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Exact Variance Ratio Test with Overlapping Data

ABSTRACT

Variance ratio test is popular for testing whether stock prices follow a random walk or not. However,

this test is typically conducted based on its asymptotic distribution, which can be unreliable in

finite samples. Under a multivariate elliptical distribution assumption with an arbitrary variance-

covariance matrix, we provide the exact moments and distribution of the sample variance ratio as

well as an efficient procedure to compute its exact p-value. Our results allow us to study the optimal

length of multi-period return for detecting different alternatives to the random walk hypothesis of

stock prices.



An important question that is often encountered in economics and finance is whether a time

series follows a random walk process or not. For example, a huge literature in finance is devoted to

testing whether stock prices deviate from a random walk process or not. One of the implications

of the “random walk” theory of stock prices is that stock returns are uncorrelated over time.

Many statistical tests were designed to test this, but the variance ratio test has gained tremendous

popularity in recent years. The central idea of the variance ratio test is based on the observation

that when returns are uncorrelated over time, the variance of the k-period return should be k times

of the variance of the 1-period return. If a researcher finds that the ratio to be significantly different

from one, then he can conclude that stock prices do not follow a random walk.

While the intuition behind the variance ratio test is rather simple, conducting a statistical in-

ference using the variance ratio test is far from trivial. The difficulty is that the variance ratio

test conducted in finance typically uses overlapping data in computing the variance of the long-

horizon returns. The use of overlapping data was suggested by Lo and MacKinlay (1988) because

it can potentially improve the power of the variance ratio test. However, it adds to the difficulties

of analyzing the exact distribution of the sample variance ratio. Currently, virtually nothing is

known about its exact distribution, and not even its moments are known. This presents a signifi-

cant challenge in conducting statistical inference using the sample variance ratio. In practice, the

asymptotic distribution instead of the exact one is often used for conducting statistical inference.

However, there are at least three different asymptotic distributions of the sample variance ratio in

the literature, and they can lead to very different conclusions. Without a good understanding of

the exact distribution of the sample variance ratio, it is difficult to decide which asymptotic theory

is the best one to use.

In this paper, we present the exact moments and distribution of the variance ratio test with

overlapping data. The exact distribution is derived under the assumption that returns are multi-

variate elliptically distributed, but the results are quite robust to departures from this distributional

assumption. We derive the exact distribution under the null hypothesis that returns are uncor-

related as well as under the alternatives that the returns are autocorrelated. We also present a

numerically stable and fast method to compute the exact distribution and p-value of the sample

variance ratio.

Traditionally, the choice of the length of the long-horizon returns (i.e., choice of k for the k-
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period returns) in the variance ratio test is somewhat ad hoc. Under the null hypothesis that

returns are uncorrelated over time, the choice of k is somewhat irrelevant. However, if returns are

indeed predictable, then the choice of k could have a significant impact on the power of the variance

ratio test. An important benefit of knowing the exact distribution of the sample variance ratio is

that it allows us to find out what is the optimal length of multi-period return for detecting different

alternatives to the random walk hypothesis.

The rest of the paper is organized as follows. Section 1 provides an overview of the variance

ratio test with overlapping data and summarizes the three different asymptotic distributions that

are available in the literature. Section 2 presents the exact moments and distribution of the sample

variance ratio under the null hypothesis that returns are uncorrelated and have constant variance

over time. Section 3 presents the exact moments and distribution of the sample variance ratio under

a general variance covariance matrix of returns. It also presents the optimal length of multi-period

return that maximizes the power of the variance ratio test to reject some popular alternative stock

price processes. Section 4 examines the robustness of our exact distribution results to departures

from our distributional assumptions. Section 5 concludes the paper. Appendix A contains proofs

of all propositions and lemmata. Appendix B contains a discussion of the numerical methods in

computing the exact distribution of the variance ratio test.

1. Variance Ratio Test

1.1 Definition

Let pt be the natural log of the price of an asset at time t, and rt = pt − pt−1 be the continuously

compounded 1-period return of the asset at time t. Suppose we have T observations of rt and denote

r as the T -vector of returns r = [r1, . . . , rT ]′. We assume that E[r] = µ1T and Var[r] = Σ, where 1T

is a T -vector of ones, µ is the unconditional expected return of rt, and Σ is the variance-covariance

matrix of r, which is assumed to be positive definite. When returns are uncorrelated over time, we

have Cov[rs, rt] = 0 for s 6= t and Σ is a diagonal matrix. A popular special case is Σ = σ2IT for

σ2 > 0, where IT is an identity matrix of order T , which implies returns are uncorrelated over time

and they have the same mean and variance.

Multi-period returns are often used for the purpose of testing return predictability. The k-
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period continuously compounded return is simply the sum of k consecutive 1-period continuously

compounded returns. Denote yt as the k-period return ending at time t, we have

yt = rt−k+1 + . . .+ rt. (1)

In testing the null hypothesis of no predictability, the variance ratio test is often used (see, for

examples, Cochrane (1988), Lo and MacKinlay (1988), and Poterba and Summers (1988)). Define

the variance ratio of k-period return as

θ(k) =
Var[yt]/k

Var[rt]
= 1 +

k−1∑
i=1

[
2(k − i)

k

]
ρi, (2)

where ρi is the i-th lag autocorrelation coefficient of {rt}. The variance ratio test is motivated

by the observation that under some mild regularity conditions, we should have Var[yt] = kVar[rt]

when returns are uncorrelated over time, so θ(k) = 1. One can therefore think of variance ratio

test as a specification test of H0 : ρ1 = · · · = ρk = 0, i.e., returns are serially uncorrelated.

Due to limited sample size and the desire to improve the power of the test, variance ratio tests

are often performed using overlapping long-horizon returns. With T observations of rt, we can

obtain n ≡ T − k + 1 observations of overlapping k-period returns from yk to yT . Let H be an

n× T matrix with k elements of ones in each row

H = H(k) ≡


1 · · · 1 0 · · · 0
0 1 · · · 1 0 · · ·
...

...
. . .

. . .
. . .

...
0 0 · · · 1 · · · 1

 , (3)

we can write the n-vector of overlapping k-period returns y = [yk, . . . , yT ]′ as y = Hr. There are

many ways of defining the sample variance ratio, the one that we use here is based on overlapping

long-horizon returns and it was advocated by Lo and MacKinlay (1988). Our analysis, however,

can be easily modified to accommodate other definitions of sample variance ratio.

Using the 1-period returns rt, the unbiased estimator of the 1-period return variance is

σ̄2(1) =
1

T − 1

T∑
t=1

(rt − µ̂)2, (4)

where µ̂ =
∑T

t=1 rt/T . For the estimator of 1-period return variance using k-period returns yt, there

are many ways to construct it. The one used by Lo and MacKinlay (1988) is based on overlapping
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k-period returns and it is defined as

σ̄2(k) =
1

m

T∑
t=k

(yt − kµ̂)2, (5)

where m = kn(n− 1)/T . The value of m is chosen such that σ̄2(k) is an unbiased estimator of the

1-period return variance when returns are uncorrelated and variance is constant over time.

The sample variance ratio is the ratio of these two different sample estimators of the variance

of 1-period return, defined as1

θ̂(k) =
σ̄2(k)

σ̄2(1)
. (6)

When θ̂(k) is significantly different from one, we will reject the null hypothesis of no predictability

in returns. Specifically, when θ̂(k) is significantly less than one, we can conclude that the prices of

the asset exhibit mean reversion behavior.

1.2 Asymptotic Distributions

In order to perform the test, we need to understand the distribution of θ̂(k) under the null hy-

pothesis. In the literature, researchers rely on the asymptotic distributions of θ̂(k) under the null

hypothesis to compute the p-value. Unlike most test statistics that have only one asymptotic dis-

tribution, there are at least three different asymptotic distributions of θ̂(k) that are available in

the literature. All three asymptotic distributions assume T → ∞ but they differ on the limiting

behavior of k.

The most popular asymptotic distribution of θ̂(k) was presented by Lo and MacKinlay (1988)

by assuming k is fixed when T → ∞. They show that under the homoskedasticity assumption on

the returns, we have
√
T (θ̂(k)− 1)

A∼ N
(

0,
2(2k − 1)(k − 1)

3k

)
(7)

under the null hypothesis. However, if returns exhibit heteroskedasticity, then under some addi-

tional assumptions,2 we have

√
T (θ̂(k)− 1)

A∼ N

(
0,
k−1∑
i=1

[
2(k − i)

k

]2
τi

)
(8)

1When non-overlapping k-period returns are used to compute σ̄2(k), Tian, Zhang, and Huang (1999) show that
the sample variance ratio has a beta distribution when rt is i.i.d. normal. Tse, Ng, and Zhang (2004) develop a
circular overlapping variance ratio and approximate its exact distribution using a beta distribution.

2See Lo and MacKinlay (1988, p.49) for a set of sufficient conditions.
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under the null hypothesis, where

τi =
E[ε2t ε

2
t−i]

E[ε2t ]
2

= 1 +
Cov[ε2t , ε

2
t−i]

E[ε2t ]
2

(9)

and εt = rt − µ. In conducting statistical inference, we often need to replace τi by its sample

counterpart. Note that if ε2t is serially uncorrelated, then we have τi = 1 and the asymptotic

distribution can be simplified to the one for the homoskedasticity case.

The asymptotic distribution of Lo and MacKinlay (1988) is very easy to use as it only in-

volves computing the normal distribution. The simplicity of their asymptotic distribution probably

contributes to its popular use among the researchers. However, it is not entirely clear that their

asymptotic result is appropriate for all statistical inferences as researchers often use fairly large k

relative to T when investigating long term predictability in stock returns. Richardson and Stock

(1989) provide an alternative asymptotic analysis under the assumption that both k → ∞ and

T → ∞ but that k/T = δ is fixed. They show that θ̂(k) does not converge to one under the null

hypothesis, but rather have a limiting distribution. They express this limiting distribution in terms

of functionals of Brownian motion as follows:

θ̂(k)
d→ 1

δ(1− δ)2

∫ 1

δ
[W (λ)−W (λ− δ)− δW (1)]2dλ, (10)

where W (λ) is a standard Brownian motion.3 Using simulations, Richardson and Stock (1989)

show that this limiting distribution often provides a better approximation of the finite sample

distribution than the fixed-k asymptotic distribution of Lo and MacKinlay (1988), especially when

k is reasonably large. However, we need to rely on simulation to evaluate the limiting distribution

in (10), so it is not as easy to use as the normal distribution for computing the p-value of the sample

variance ratio.

In another attempt to provide an approximation of the finite sample distribution of θ̂(k) when

k is large, Campbell and Mankiw (1987) (see also Chen and Deo (2006)) present an asymptotic

distribution of θ̂(k) under the assumption that both k →∞ and T →∞ but k/T = δ → 0. Under

this assumption, Campbell and Mankiw (1987) show that

1√
δ

(θ̂(k)− 1)
A∼ N

(
0,

4

3

)
. (11)

3It should be noted that the limiting distribution presented by Richardson and Stock (1989) is for the unadjusted
variance ratio (i.e., using T instead of m in computing σ̄2(k)), whereas the limiting distribution presented here is
from Deo and Richardson (2003) and it is for the unbiased variance ratio of Lo and MacKinlay (1988).
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Chen and Deo (2006) find that this asymptotic distribution does not provide an accurate approx-

imation of the exact distribution of θ̂(k), so they suggest using a power transformation of θ̂(k) to

improve the approximation.

Note that unlike the asymptotic distribution of Lo and MacKinlay (1988) which depends on

whether there is conditional homoskedasticity in the returns or not, both the limiting distribution

of Richardson and Stock (1989) and the asymptotic distribution of Campbell and Mankiw (1987)

are not affected by conditional heteroskedasticity. This is because conditional heteroskedasticity

in the single period returns has very little impact on the distribution of k-period returns when k

is large. Under stationarity assumption, adjacent k-period returns would have roughly constant

variance when k is large enough, so the asymptotic distributions by both Richardson and Stock

(1989) and Campbell and Mankiw (1987) do not have any nuisance parameters even when there is

conditional heteroskedasticity in the single period returns.

Which asymptotic distribution provides the best approximation to the exact distribution cru-

cially depends on the values of k and T . In the absence of an algorithm to compute the exact

distribution of θ̂(k), one would need to rely on simulations to make such an evaluation. However,

once we perform a simulation, then it would make little sense to use asymptotic distribution as

we can rely on the empirical distribution from the simulation for making statistical inference. Our

objective is to provide a fast and accurate algorithm for computing the exact distribution of θ̂(k)

so that there is no need to perform a time-consuming simulation or to decide which asymptotic

distribution to use.

2. Moments and Distribution of Sample Variance Ratio under the
Null Hypothesis

For the sake of deriving the exact distribution of θ̂(k), we need to make an assumption on the

joint distribution of r. We assume r is multivariate elliptically distributed with mean µ1T and a

variance-covariance matrix of Σ. Although this distribution assumption is somewhat restrictive, we

show in Section 4 that our finite sample results are quite robust to departure from this assumption.

In order to obtain the exact distribution of θ̂(k), we first need to simplify its expression. As it

turns out, we can write the sample variance ratio as a ratio of two quadratic forms of standard
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normal random variables. It should be noted that Faust (1992) also suggests that the variance

ratio can be written as a ratio of two quadratic forms of normal random variables. However, the

expression that was provided by Faust (1992) is not convenient for computation purpose and as a

result, its practical use has been very limited. In this paper, we take it a step further by providing

a simplification of this quadratic form that will lead to a speedy computation of its distribution as

well as its moments.

2.1 Simplification of the Problem

We define an idempotent matrix M as

M = IT −
1

T
1T 1′T , (12)

so we can write

T∑
t=k

(yt − kµ̂)2 = r′MH ′HMr, (13)

T∑
t=1

(rt − µ̂)2 = r′Mr, (14)

and the sample variance ratio as

θ̂(k) =
T − 1

m

(
r′MH ′HMr

r′Mr

)
. (15)

To simplify presentation, we first assume r ∼ N(µ1T ,Σ) and then argue the results still hold when

returns follow a multivariate elliptical distribution. Let P be a T ×(T −1) orthonormal matrix such

that P ′P = IT−1 and PP ′ = M . Since P is orthogonal to 1T , we have x = P ′r ∼ N(0T−1, P
′ΣP ),

where 0T−1 stands for a (T − 1)-vector of zeros, and we can write the denominator as r′Mr = x′x

and the numerator as

r′MH ′HMr = r′P (P ′H ′HP )P ′r = x′P ′H ′HPx. (16)

Suppose QΛQ′ is the spectral decomposition of P ′ΣP where Λ is a diagonal matrix of the T − 1

eigenvalues of P ′ΣP and the columns of Q are the corresponding eigenvectors. We now define

z = Λ−
1
2Q′x ∼ N(0T−1, IT−1) (17)
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and write the variance ratio as

θ̂(k) =
T − 1

m

(
x′P ′H ′HPx

x′x

)
=
T − 1

m

(
z′Az

z′Λz

)
, (18)

where A = Λ
1
2Q′(P ′H ′HP )QΛ

1
2 . In this expression, P and H depend on T and k, but Q and Λ

depend also on Σ.

In deriving (18), we assume r is multivariate normally distributed. However, (18) continues

to hold when r is multivariate elliptically distributed. This is because we can write the sample

variance ratio as

θ̂(k) =
T − 1

m

(
u′Au

u′Λu

)
, (19)

where u = z/(z′z)
1
2 , so the distribution of θ̂(k) only depends on the distribution of u. When r is

multivariate elliptically distributed with E[r] = µ1T and Var[r] = Σ, the same derivation allows

us to show that z is also multivariate elliptically distributed with mean 0T−1 and variance IT−1,

which implies z has a spherical distribution. Since the distribution of u is the same for all spherical

distributions z, we can assume z is normally distributed without any loss of generality.4 Hence,

expression (18) is still valid when r is multivariate elliptically distributed. The following proposition

summarizes the results.

Proposition 1. Suppose r is multivariate elliptically distributed with mean µ1T and variance-

covariance matrix Σ. Let P be a T × (T − 1) orthonormal matrix such that P ′1T = 0T−1, Λ be a

diagonal matrix of the eigenvalues of P ′ΣP , and Q be a matrix of the corresponding eigenvectors.

The distribution of the sample variance ratio θ̂(k) has the same distribution as

T − 1

m

(
z′Az

z′Λz

)
, (20)

where z ∼ N(0T−1, IT−1) and A = Λ
1
2Q′(P ′H ′HP )QΛ

1
2 .

Note that the distribution of θ̂(k) is not unbounded. By the Rayleigh-Ritz theorem, we have(
T − 1

m

)
dT−1 ≤ θ̂(k) ≤

(
T − 1

m

)
d1, (21)

where d1 and dT−1 are the largest and smallest eigenvalues of Λ−
1
2AΛ−

1
2 , which are also the largest

and smallest eigenvalues of Ã ≡ P ′H ′HP . Note that since H is of rank n or less, Ã is not of full

4The distribution of u is a uniform distribution on the (T − 1)-dimensional sphere. See, for example, Theorem
1.5.6 of Muirhead (1982).
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rank and we have dT−1 = 0. Therefore, θ̂(k) has a lower bound of zero and an upper bound of

(T − 1)d1/m, and the upper bound is only a function of T and k but not a function of Σ. The

fact that the distribution of θ̂(k) is bounded from both above and below indicates that normal

distribution may not provide a good approximation of the exact distribution.

2.2 Moments of Sample Variance Ratio when Σ = σ2IT

When returns are uncorrelated over time, Σ is diagonal. If we further assume that Σ = σ2IT for

some constant σ2 > 0, we can then provide a significant simplification of the expression for θ̂(k).

When Σ = σ2IT , we have P ′ΣP = σ2IT−1, so Q = IT−1, Λ = σ2IT−1, and we have

θ̂(k) =
T − 1

m

(
z′Ãz

z′z

)
, (22)

where Ã = P ′H ′HP , which only depends on T and k but not on µ and σ2. In fact, this distribution

only depends on Ã through its eigenvalues, so we can write

θ̂(k) =
T − 1

m

(
z′Dz

z′z

)
, (23)

where D is a diagonal matrix of the eigenvalues of Ã and z ∼ N(0T−1, IT−1).
5 Note that although

this distribution is only valid when Σ = σ2IT , our analysis in Section 4 suggests that it still provides

a very good approximation to the distribution of θ̂(k) when Σ is diagonal but variance is changing

over time. Before discussing the numerical method for evaluating this distribution, we present an

analytical expression of the moments of θ̂(k) for the special case of Σ = σ2IT in the following

Proposition.

Proposition 2. Suppose r is multivariate elliptically distributed with mean µ1T and variance-

covariance matrix σ2IT . The s-th moment of θ̂(k) is given by

E[θ̂(k)s] =

(
T − 1

2m

)s E[(z′Ãz)s](
T−1
2

)
s

, (24)

where (a)r = a(a + 1) · · · (a + r − 1) is the Pochhammer symbol and E[(z′Ãz)s] is obtained using

5To see this, we let GDG′ be the spectral decomposition of Ã, then z′Ãz/(z′z) = w′Dw/(w′w) where w = G′z ∼
N(0T−1, IT−1) and it has the same distribution as z.
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the following recursive relation6

E[(z′Ãz)s] = (s− 1)!
s∑
j=1

2j−1tr(Ãj)E[(z′Ãz)s−j ]

(s− j)!
. (25)

Note that Ã is a matrix that is only a function of T and k, so it is possible to express the moments

of E[θ̂(k)s] as an explicit function of T and k. For the first four moments of θ̂(k), we have simplified

(24) to an explicit polynomial of k and T . The following lemma presents the finite sample mean

and variance of θ̂(k).

Lemma 1. Suppose r follows a multivariate elliptical distribution with mean µ1T and variance-

covariance matrix Σ = σ2IT for some σ2 > 0. The finite sample mean of θ̂(k) mean and variance

of θ̂(k) are given by

E[θ̂(k)] = 1, (26)

Var[θ̂(k)] =
2(T − 1)

T + 1

1− T (n+ 1)

2m
+

[
(T − k)3 − (T − 2k)+3

] (
n− k + 4k2

T

)
6m2

− 2

T + 1
,(27)

where (a)+r = max[a, 0](a+ 1) · · · (a+ r − 1).

Lemma 1 shows that θ̂(k) is unbiased under the constant volatility assumption, which is a somewhat

surprising result. In constructing the sample variance ratio, Lo and MacKinlay (1988) use the

adjustment factor m to obtain the unbiased estimator σ̄2(k). Although both the numerator and

denominator in θ̂(k) are unbiased estimators of σ2, they are correlated with each other and also

due to the Jensen’s inequality, the ratio is in general not unbiased. Nevertheless, our Lemma 1

suggests that the sample variance ratio of Lo and MacKinlay (1988) still has the nice property of

being unbiased.7 Note that when k/T > 1/2, the expression of Var[θ̂(k)] is different from that for

the case of k/T ≤ 1/2. This is because with the length of the long-horizon return being longer than

half of the sample period, every long-horizon return in the sample is correlated with each other

even when there is no predictability in returns.8

6There exist explicit expressions of E[(z′Ãz)s] in the literature (see Magnus (1986) and Holmquist (1996)). How-
ever, as pointed out by Kan (2008), these explicit expressions are unsuitable for computational purpose except when
s is very small. Recently, Hillier, Kan, and Wang (2009) provide an even faster recursive algorithm for computing
E[(z′Ãz)s].

7The result of E[θ̂(k)] = 1 can be extended to the case that returns are i.i.d. Proof is available upon request.
Although θ̂(k) is unbiased, it should be noted that E[1/θ̂(k)] 6= 1, so it is indeed crucial that we define the variance
ratio as σ̄2(k)/σ̄2(1) but not as σ̄2(1)/σ̄2(k) in order for it to be unbiased.

8The fact that we have different expressions for k ≤ T/2 and k > T/2 is not entirely surprising. For example,
Dufour and Roy (1985, 1989) show that there are also two different expressions for the finite sample variance of the
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With the result in Lemma 1, it is straightforward to compute the standard error of θ̂(k) under

the null hypothesis of H0 : Σ = σ2IT as it depends on only k and T . In addition, with our expression

of finite sample variance, we can address the question as to which asymptotic distribution of θ̂(k)

provides a better approximation of its standard error. In order to do this comparison, we provide

the limiting behavior of Var[θ̂(k)] under three different assumptions in the following lemma.

Lemma 2. Suppose r follows a multivariate elliptical distribution with mean µ1T and variance-

covariance matrix Σ = σ2IT for some σ2 > 0. When k is fixed, we have

lim
T→∞

TVar[θ̂(k)] =
2(k − 1)(2k − 1)

3k
. (28)

When both k →∞ and T →∞ but k/T → 0, we have

lim
T,k→∞

T

k
Var[θ̂(k)] =

4

3
. (29)

When δ = k/T is fixed, we have

lim
T→∞

Var[θ̂(k)] =

{
δ(6δ3+4δ2−11δ+4)

3(1−δ)4 if δ ≤ 1
2 ,

6δ2−4δ+1
3δ2

if δ > 1
2 .

(30)

Lemma 2 suggests that the limiting behavior of the sample variance ratio is drastically different

under the three sets of assumptions. For the fixed-k case, the asymptotic variance agrees with (7).

Using this asymptotic result, one would approximate the standard error of θ̂(k) using [2(k−1)(2k−

1)/(3kT )]
1
2 . For the case that both k →∞ and T →∞ but δ → 0, the asymptotic variance is the

same as given in (11). Using this asymptotic result, one would approximate the standard error of

θ̂(k) using 2
√
δ/3. Under either one of these two assumptions, the variance of θ̂(k) approaches to

zero as T →∞. For the fixed-δ case, Richardson and Stock (1989) provide the asymptotic analysis

of θ̂(k). However, they rely on simulation to evaluate the limiting distribution, so no analytical

expression is available for the limiting variance. Lemma 2 complements their results by providing

the limiting variance of θ̂(k) under the assumption that δ is fixed. It suggests that for the fixed-δ

case, the expression for the limiting variance depends on whether δ is less than or greater than 0.5.

Using this asymptotic result for inference, one would approximate the standard error of θ̂(k) by

using δ
1
2 (6δ3 + 4δ2 − 11δ + 4)

1
2 /[
√

3(1− δ)2] if δ ≤ 0.5, but using (6δ2 − 4δ + 1)
1
2 /(
√

3δ) if δ > 0.5.

k-th lag sample autocorrelation coefficient, depending on whether k ≤ T/2 or k > T/2. For the third and fourth
moments of θ̂(k), we have three and four different expressions, respectively, depending on k and T .

11



Table I about here

In Table I, we present the percentage approximation errors of the three asymptotic standard

errors for various combinations of k and T . Panel A presents the results for the fixed-k asymptotic

standard error. When k is small, the fixed-k asymptotic standard error performs much better

than the other two asymptotic standard errors. However, when k is large, the performance of the

fixed-k asymptotic standard error deteriorates and it often understates the exact standard error

(when k < T/2). Panel B presents the results for the fixed-δ asymptotic standard error. When

k is small, the fixed-δ asymptotic standard grossly overstates the exact standard error. While

the overstatement of standard error continues when k increases, the approximation error is very

small for large k and it often outperforms the other asymptotic standard errors. Panel C presents

the approximation errors for the asymptotic standard error that assumes both k and T go to

infinity but δ goes to zero. Similar to the fixed-δ standard error, the zero-δ standard error also

grossly overstates the exact standard error when k is small. However, the zero-δ standard error

can understate the true standard error when k increases. For a given T , there is a small range of k

that the zero-δ asymptotic standard error performs the best, but once k/T is reasonably large, the

zero-δ asymptotic standard error is generally dominated by the fixed-δ asymptotic standard error.

For a given data set, researchers often try different values of k, and we may like to find out

which asymptotic standard error performs better under such situations. In Figure 1, we plot the

four standard errors of θ̂(k) as a function of k for different values of T . The solid lines represent

the exact standard errors of θ̂(k), the dotted lines represent the fixed-k asymptotic standard errors,

the dashed lines represent the fixed-δ asymptotic standard errors, and the dashed-dotted lines

represent the zero-δ asymptotic standard errors. From Figure 1, we can see that when k is very

small, the fixed-k asymptotic standard error works better. Beyond the very small values of k,

the fixed-δ asymptotic standard error works a lot better. It almost mirrors the behavior of the

true standard error as k increases. When T ≥ 240, the fixed-δ asymptotic standard error is

almost indistinguishable from the exact standard error. On the contrary, the fixed-k and the zero-δ

asymptotic standard errors tend to understate the true standard error when δ < 0.5 and overstates

the true standard error when δ > 0.5. Except for very small k, the fixed-k and zero-δ asymptotic

standard errors are almost identical when T ≥ 240. Our results here echo the simulation results

in Richardson and Stock (1989), where they show that the limiting distribution under the fixed-δ

12



assumption appears to provide an overall better approximation of the true distribution than the

fixed-k asymptotic distribution. From the results in Table I and Figure 1, we can conclude that

except for very small values of k, the fixed-δ asymptotic standard errors are superior to the fixed-k

and zero-δ asymptotic standard errors. Nevertheless, given how easy it is to compute, there is no

reason for not using the exact standard error.

Figure 1 about here

When comparing the accuracy of the three asymptotic distribution theories, one should not

focus just on how well their asymptotic standard errors approximate the exact standard error.

This is because the distribution of the sample variance ratio is bounded and highly non-normal,

so having an accurate standard error alone is not sufficient to guarantee that one can correctly

compute the p-value of the sample variance ratio. In Figure 2, we plot the coefficients of skewness

(γ1) and excess kurtosis (γ2) of θ̂(k) as a function of k for different values of T .9 It shows that

the distribution of θ̂(k) is far from normal when k is large. In general, the distribution of θ̂(k) is

positively skewed and has very fat (right) tail, making the normal approximation highly inaccurate

unless k is very small.

Figure 2 about here

In some empirical studies, we are interested in obtaining the joint moments of multiple sample

variance ratios. Suppose the length of long-horizon return is equal to ki. We use (22) to write the

distribution of θ̂(ki) as

θ̂(ki) =
T − 1

mi

(
z′Ãiz

z′z

)
, (31)

where ni = T − ki + 1, mi = kini(ni− 1)/T , Ãi = P ′H ′iHiP and Hi = H(ki) is an ni×T matrix as

defined in (3). This allows us to define multiple sample variance ratios and the following Proposition

presents the mixed moments of p sample variance ratios.

9Using the results in Proposition 2 and upon further simplifications, we obtain the third and fourth moments of
θ̂(k) as explicit polynomials of k and T . The polynomials are somewhat lengthy, so we do not present them here but
the results are available upon request. Using our results, the skewness and excess kurtosis of θ̂(k) under the fixed-δ
limiting distribution are easily obtained. It can be shown that as δ → 0, we have γ1 → 0 and γ2 → 0, and when
δ → 1, we have γ1 → 38/15 and γ2 → 1058/105.

13



Proposition 3. Suppose r is multivariate elliptically distributed with mean µ1T and variance-

covariance matrix σ2IT . The expectation of the product θ̂(k1)
s1 · · · θ̂(kp)sp is given by

E

[
p∏
i=1

θ̂(ki)
si

]
=

[
s∏
i=1

(
T − 1

2mi

)si] 1(
T−1
2

)
s

E

[
p∏
i=1

(z′Ãiz)
si

]
, (32)

where s = s1 + s2 + · · ·+ sp, and the last term can be evaluated using

E

[
p∏
i=1

(z′Ãkiz)
si

]
=

1

s!

s1∑
ν1=0

· · ·
sp∑
νp=0

(−1)
∑p

i=1 νi

(
s1
ν1

)
· · ·
(
sp
νp

)
E[(z′Bνz)

s], (33)

where Bν =
(
s1
2 − ν1

)
Ã1 +

(
s2
2 − ν2

)
Ã2 + · · ·+

( sp
2 − νp

)
Ãp and E[(z′Bνz)

s] can be computed using

the recursive relation in (25).

Note that in Proposition 3, we present the moments of a product of quadratic forms in normal

random variables using a new formula from Kan (2008). Unlike existing expressions (e.g., Magnus

(1978, 1979) and Holmquist (1996)), this expression is computationally very efficient and it allows

us to compute the mixed moments of θ̂(ki) even for fairly large s.

As an example, setting s1 = s2 = 1, we obtain

E[θ̂(k1)θ̂(k2)] =
(T − 1)2

m1m2

[
tr(Ã1)tr(Ã2) + 2tr(Ã1Ã2)

(T − 1)(T + 1)

]
. (34)

Using this result and after simplification, we present the exact covariance between two sample

variance ratios in the following lemma.

Lemma 3. Suppose r follows a multivariate elliptical distribution with mean µ1T and variance-

covariance matrix Σ = σ2IT for some σ2 > 0. The finite sample covariance between θ̂(k1) and

θ̂(k2) for k1 ≤ k2 is given by

2(T − 1)

T + 1

[
k1
k2

(
n2 − 1

n1 − 1
− T (n2 + 1)

2m1

)
+

[
(T − k2)3 − (T − k1 − k2)+3

] (
n2 − k1 + 4k1k2

T

)
6m1m2

]
− 2

T + 1
, (35)

where ni = T − ki + 1 and mi = kini(ni − 1)/T .

This lemma can be potentially useful for researchers who are interested in performing joint test on

multiple sample variance ratios. With the exact covariance formula, the following lemma presents

the limiting behavior of Cov[θ̂(k1), θ̂(k2)] under three different assumptions.

14



Lemma 4. Suppose r follows a multivariate elliptical distribution with mean µ1T and variance-

covariance matrix Σ = σ2IT for some σ2 > 0. Let k1 ≤ k2 be the lengths of two long-horizon

returns. When k1 and k2 is fixed, we have

lim
T→∞

TCov[θ̂(k1), θ̂(k2)] =
2(k1 − 1)(3k2 − k1 − 1)

3k2
. (36)

When k1 → ∞, k2 → ∞ and T → ∞ but with k1/T → 0, k2/T → 0 and k1/k2 → a, where a is a

positive constant, we have

lim
T,k1,k2→∞

T√
k1k2

Cov[θ̂(k1), θ̂(k2)] =
2
√
a(3− a)

3
. (37)

When δ1 = k1/T and δ2 = k2/T are fixed, we have

lim
T→∞

Cov[θ̂(k1), θ̂(k2)] =


δ1[6δ2(1−δ2)2+(4δ2−1)δ21−2δ1(1−δ2)(3δ22−1)]

3δ2(1−δ1)2(1−δ2)2 if δ1 + δ2 ≤ 1,

(1−δ2)[6δ21(1−δ1)+(1−4δ1)(1−δ2)]
3δ1δ2(1−δ1)2 if δ1 + δ2 > 1.

(38)

Similar to Lemma 2, Lemma 4 suggests that the limiting behavior of Cov[θ̂(k1), θ̂(k2)] crucially

depends on the assumptions on the limiting behavior of k1, k2 and T . For the case that both k1 and

k2 are fixed, the asymptotic covariance formula in (36) was given in Richardson and Smith (1991).

For the case that k1, k2 and T all go to infinity, but with k1/T → 0 and k2/T → 0, the limiting

covariance formula in (37) was given in Chen and Deo (2006). Finally, the limiting covariance

formula in (38) that assumes both δ1 and δ2 are fixed has not appeared in the literature. However,

similar to the limiting variance case, this last formula generally provides the best approximation of

the finite sample covariance between θ̂(k1) and θ̂(k2), except when both k1 and k2 are very small.

2.3 Evaluating the Exact Distribution of Sample Variance Ratio when Σ = σ2IT

Under the assumption that Σ = σ2IT , we know the exact distribution of θ̂(k) is given by (23).

Therefore, in order to compute the cumulative density function of θ̂(k), we just need to evaluate

the following probability

P [θ̂(k) < c] = P

[
z′Dz <

cm

T − 1
z′z

]
= P

[
T−1∑
i=1

(
di −

cm

T − 1

)
z2i < 0

]
, (39)

where di is the ith diagonal element of D. This amounts to computing the probability for a linear

combination of independent χ2
1 random variables to be less than zero. This problem has been well
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studied in the statistics and econometrics literature. Let λi = di − cm/(T − 1), we use the results

from Gil-Pelaez (1951) and Imhof (1961) to write

P [θ̂(k) < c] =
1

2
− 1

π

∫ ∞
0

sin
(
1
2

∑T−1
i=1 arctan(2tλi)

)
t
∏T−1
i=1 (1 + 4t2λ2i )

1
4

dt. (40)

Numerical evaluation of this integral was studied by Imhof (1961), Davies (1980), Farebrother

(1984, 1990), Ansley, Kohn, and Shively (1992), and Lu and King (2002). Our implementation

follows closely to the algorithm in Lu and King (2002) and it is highly efficient and accurate.

The evaluation of this integral requires the knowledge of di’s, the eigenvalues of P ′H ′HP . As it

turns out, this is the biggest hurdle in the computation of the exact distribution of θ̂(k). One may

think computing eigenvalues is a trivial task which can be easily handled by programs like Matlab.

However, computation of eigenvalues for a general symmetric matrix is an O(n3) operation, so it is

very time consuming to compute the eigenvalues of a large matrix. More importantly, the resulting

eigenvalues can be numerically inaccurate when the matrix is large. In some of our examples, we

need to deal with cases with T = 2400, so it is impractical to rely on the standard algorithm to

compute eigenvalues of P ′H ′HP . Fortunately, P ′H ′HP is a structured matrix with its entries

only depend on k and T , so we are able to develop a fast and accurate algorithm to compute

its eigenvalues. However, the discussion involves numerical methods that may not interest all the

readers, so we relegate its details to Appendix B.10

With our numerical method of computing the exact distribution of θ̂(k), we plot the lower and

upper 2.5 percentiles of the exact distribution of θ̂(k) as a function of k in Figure 3 using the solid

lines. We provide the plot for T = 60, 240, 600, and 2400, representing the typical lengths of

annual, quarterly, monthly, and weekly data that we encounter in empirical studies. In Figure 3,

we also plot the lower and upper 2.5 percentiles of the normal approximation using the dotted lines

for comparison, where the normal approximation is based on the fixed-k asymptotic distribution of

(7). As we can see from the plot, the normal approximation does a very poor job in approximating

the true distribution of θ̂(k). Except when k is very small, we find that the approximate normal

distribution is in general to the left of the exact distribution. As a result, one can have serious size

problem when testing the null hypothesis using the normal approximation, especially when using

a one-tailed test.

10All the Matlab programs for this paper are available upon request.
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Figure 3 about here

In Figure 4, we provide the actual sizes of the normal approximation test of H0 : θ(k) = 1 as a

function of k under different choices of T . We look at the sizes for three different tests: a two-tailed

test, a left-tailed test and a right-tailed test. All three normal approximation tests are assumed

to have a nominal size of 5%, so if the tests have good size property, the actual probabilities of

rejection should be close to 5% under the null hypothesis. In Figure 4, we use the solid line, dotted,

and dashed lines to represent the actual sizes of the two-tailed test, the left-tailed test and the right-

tailed test, respectively. We can see that the one-sided tests all behave poorly when k is reasonably

large, with the left-tailed test leads to under-rejection of the null hypothesis and the right-tailed

test leads to over-rejection problem. The under-rejection at the left tail is of great concerns because

as pointed out by Lo and MacKinlay (1989), the cutoff point based on the normal approximation

test is negative when k is large enough, whereas θ̂(k) will never be negative whether it is under the

null or under the alternative. As a result, the actual probability of rejection of the left-tailed test

based on normal approximation will be zero when k is large enough. Unlike the one-sided tests, the

size of the two-sided test is reasonably well behaved because the under-rejection at the left tail is

compensated by the over-rejection at the right tail. However, one should not take comfort with the

good size behavior of the two-tailed test and rely on it to test the random walk hypothesis. This

is because under the alternative hypothesis that stock price has a mean reversion component, we

have θ(k) < 1 and we need to rely on the left-tail of the distribution of θ̂(k) to provide the rejection.

However, when we use the normal approximation test, whether it is one-tailed or two-tailed, such

rejection will be hard to come by when k is reasonably large. This presents a significant problem of

using and interpreting the normal approximation test. On the one hand, we expect mean reversion

component in stock price is easier to detect with longer horizon returns, so we may like to use larger

k. On the other hand, we know the normal approximation test has an under-rejection problem and

it provides absolutely no rejection when k is large enough, so we have to limit its use to the case

that k is very small. With the development of the exact test, we can reliably use variance ratio test

for any value of k without worrying about the size problem that is in the normal approximation

test.

Figure 4 about here
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3. Moments and Distribution of Sample Variance Ratio under
General Variance-Covariance Matrix

3.1 Moments of Sample Variance Ratio for General Σ

In order to study the power of the exact variance ratio test, we need to understand the moments

and distribution of θ̂(k) for the general case of Σ. The following Proposition presents an analytical

expression of the moments of θ̂(k) for a general variance-covariance matrix of returns.

Proposition 4. Suppose r is multivariate elliptically distributed with mean µ1T and variance-

covariance matrix Σ. The s-th moment of θ̂(k) is given by

E[θ̂(k)s] =

(
T − 1

m

)s 1

(s− 1)!

∫ ∞
0

ts−1

|IT−1 + 2tΛ|
1
2

E[(z′Bz)s]dt, (41)

where B = (IT−1 + 2tΛ)−
1
2A(IT−1 + 2tΛ)−

1
2 , where A and Λ are defined after (16).

Although the expression in Proposition 4 looks complicated, it is just a 1-dimensional integral and

it is easy to numerically evaluate its value. As an illustration, we use Proposition 4 to write down

the first two moments of θ̂(k) as

E[θ̂(k)] =
T − 1

m

∫ ∞
0

tr(B)

|IT−1 + 2tΛ|
1
2

dt, (42)

E[θ̂(k)2] =

(
T − 1

m

)2 ∫ ∞
0

t
[
tr(B)2 + 2tr(B2)

]
|IT−1 + 2tΛ|

1
2

dt. (43)

To facilitate the numerical integration, we can use a change of variable y = 1/(1 + 2tλT−1) and

write

E[θ̂(k)] =
T − 1

2λT−1m

∫ 1

0
y

T−3
2

(
T−1∏
i=1

ci

)− 1
2
(
T−1∑
i=1

aii
ci

)
dy, (44)

E[θ̂(k)2] =

(
T − 1

2λT−1m

)2 ∫ 1

0
(1− y)y

T−3
2

(
T−1∏
i=1

ci

)− 1
2

T−1∑
i=1

T−1∑
j=1

2a2ij + aiiajj

cicj

dy, (45)

where aij is the (i, j)-th element of A and ci = λi
λT−1

−
(

λi
λT−1

− 1
)
y. Ali (1984, Eq.(3.5)) provides

a trick to speed up the evaluation of the integral in (45) by reducing the double summation to a

single summation. Using Ali’s method and after simplification, we have

E[θ̂(k)2] =

(
T − 1

2λT−1m

)2 ∫ 1

0
(1− y)y

T−3
2

(
T−1∏
i=1

ci

)− 1
2 T−1∑
i=1

(
2hi
ci

+
3a2iiy

c2i

)
dy, (46)
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where

hi = λi

T−1∑
j=1
j 6=i

2a2ij + aiiajj

λi − λj
. (47)

Higher moments of θ̂(k) can be numerically evaluated in a similar manner.11

In order to obtain the joint moments of multiple sample variance ratios, we need an expression for

the expectation of a product of s sample variance ratios, which is given in the following Proposition.

Proposition 5. Suppose r is multivariate elliptically distributed with mean µ1T and variance-

covariance matrix Σ. Let Ai = Λ
1
2Q′(P ′H ′iHiP )QΛ

1
2 , where Q and Λ are the eigenvectors and the

eigenvalues of P ′ΣP . The expectation of the product θ̂(k1)
s1 · · · θ̂(kp)sp is given by

E

[
p∏
i=1

θ̂(ki)
si

]
=

[
p∏
i=1

(
T − 1

mi

)si] 1

(s− 1)!

∫ ∞
0

ts−1

|IT−1 + 2tΛ|
1
2

E

 p∏
j=1

(z′Biz)
si

dt, (48)

where Bi = (IT−1 + 2tΛ)−
1
2Ai(IT−1 + 2tΛ)−

1
2 and s = s1 + s2 + · · ·+ sp.

Following the discussion after Proposition 3, we can use Proposition 5 to obtain any joint moments

of multiple sample variance ratios. For example, when s1 = s2 = 1, we have

E[θ̂(k1)θ̂(k2)] =
(T − 1)2

m1m2

∫ ∞
0

t[tr(B1)tr(B2) + 2tr(B1B2)]

|IT−1 + 2tΛ|
1
2

dt. (49)

Similar to the case of E[θ̂(k)2], we can use a change of variable y = 1/(1+2tλT−1) and Ali’s formula

to express E[θ̂(k1)θ̂(k2)] as

E[θ̂(k1)θ̂(k2)] =
(T − 1)2

4λ2T−1m1m2

∫ 1

0
(1− y)y

T−3
2

(
T−1∏
i=1

ci

)− 1
2 T−1∑
i=1

(
hi
ci

+
3a1,iia2,iiy

c2i

)
dy, (50)

where ci = λi
λT−1

−
(

λi
λT−1

− 1
)
y, a1,ij and a2,ij are the (i, j)-th element of A1 and A2, respectively,

and

hi = λi

T−1∑
j=1
j 6=i

4a1,ija2,ij + a1,iia2,jj + a1,jja2,ii
λi − λj

. (51)

11In addition to the integration approach, we can also use an alternative approach in Hillier, Kan, and Wang (2009)
to evaluate the moments of θ̂(k).
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3.2 Evaluating the Exact Distribution of Sample Variance Ratio for General Σ

For the general Σ case, we know the exact distribution of θ̂(k) is given by (18). Therefore, in

order to compute the cumulative density function of θ̂(k), we just need to evaluate the following

probability

P [θ̂(k) < c] = P

[
z′Az <

cm

T − 1
z′Λz

]
= P

[
z′
(
A− cm

T − 1
Λ

)
z < 0

]
. (52)

Let D̃ be a diagonal matrix of the q (q ≤ T − 1) nonzero eigenvalues of A− (cm/(T − 1))Λ and G̃

be a (T − 1) × q matrix with its columns equal to the eigenvectors associated with the q nonzero

eigenvalues. Writing w = G̃z ∼ N(0q, Iq), we have

P [θ̂(k) < c] = P [z′G̃D̃G̃′z < 0] = P

[
q∑
i=1

d̃iw
2
i < 0

]
. (53)

Therefore, just as in the case of Σ = σ2IT , the computation of the exact distribution under general

Σ can also be reduced to computing the probability for a linear combination of independent χ2
1

random variables to be less than zero. The difficulty in carrying out this computation is in obtaining

the eigenvalues d̃i. In Appendix B, we discuss the algorithm to speed up the computation of d̃i,

especially when Σ is a Toeplitz matrix (which is the case when returns are covariance stationary).12

3.3 Some Popular Alternative Hypotheses

Although we have results for general Σ, it helps to study a few special cases of Σ that are implied

by some popular alternative hypotheses to the random walk theory of stock price. We consider

three cases here. The first case assumes the return follows an AR(1) process as

(rt − µ) = φ(rt−1 − µ) + εt, (54)

where −1 < φ < 1 and εt has mean zero and uncorrelated over time. This process of stock returns

has some empirical support from the work of Lo and MacKinlay (1988). Under this assumption

of stock return process, the i-th lag coefficient of autocorrelation of the returns is simply given by

ρi = φi and the covariance matrix of the returns is proportional to

Σ = AT (φ), (55)

12A Toeplitz matrix is a matrix which has constant entries along its diagonals. When returns are covariance
stationary, Cov[ri, rj ] is only a function of |i− j|, so Σ is a symmetric Toeplitz matrix.
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where AT (φ) is a T × T Kac, Murdoc, and Szegö (KMS) matrix with its (i, j)-th element given by

aij = φ|i−j|. Under this alternative hypothesis, the population variance ratio is given by

θ(k) = 1 +

k−1∑
i=1

[
2(k − i)

k

]
ρi =

k(1− φ2)− 2φ(1− φk)
k(1− φ)2

, (56)

and it monotonically approaches a limit of (1 + φ)/(1− φ) as k increases.

The second case assumes the natural log of stock price follows an AR(1) process

pt − α = φ(pt−1 − α) + εt, (57)

where 0 < φ < 1 and εt has mean zero and uncorrelated over time. This is a model of stock

market fads suggested by Shiller (1981). Under this assumption of stock price process, the i-th lag

autocorrelation coefficient of the returns is given by

ρi = −
(

1− φ
2

)
φi−1, (58)

so the variance-covariance matrix of the returns is proportional to

Σ =
1 + φ

2φ
IT −

1− φ
2φ

AT (φ), (59)

and the population variance ratio is given by

θ(k) = 1 +

k−1∑
i=1

[
2(k − i)

k

]
ρi =

1− φk

k(1− φ)
, (60)

which decreases with k to a lower bound of zero.

The last case assumes the natural log of stock price is the sum of two components—a random

walk component xt and a stationary AR(1) component yt:

pt = xt + yt, (61)

where

xt = xt−1 + ηt, (62)

yt − α = φ(yt−1 − α) + εt, (63)

where 0 < φ < 1 and ηt and εt have mean zero and uncorrelated with each other and over time. This

specification of stock price process was used by Summers (1986), Poterba and Summers (1988),
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and Fama and French (1988). Under this assumption of stock price process, the returns follow an

ARMA(1,1) process and the i-th lag coefficient of autocorrelation of the returns is given by

ρi = −
(

1− φ
2 + (1 + φ)κ

)
φi−1, (64)

where κ = Var[ηt]/Var[εt] is a measure of the relative importance of the random walk component to

the AR(1) component in the stock price. Therefore, the variance-covariance matrix of the returns

is proportional to

Σ =
(1 + φ)(1 + κφ)

[2 + (1 + φ)κ]φ
IT −

(1− φ)

[2 + (1 + φ)κ]φ
AT (φ). (65)

Under this alternative hypothesis, the population variance ratio is given by

θ(k) = 1 +

k−1∑
i=1

[
2(k − i)

k

]
ρi = 1− 2[k(1− φ) + φk − 1]

k(1− φ)[2 + (1 + φ)κ]
, (66)

and it decreases with k to a lower bound of 1− 2/[2 + (1 + φ)κ].

There is one thing common with the Σ under these three alternative hypotheses. It is that they

all share the same eigenvectors with the KMS matrix AT (φ). Let λ̃i be the ith eigenvalue of the

KMS matrix AT (φ) and ui be its corresponding eigenvector, then

d̃i =
1 + φ− (1− φ)λ̃i

2φ
(67)

is an eigenvalue for the Σ in (59) and ui is its corresponding eigenvector. Similarly, for the third

case,

d̃i =
(1 + φ)(1 + κφ)− (1− φ)λ̃i

[2 + (1 + φ)κ]φ
(68)

is an eigenvalue of Σ in (65) and ui is its corresponding eigenvector. Therefore, as long as we

know how to compute the eigenvalues and eigenvectors of a KMS matrix, we can easily compute

the eigenvalues and eigenvectors of Σ for all three cases. As it turns out, an efficient algorithm of

obtaining the eigenvalues and eigenvector of a KMS matrix was given by Trench (1988) and his

results are briefly summarized in Appendix B.

3.4 Distribution of Sample Variance Ratio under Alternative Hypotheses

In Figure 5, we present the distribution of θ̂(k) under the assumption that return follows an AR(1)

process with φ = 0.1 as a function of k for different choices of T . From top to bottom, the three
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solid lines in Figure 5 are the upper 2.5 percentile, mean and lower 2.5 percentile of θ̂(k). For

comparison purpose, we also present the lower and upper 2.5 percentiles of θ̂(k) under the null

hypothesis using two dotted lines. When returns are positively autocorrelated, we can see that

the distribution of θ̂(k) shifts to the right as compared with the one under the null hypothesis, so

the right-tailed test has a higher likelihood of rejecting the null hypothesis. Note that similar to

the distribution under the null hypothesis, the distributions of θ̂(k) across different T ’s under the

AR(1) alternative hypothesis are largely similar when δ = k/T is fixed. This suggests that when k

is reasonably large, the power of the test is largely determined by k/T . The dashed dotted line in

Figure 5 shows the population variance ratio θ(k) under the AR(1) alternative. In Lemma 1, we

show that E[θ̂(k)] = 1 under the null hypothesis, so θ̂(k) is an unbiased estimator of θ(k) under

the null hypothesis. However, θ̂(k) is in general a biased estimator of θ(k) under the alternative

hypothesis. In Figure 5, we can see that there is some small difference between E[θ̂(k)] and θ(k)

when T = 60. However, for φ = 0.1, this bias is very small and becomes negligible when T ≥ 240.

Figure 5 about here

In Figure 6, we present the distribution of θ̂(k) when stock price follows an AR(1) process with

φ = 0.975 by using the same format as in Figure 5. Under this alternative hypothesis, the stock

price is a mean-reverting process, so the returns are negatively autocorrelated. As a result, the

distribution of θ̂(k) shifts to the left as compared with the one under the null hypothesis, so the

left-tailed test has a higher likelihood of rejecting the null hypothesis. Unlike the case of AR(1)

returns, the shapes of the graphs differ significantly across different T ’s. For a fixed k/T , we find

that the distribution of θ̂(k) tightens as T increases. This suggests that even when k and T are both

large, the power of the test would heavily depend on k and T , but not merely a function of k/T as

in the case of AR(1) returns alternative. When stock price follows a mean-reverting AR(1) process,

adjacent long-horizon returns are almost perfectly correlated when k is large, so θ(k) goes to zero

as k increases. Naturally, one may like to think that using a larger k would give us better power to

reject the null hypothesis. However, when T is finite, the issue becomes more complicated. First,

θ̂(k) is not an unbiased estimator of θ(k). Even θ(k) goes to zero as k increases, we do not find

E[θ̂(k)] behaves the same. In fact, we can see from Figure 6 that E[θ̂(k)] exhibits a humped shape

and does not decreases monotonically with k. Second, θ̂(k) becomes more volatile as k increases
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because there are fewer independent observations of k-period returns in the sample. These two

effects together suggest that larger k does not always lead to better power in finite sample.

Figure 6 about here

In Figure 7, we present the distribution of θ̂(k) when stock price is a sum of a random walk

and an AR(1) process with φ = 0.975 by using the same format as in Figure 5. The variance of the

innovation of the random walk component is assumed to be half of the variance of the innovation

of the AR(1) component. As stock price has a stationary mean-reverting component, returns are

still negatively autocorrelated, so the distribution of θ̂(k) still shifts to the left when compared with

the one under the null. However, with the presence of the random walk component in the stock

price, the shift of the distribution of θ̂(k) is not as strong as when stock price has only an AR(1)

component, making it harder to reject the null hypothesis. Similar to Figure 6, we find that θ̂(k)

is biased and becomes more volatile as k increases, which suggests that larger k does not always

lead to better power in rejecting the null hypothesis.

Figure 7 about here

Under the fixed-δ asymptotic that assumes both T and k go to infinity but δ = k/T is fixed, Deo

and Richardson (2003) express the limiting distribution of θ̂(k) under this alternative hypothesis

as:

θ̂(k)
d→
[

(1 + φ)κ

2 + (1 + φ)κ

]
1

δ(1− δ)2

∫ 1

δ
[W (λ)−W (λ− δ)− δW (1)]2dλ, (69)

where W (λ) is a standard Brownian motion. Therefore, under the fixed-δ asymptotic theory, the

limiting distribution of θ̂(k) under this alternative is just a rescaling of its limiting distribution

under the null. However, Figure 7 shows that unlike under the null hypothesis, the fixed-δ limiting

distribution of θ̂(k) is a very poor approximation of the finite sample distribution under the alter-

native. The finite sample distribution of θ̂(k) under the alternative is not just a rescaling of the

null distribution, and for a fixed δ, it is still very sensitive to the choice of T .13 In order to provide

13The main reason for the poor approximation of the fixed-δ limiting distribution is due to the fact that the AR(1)
component still plays a significant role in determining the finite sample distribution of θ̂(k) even for large k and T ,
especially when φ is close to one. The poor approximation of the fixed-δ limiting distribution under the alternative
hypothesis can also be seen in Table 2 of Deo and Richardson (2003) as it shows the rejection rates are sensitive to
T even when we fix δ.
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a better approximation to the finite sample distribution of θ̂(k) under this and other alternatives,

Perron and Vodounou (2005) recently propose another fixed-δ limiting distribution of θ̂(k) by as-

suming the span of the data is fixed (so the length of one period shrinks as T goes to infinity).

As shown in Perron and Vodounou (2005), their new limiting distribution of θ̂ often provides a far

better approximation of the finite sample distribution of θ̂(k) than (69).

3.5 Power of Variance Ratio Test

In the past, the study of the power of variance ratio test was seriously hampered by the lack of finite

sample distribution results. When we do not know how to evaluate the finite sample distribution

of θ̂(k) under the null and the alternative hypotheses, we need to rely on either asymptotic distri-

butions or on simulations. As the use of asymptotic distributions can lead to serious size problem,

the results based on asymptotic distributions are ambiguous and may not be applicable when T

or k is small. While simulations can address the issue of the size problem, it is time consuming

to perform, so a typical simulation study only considers a few selected values of k and T , and

possibly a few selected parameters for the alternative hypothesis.14 As a result, we do not have a

complete understanding of the power properties of the variance ratio test. In implementation of the

variance ratio test, one would like to know what is the optimal k to use for a given length of sample

period (T ) in order to maximize the power for rejecting a given class of alternative hypotheses.

Without the tools to compute the exact distribution of θ̂(k), definitive answer to this question is

largely unavailable in the literature, so researchers are often forced to use an ad hoc choice of k in

empirical studies.

With the ability to efficiently compute the finite sample distribution of θ̂(k) under the null

and the alternatives, we investigate the power of the variance ratio test against the three popular

alternative hypotheses. For different values of T , we present in Figure 8 the power of the variance

ratio test against the alternative hypothesis that stock return follows an AR(1) process with φ = 0.1

as a function of k. The solid line and the dotted line represent the power of the 5% one-tailed and

two-tailed tests, respectively. There are two patterns that are noteworthy in the graphs. The

14It should be noted that it is often the case that we need to use simulations to evaluate the limiting distribution
of θ̂(k) under the null and the alternatives (for the fixed-δ case). Therefore, asymptotic power analysis like the
one conducted by Perron and Vodounou (2005) is also subject to the same computational constraints as in typical
simulation studies.
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first pattern is the power function is monotonically decreasing in k and the optimal power occurs

at k∗ = 2. This result is not entirely surprising. When returns follow an AR(1) process, the i-

th lag autocorrelation of returns is given by ρi = φi, so ρ2 to ρk−1 do not provide any additional

information beyond ρ1. As ρ̂1 provides the most reliable estimate of φ, we should not use a test that

relies on higher lags of sample autocorrelation coefficient as they only provide a noisier estimate of

φ. θ̂(2) is basically 1+ρ̂1, so it is only natural that θ̂(2) has the highest power against the alternative

hypothesis of return follows an AR(1) process. The second pattern is the power function for a fixed

δ = k/T is largely the same across T , except when k is very small. This result can be anticipated

by the graphs in Figure 5, which shows that the distribution of θ̂(k) under this alternative is largely

a function of δ.

Figure 8 about here

In Figure 9, we present the same results but for the alternative hypothesis that stock price

follows an AR(1) process with parameter φ = 0.975. We note that when T = 60, the alternative

hypothesis is hard to be detected as the stock price is almost indistinguishable from random walk

in a short sample period. With larger T , we see the power function of θ̂(k) increases with k to a

maximum before it comes back down. This suggests that although θ(k) decreases to zero with k

under this alternative hypothesis, medium-horizon returns can actually give higher power to reject

the null hypothesis than long-horizon returns. In Figure 9, we find that the optimal k typically

occurs near the neighborhood of k = T/4, so choosing k beyond T/4 is inadvisable.

Figure 9 about here

In Figure 10, we present the results for the third alternative hypothesis that stock price is the

sum of a random walk component and an AR(1) component with parameter φ = 0.975, and the

variance of the innovation of the random walk component is assumed to be half of the variance of

the innovation of the AR(1) component. With the addition of the random walk component in the

stock price, the predictability of returns is weakened and the power of the variance ratio test is

in general lower than its counterpart when stock price has only an AR(1) component. While the

general pattern in Figures 9 and 10 are the same, the optimal k is less than T/4 when stock price

has a random walk component. This result is intuitive because with increase in k, the variance of
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long-horizon return is eventually dominated by the random walk component and it provides very

weak evidence against the random walk hypothesis. Therefore, we would like to use a smaller k to

perform the variance ratio test, especially when the random walk component is relatively important.

Figure 10 about here

So far, our analysis of optimal k∗ is based on a fixed choice of the AR(1) parameter φ, so we

would like to extend our analysis by investigating how k∗ varies with φ. In Figure 11, we plot k∗

for the one-tailed test as a function of φ using the dashed line (with the scale on the right hand side

of the graph) when return follows an AR(1) process. As we can see from the figure, k∗ is always

equal to 2 regardless of the value of φ. In the figure, we also plot three power functions, one for

k = k∗ (solid line), one for k = 2 (dashed dotted line, but invisible here as k∗ = 2 in this case), and

one for k = T/4. As we can see, the loss of power with the use of k = T/4 is very substantial, so

the choice of k can have a serious impact on the outcome of the test.

Figure 11 about here

In Figure 12, we present the same results but for the alternative hypothesis that stock price

follows an AR(1) process. In this case, we see that as φ goes up from 0.8 to 1, k∗ gradually increases

to T/4. Even when k∗ < T/4, the power function under the optimal k∗ is indistinguishable from

the power function for k = T/4, so we can safely uses k = T/4 when we believe stock price follows

an AR(1) process. However, if one uses k = 2 to conduct the variance ratio test, then there is a

significant reduction in power.

Figure 12 about here

Finally, we present the results for the alternative hypothesis that stock price is the sum of a

random walk component and an AR(1) component in Figure 13. Similar to the previous case, we

find that k∗ approaches T/4 when φ approaches one. However, when φ is less than one, we typically

find that k∗ to be far less than T/4. More importantly, unlike the case when there is no random

walk component, there can be significant loss of power if one uses k = T/4 to conduct the variance

ratio test. It is also inadvisable to use k = 2 as this choice of k leads to great reduction of the

power of the variance ratio test.
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Figure 13 about here

In summary, we find that when return follows an AR(1) process, the optimal k∗ is always 2.

However, when price follows an AR(1) process, then the optimal k∗ is less than T/4 but using

k = T/4 does not lead to any loss of power. When price contains both a random walk and an

AR(1) component, k∗ is somewhere between 2 and T/4 but the optimal choice of k heavily depends

on T and φ as well as the relative importance of the two components. When φ is close to one or

T is small, k = T/4 is close to optimal. However, the power of the test is very low under these

conditions regardless of what k that we use, so we should not be too concerned with the choice

of k. When φ is further away from one or T is large, then the choice of k can have significant

implications on the outcome of the test.

4. Robustness of Finite Sample Results

In deriving finite sample results for the sample variance ratio, we need to make a joint elliptical

distribution assumption on the returns. Whatever distribution assumption that we make is at best

an approximation, so one should not take our results literally as “exact.” The important issues are

the robustness of our finite sample results to the departure from the elliptical distribution assump-

tion, and whether our finite sample results provide a better approximation than the asymptotic

ones.

There are two types of departure from our distributional assumption that we would like to study.

The first one is to find out how well our results hold up if returns are independently and identically

distributed but not normal. For example, returns may have skewness and heavy kurtosis. There

are many alternative distributional assumptions that we can use to examine the robustness of our

results. However, to make this exercise more relevant, we use the empirical distribution of daily

returns as the alternative distribution. For a given sample size (T ), we randomly draw our samples

from the daily returns of the value-weighted NYSE over the period 1926/1/2–2009/12/31. We then

use these resampled returns to compute the sample variance ratios for different values of k. The

whole exercise is repeated 1,000,000 times. In Figure 14, we plot the empirical distribution of θ̂(k)

as a function of k for different choices of T . From top to bottom, the three solid lines in Figure 14

are the upper 2.5 percentile, mean and lower 2.5 percentile of θ̂(k). For comparison purpose, we
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also present the lower and upper 2.5 percentiles of θ̂(k) under the assumption that returns are

jointly elliptically distributed. From Figure 14, we can see that θ̂(k) is unbiased even when returns

are not multivariate elliptically distributed (see the discussion in footnote 7). In addition, except

for T very small, the 2.5 and 97.5 percentiles of θ̂(k) are not all that different from those under the

multivariate elliptical distribution.

Figure 14 about here

To further examine the robustness of the results, we report the actual sizes of two tests of

H0 : θ(k) = 1 in Figure 15. The solid line represents the actual size of our exact test under

the elliptical distribution assumption, and the dotted line represents the actual size of a fixed-k

asymptotic test under the homoskedasticity assumption, i.e., based on the normal distribution of

(7). To conserve space, we only report the results for the 5% left-tailed test in Figure 15, the

results for the right-tailed and two-tailed tests are available upon request. From Figure 15, we can

see that our exact test based on the elliptical distribution assumption is almost exact, with only

minor over-rejection when T = 60 and k is large. In contrast, the fixed-k asymptotic test works

well only when k is very small, but the size of the test is greatly distorted when k/T is nontrivial.

We have also performed simulation experiments based on other distributional assumptions, and

our experience invariably suggests that except when T is very small, our exact results on θ̂(k)

based on multivariate elliptical distribution are still very good approximations as long as returns

are independently and identically distributed.

Figure 15 about here

The second type of departure from our distributional assumption that we study is time-varying

variance. In the finance literature, there is overwhelming evidence that the variance of short-horizon

return is time-varying, so it is particularly relevant for us to investigate the impact of time-varying

variance on the finite sample distribution of sample variance ratio. To this end, we study two

popular heteroskedastic nulls. In the first case, we assume returns are uncorrelated over time but

the natural logarithm of the return variance at time t follows an AR(1) process

lnσ2t = ψ lnσ2t−1 + ζt, ζt ∼ N(0, 1), (70)
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and ζt is independent of the returns. This heteroskedastic return process was studied by Lo and

MacKinlay (1989). We assume ψ = 0.5 and approximate the distribution of θ̂(k) using 1,000,000

simulations. In Figure 16, we present the distribution of θ̂(k) as a function of k for different choices

of T in the same format as Figure 14. From Figure 16, we can see that θ̂(k) is almost unbiased even

when return variance is time-varying. However, there are some differences in the distributions of

θ̂(k) under the constant variance assumption vs. the time-varying variance assumption, especially

when k is small. This suggests that the standard error of θ̂(k) is potentially sensitive to the

time-varying variance when k is small.

Figure 16 about here

When return is heteroskedastic, one may like to use the heteroksedastic consistent standard

error in (8) developed by Lo and MacKinlay (1988) to conduct the statistical test. In Figure 17, we

report the actual sizes of two tests of H0 : θ(k) = 1. Both tests are left-tailed tests with nominal

size of 5%. The solid line represents the actual size of our exact test under the elliptical distribution

assumption, and the dotted line represents the actual size of Lo and MacKinlay’s heteroskedastic

consistent test. From Figure 17, we can see that our exact test over-rejects the null hypothesis when

k is small. However, when k is moderately large, our exact test has almost the perfect size. This

result is expected because when k is reasonably large, the long-horizon returns would behave like

i.i.d. normal, so it is not surprising to find that heteroskedasticity in the single period returns has

little impact on the distribution of θ̂(k) when k is moderately large. In contrast, Lo and MacKinlay

(1988) heteroskedastic consistent test works very well when k is very small, but the size of the test

is greatly distorted when k/T is nontrivial. In fact, Lo and MacKinlay’s test shows no power in

rejecting the null hypothesis when k > T/4. This is because θ̂(k) is bounded below by zero, but

yet the fixed-k asymptotic theory assumes it is normally distributed. When k is large enough, the

left tail cutoff point from the normal approximation falls below zero and hence it is unattainable.

Figure 17 about here

In the second case, we consider a case that the returns follow a GARCH(1,1) model proposed

by Bollerslev (1986). Under this model, returns are uncorrelated over time but their conditional

variance changes over time. The GARCH(1,1) process assumes rt = µ + εt, where εt ∼ N(0, σ2t )
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and

σ2t = ω + αε2t−1 + βσ2t−1. (71)

We assume α = 0.1171 and β = 0.8575 (the choice of ω does not matter as long as ω > 0). These

are the same parameters used by Chen and Deo (2006) in their study of variance ratio test. We

approximate the distribution of θ̂(k) using 1,000,000 simulations. In Figure 18, we present the

distribution of θ̂(k) as a function of k for different choices of T in the same format as Figure 14.

Similar to Figure 14, we find that θ̂(k) is almost unbiased when return follows a GARCH(1,1)

model. However, there are some differences in the distributions of θ̂(k) under the constant variance

assumption vs. the GARCH(1,1) assumption, especially when k is small.

Figure 18 about here

In Figure 19, we report the actual sizes of two tests of H0 : θ(k) = 1 in the same format as

in Figure 17. Similar to Figure 17, we can see that our exact test over-rejects the null hypothesis

when k is small but it is almost perfect when k is moderately large. In contrast, Lo and MacKinlay

(1988) heteroskedastic consistent test works very well when k is very small, but the size of the test

is greatly distorted when k/T is nontrivial.

Figure 19 about here

In summary, we find that our finite sample results based on joint elliptical distribution assump-

tion are robust to the distribution assumption when k is reasonably large. The results for small k

are still robust if returns are independently and identically distributed. However, for returns that

exhibit time-varying variance, our exact distribution understates the standard error of θ̂(k) when

k is small and that leads to over-rejection. In comparison, Lo and MacKinlay’s heteroskedastic

consistent test does a good job in approximating the standard error of θ̂(k) for small k, but it is

grossly inappropriate for moderately large k. Therefore, we recommend researchers to use Lo and

MacKinlay’s test for very small k especially if one believes variance is time-varying, but our exact

test should be used for moderately large k, regardless of whether there is time-varying variance or

not.
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5. Conclusion

In this paper, we provide a finite sample analysis of variance ratio tests with overlapping observa-

tions. Under the assumption that returns are multivariate elliptically distributed, we provide ana-

lytical formulas for the moments of the sample variance ratio for an arbitrary variance-covariance

matrix of the returns. In addition, we provide an efficient numerical algorithm for evaluating the

cumulative density function of the sample variance ratio under the null and the alternatives. This

allows us to conduct exact inference using variance ratio test as well as studying its power against

popular alternative hypotheses to the “random walk” theory of the stock prices.

We find that the fixed-k asymptotic distribution that is typically used in empirical studies is

grossly inappropriate except when k is very small. However, when stock price contains a mean-

reverting component, one may like to use a larger k for conducting the variance ratio test. Our

exact variance ratio test allows us to make reliable inference for any values of k and T . In addition,

it allows us to investigate the optimal choice of k for a given class of alternative hypothesis. Due to

the inability to compute the exact distribution, this question has been largely unanswered in the

literature and we provide the tools for researchers to address this question.

We study the power property of the variance ratio test against three popular alternative hy-

potheses. For the case that return follows an AR(1) process, we find that the optimal k is always

2. For the case that stock price follows an AR(1) process, we find that k = T/4 is close to optimal.

Finally, when stock price contains both a random walk and an AR(1) component, the optimal k

depends on T , the AR(1) parameter φ as well as the relative importance of the two components.

For future work, we would like to extend our finite sample analysis to other predictability tests

that use long-horizon returns. For example, we would like to study the long-horizon regression test

of Fama and French (1988) and other autocorrelation based tests. This would give us a better

understanding of the finite sample properties of these tests, which in turn will provide us with

better ways of detecting departures from the random walk hypothesis.
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Appendix A

Proof of Propositions 2 and 3: As Proposition 2 is a special case of Proposition 3, we only provide the

proof of Proposition 3 here. It is well known that when z has a spherical distribution, u = z/(z′z)
1
2

and z′z are independent of each other (see, for example, Theorem 1.5.6 of Muirhead (1982)).

Therefore,

E

[
p∏
i=1

(z′Ãiz)
si

]
= E

[
(z′z)s

p∏
i=1

(
z′Ãiz

z′z

)si]

= E

[
(z′z)s

p∏
i=1

(u′Ãiu)si

]

= E[(z′z)s]E

[
s∏
i=1

(u′Ãiu)si

]

= 2s
(
T − 1

2

)
s

E

[
p∏
i=1

(
z′Ãiz

z′z

)si]
(A1)

The third equality follows from the independence of u and z′z. The last equality follows because

z′z ∼ χ2
T−1, so its s-th moment is given by 2s

(
T−1
2

)
s

(see, for example, Johnson, Kotz, and

Balakrishnan (1994, Eq. 18.8)).

The recursive relation in (25) is based on a recursive relation between moments and cumu-

lants, and can be found in Mathai and Provost (1992, Eq. 3.2b.8). Finally, (33) is obtained from

Proposition 4 of Kan (2008). This completes the proof.

Proof of Lemmeta 1 and 3: Using the expression in Proposition 2 and the fact that tr(Ã) =

tr(P ′HH ′P ) = tr(H ′PP ′H) = tr(HMH), we have

E[θ̂(k)] =
tr(Ã)

m
=

tr(HMH ′)

m
. (A2)

It is straightforward to show that HH ′ is a Toeplitz matix with its (i, j)-th element given by

max[k− |i− j|, 0], and HMH ′ = HH ′ − k2

T 1n1′n is also a Toeplitz matrix with its (i, j)-th element

given by max[k − |i− j|, 0]− k2/T . Therefore,

tr(HMH ′) = n

(
k − k2

T

)
= m, (A3)

so we have E[θ̂(k)] = 1.
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For the covariance formula, we first simplify (34) as

E[θ̂(k1)θ̂(k2)] =
(T − 1)2

m1m2

[
tr(Ã1)tr(Ã2) + 2tr(Ã1Ã2)

(T − 1)(T + 1)

]
=

2(T − 1)tr(Ã1Ã2)

(T + 1)m1m2
+
T − 1

T + 1
, (A4)

where the last equality follows because tr(Ãi) = tr(HiMH ′i) = mi. Using the fact that E[θ̂(ki)] = 1,

Cov[θ̂(k1), θ̂(k2)] = E[θ̂(k1)θ̂(k2)]− 1 =
2(T − 1)tr(Ã1Ã2)

(T + 1)m1m2
− 2

T + 1
. (A5)

The only term that needs to be evaluated is tr(Ã1Ã2), which can be written as

tr(Ã1Ã2) = tr(P ′H ′1H1PP
′H ′2H2P ) = tr(H2MH ′1H1MH ′2) = tr(C ′C) =

n1∑
i=1

n2∑
j=1

c2ij , (A6)

where C = H1MH ′2 = H1H
′
2 − k1k2

T 1n11′n2
. When k1 ≤ k2, it is straightforward to show that

H1H
′
2 is a Toeplitz matrix with its (i, j)-th element given by max[k1 − (j − i), 0] if i − j < 0,

max[k2 − (i − j), 0] if i − j > k2 − k1, and k1 if 0 ≤ i − j ≤ k2 − k1. It follows that C is also a

Toeplitz matrix with its (i, j)-th element given by

cij =


max[k1 − (j − i), 0]− k1k2

T if i− j < 0,

k1 − k1k2
T if 0 ≤ i− j ≤ k2 − k1,

max[k2 − (i− j), 0]− k1k2
T if i− j > k2 − k1.

(A7)

Since C is a Toeplitz matrix, we can obtain tr(C ′C) by summing c2ij along the diagonals. Counting

downward from the principal diagonal of C, there are altogether k2− k1 + 1 diagonals, each has n2

elements of k1 − (k1k2)/T . For the i-th superdiagonal of C, it has n2 − i elements of max[0, k1 −

i]− (k1k2)/T . By symmetry, there is a corresponding subdiagonal of C that has the same elements.

Using this pattern, we can express tr(C ′C)/(m1m2) as

tr(C ′C)

m1m2
=

1

m1m2

[
(k2 − k1 + 1)n2

(
k1 −

k1k2
T

)2

+ 2

n2−1∑
i=1

(n2 − i)
(

max[k1 − i, 0]− k1k2
T

)2
]

=
k1
k2

(
n2 − 1

n1 − 1
− T (n2 + 1)

2m1

)
+

[(T − k2)3 − (T − k1 − k2)+3 ]
(
n2 − k1 + 4k1k2

T

)
6m1m2

. (A8)

Plugging (A8) in (A5) gives us the expressions for Cov[θ̂(k1), θ̂(k2)]. The formula for Var[θ̂(k)] is

obtained by setting both k1 and k2 in the covariance formula to k. This completes the proof.

Proof of Lemmeta 2 and 4: Since Lemma 2 is a special case of Lemma 4, we only provide the proof

for Lemma 4 here. When δ1 → 0 and δ2 → 0, we must have k1 + k2 ≤ T , so the appropriate
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expression of finite sample covariance is obtained by dropping the + sign in (T −k1−k2)+3 , and the

limiting variance in (36) and (37) can be obtained by taking the appropriate limit. When δ1 and δ2

are fixed, we need to consider two cases. When δ1 +δ2 ≤ 1, we have k1 +k2 ≤ T , so the appropriate

expression of finite sample covariance is obtained by dropping the + sign in (T −k1−k2)+3 . Setting

k1 = δ1T and k2 = δ2T in this expression and letting T →∞, we obtain the first expression in (38).

When δ1 + δ2 > 1, we have k1 + k2 > T and the appropriate expression of finite sample covariance

is obtained by setting (T − k1 − k2)+3 to zero. Setting k1 = δ1T and k2 = δ2T in this expression

and letting T →∞ gives us the second expression in (38). This completes the proof.

Proof of Propositions 4 and 5: Since Propositions 4 is a special case of Propositions 5, we only

provide the proof of Proposition 5 here. Let Xi = z′Aiz and Y = z′Λz. Using Lemma 5 of Magnus

(1986), the joint moment generating function of X1, X2, · · · , Xp, Y is given by

φ(u1, · · · , up,−t) = E[exp(u1X1 + · · ·upXp − tY )]

= |IT−1 − 2(u1A1 + · · ·+ upAp − tΛ)|−
1
2

= |IT−1 + 2tΛ|−
1
2 |IT−1 − 2C|−

1
2 , (A9)

where C = u1B1 + · · ·upBp and Bi = (IT−1 + 2tΛ)−
1
2Ai(IT−1 + 2tΛ)−

1
2 . Using Theorem 1 of Meng

(2005), the expectation of the product of s sample variance ratios is given by

E

[
p∏
i=1

θ̂(ki)
si

]
=

[
p∏
i=1

(
T − 1

mi

)si]
E

[
Xs1

1 · · ·X
sp
p

Y s

]

=

[
p∏
i=1

(
T − 1

mi

)si] 1

(s− 1)!

∫ ∞
0

ts−1
∂sφ(u1, · · · , us,−t)

∂us11 · · · ∂u
sp
p

∣∣∣∣
u1=···up=0

dt

=

[
p∏
i=1

(
T − 1

mi

)si] 1

(s− 1)!

∫ ∞
0

ts−1

|IT−1 + 2tΛ|
1
2

∂s|IT−1 − 2C|−
1
2

∂us11 · · · ∂u
sp
p

∣∣∣∣∣
u1=···up=0

dt

=

[
p∏
i=1

(
T − 1

mi

)si] 1

(s− 1)!

∫ ∞
0

ts−1

|IT−1 + 2tΛ|
1
2

∂s|IT−1 − 2C|−
1
2

∂us11 · · · ∂u
sp
p

∣∣∣∣∣
u1=···up=0

dt

=

[
p∏
i=1

(
T − 1

mi

)si] 1

(s− 1)!

∫ ∞
0

ts−1

|IT−1 + 2tΛ|
1
2

E

[
p∏
i=1

(z′Biz)
si

]
dt. (A10)

The last equality follows because |IT−1−2C|−
1
2 is the joint moment generating function of z′B1z, · · · ,

z′Bpz, so the expectation of the product can be obtained by differentiating the joint moment

generating function. This completes the proof.
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Appendix B

Numerical Method for Computing Eigenvalues of P ′H ′HP : We take a number of steps to simplify

the computation of the eigenvalues of P ′H ′HP . The first step is to realize that P ′H ′HP and

HPP ′H ′ = HMH ′ share the same nonzero eigenvalues, so we know P ′H ′HP has k−2 eigenvalues

of zero and the rest of the eigenvalues are the same as the eigenvalues of HMH ′. So instead of

computing the eigenvalues of a (T − 1)× (T − 1) matrix, we only need to compute the eigenvalues

of a smaller n× n matrix.

The second step is to write HMH ′ as

HMH ′ = H

(
IT −

1T 1′T
T

)
H ′ = HH ′ − k2

T
1n1′n. (B1)

It is straightforward to show that HH ′ is a symmetric Toeplitz matrix with its (i, j)-th element

given by max[k − |i − j|, 0], so HMH ′ is a symmetric Toeplitz matrix with its (i, j)-th element

given by max[k − |i− j|, 0]− k2/T . For a Toeplitz matrix, the following facts due to Cantoni and

Butler (1976) allow us to greatly reduce the computation time of its eigenvalues.

Suppose A is an n × n symmetric Toeplitz matrix. Let n1 = [n/2] be the integral part of n/2

and n2 = n−n1. Denote J as a “flip” matrix that has ones along the southwest-northeast diagonal

and zeros elsewhere. We have

1. A has n1 odd eigenvectors (i.e., an eigenvector u such that Ju = −u) and n2 even eigenvectors

(i.e., Ju = u).

2. When n is even, we write

A =

[
A1 JA2J

A2 JA1J

]
, (B2)

where A1 and A2 are n1 × n1 submatrices of A. The odd eigenvalues of A are the same as

the eigenvalues of A1 − JA2. The even eigenvalues of A are the same as the eigenvalues of

A1 + JA2.

3. When n is odd, we write

A =

 A1 x JA2J

x′ q x′J

A2 Jx JA1J

 . (B3)
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The odd eigenvalues of A are the same as the eigenvalues of A1 − JA2. The even eigenvalues

of A are the same as the eigenvalues of[
A1 + JA2

√
2x

√
2x′ q

]
. (B4)

These two steps allow us to reduce the problem of finding the eigenvalues of a (T − 1) × (T − 1)

matrix to a problem of finding the eigenvalues of two symmetric matrices with dimensions n1 and

n2 respectively. Since computing eigenvalues is an O(n3) operation, these two steps would cut down

the computation time by at least 75% (but often substantially more).

The final step is to realize that HMH ′ differs from HH ′ by a matrix of rank one. Suppose QΛQ′

is the spectral decomposition of HH ′, where Λ is a diagonal matrix of the eigenvalues of HH ′, and

Q is a matrix of the corresponding eigenvectors. Since HMH ′ = HMH ′QQ′ and Q′HMH ′Q share

the same eigenvalues, the eigenvalues of HMH ′ are the same as the eigenvalues of

Q′HMH ′Q = Q′
(
HH ′ − k2

T
1n1′n

)
Q = Λ− k2

T
qq′, (B5)

where q = Q′1n. Since HH ′ is Toeplitz, we can partition its eigenvalues into odd and even. Writing

Λ =

[
Λo 0n1×n2

0n2×n1 Λe

]
, (B6)

where Λo is a diagonal matrix of the odd eigenvalues and Λe is a diagonal matrix of the even

eigenvalues. Since for an odd eigenvalue, the sum of the elements of its eigenvector is equal to zero,

so we have q = [0′n1
, q′e]

′, where qe is the sum of the elements of the even eigenvectors. With this

observations, we can write

Λ− k2

T
qq′ =

[
Λo 0n1×n2

0n2×n1 Λe − k2

T qeq
′
e

]
, (B7)

so the odd eigenvalues of HMH ′ are the same as Λo, and the even eigenvalues of HMH ′ are

the same as the eigenvalues of Λe − k2

T qeq
′
e, which differs from Λe by a matrix of rank one. This

problem is known as the rank-one update problem in numerical matrix algebra, and fast and stable

algorithm is well developed (see Li (1993) and Gu and Eisenstat (1994) and references therein).

Note that we should only use the third step when Q and Λ for HH ′ are easy to obtain. This

would be the case when k is small or when k is large. When k is small, HH ′ has only a small
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band of nonzero elements and this type of matrix is called the banded, symmetric Toeplitz matrix.

There are a number of fast algorithms that one can use to obtain the eigenvalues and eigenvectors

of a banded, symmetric Toeplitz matrix (see Trench (1985), Arbenz (1991), and Handy and Barlow

(1994)).

When k ≥ T/2, the (i, j)-th element of HH ′ is simply k − |i− j| and we can write

HMH ′ = S +

[
(T − k)(2k − T )

2T
− 1

]
1n1′n, (B8)

where S is a Toeplitz matrix with its (i, j)-th element given by (n+1)/2−|i−j|. The eigenvalues and

eigenvectors of S can be solved analytically.15 The odd eigenvalues of S are 1/[1−cos((2i−1)π/n)],

i = 1, . . . , n1, and they are also the odd eigenvalues of HMH ′. The even eigenvalues of S are

1/[1 − cos((2i − 1)π/(n + 1)], i = 1, . . . , n2, and the sum of the elements of the eigenvectors are√
2/(n+ 1) cot((2i − 1)π/(2n + 2)), i = 1, . . . , n2. The even eigenvalues of HMH ′ can then be

obtained using a rank-one update.

Computation of Eigenvalues and Eigenvectors of KMS Matrix: This section presents a fast algo-

rithm of computing the eigenvalues and eigenvectors of a KMS matrix that is due to Trench (1988).

Let AT (φ) be a T × T KMS matrix. Following Trench (1988), we let

ST (γ) = (1− φ cos γ) sin

(
(T + 1)γ

2

)
− φ sin γ cos

(
(T + 1)γ

2

)
. (B9)

CT (γ) = (1− φ cos γ) cos

(
(T + 1)γ

2

)
− φ sin γ sin

(
(T + 1)γ

2

)
, (B10)

The KMS matrix has T1 = [T/2] odd eigenvalues and T2 = T − T1 even eigenvalues. For (B9),

there are T1 solutions. If 0 < φ < 1, we have the i-th solution is in the following range

(2i− 1)π

T + 1
< γi <

2iπ

T + 1
, i = 1, . . . , T1. (B11)

If −1 < φ < 0, the range of γi is given by

2iπ

T + 1
< γi <

(2i+ 1)π

T + 1
, i = 1, . . . , T1. (B12)

The odd eigenvalues of AT (φ) are given by

λ̃i =
(1− φ)2

1− 2φ cos γi + φ2
, i = 1, . . . , T1. (B13)

15Proof is available upon request.
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The odd eigenvector associated with λ̃i is proportional to ui, where

uij = sin

(
(T − 2j + 1)γi

2

)
, j = 1, . . . , T. (B14)

Note that
∑T

j=1 uij = 0 and
∑T

j=1 u
2
ij = [T − sin(Tγi)/ sin(γi)]/2.

For (B10), there are T2 solutions. If 0 < φ < 1, we have the j-th solution is in the following

range
(2i− 2)π

T + 1
< γi <

(2i− 1)π

T + 1
, i = 1, . . . , T2. (B15)

If −1 < φ < 0, the range of γi is given by

(2i− 1)π

T + 1
< γi <

2iπ

T + 1
, i = 1, . . . , T2. (B16)

The even eigenvalues of AT (φ) are given by

λ̃i =
(1− φ)2

1− 2φ cos γi + φ2
, i = 1, . . . , T2. (B17)

The symmetric eigenvector associated with λ̃i is proportional to ui, where

uij = cos

(
(T − 2j + 1)γi

2

)
, j = 1, . . . , T. (B18)

Note that
∑T

j=1 uij = sin(Tγi/2)/ sin(γi/2) and
∑T

j=1 u
2
ij = [T + sin(Tγi)/ sin(γi)]/2. With this,

we can show that the sum of the elements of the even eigenvector is∑T
j=1 uij[∑T
j=1 u

2
ij

] 1
2

=

√
2 csc(γi/2) sin(Tγi/2)

[T + csc(γi) sin(Tγi)]
1
2

. (B19)

Numerical Method for Computing the Eigenvalues of P ′ΣP when Σ is a Symmetric Toeplitz Matrix:

Suppose Q̃Λ̃Q̃′ is the spectral decomposition of Σ. Denote T1 = [T/2] and T2 = T − T1. Since Σ is

a symmetric Toeplitz matrix, we can write

Λ̃ =

[
Λ̃o 0T1×T2

0T2×T1 Λ̃e

]
, (B20)

where Λ̃o and Λe are diagonal matrices of the odd and even eigenvalues of Σ, respectively. In

addition, we write Q̃ as Q̃ = [Q̃o, Q̃e] where Q̃o and Q̃e are the matrices of odd and even eigenvectors

of Σ, respectively.
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Let x = Λ̃
1
2Q′1T . Suppose Λ is a diagonal matrix of the T − 1 nonzero eigenvalues of Λ̃− 1

T xx
′

and Qa is a matrix of the corresponding eigenvectors. It is then straightforward to show that (1) Λ

is also the matrix of eigenvalues of P ′ΣP and, (2) Q = P ′Q̃Λ̃
1
2QaΛ

− 1
2 is the matrix of eigenvectors

of P ′ΣP . Note that for the odd eigenvectors of Σ, we have Q̃′o1T = 0T1 so

Λ̃− 1

T
xx′ =

[
Λ̃o 0T1×T2

0T2×T1 Λ̃e − 1
T xex

′
e

]
, (B21)

where xe = Λ̃
1
2
e Q̃′e1T . It follows that its eigenvalues Λ and eigenvectors Qa are given by

Λ =

[
Λ̃o 0T1×(T2−1)

0(T2−1)×T1 Λe

]
, Qa =

[
IT1 0T1×(T2−1)

0(T2−1)×T1 Qb

]
, (B22)

where Λe are the nonzero eigenvalues of Λ̃e − 1
T xex

′
e and Qb is the matrix of the corresponding

eigenvectors. Therefore, once Q̃ and Λ̃ of Σ are available, we only need to do a rank-one update on

Λ̃e to obtain the eigenvalues and eigenvectors of P ′ΣP .

After we obtain Λe and Qb, we can then write A = Λ
1
2Q′P ′HH ′PQΛ

1
2 as

A = Q′aΛ̃
1
2 Q̃′MHH ′MQ̃Λ̃

1
2Qa =

 Λ̃
1
2
o Q̃′oHH

′Q̃oΛ̃
1
2
o 0T1×(T2−1)

0(T2−1)×T1 Q′bΛ
1
2
e Q̃′eMHH ′MQ̃eΛ

1
2
e Qb

 . (B23)

The first block is obtained using the fact that Q̃′oM = Q̃o. The off diagonal blocks are zero matrices

because the columns of A1 ≡ H ′Q̃oΛ̃
1
2
o are antisymmetric (i.e., JA1 = −A1) and the columns of

A2 ≡ H ′MQ̃eΛ
1
2
e Qb are symmetric (i.e., JA2 = A2). It follows that A′1A2 = A′1J

′JA2 = −A′1A2,

so A′1A2 = 0T1×(T2−1). Since A is block diagonal, A− cmΛ/(T − 1) is also block diagonal and the

computation time of its eigenvalues is reduced by at least 75%.
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Figure 1: Plots of Exact and Asymptotic Standard Errors of Sample Variance Ratio
as a Function of the Length of the Multi-period Return
The figure presents the plots of standard errors of sample variance ratio θ̂(k) as a function of the length of the

multi-period return (k) for different lengths of the sample period (T ) under the assumption that returns are

uncorrelated and jointly elliptically distributed with constant mean and variance. The solid line represents

the exact finite sample standard error. The dotted line represents the standard error based on the fixed-k

asymptotic theory. The dashed line represents the standard error based on the fixed-k/T asymptotic theory.

The dashed-dotted line represents the standard error based on the zero-k/T asymptotic theory.
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Figure 2: Plots of Coefficients of Skewness and Excess Kurtosis of Sample Variance
Ratio as a Function of the Length of the Multi-period Return
The figure presents the plots of the coefficients of skewness (E[(θ̂(k)− 1)3]/Var[θ̂(k)]

3
2 ) and excess kurtosis

(E[(θ̂(k)− 1)4]/Var[θ̂(k)]2 − 3) of sample variance ratio θ̂(k) as a function of the length of the multi-period

return (k) for different lengths of the sample period (T ) under the assumption that returns are uncorrelated

and jointly elliptically distributed with constant mean and variance. The solid line represents the coefficient

of skewness and the dashed line represents the coefficient of excess kurtosis.
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Figure 3: Plots of Lower and Upper 2.5 Percentiles of Sample Variance Ratio as a
Function of the Length of the Multi-period Return
The figure presents the plots of lower and upper 2.5 percentiles of sample variance ratio θ̂(k) as a function of

the length of the multi-period return (k) for different lengths of the sample period (T ) under the assumption

that returns are uncorrelated and jointly elliptically distributed with constant mean and variance. The

solid lines represent the percentiles based on the finite sample distribution. The dotted lines represent the

percentiles based on the fixed-k asymptotic theory.
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Figure 4: Actual Probabilities of Rejection when Using Asymptotic Tests of Variance
Ratio as a Function of the Length of the Multi-period Return
The figure presents the plots of actual probabilities of rejection of fixed-k asymptotic tests of H0 : θ(k) = 1

as a function of k for different lengths of the sample period (T ), where θ(k) is the variance ratio and k is

the length of the multi-period return. The returns are assumed to be uncorrelated and jointly elliptically

distributed with constant mean and variance, and the nominal size of the tests is 5%. The solid line represents

the actual size of a two-tailed test, the dotted line represents the actual size of a left-tailed test, and the

dashed line represents the actual size of a right-tailed test.
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Figure 5: Exact Distribution of Sample Variance Ratio as a Function of the Length of
the Multi-period Return when Return Follows an AR(1) Process with φ = 0.1
The figure presents the distribution of sample variance ratio θ̂(k) as a function of the length of the multi-

period return (k) for different lengths of the sample period (T ) under the assumption that returns are jointly

elliptically distributed and follow an AR(1) process with parameter φ = 0.1. The three solid lines from

bottom to top are the lower 2.5 percentile, the mean, and the upper 2.5 percentile of the sample variance

ratio. The dashed line is the population variance ratio, and the dotted lines are the lower and upper 2.5

percentiles of the sample variance ratio under the null hypothesis of random walk.
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Figure 6: Exact Distribution of Sample Variance Ratio as a Function of the Length of
the Multi-period Return when Stock Price Follows an AR(1) Process with φ = 0.975
The figure presents the distribution of sample variance ratio θ̂(k) as a function of the length of the multi-

period return (k) for different lengths of the sample period (T ) under the assumption that returns are jointly

elliptically distributed and stock price follows an AR(1) process with parameter φ = 0.975. The three solid

lines from bottom to top are the lower 2.5 percentile, the mean, and the upper 2.5 percentile of the sample

variance ratio. The dashed line is the population variance ratio, and the dotted lines are the lower and upper

2.5 percentiles of the sample variance ratio under the null hypothesis of random walk.
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Figure 7: Exact Distribution of Sample Variance Ratio as a Function of the Length of
the Multi-period Return when Stock Price is the Sum of a Random Walk Component
and an AR(1) Component with φ = 0.975
The figure presents the distribution of sample variance ratio θ̂(k) as a function of the length of the multi-

period return (k) for different lengths of the sample period (T ) under the assumption that returns are jointly

elliptically distributed and stock price is the sum of a random walk component and an AR(1) component

with parameter φ = 0.975. The variance of the innovation of the random walk component is assumed to

be half of the variance of the innovation of the AR(1) component. The three solid lines from bottom to

top are the lower 2.5 percentile, the mean, and the upper 2.5 percentile of the sample variance ratio. The

dashed line is the population variance ratio, and the dotted lines are the lower and upper 2.5 percentiles of

the sample variance ratio under the null hypothesis of random walk.
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Figure 8: Probabilities of Rejection Using Exact Tests on Variance Ratio as a Function
of the Length of the Multi-period Return when Return Follows an AR(1) Process with
φ = 0.1
The figure presents the actual probabilities of rejection of using exact sample variance ratio test as a function

of the length of the multi-period return (k) for different lengths of the sample period (T ) under the assumption

that returns are jointly elliptically distributed and follow an AR(1) process with parameter φ = 0.1. The

solid lines represent the probabilities of rejection for the one-tailed test and the dotted lines represent the

probabilities of rejection for the two-tailed test. The nominal size of the tests is 5%.
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Figure 9: Probabilities of Rejection Using Exact Tests on Variance Ratio as a Function
of the Length of the Multi-period Return when Stock Price Follows an AR(1) Process
with φ = 0.975
The figure presents the actual probabilities of rejection of using exact sample variance ratio test as a function

of the length of the multi-period return (k) for different lengths of the sample period (T ) under the assumption

that returns are jointly elliptically distributed and stock price follows an AR(1) process with parameter

φ = 0.975. The solid lines represent the probabilities of rejection for the one-tailed test and the dotted lines

represent the probabilities of rejection for the two-tailed test. The nominal size of the tests is 5%.
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Figure 10: Probabilities of Rejection Using Exact Tests on Variance Ratio as a Func-
tion of the Length of the Multi-period Return when Stock Price is the Sum of a
Random Walk Component and an AR(1) Component with φ = 0.975
The figure presents the actual probabilities of rejection of using exact sample variance ratio test as a function

of the length of the multi-period return (k) for different lengths of the sample period (T ) under the assumption

that returns are jointly elliptically distributed and stock price is the sum of a random walk component and an

AR(1) component with parameter φ = 0.975. The variance of the innovation of the random walk component

is assumed to be half of the variance of the innovation of the AR(1) component. The solid lines represent the

probabilities of rejection for the one-tailed test and the dotted lines represent the probabilities of rejection

for the two-tailed test. The nominal size of the tests is 5%.
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Figure 11: Optimal Length of Multi-period Return when Return Follows an AR(1)
Process
The figure presents the optimal length of multi-period return (k∗) for exact variance ratio test as a function of

the AR(1) parameter φ for different lengths of the sample period (T ) under the assumption that returns are

jointly elliptically distributed and follow an AR(1) process with parameter φ. The dashed line (with the scale

on the right hand side of the graph) represents the optimal k∗ as a function of φ. The solid line represents

the probability of rejection under the optimal choice of k. The dashed dotted line (not visible because it

overlaps with the dashed line) represents the probability of rejection under the choice of k = 2. The dotted

line represents the probability of rejection under the choice of k = T/4. The k∗ and the probabilities of

rejection are for the one-tailed test with a nominal size of 5%.

55



0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

φ

P
ro
b
ab

il
it
y
of

R
ej
ec
ti
on

T = 60

0.8 0.85 0.9 0.95 1
12

13

14

15

k∗

0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ
P
ro
b
ab

il
it
y
of

R
ej
ec
ti
on

T = 240

0.8 0.85 0.9 0.95 1
45

50

55

60

k∗

0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ

P
ro
b
ab

il
it
y
of

R
ej
ec
ti
on

T = 600

0.8 0.85 0.9 0.95 1
20

40

60

80

100

120

140

k∗

0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ

P
ro
b
ab

il
it
y
of

R
ej
ec
ti
on

T = 2400

0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

k∗

Figure 12: Optimal Length of Multi-period Return when Stock Price Follows an AR(1)
Process
The figure presents the optimal choice of length of multi-period return (k∗) for exact variance ratio test as a

function of the AR(1) parameter φ for different lengths of the sample period (T ) under the assumption that

returns are jointly elliptically distributed and stock price follows an AR(1) process. The dashed line (with

the scale on the right hand side of the graph) represents the optimal k∗ as a function of φ. The solid line

represents the probability of rejection under the optimal choice of k. The dashed dotted line represents the

probability of rejection under the choice of k = 2. The dotted line (not visible because it overlaps with the

solid line) represents the probability of rejection under the choice of k = T/4. The k∗ and the probabilities

of rejection are for the one-tailed test with a nominal size of 5%.
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Figure 13: Optimal Length of Multi-period Return when Stock Price is the Sum of a
Random Walk Component and an AR(1) Component
The figure presents the optimal length of multi-period return (k∗) for exact variance ratio test as a function

of the AR(1) parameter φ for different lengths of the sample period (T ) under the assumption that returns

are jointly elliptically distributed and stock price is the sum of a random walk component and an AR(1)

component with parameter φ. The variance of the innovation of the random walk component is assumed

to be half of the variance of the innovation of the AR(1) component. The dashed line (with the scale on

the right hand side of the graph) represents the optimal k∗ as a function of φ. The solid line represents the

probability of rejection under the optimal choice of k. The dashed dotted line represents the probability of

rejection under the choice of k = 2. The dotted line represents the probability of rejection under the choice

of k = T/4. The k∗ and the probabilities of rejection are for the one-tailed test with a nominal size of 5%.
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Figure 14: Plots of Lower and Upper 2.5 Percentiles of Sample Variance Ratio as a
Function of the Length of the Multi-period Return when Return Follows an Empirical
Distribution of the Daily Returns of the NYSE
The figure presents the plots of lower and upper 2.5 percentiles of sample variance ratio θ̂(k) as a function of

the length of the multi-period return (k) for different lengths of the sample period (T ) under the assumption

that the returns are independently drawn from an empirical distribution based on the daily returns of the

NYSE from 1926/1/2–2009/12/31. The three solid lines from bottom to top are the lower 2.5 percentile, the

mean and the 97.5 percentile of the sample variance ratio under this distribution assumption. The dotted

lines represent the lower and upper 2.5 percentiles of the sample variance ratio when the variance of the

return is constant over time.
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Figure 15: Actual Probabilities of Rejection for Various Tests on Variance Ratio as a
Function of the Length of the Multi-period Return when Return Follows an Empirical
Distribution of the Daily Returns of the NYSE
The figure presents the plots of actual probabilities of rejection of the finite sample test and the fixed-k

asymptotic test of H0 : θ(k) = 1 as a function of k for different lengths of the sample period (T ), where

θ(k) is the variance ratio and k is the length of the multi-period return. The returns are assumed to be

independently drawn from an empirical distribution based on the daily returns of the NYSE from 1926/1/2–

2009/12/31. The solid line represents the actual size of a left-tailed test using the finite sample distribution

under joint elliptical distribution assumption, and the dotted line represents the actual size of a left-tailed

test using the fixed k asymptotic test that assumes homoskedasticity. The nominal size of the tests is 5%.
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Figure 16: Plots of Lower and Upper 2.5 Percentiles of Sample Variance Ratio as a
Function of the Length of the Multi-period Return when Return Variance Follows an
AR(1) Process
The figure presents the plots of lower and upper 2.5 percentiles of sample variance ratio θ̂(k) as a function of

the length of the multi-period return (k) for different lengths of the sample period (T ) under the assumption

that returns are uncorrelated over time but the natural log of its variance follows an AR(1) process with an

AR(1) parameter of 0.5. The three solid lines from bottom to top are the lower 2.5 percentile, the mean

and the 97.5 percentile of the sample variance ratio under this distribution assumption. The dotted lines

represent the lower and upper 2.5 percentiles of the sample variance ratio when the variance of the return is

constant over time.
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Figure 17: Actual Probabilities of Rejection for Various Tests on Variance Ratio as a
Function of the Length of the Multi-period Return when Return Variance Follows an
AR(1) Process
The figure presents the plots of actual probabilities of rejection of the finite sample test and Lo and MacKinlay

(1988) fixed-k (heteroskedasticity consistent) asymptotic test of H0 : θ(k) = 1 as a function of k for different

lengths of the sample period (T ), where θ(k) is the variance ratio and k is the length of the multi-period

return. The returns are assumed to be uncorrelated over time but the natural log of its variance follows

an AR(1) process with an AR(1) parameter of 0.5. The solid line represents the actual size of a left-tailed

test using the finite sample distribution under joint elliptical distribution assumption, and the dotted line

represents the actual size of a left-tailed test using Lo and MacKinlay (1988) test. The nominal size of the

tests is 5%.
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Figure 18: Plots of Lower and Upper 2.5 Percentiles of Sample Variance Ratio
as a Function of the Length of the Multi-period Return when Return Follows a
GARCH(1,1) Model
The figure presents the plots of lower and upper 2.5 percentiles of sample variance ratio θ̂(k) as a function of

the length of the multi-period return (k) for different lengths of the sample period (T ) under the assumption

that return follows a GARCH(1,1) model with parameters α = 0.1171 and β = 0.8575. The three solid lines

from bottom to top are the lower 2.5 percentile, the mean and the 97.5 percentile of the sample variance

ratio under this GARCH(1,1) assumption on returns. The dotted lines represent the lower and upper 2.5

percentiles of the sample variance ratio when the variance of the return is constant over time.

62



0 10 20 30 40
0

0.05

0.1

0.15

k

P
ro
b
ab

il
it
y
of

R
ej
ec
ti
on

T = 60

0 40 80 120 160
0

0.05

0.1

0.15

k

P
ro
b
ab

il
it
y
of

R
ej
ec
ti
on

T = 240

0 100 200 300 400
0

0.05

0.1

0.15

k

P
ro
b
ab

il
it
y
of

R
ej
ec
ti
on

T = 600

0 400 800 1200 1600
0

0.05

0.1

0.15

k

P
ro
b
ab

il
it
y
of

R
ej
ec
ti
on

T = 2400

Figure 19: Actual Probabilities of Rejection for Various Tests on Variance Ratio
as a Function of the Length of the Multi-period Return when Return Follows a
GARCH(1,1) Model
The figure presents the plots of actual probabilities of rejection of the finite sample test and Lo and MacKinlay

(1988) fixed-k (heteroskedasticity consistent) asymptotic test of H0 : θ(k) = 1 as a function of k for different

lengths of the sample period (T ), where θ(k) is the variance ratio and k is the length of the multi-period

return. The return is assumed to follow a GARCH(1,1) model with parameters α = 0.1171 and β = 0.8575.

The solid line represents the actual size of a left-tailed test using the finite sample distribution under joint

elliptical distribution assumption, and the dotted line represents the actual size of a left-tailed test using Lo

and MacKinlay (1988) test. The nominal size of the tests is 5%.
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Table I
Approximation Errors of Various Asymptotic Standard Errors of Variance Ratios

The table presents the approximation errors (in percentage) of three different asymptotic standard
errors of sample variance ratio for different lengths of sample period (T ) and lengths of the multi-period
returns (k) under the assumption that returns are uncorrelated and jointly elliptically distributed with
the same mean and variance. The standard errors in Panel A are based on the asymptotic theory that
assumes k is fixed but T → ∞. The standard errors in Panel B are based on the asymptotic theory
that assumes both k →∞ and T →∞ but k/T is fixed. The standard errors in Panel C are based on
the asymptotic theory that assumes both k →∞ and T →∞ but k/T → 0.

Panel A: k fixed, T →∞
k

T 2 4 12 24 60 120 240 360 480 600

60 −1.59 −3.15 −8.73 −7.90 n/a n/a n/a n/a n/a n/a
120 −0.81 −1.65 −5.16 −9.18 0.80 n/a n/a n/a n/a n/a
240 −0.41 −0.84 −2.75 −5.38 −10.63 0.41 n/a n/a n/a n/a
360 −0.28 −0.57 −1.87 −3.74 −8.36 −10.94 9.53 n/a n/a n/a
480 −0.21 −0.43 −1.41 −2.86 −6.67 −10.76 0.21 11.40 n/a n/a
600 −0.17 −0.34 −1.14 −2.31 −5.52 −9.57 −8.75 6.95 12.32 n/a
1200 −0.08 −0.17 −0.58 −1.18 −2.93 −5.57 −9.62 −11.30 −8.80 0.08
2400 −0.04 −0.09 −0.29 −0.60 −1.50 −2.95 −5.59 −7.85 −9.65 −10.86

Panel B: k →∞, T →∞, k/T fixed

T 2 4 12 24 60 120 240 360 480 600

60 64.02 24.40 7.80 4.32 n/a n/a n/a n/a n/a n/a
120 63.65 23.90 7.21 3.79 2.08 n/a n/a n/a n/a n/a
240 63.47 23.67 6.94 3.49 1.56 1.04 n/a n/a n/a n/a
360 63.41 23.59 6.85 3.40 1.45 0.82 0.93 n/a n/a n/a
480 63.39 23.55 6.81 3.36 1.40 0.77 0.52 0.77 n/a n/a
600 63.37 23.53 6.79 3.33 1.37 0.74 0.43 0.51 0.66 n/a
1200 63.33 23.49 6.74 3.28 1.32 0.68 0.37 0.27 0.21 0.21
2400 63.32 23.46 6.72 3.26 1.29 0.65 0.34 0.24 0.18 0.15

Panel C: k →∞, T →∞, k/T → 0

T 2 4 12 24 60 120 240 360 480 600

60 60.71 19.56 −2.62 −4.92 n/a n/a n/a n/a n/a n/a
120 61.97 21.40 1.19 −6.24 2.08 n/a n/a n/a n/a n/a
240 62.63 22.40 3.76 −2.32 −9.50 1.04 n/a n/a n/a n/a
360 62.85 22.74 4.70 −0.62 −7.20 −10.38 9.87 n/a n/a n/a
480 62.96 22.92 5.18 0.28 −5.49 −10.20 0.52 11.63 n/a n/a
600 63.03 23.02 5.48 0.85 −4.32 −9.00 −8.46 7.17 12.49 n/a
1200 63.16 23.23 6.08 2.01 −1.70 −4.97 −9.34 −11.11 −8.66 0.21
2400 63.23 23.34 6.38 2.62 −0.25 −2.34 −5.30 −7.66 −9.50 −10.75
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