠,𝑡, and the forecast errors in a distal series are denoted by 𝐷𝐸𝑠,𝑡. The 

resulting specification is as follows: 

𝐹𝑠,𝑡+1 = 𝑎0 + 𝑎1
𝑑,𝑠𝐹𝐸𝑠,𝑡 + 𝑎2

𝑑,𝑠𝐷𝐸𝑠,𝑡 + 𝑎3𝐹𝑠,𝑡 + 𝑎4
𝑑,𝑠∆𝐷𝑑,𝑡 + 𝑎5∆𝐷𝑑,𝑡−1 + 𝑎6∆𝐹𝑠,𝑡 + 𝑎7∆𝐹𝑠,𝑡−1 + 𝑢𝑑 +

𝜈𝑠 + 𝜀𝑡  (11) 

This model includes random effects by data set (𝑢𝑑) and subject (𝑣𝑠). It regresses previous forecasts 

and demands on current forecasts, and allows for the possibility that forecasts are influenced by distal 

series forecast errors in addition to focal errors. The specification is mostly similar to Kremer, Moritz and 

Siemsen (2011), and accounts for the variance in observed forecasts that is due to forecast errors, recent 

previous forecasts and recently observed demand. For the DIRECT-TOP treatment, we estimated the 

same model, but omitted the term 𝐷𝐸𝑠,𝑡. 

We calculated the residual errors for each model. These models contain random effects at the subject 

level; the regression residuals thus capture within-subject variance but not between-subject variance. For 

DIRECT-TOP forecasting, we calculated the standard deviation of these residuals as a measure of the 

magnitude of random judgment error. For all bottom-up treatments, we summed up the resulting lower 

level residuals, and calculated the standard deviation of this sum as a measure of random judgment error 

in bottom-up forecasting. We refer to this latter estimate as an implied standard deviation. Table 3 

contains an overview of this analysis. Note that the INDEPENDENT treatment plays a special role. In the 

                                                      
8
 For example, for demand condition 0, the base payment was B=$145 for treatments BASE and 

INDEPENDENT, B=$160 for treatment FEEDBACK, and B=$180 for treatment DIRECT-TOP. 
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two other bottom-up treatments, lower level forecasts are prepared by the same person, possibly creating 

positively correlated random judgment errors which, as discussed in Section 3.1, would imply lower 

benefits of aggregation. In the INDEPENDENT treatment, the two forecasts are created by different 

people, naturally limiting the potential for correlated random judgment error. 

Table 3: Random Judgment Error across Treatments 

Treatment Condition 
�̈� 

(theor.) 

Random Judgment 

Error 

BASE (𝜎𝐵𝑈, implied) 0 (N=87) 91.53 53.07 (1.10) 

INDEPENDENT (𝜎𝐵𝑈, implied) 0 (N=38) 91.53 50.19 (1.57) 

FEEDBACK (𝜎𝐵𝑈, implied) 0 (N=52) 91.53 53.02 (1.42) 

DIRECT-TOP (𝜎𝐵𝑈, est.) 0 (N=51) 91.53 49.79 (1.00) 

BASE (𝜎𝐵𝑈, implied) II (N=65) 127.81 65.99 (1.58) 

INDEPENDENT (𝜎𝐵𝑈, implied) II (N=22) 127.81 44.79 (1.84) 

FEEDBACK (𝜎𝐵𝑈, implied) II (N=54) 127.81 62.96 (1.65) 

DIRECT-TOP (𝜎𝐵𝑈, est.) II (N=61) 127.81 78.34 (1.68) 

BASE (𝜎𝐵𝑈, implied) IV (N=21) 12.65 81.09 (2.41) 

INDEPENDENT (𝜎𝐵𝑈, implied) IV (N=12) 12.65 83.08 (3.28) 

FEEDBACK (𝜎𝐵𝑈, implied) IV (N=25) 12.65 68.26 (1.86) 

DIRECT-TOP (𝜎𝐵𝑈, est.) IV (N=37) 12.65 12.43 (0.28) 

Notes. The theoretical Σ̈ does not represent a prediction of the level of estimated random errors; only a linear 

relationship between Σ̈ and the estimated values is expected. Standard errors of estimates are noted in brackets next 
to an estimate. 

The results from our analysis support the behavioral foundation of Hypothesis 1. The random 

judgment errors are similar across treatments in condition 0. In condition II, DIRECT-TOP exhibits more 

random judgment error than any of the bottom-up treatments. In condition 4, the opposite holds; the 

random judgment error in DIRECT-TOP forecasting is the lowest among all treatments. Note also that the 

INDEPENDENT treatment in condition II exhibits no increase in random judgment error compared to 

condition 0 (44.79 vs. 50.19, n.s.), while the random judgment error in the other two bottom-up 

treatments (BASE, FEEDBACK) is much higher in condition II than in condition 0. This would imply 

that lower-level errors are positively correlated in these two treatments, limiting the benefits of random 

judgment error aggregation obtained by following a bottom-up process. Further note that cross-condition 

comparisons of random judgment error with respect to condition IV are invalid, since condition IV is 

based on estimations of only two datasets (instead of six datasets in the other conditions). 

We now test Hypothesis 1 directly by comparing MAEs across treatments. We estimate regression 

models using individually aggregated MAEs (i.e., averaged across 30 time periods per subject) as the 

dependent variable. Independent variables are factor variables for condition, treatment and dataset, as well 
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as all two-way interactions between these variables. Due to heteroskedasticity in our data, Huber-White 

standard errors are reported and used for significance tests. The resulting predicted marginal means 

(correcting for imbalances in datasets across treatments and conditions), as well as significance tests for 

contrasts across these means, are reported in Table 4. 

Table 4: Mean Absolute Errors in Study 1 

Treatment Condition 
MAE 

(normative) 

MAE  

(observed) 

BASE 0 (N=87) 70.94 84.03
*
  (1.36) 

INDEPENDENT 0 (N=38) 70.94 82.92
**

  (1.61) 

FEEDBACK 0 (N=52) 70.94 84.39
* 
  (1.69) 

DIRECT-TOP 0 (N=51) 70.94 88.69 (1.53) 

BASE II (N=65) 97.93 120.44  (1.63) 

INDEPENDENT II (N=22) 97.93 111.69
**

  (1.85) 

FEEDBACK II (N=54) 97.93 116.50
**

  (1.61) 

DIRECT-TOP II (N=61) 97.93 124.38  (2.04) 

BASE IV (N=21) 17.59 45.35
**

 (3.86) 

INDEPENDENT IV (N=12) 17.59 59.05
**

 (4.18) 

FEEDBACK IV (N=25) 17.59 39.27
**

 (4.16) 

DIRECT-TOP IV (N=37) 17.59 19.22 (0.60) 

Notes. **p≤.01; *p≤.05; †p≤.10. N refers to sample size. Effective sample sizes are smaller in the 

INDEPENDENT treatment since two observations needed to be combined for an aggregate forecast. A 

significant effect indicates that the MAE in this particular treatment is significantly different from the 

MAE in the DIRECT TOP treatment. Tests are based on t-statistics calculated from contrasting 

marginal means across treatments. Values in brackets are standard errors. 

Results provide support for Hypothesis 1. DIRECT-TOP forecasting clearly outperforms all other 

indirect treatments in condition IV, as predicted. In condition II, the MAEs under DIRECT-TOP 

forecasting are worse than the MAEs under bottom-up forecasting, particularly in the INDEPENDENT 

treatment. Note, though, that the same statement holds true for condition 0, which was not predicted. 

However, performance advantages of DIRECT-TOP seem to be larger in condition II than in condition 0. 

In particular, consider that in condition 0, the MAE under the INDEPENDENT treatment is 82.92, 

compared to an MAE of 88.69 under DIRECT-TOP. This represents a 6% reduction in MAE, or – given 

that the normative MAE is 70.94 – a 32% reduction of the performance loss due to judgmental forecasting 

compared to optimal forecasting. In condition II, a similar comparison yields a 10% reduction in MAE, 

and a 48% reduction in performance loss due to judgmental forecasting. In other words, the effect size of 

using bottom-up as opposed to direct-top procedures is almost twice as high in condition II as in condition 

0.  
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3.4 Robustness 

We subject our analysis to a robustness test by re-running two of our conditions (0 and II) in a separate 

treatment where subjects receive decision support. Many demand planners in practice have access to a 

quantitative model that suggests a forecast. Our robustness test establishes whether such access to (useful) 

decision support changes forecasting performance and the main results reported above. In order to 

simulate the influence of decision support on human judgment in our context, we ran an additional 

treatment that offered subjects a system-generated forecast before they had to enter their own forecast. 

The system generated forecast corresponded to the optimal univariate forecast for a series. Further, since 

forecasters in practice typically have a better understanding of their forecasting context, we also added to 

the instructions a short description of the correlation structure between the series. We will refer to this 

treatment as the Decision Support (DS) treatment.  

An additional 193 subjects were recruited for this robustness test. Due to this smaller number of 

subjects in this test compared to our original study, only two datasets (instead of six) from our original 

study were used. The experimental protocol otherwise remained similar to Study 1. For a fair comparison, 

this new data is only compared to the original data from Study 1 for subjects receiving the same two 

datasets. We then estimate a similar regression model as in Study 1, adding a variable for decision 

support, and all two way interactions between decision support, condition, treatment and dataset. Results 

from our comparison of predicted marginal MAEs are summarized in Table 5. 

Table 5: MAEs under Decision Support in Study 1 

Treatment Condition 
MAE 

(normative) 

MAE          

(observed, non-DS) 

MAE      

(observed, DS) 

BASE 0 (N=54/28) 80.31 95.36  (1.99) 88.35  (1.37) 

INDEPENDENT 0 (N=18/8) 80.31 95.01  (2.62) 91.99  (1.99) 

FEEDBACK 0 (N=17/20) 80.31 90.19
*
 (2.20) 87.36

†
  (2.12) 

DIRECT-TOP 0 (N=18/21) 80.31 98.44  (2.68) 92.62  (2.45) 

BASE II (N=28/33) 120.89 144.21 (2.28) 134.11 (2.25) 

INDEPENDENT II (N=12/13) 120.89 136.77
*
 (2.23) 130.66 (1.77) 

FEEDBACK II (N=20/25) 120.89 138.78 (2.42) 132.86 (2.64) 

DIRECT-TOP II (N=20/24) 120.89 144.07 (3.11) 135.15 (2.35) 

Notes. **p≤.01; *p≤.05; †p≤.10. A significant effect indicates that the MAE in this particular treatment is significantly 

different from the MAE in the DIRECT-TOP treatment. Reported sample sizes (=N) are for non-DS/DS samples. 

In general, the MAEs in the DS treatment are lower than in the non-DS treatment, which was certainly 

expected as subjects were provided an optimal system generated forecast. As with the Non-DS sample, 

DIRECT-TOP in the DS sample records a higher MAE than the bottom-up treatments for both conditions 

0 and II. While the MAE differences are not significant, we remain for now cautious about the 

interpretation that decision-support mitigates the relative advantages of direct versus indirect forecasting 
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processes, given that the sample sizes in some of our experimental cells are relatively low (e.g., only 13 

observations in the INDEPENDENT treatment of condition II under DS), and in light of further evidence 

on treatment DS that we will report in the context of Study 2 (Section 4.4) below. 

4 Study 2: Tunnel Vision and the Aggregation of Forecasts 

To focus on the implications of random judgment errors (and their aggregation), Study 1 considered 

demand conditions requiring univariate item-level forecast (i.e., 𝛼𝑖𝑗
∗ = 0). Study 2 is designed to address 

biases (and their aggregation) that arise specifically in demand conditions with correlation structures that 

require multivariate forecasting on the lower level (i.e., 𝛼𝑖𝑗
∗ ≠ 0). 

4.1 Hypothesis Development 

A key insight from Section 2 is that if ρc ≠ ρn , the optimal forecasting process at the lower level is 

multivariate. In other words, the correlation structure among demand time series can require forecasters to 

consider a distal series when preparing a focal forecast (i.e., 𝛼𝑖𝑗
∗ ≠ 0). Yet such holistic assessments are a 

challenge for human judgment. We propose that in this context, human decision makers tend to prepare 

their forecasts in a univariate fashion, rather than incorporating information embedded in related time 

series. Underlying this prediction is the observation that forecasters face a difficult task when preparing 

forecasts for multiple time-series simultaneously: they must not only detect correlation among the lower-

level time series change and noise components, but also understand how to exploit such correlation. 

There is a rich body of literature on the ability of humans to detect correlation between continuous 

random variables, often in the task context of interpreting scatterplots (Lane, Anderson and Kellam 1985, 

Doherty et al. 2007). A central, and robust, finding in this literature is that decision makers underestimate 

the absolute value of that correlation.  Relative to this research, detecting covariation in our forecasting 

context is more difficult – subjects face a “moving target”, and the mere fact that data is presented in a 

time-series format has behavioral implications relative to a task where data points are not temporally 

related (as in scatterplots). For example, time series data lends itself to the perception of illusionary trends 

(DeBondt 1993). Since detecting correlations is challenging enough for decision makers in simple 

settings such as a scatterplot, we expect that decision makers in our context have even more difficulty in 

adequately detecting a correlation between time series change and noise components; if such correlations 

are detected at all, we expect them to be underestimated. 

Even if decision makers can identify a correlation between time series components, it is not clear that 

they can adequately exploit that information. Deciding whether to react to an observed forecast error is 

akin to accepting or rejecting the hypothesis that the forecast error is due to change (rather than noise) in 

the series. The benefits of multivariate forecasting stem from the fact that the distal series error provides 

information about this hypothesis test if change and noise correlations are different (ρc ≠ ρn ). Human 
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decision makers, however, tend to be more selective when testing hypotheses. This phenomenon of 

selective hypothesis testing (Sanbonmatsu et al. 1998) refers to the idea that when multiple hypotheses 

should be tested (and relevant data exists for each), decision makers tend to follow a sequential approach 

to testing these hypotheses instead of pursuing a holistic approach. Complementary hypotheses are 

thereby treated as independent, and decision makers thereby ignore distal evidence and favor evidence 

directly linked to a focal hypothesis. The implication for our task context is that a judgment of the 

hypothesis that a large forecast error represents change in the time series (rather than noise) is 

predominantly assessed by the error in the focal series, while the distal series error is ignored. We 

therefore expect that under conditions where forecasters should react to distal series errors and forecast in 

a multivariate fashion, they will largely fail to do so, i.e. (�̂�𝑖𝑗 = 0 ≤ |𝛼𝑖𝑗
∗ |). We term this “tunnel vision”. 

Establishing that information-processing capabilities inherent in human judgment are insufficient to 

process multivariate time series information is not the primary purpose of our study. Rather, our objective 

is to establish the implications of this insight for the comparison of direct-top versus bottom-up 

forecasting. Recall from Equation (7) the link between optimal direct-top and bottom-up forecasting, 

 �̈�∗ = 𝛼𝑖𝑖
∗ + 𝛼𝑖𝑗

∗ ,  (12) 

highlighting the important role of the cross-item error-response parameter 𝛼𝑖𝑗. First, consider demand 

conditions for which distal lower-level series contain no value for focal lower-level forecasts (i.e., 

𝛼𝑖𝑗
∗ = 0). Because this implies that top-level and lower-level series are structurally equivalent (�̈�∗ = 𝛼𝑖𝑖

∗ ), 

we would not expect any performance differences due to the possible mis-reaction to forecast errors; 

while it is possible that forecasters systematically over- or under-react to their forecast errors (�̂�𝑖𝑖 ≠

𝛼𝑖𝑖
∗ , �̂̈� ≠ �̈�∗), there is no reason to expect a reaction pattern that is different for bottom-up versus direct-

top forecasting (i.e., we would expect �̂�𝑖𝑖 = �̂̈�). However, this expectation changes under demand 

conditions for which optimal lower-level forecasts incorporate information from distal time series (i.e., 

𝛼𝑖𝑗
∗ ≠ 0). If lower-level forecasts neglect distal series information (�̂�𝑖𝑗 = 0), the resulting bottom-up 

forecasts implicitly apply the focal lower-level smoothing parameter �̂�𝑖𝑖 to the top-level data. In contrast, 

if a forecaster predicts the top-level series directly, her smoothing parameter will adjust to the 

characteristics of the top-level series. The implication is that tunnel vision benefits direct top forecasts. 

Recall however from Study 1 that we expect direct-top and bottom-up processes may differ in loss due to 

random judgment error.  For conditions where the anticipated random judgment error loss is similar in 

direct-top and bottom-up processes, we hypothesize: 

HYPOTHESIS 2 (TUNNEL VISION): If optimal lower-level forecasting is multivariate (i.e., 𝛼𝑖𝑗
∗ ≠ 0), 

direct-top forecasts result in lower forecast errors than bottom-up forecasts. 
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4.2 Experimental Design and Implementation 

In order to test Hypothesis 2, we create three different demand conditions with varying correlation 

structure at the lower-level.  Table 5 provides an overview of these conditions (I and III), and we include 

condition 0 from Study 1 as a benchmark. Importantly, the table indicates where we expect benefits of 

direct-top forecasting according to Hypothesis 2. 

Table 5: Demand Conditions in Study 2 

Condition 0 I III 

Lower-Level n & c 40.00 40.00 40.00 

Change Correlation ρc 0.00 0.95 -0.95 

Noise Correlation ρn 0.00 -0.95 0.95 

Normative αii 0.62 0.56 0.56 

Normative αij 0.00 0.41 -0.41 

Normative �̈�∗ 0.62 0.98 0.15 

Top-Level Noise (=√2*n*√(1+ρn)) 56.57 12.65 78.99 

Top-Level Change (=√2*c*√(1+ρc)) 56.57 78.99 12.65 

Predicted Better Process Neither Direct-Top Direct-Top 

4.3 Results 

We first examine the behavioral foundations of Hypothesis 2. To that purpose, we compare estimated 

behavioral smoothing parameters (�̂�) across conditions and treatments. We estimate the same random 

effects model from the first study (Eq. 11) on the lower-level blue series within each condition across the 

bottom-up treatments BASE, INDEPENDENT and FEEDBACK. Across all treatment and condition 

combinations, the distal series’ forecast errors had no significant effect on focal series’ forecasts. Further, 

there was no evidence that forecast errors within the blue (i.e. constant) series improved under conditions 

I or III. Together, these observations support our assertion that human forecasters suffer from tunnel 

vision. 

To more directly test the foundations of Hypothesis 2, we created estimates of the sum of focal and 

distal series behavioral smoothing parameters (although the latter were basically equivalent to zero), and 

record this value as an implied bottom-up smoothing parameter (�̂�𝑖𝑖 + �̂�𝑖𝑗). We then estimate behavioral 

smoothing parameters in the DIRECT-TOP treatment directly, and compare these to implied smoothing 

parameters from other treatments in a demand condition. Results from this analysis are summarized in 

Table 6. It is apparent that the behavioral 𝛼s estimated in the DIRECT-TOP treatment change with the 

characteristics of the time series. Specifically, there is a statistical difference between the DIRECT-TOP 

behavioral α in conditions 0 and I (0.64 vs. 0.82, p ≤ 0.01) and in conditions 0 and III (0.64 vs. 0.42, 

p ≤ 0.01). However the implied αs from all bottom-up treatments appear ‘locked in’ at a value of around 

0.70, due to the inability to adjust lower-level forecasts to errors made in the distal time series. More 
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precisely, the overall average implied α across all bottom-up treatments and conditions is 0.69, and none 

of the nine implied αs is statistically different from this overall average at p ≤ 0.05. While the behavioral 

𝛼s in the DIRECT TOP condition still show some mis-reaction (i.e., under-reaction in condition I, over-

reaction in condition III), they are generally closer to the normative benchmark than their implied lower-

level bottom-up counterparts. These observations corroborate the logic underlying Hypothesis 1. 

Table 6: Comparisons of Smoothing Parameters 

Treatment Condition Normative (�̈�∗) Estimated 

BASE 0 (N=87) 0.62 0.66 (0.04) 

INDEPENDENT 0 (N=38) 0.62 0.70 (0.05) 

FEEDBACK 0 (N=52) 0.62 0.72 (0.04) 

DIRECT-TOP 0 (N=51) 0.62 0.64 (0.03) 

BASE I (N=61) 0.98 0.72 (0.03) 

INDEPENDENT I (N=35) 0.98 0.66 (0.06) 

FEEDBACK I (N=61) 0.98 0.73 (0.04) 

DIRECT-TOP I (N=57) 0.98 0.82 (0.04) 

BASE III (N=63) 0.15 0.63 (0.05) 

INDEPENDENT III (N=34) 0.15 0.71 (0.05) 

FEEDBACK III (N=54) 0.15 0.69 (0.04) 

DIRECT-TOP III (N=58) 0.15 0.42 (0.05) 

Notes. Standard errors of estimates are noted in brackets next to an estimate. 

We now test Hypothesis 2 directly by examining forecasting performance in the different conditions 

and treatments. Our hypothesis suggests that direct-top forecasting can outperform bottom-up forecasting 

in conditions I and III. We prepared the data by calculating the observed absolute errors for every 

observation and aggregating these numbers across period for each individual. We then ran regression 

models within each condition (0, I, III) using treatments and datasets (as well as treatment×dataset 

interactions) as explanatory variables. Mean Absolute Errors (MAE) were derived from the regression 

estimation using predicted marginal means across treatments, accounting for imbalances in our sample. 

All analyses were run in STATA 13.1. Standard errors were calculated using Huber-White (i.e., robust) 

estimators to account for possible heteroskedasticity across treatments and conditions. We further 

estimated contrasts across treatments comparing bottom-up MAEs to the DIRECT-TOP MAEs. Results 

from this analysis are detailed in Table 7. 
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Table 7: Mean Absolute Error Comparison in Study 2 

Treatment Condition 
MAE 

(normative) 

MAE  

(observed) 

BASE 0 (N=87) 70.94 84.03
*
  (1.36) 

INDEPENDENT 0 (N=38) 70.94 82.92
**

  (1.61) 

FEEDBACK 0 (N=52) 70.94 84.39
* 
  (1.69) 

DIRECT-TOP 0 (N=51) 70.94 88.69 (1.53) 

BASE I (N=61) 60.17 74.77
*
  (1.50) 

INDEPENDENT I (N=35) 60.17 75.41
*
  (2.15) 

FEEDBACK I (N=61) 60.17 71.98  (1.39) 

DIRECT-TOP I (N=57) 60.17 70.64 (1.34) 

BASE III (N=63) 70.90 92.39
**

  (1.14) 

INDEPENDENT III (N=34) 70.90 95.88
**

  (1.93) 

FEEDBACK III (N=54) 70.90 92.53
*
  (2.14) 

DIRECT-TOP III (N=58) 70.90 86.34 (1.64) 

Notes. **p≤.01; *p≤.05; †p≤.10. N refers to sample size. A significant effect indicates 

that the MAE in this particular treatment is significantly different from the MAE in the 

DIRECT TOP treatment. Tests are based on t-statistics calculated from contrasting 
marginal means across treatments. Values in brackets are standard errors. 

The results in Table 7 are overall consistent with Hypothesis 2. As predicted, both in conditions I and 

III, DIRECT-TOP forecasting tends to perform better than all bottom up procedures (BASE, 

INDEPENDENT and FEEDBACK). An overall test whether DIRECT-TOP outperforms the pooled 

sample of all bottom up treatments reveals a significant performance difference, both in conditions I 

(b=3.15, p ≤ 0.05) and III (b = 6.94, p ≤ 0.01). These performance differences occur despite the fact (and 

counter to our expectation) that DIRECT-TOP has a performance disadvantage in condition 0 (b = -4.37, 

p ≤ 0.01). In other words, while we expected DIRECT-TOP to perform similar to any bottom-up 

procedure if lower-level series are uncorrelated, DIRECT-TOP appears to be at a disadvantage here. The 

effect sizes observable in conditions I and III not only offset this apparent natural disadvantage of 

DIRECT-TOP, but are strong enough to create a performance advantage instead. 

Table 7 also reveals that the three bottom-up treatments perform relatively similar to each other. We 

had expected that INDEPENDENT could outperform the BASE treatment, since forecasts across series 

here are naturally uncorrelated. We had also expected FEEDBACK to outperform the BASE treatment, 

since observing the implied forecast may create a natural opportunity for error correction. Yet neither of 

these expected performance advantages is visible in Table 7. 

While the focus of this study was to examine the impact of the tunnel vision judgment bias on the 

choice of direct or indirect forecasting process, we close by noting that a similar effect may exist in firms 

relying entirely on statistical forecasting. Specifically, most demand planners we interacted with during 
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our study confirmed that their quantitative models are predominantly univariate in nature
9
.  If that is the 

case, statistical forecasts also suffer from ‘tunnel vision’, and direct-top forecasting may provide benefits 

as well under conditions I and III, even if statistical (as opposed to judgmental) forecasts are involved. 

4.4 Robustness 

We provide two robustness tests of our experiment. Similar to the first study, we ran a decision support 

treatment where subjects were provided the optimal univariate exponential smoothing forecast.  For the 

conditions tested in Study 1, these univariate forecasts were optimal.  Here, these forecast are good 

(optimal in condition 0), but human judgment could potentially beat it (in conditions I and III). The 

forecast was presented to subjects as a statistical forecast based on historical data without any additional 

detail as to how it was generated. This feature of our design resembles the fact that a system generated 

forecasts often appear as a black box to human decision makers, since the underlying algorithm is not 

well explained (or understood by decision makers). We collected data from an additional 266 subjects, 

across conditions (0, I, III), treatments (BASE, INDEPENDENT, FEEDBACK, DIRECT-TOP) and two 

datasets (5 and 6). Table A2 in the appendix gives a breakdown of the sample used in this study. Similar 

to our previous analysis, we estimate regression models within each condition, and calculate predicted 

marginal means across treatments. Table 8 provides an overview of our analysis, and reports comparable 

statistics using our previous dataset without DS (estimated only on datasets 5 and 6). 

Table 8: Mean Absolute Error in Study 2 under Decision Support 

Treatment 
Condition 

(set 5/6) 

MAE 

(normative) 

MAE          

(observed, non-DS) 

MAE      

(observed, DS) 

BASE 0 (N=54/28) 80.31 95.36  (1.99) 88.35  (1.37) 

INDEPENDENT 0 (N=18/8) 80.31 95.01  (2.62) 91.99  (1.99) 

FEEDBACK 0 (N=17/20) 80.31 90.19
*
 (2.20) 87.36

†
  (2.12) 

DIRECT-TOP 0 (N=18/21) 80.31 98.44  (2.68) 92.62  (2.45) 

BASE I (N=23/30) 65.94 80.19
**

  (2.18) 80.45
*
  (1.71) 

INDEPENDENT I (N=13/8) 65.94 80.95
*
  (3.60) 84.35

**
  (2.81) 

FEEDBACK I (N=16/19) 65.94 75.19 (2.49) 77.48  (1.95) 

DIRECT-TOP I (N=20/24) 65.94 73.36  (1.71) 74.49  (2.23) 

BASE III (N=23/26) 71.37 105.36
**

  (1.89) 100.71
**

  (2.40) 

INDEPENDENT III (N=12/8) 71.37 104.94
**

  (2.92) 103.44
**

  (2.49) 

FEEDBACK III (N=15/15) 71.37 101.91
*
  (3.69) 99.29

**
  (2.98) 

DIRECT-TOP III (N=20/23) 71.37 87.36  (2.45) 83.59  (2.03) 

Notes. **p≤.01; *p≤.05; †p≤.10. A significant effect indicates that the MAE in this particular treatment is significantly 

different from the MAE in the DIRECT-TOP treatment in the decision support sample. 

                                                      
9
 Lütkepohl 1984 offers a possible statistical justification for this practice.  He shows that, with limited data, 

univariate ARIMA models may outperform the theoretically correct multivariate ARIMA model, due to lower 

parameter estimation error in the univariate models (since fewer parameters need to be estimated). 
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Results are consistent between DS and non-DS treatments. In condition III, DIRECT-TOP 

outperforms all bottom-up treatments (b = 18.53, p ≤ 0.01). Performance under DS appears slightly 

improved compared to non-DS. In condition I, DIRECT-TOP only barely outperforms the bottom-up 

treatments (b = 4.64, p ≤ 0.10). In condition 0, DIRECT-TOP again performs slightly worse than the 

bottom up treatments (b = -4.84, p ≤ 0.05). Overall, these results are consistent with our previous analysis, 

indicating that the presence of decision support, while possibly improving performance overall, has little 

influence on the effects predicted in Hypothesis 2. 

Our second robustness test concerns the choice of subject pool. The participants in our previous 

experiments were undergraduate students. We now report on a targeted, smaller scale study with subjects 

having more expertise.  In specific, we take two treatments from our previous design (BASE and 

DIRECT-TOP), one dataset (#5) as well as two conditions (I and III), and test whether Hypothesis 2 

continues to hold in samples comprised of (a) 44 MBA students at a large, public University (referred to 

as the MBA group) and (b) 23 forecasting experts from a Fortune 500 US company (referred to as the 

PRACT group). In this robustness test, subjects received the DS treatment. The more experienced 

decision makers are therefore only compared to the sample of undergraduate students that received the 

same treatment (N=54). Further, to gain more information, the forecasting experts in the PRACT group 

completed the exercise twice – once in the BASE treatment, and once in the DIRECT-TOP treatment. We 

varied the order in which these treatments were administered at random. We then estimated regression 

models to predict MAEs in each condition and treatment. Among the PRACT sample, we estimated 

random effects regression models (since each subject received two treatments) controlling for order 

effects. Results are summarized in Table 9. The MAEs are consistent across groups. In condition III, 

DIRECT-TOP outperforms BASE across all samples. In condition I, while effect sizes are not significant 

(p = 0.11) in the MBA sample (as well as in the original DS sample), DIRECT-TOP also outperforms 

BASE in the PRACT sample (p ≤ 0.05). 

Table 9: MAEs in Study 2 for Different Groups 

Treatment Condition 
MAE 

(norm.) 
MAE 

(DS) 
MAE        

(MBA) 
MAE      

(PRACT) 

BASE I 52.09 69.36  (3.13) 66.27  (3.11) 66.78
*
  (3.75) 

DIRECT-TOP I 52.09 61.12  (4.10) 60.06  (2.18) 58.73  (2.01) 

BASE III 71.69 103.53
**

  (4.34) 96.23
**

  (1.92) 94.61
**

  (3.02) 

DIRECT-TOP III 71.69 79.28  (1.42) 84.69  (3.51) 83.77  (3.19) 
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5 Discussion 

The goal of our research is to provide insights as to how judgmental hierarchical forecasting processes 

should be structured.  In this section, we summarize insights from our two studies, illustrate how a firm 

might apply our findings and discuss the potential economic impact of our research. 

5.1 Summary 

Our two studies have highlighted that whether bottom-up or direct-top forecasting is advantageous from a 

human judgment perspective depends to a large degree on the underlying correlation structure at the 

lower-level. The aggregation of random judgment errors implies that bottom-up forecast can become 

advantageous when data aggregation results in top-level series with much higher inherent uncertainty than 

the item-level series (for example, when change and noise correlations are positively correlated). Tunnel 

vision implies that direct-top forecasting becomes more advantageous the more information can be 

captured by multivariate lower-level forecasting, as bottom-up forecasts largely fail to exploit this 

information. We have summarized the resulting prescriptive framework in Figure 3. 

Figure 3: Prescriptive Framework 

 

The primary implication of Figure 3 is that the process used for forecasting top-level demand should 

depend on the degree of substitutability/complementarity that exists between item demands. On a very 

basic level, Figure 3 implies that any concerns of substitutability between products, whether in long-term 

growth (i.e. change) or short-term effects (i.e. noise), create the potential for direct-top forecasting to be 

beneficial. In the absence of substitutability concerns, particularly if products are complementary or 

affected by the same growth drivers, bottom-up forecasting may become beneficial. 
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5.2 Applications 

If a forecaster understands whether substitutability or complementarity is present among products, the 

choice of which forecasting process to follow is directionally clear from our framework. We were also 

interested in developing and demonstrating an empirical approach to measuring change and noise 

correlations between time series. For this, we obtained 3 years of monthly data in 34 demand time series 

from a Fortune 500 company, together with the consensus forecasts that were implemented. These 

consensus forecasts were based on a quantitative forecast, but contained substantial judgmental 

adjustments. The initial quantitative forecasts were not available for analysis. We therefore used the first 

2 years of the data to fit several generalized exponential smoothing models to each time series (Hyndman 

et al. 2008), and used the best fitting model to create forecasts in the remaining holdout year. All these 

analyses were run in R. The statistical models performed very well compared to the consensus forecasts, 

and beat the consensus forecast in the holdout sample in 29 of 34 series with a combined MAE that was 

23% lower than the MAE resulting from the consensus forecasts, supporting the notion that forecasts in 

practice are indeed subject to judgmental error.  

To illustrate how our insights could be applied, we subjected each of the 34 (real) time series to the 

following procedure: (1) time series were de-seasonalized using monthly indexes, and de-trended using 

estimates of month-to-month growth over three years; (2) for each time series, we estimated a simple state 

space model in STATA 13.1 to estimate the level of each time series in each period; (3) we used the 

difference between consecutive level estimates in a time series as an estimate for change in the series, and 

the difference between demand and level estimate as an estimate for noise in the series. Then, for each 

pair among these 34 time series, we calculated the correlation coefficient between their change and noise 

components, and mapped these sets of correlation coefficients in Figure 4. 

Figure 4: Example Empirical Measurement 
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We can see that many dyads are close to the center of Figure 4 (similar to our condition 0), indicating 

that bottom-up and direct-top processes probably perform similarly. However, there are some dyads that 

are in the upper right and lower left corners or the graph, indicating the potential for bottom-up/direct-top 

benefits. Note that our field data does not allow us to test these prescriptions, since the company that 

provided us with data follows bottom-up forecasting across the board.  

5.3 Performance improvements 

The MAE estimates in Table 4Table 8Table 7 from our study suggest that by selecting the right 

forecasting process, MAEs can drop by 5-40 units (comparing INDEPENDENT and TOP-DIRECT 

within each condition).  Averaged across conditions, this represents a 20% reduction in MAE. Excluding 

condition IV, the average reduction in MAE is still 8%. In terms of Mean Absolute Percentage Error 

(MAPE), the performance improvements we document are not high – but our study was not designed for 

interpretation in terms of MAPE. The arbitrary starting values of the item-level time series in our 

experiments were 𝛍𝟎 = (𝜇1,0, 𝜇2,0) = (2000,2000), which for the top-level time series implied 4000 

units – the MAEs of optimal forecasting were (depending on condition) at around 100, resulting in an 

optimal MAPE of just 2.5%. Not surprisingly, then, differences in our MAEs are very small when 

expressed as MAPE; if the MAE drops from 100 to 90, the MAPE drops from 2.5% to 2.25%, i.e. a 10% 

reduction. Nevertheless, this performance improvement is similar to the performance improvements 

recorded in Kesavan, Gaur and Raman (2010), who show that moving from consensus forecasting to their 

statistical model decreases MAPE on average from 4.40% to 4.09%. These numbers are also close to the 

statistics presented in Osadchiy, Gaur and Seshadri (2013), who show an 11% reduction in MAPE of 

market-based forecasts compared to analysts’ forecasts. 

5.4 Economic significance 

Numerous studies have explored and established the general link between forecast accuracy and 

operational performance, both theoretically and empirically. Early simulation research focused on 

manufacturing environments (e.g. Ritzman and King 1993). More recently, simulations and analytical 

models examine the value of information sharing in supply chains by documenting how improved 

forecast performance due to information sharing translates into improved performance (e.g. Aviv 2001; 

Zhao, Xie and Leung 2002). A seminal study using the case of a military distribution system together 

with inventory system simulation demonstrates how using better forecasting models allows achieving 

similar service levels with about 7% less investment in inventory (Gardner 1990). In a similar case 

study/simulation in the context of labor demand forecasting in a warehouse, Sanders and Graman (2009) 

show that improved forecasting performance can lead to cost performance improvements of up to 40%.  

Several empirical case studies document the effect of changes particular forecasting process/methods 

within an organization. Documenting the case of a major overhaul of forecasting at Coca-Cola 
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enterprises, a reduction of the forecast error by, on average, 15% is associated with approx. a 25% 

reduction in days of inventory (Clark 2006). A similar study of spare parts forecasting at Hewlett Packard 

shows that a 10% reduction in forecast error lead to an increase in on-time delivery from 60% to 95% 

(Shan et al. 2009). Further, a study of the overhaul of the forecasting process at an electronics 

manufacturer documents that a decrease in the forecast percentage errors from 42% to 12% lead to a 

doubling of inventory turns and a decrease by about 50% in on-hand inventory (Oliva and Watson 2009). 

In a study of judgmental forecast adjustments, a 1 percentage point improvement in average absolute 

percentage forecast error lead to inventory reductions of 15-20%, and increases in the fill rates of about 

1% (Syntetos, Nikolopoulos and Boylan 2010). Similarly, a summary of a supply chain benchmarking 

study indicates that every one-percentage point improvement in forecast accuracy leads to a two-

percentage point improvement in fill rates (Hofman 2004). All of these studies show that the relatively 

low-cost intervention of improving a forecasting process can lead to very high supply chain benefits in 

organizations.  

Finally, we apply our MAE savings to the base-stock, inventory model developed by Graves (1999) 

for the same, non-stationary demand process we study here.  Graves (1999) establishes that the total 

amount of safety stock required depends on the forecast accuracy, the change-to-noise ratio (“weight”) of 

the time series, the desired service level and the replenishment lead time.  All else equal, a given 

percentage improvement in forecast error translates to the same percentage reduction in safety stock.  So, 

our 20% MAE reduction would lead to a 20% reduction in safety stock.  A key insight from Graves 

(1999) is that the necessary safety stock for a given service level and lead time is increasing in the weight 

of the time series. This suggests that forecast improvements are particularly valuable for aggregate series 

with high weight (and thus high �̈�∗). For example, with a lead time of 3 periods and a 95% target service 

level, a 10 unit reduction in MAE would lead to a reduction in safety stock of 41 units for our condition I 

(�̈�∗ = 0.15) and a 76 unit reduction in safety stock for our condition III (�̈�∗ = 0.98). 

6 Conclusion 

Our study is, to the best of our knowledge, the first to examine hierarchical forecasting from a behavioral 

perspective. Our research clearly establishes that (a) the magnitude of random error in judgmental 

forecasts increases in the unpredictability of the time-series, and that (b) human decision makers have 

tremendous difficulties in making use of correlated distal time series information when preparing lower-

level forecasts. Our research demonstrates how these biases in human judgment have profound 

implications in the context of hierarchical forecasting, as they drive the relative performance of indirect 

and direct forecasting processes. A central challenge in such a setting is how to capture the decentralized 

knowledge and information about markets that exists within an organization without biasing the forecast 
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through individual judgment and misaligned incentives. Our research points to the idea that, by 

understanding lower-level correlation structures and assigning forecasting responsibilities accordingly to 

the different levels of aggregation, the error introduced into the process through human judgment can be 

kept at a minimum.  

The resulting framework we develop in Figure 3 is easy to communicate, thus it provides a good basis 

for structuring forecasting processes in practice. Direct-top forecasting can have performance advantages 

for products that are affected differently by short-run and long-run shocks. This finding is somewhat 

counter to the established wisdom that bottom-up forecasting processes are generally preferable (e.g. 

Dangerfield and Morris 1992). In contrast to establishing a general preference for one process, our 

research provides a clear framework that makes the preference for one process vs. the other, dependent on 

the demand structure of the forecasting environment. For example, if lower-level items are long-term 

substitutes, but are similarly affected by short-term shocks (e.g., by good/bad weather causing more/less 

demand for both products), such products could benefit from direct top-level forecasting. However, if 

lower-level items are affected similarly by short- and long-term shocks (i.e., the products are affected by 

the same market growth), and weather affects them in the same way, then such products can benefit from 

bottom-up forecasts.  To apply our findings in practice, a firm must know the direction of long- and short-

term correlations but not necessarily the precise correlation values. Our experience is that demand 

planners is practice are generally aware of whether the products for which they plan are substitute or 

complements in the short and long run, and as such, will find our framework easy to understand, translate 

and apply. 

The framework in our study has some limitations. Related to our choices of experimental design and 

implementation, we assumed (a) equal lower-level change and noise (𝑐𝑖 = 𝑛𝑖), (b) symmetry among 

lower level time series (𝑐𝑖 = 𝑐𝑗 , 𝑛𝑖 = 𝑛𝑗), (c) two lower-level items (M=2),  (d) the absence of trends and 

seasonality, and (e) that forecasts are needed for one period ahead. Each one of these assumptions served 

the purpose of increasing experimental control and simplifying subjects’ task in an already complex 

environment, and could be relaxed in future studies. Interestingly, one could argue that the performance 

effects we demonstrate are on the conservative side because of our simplifying assumptions. In particular, 

remember that the structure and parameters of the demand process drive the value of multivariate 

forecasting, which in turn drives the performance loss associated with human forecasters inability to 

capture this value in the context of a bottom-up forecasting process (Hypothesis 2). For example, it can be 

shown that the value of multivariate forecasting tends to increase in the number of lower-level items, even 

for more moderate between-item correlation than those used in our experimental implementation. 

Similarly, one can imagine that the value of multivariate forecasting tends to increase when lower-level 

items share trend and/or seasonality patterns (that we did not model). Further, it stands to reason that 
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forecasting many periods ahead (as opposed to the one-period ahead forecasts we required) increases 

forecast errors across the board, but also widens the performance gap between different forecasting 

processes. While clearly speculative, these ideas point to important research questions that our study did 

not address directly.  

In general, the time-series we use are artificial, and our experiment emphasizes internal validity. Field 

tests of our framework, using real-world time-series and the judgment of experienced forecasters, are 

needed to strengthen the external validity of this framework. Finally, our analysis focused on the 

comparison between bottom-up and direct-top procedures for forecasting top-level demand. An equally 

important issue in the context of Sales & Operations Planning in practice is a comparison of top-down vs. 

direct lower-level procedures for forecasting item-level demands. We have completed such a comparison, 

but do not report the details from our analysis here. Results are available from the authors upon request. 

In a nutshell, the performance advantages of direct-top forecasting ‘trickle down’ to the lower-level 

through top-down forecasting if an adequate disaggregation mechanism is used. 
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Appendix A: Figures 

Figure A1: Screenshot for treatment BASE 

 

Appendix B: Tables 

Table B1: Breakdown of Sample by Treatment, Condition, and Dataset 

  Bottom-Up   

Treatment BASE INDEPENDENT FEEDBACK DIRECT-TOP 

Dataset 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

Condition 0 8 9 8 8 25 29 5 5 5 5 8 10 9 9 9 8 8 9 8 7 9 9 10 8 

Condition I 9 10 10 9 12 11 5 6 5 6 8 5 12 11 11 11 8 8 10 10 10 7 10 10 

Condition II 9 10 8 10 15 13 2 2 1 5 6 6 10 10 6 8 10 10 11 10 10 10 10 10 

Condition III 11 8 11 10 12 11 5 5 6 6 6 6 9 10 10 10 8 7 10 10 9 9 10 10 

Condition IV 0 0 0 0 12 9 0 0 0 0 6 6 0 0 0 0 12 13 0 0 0 0 15 22 

Note that in the INDEPENDENT treatment, two subjects were necessary for an observation, which leads to a smaller effective 

sample size within that treatment. 
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