
A Fast Algorithm for Computing Product Moments of Multivariate Normal
Random Variables

Raymond Kana,∗, Jiening Panb

aRotman School of Management, University of Toronto, 105 St. George Street, Ontario, Canada, M5S 3E6
bNankai University, 38 Tongyan Road, Jinnan District, Tianjin, Tianjin 300350, China

Abstract

We provide a simple identity that decomposes a product moment of multivariate normal random variables as a sum of
various products of univariate moments of one of the random variables and multivariate moments of the other random
variables. The new identity allows for much faster computation of the product moments of multivariate normal random
variables than existing methods.

Keywords: Moments of product, Multivariate normal distribution.
2020 MSC: Primary 60E10, Secondary 62H10

1. Introduction

Let z = [z1, . . . , zn]T ∼ N(µ,Σ) be a multivariate normal random vector with expected value µ = [µ1, . . . , µn]T and
covariance matrix Σ, where Σ = (σi j) is a positive semidefinite matrix. For s = (s1, . . . , sn), where si’s are nonnegative
integers, we are interested in obtaining computationally efficient expressions for the expectation of a product of the
elements of z,

µ′s ≡ E[zs1
1 zs2

2 · · · z
sn
n ].

Explicit and recursive expressions of this product moment are available in the statistics literature. When s1 = . . . =
sn = 1 and µ = 0, the explicit formula for µ′s is available since Isserlis [4]. In physics literature, Isserlis’s formula
is often written as the hafnian of Σ and it is known as the Wick’s formula. However, for even s = s1 + · · · + sn, this
formula requires summing up (s−1)!! = 1×3×· · ·× (s−1) terms of product of s/2 elements of the Σmatrix. Even for
moderately large s, the number of calculations is astronomical. For example, if one wishes to calculate E[z1 · · · z20],
then one would need to sum up 19!! = 654,729,075 number of terms to obtain the answer, which is clearly impractical.
For general s and µ = 0, the explicit formula of µ′s is available from [2] and [6]. Even for moderately large s, this
explicit formula requires summing up a large number of terms.

For the noncentral case, i.e., µ , 0, [7] recently presented an explicit formula of µ′s in terms of the elements
of µ and Σ. Naturally, this formula has even more terms than the formula for the central case because the former
also involves the elements of µ. For E[(z1z2z3z4z5)4], the explicit formula only requires summing up 99,450 terms,
which is quite manageable, but the number of terms goes up to 63,637,506 for E[(z1 · · · z10)2] and 23,758,664,096 for
E[z1 · · · z20]. Even for the simple case of E[(z1z2z3)100], the explicit formula would require summing up 3,321,449,001
terms. As a result, this explicit formula is not ideal for the numerical computation of µ′s.

Using a recurrence relation on multivariate Hermite polynomials (see [8]), [9] presents an (n + 1)-term recursive
formula for computing µ′s. This recursive method is quite efficient, but a large number of terms is still required to
obtain µ′s. For example, computing E[(z1z2z3)100] using the recursive algorithm would require summing up 4,090,594
terms because we need to compute E[zi

1z j
2zk

3] for 0 ≤ i ≤ 100, 0 ≤ j ≤ 100, and 0 ≤ k ≤ 100.
Based on a formula that relates the moment of a product of random variables to moments of various sums of

the random variables, [5] provides an alternative approach for computing µ′s. In many cases, this new formula can

∗Corresponding author. Email address: Raymond.Kan@rotman.utoronto.ca

1

Raymond.Kan@rotman.utoronto.ca


provide a substantial improvement over the explicit formula. For example, it requires summing up only 324,764 terms
for computing E[(z1 · · · z10)2]. However, it still requires summing up 77,787,650 terms for computing E[(z1z2z3)100],
which is extremely time-consuming.

In this paper, we develop a new formula that provides a substantial improvement on the speed for computing µ′s.
Our starting point is the explicit formula for µ′s from [7]. However, instead of expressing µ′s as a sum of various
products of elements of µ and Σ, we decompose their formula into sum of products of univariate moments of z1 and
multivariate moments of (z2, · · · , zn). In many cases, this new formula has far fewer terms than existing methods.
For example, our new method can compute E[(z1z2z3z4z5)4] with 2,692 terms, E[(z1 · · · z10)2] with 137,819 terms, and
E[z1 · · · z20] with 5,505,005 terms. For the case of E[(z1z2z3)100], our new formula requires summing up only 35,745
terms, which offers a significant improvement over existing methods.

The rest of the paper is organized as follows. Section 2 presents our new method for the n = 2 and n = 3 cases.
This serves as the motivation for the development of our new method for the general case, which is presented in
Section 3. Section 4 provides a further generalization of the results in Section 3. Section 5 concludes the paper.

2. Motivation

In this section, we first present our new algorithms for computing µ′s for the cases of n = 2 and n = 3. This allows
us to illustrate the advantages of the new algorithms over existing methods. The algorithms for the general case will
be presented in Section 3.

When n = 1, we have z ∼ N(µ, σ2), and we can obtain an explicit expression of µ′s ≡ E[zs] by using

µ′s = E[(z − µ + µ)s] =
⌊s/2⌋∑
j=0

(
s

2 j

)
E[(z − µ)2 j]µs−2 j =

⌊s/2⌋∑
j=0

ds, jσ
2 jµs−2 j, (1)

where ⌊x⌋ is the greatest integer less than or equal to x and

ds, j =
s!

2 j j!(s − 2 j)!
. (2)

From [1], we can also obtain µ′s by using the following two-term recursive relation

µ′s+1 = µµ
′
s + sσ2µ′s−1, (3)

with the initial conditions of µ′0 = 1 and µ′1 = µ.
When n = 2, we have

z =
[

z1
z2

]
∼ N

([
µ1
µ2

]
,

[
σ11 σ12
σ12 σ22

])
.

[7] provides an explicit expression of µ′s1,s2
≡ E[zs1

1 zs2
2 ] as

µ′s1,s2
=

min[s1,s2]∑
j=0

⌊(s1− j)/2⌋∑
p=0

⌊(s2− j)/2⌋∑
q=0

d(s1,s2),(p, j,q)σ
j
12σ

p
11σ

q
22µ

s1− j−2p
1 µ

s2− j−2q
2 , (4)

where1

d(s1,s2),(p, j,q) =
s1!s2!

2p+q j!p!q!(s1 − j − 2p)!(s2 − j − 2q)!
. (5)

We now present a new method of computing µ′s1,s2
. This is obtained by recognizing d(s1,s2),(p, j,q) in (5) can be

decomposed as

d(s1,s2),(p, j,q) =
s1!s2!

j!(s1 − j)!(s2 − j)!
ds1− j,pds2− j,q,

1Our d(s1 ,s2),(p, j,q) is actually defined as ds1 ,s2 , j,p,q in [7]. We adopt a slightly different notation here for the convenience of extending the results
to the general case of n.

2



where ds, j is defined in (2). This allows us to write

µ′s1,s2

s1!s2!
=

min[s1,s2]∑
j=0

σ
j
12

j!
E[zs1− j

1 ]
(s1 − j)!

E[zs2− j
2 ]

(s2 − j)!
=

min[s1,s2]∑
j=0

σ
j
12

j!

µ′s1− j,0

(s1 − j)!

µ′0,s2− j

(s2 − j)!
,

or equivalently

µ̃′s1,s2
=

min[s1,s2]∑
j=0

σ
j
12

j!
µ̃′s1− j,0µ̃

′
0,s2− j, (6)

where µ̃′i, j = µ
′
i, j/(i! j!). This identity allows us to compute the bivariate moments of (z1, z2) by using the univariate

moments of z1 and z2, and these univariate moments can be obtained by using the recursive relation from (3).
In addition to the explicit expression, there is the following three-term recursive relation for µ′s1,s2

, which is given
by [9]

µ′s1+1,s2
= µ1µ

′
s1,s2
+ s1σ11µ

′
s1−1,s2

+ s2σ12µ
′
s1,s2−1 (7)

for s1 ≥ 0 and s2 ≥ 0, with the initial conditions of µ′0,0 = 1, µ′1,0 = µ1, and µ′0,1 = µ2.
Using an identity that relates the product moment to moment of sums, [5] provides yet another expression for

computing µ′s1,s2
, which is given by

µ′s1,s2
=

s1∑
ν1=0

s2∑
ν2=0

⌊s/2⌋∑
r=0

(−1)ν1+ν2
(
s1

ν1

)(
s2

ν2

) ( hT
νΣhν

2

)r (
hT
νµ

)s−2r

r!(s − 2r)!
, (8)

where s = s1 + s2 and hν = [s1/2 − ν1, s2/2 − ν2]T.
For n = 2, the number of terms required by different methods for computing µ′s1,s2

are given in Table 1, assuming
s1 ≥ s2. For a fair comparison, when counting the number of terms for (6) in Table 1, we also add the number of
terms that are needed to create the univariate moments of z1 and z2.

Table 1: Number of terms for computing µ′s1 ,s2

Method Number of Terms
Song and Lee (2015) (4)

Odd s2 (s2 + 1)(s2 + 3)(4 + 3s1 − s2)/24

Even s2 (s2 + 2)[12⌊(s1 + 2)/2⌋ + (2 + 3s1 − s2)s2]/24

New Algorithm (6) 2s + s2 − 3

Willink (2005) (7) 2(s − 2) + 3s1s2

Kan (2008) (8) ⌊(s1 + 1)(s2 + 1)/2⌋⌊s/2 + 1⌋

For comparison, Table 2 presents the number of terms for different methods under different combinations of
(s1, s2). From Table 2, we can see that the explicit formula (4) has the fewest number of terms when s2 = 1.2 When
s1 and s2 are both large, computing µ′s1,s2

using the recursive relation of (7) can be more efficient. For example, when
s1 = s2 = 100, (4) requires summing up 88,451 terms, whereas the recursive relation (7) only requires summing up
30,396 terms. When n = 2, the formula based on [5] always involves the most number of terms and it is not advisable
to use (8) for this case. Finally, our new expression in (6) requires summing up the fewest number of terms when
s2 > 1. The reduction of number of terms can be quite substantial. For example, (6) requires summing up only 497
terms for computing µ′100,100, which is vastly superior to all the other methods.

2In terms of computation speed, (6) still dominates (4) for s2 = 1 because the latter requires the computation of d(s1 ,s2),(p, j,q) in each term.

3



Table 2: Number of terms for computing µ′s1 ,s2
under different combinations of (s1, s2)

Number of Terms
(s1, s2) (4) (6) (7) (8)
(1,1) 2 2 3 4
(4,1) 5 8 18 15
(4,4) 19 17 60 60
(10,1) 11 20 48 66
(10,4) 46 29 144 216

(10,10) 146 47 336 660
(100,1) 101 200 498 5151
(100,4) 451 209 1404 13356

(100,10) 1766 227 3216 31080
(100,100) 88451 497 30396 515100

When n = 3, we have

z =

 z1
z2
z2

 ∼ N

 µ1
µ2
µ3

 ,
 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33


 .

[7] presents an explicit expression of µ′s1,s2,s3
≡ E[zs1

1 zs2
2 zs3

3 ] as

µ′s1,s2,s3
=

∑
l∈Ls

ds,l

 3∏
i=1

3∏
j=i

σ
li j

i j


 n∏

i=1

µ
Ls,i
i

 , (9)

where s = (s1, s2, s3), l = (l11, l12, l13, l22, l23, l33),

Ls,1 = s1 − 2l11 − l12 − l13,

Ls,2 = s2 − 2l22 − l12 − l23,

Ls,3 = s3 − 2l33 − l13 − l23,

ds,l =
s1!s2!s3!

2l11+l22+l33 l11!l22!l33!l12!l13!l23!Ls,1!Ls,3!Ls,3!
, (10)

and Ls is the set of nonnegative integers l′s such that Ls,i ≥ 0 for i = 1, 2, 3. More explicitly, we can write
∑

l∈Ls as

min[s1,s2]∑
l12=0

min[s3,s1−l12]∑
l13=0

min[s2−l12,s3−l13]∑
l23=0

⌊(s1−l12−l13)/2⌋∑
l11=0

⌊(s2−l12−l23)/2⌋∑
l22=0

⌊(s3−l13−l23)/2⌋∑
l33=0

Using (2) and (5), we can verify that ds,l in (10) can be decomposed as

ds,l =
s1!s2!s3!

(s1 − l12 − l13)!(s2 − l12)!(s3 − l13)!l12!l13!
ds1−l12−l13,l11 d(s2−l12,s3−l13),(l22,l23,l33).

Then using (1) and (4), we obtain

E[zs1−l12−l13
1 ] =

⌊(s1−l12−l13)/2⌋∑
l11=0

ds1−l12−l13,l11σ
l11
11µ

s1−l12−l13−2l11
1 ,

E[zs2−l12
2 zs3−l13

3 ] =
min[s2−l12,s3−l13]∑

l23=0

⌊(s2−l12−l23)/2⌋∑
l22=0

⌊(s3−l13−l23)/2⌋∑
l33=0

d(s2−l12,s3−l13),(l22,l23,l33)σ
l23
23σ

l22
22σ

l33
33µ

s2−l12−l23−2l22
2 µs3−l13−l23−2l33

3 ,

4



and hence we can write

µ′s1,s2,s3

s1!s2!s3!
=

min[s1,s2]∑
l12=0

min[s3,s1−l12]∑
l13=0

σl12
12σ

l13
13

l12!l13!
E[zs1−l12−l13

1 ]
(s1 − l12 − l13)!

E[zs2−l12
2 zs3−l13

3 ]
(s2 − l12)!(s3 − l13)!

.

Replacing l12 and l13 by i and j, we obtain our new formula for µ′s1,s2,s3
:

µ̃′s1,s2,s3
=

min[s1,s2]∑
i=0

min[s3,s1−i]∑
j=0

σi
12σ

j
13

i! j!
µ̃′s1−i− j,0,0µ̃

′
0,s2−i,s3− j, (11)

where µ̃′i, j,k = µ
′
i, j,k/(i! j!k!).

This new formula decomposes a trivariate moment of (z1, z2, z3) into a sum of various products of univariate
moments of z1 and bivariate moments of (z2, z3). These univariate moments and bivariate moments can be easily
obtained by using (3) and (7). If we apply (6) to decompose µ̃′0,s2−i,s3− j in (11), we obtain another formula for µ̃′s1,s2,s3

that is in terms of just the univariate moments of z1, z2, and z3:

µ̃′s1,s2,s3
=

min[s1,s2]∑
i=0

min[s3,s1−i]∑
j=0

min[s2−i,s3− j]∑
k=0

σi
12σ

j
13σ

k
23

i! j!k!
µ̃′s1−i− j,0,0µ̃

′
0,s2−i−k,0µ̃

′
0,0,s3− j−k. (12)

As for the case of n = 2, there are two other methods for computing µ′s1,s2,s3
. The recursive relation for computing

µ′s1,s2,s3
is given by [9]:

µ′s1+1,s2,s3
= µ1µ

′
s1,s2,s3

+ s1σ11µ
′
s1−1,s2,s3

+ s2σ12µ
′
s1,s2−1,s3

+ s3σ13µ
′
s1,s2,s3−1 (13)

for s1 ≥ 0, s2 ≥ 0, and s3 ≥ 0, with the initial conditions of µ′0,0,0 = 1, µ′1,0,0 = µ1, µ′0,1,0 = µ2, and µ′0,0,1 = µ3.
Finally, the expression of µ′s1,s2,s3

based on the identity of [5] is given by

µ′s1,s2,s3
=

s1∑
ν1=0

s2∑
ν2=0

s3∑
ν3=0

⌊s/2⌋∑
r=0

(−1)ν1+ν2+ν3
(
s1

ν1

)(
s2

ν2

)(
s3

ν3

) ( hT
νΣhν

2

)r (
hT
νµ

)s−2r

r!(s − 2r)!
, (14)

where s = s1 + s2 + s3 and hν = [s1/2 − ν1, s2/2 − ν2, s3/2 − ν3]T.
In Table 3, we report the number of terms required by different methods for computing µ′s1,s2,s3

, assuming s1 ≥

s2 ≥ s3. When counting the number of terms for (11), we add the number of terms that are needed to create the
univariate moments of z1 and bivariate moments of (z2, z3). Similarly, when counting the number of terms for (12),
we also add the number of terms that are needed to create the univariate moments of z1, z2, and z3.3

Table 3: Number of terms for computing µ′s1 ,s2 ,s3
, d = max[0, s2 + s3 − s1]

Method Number of Terms
Song and Lee (2015) (9)

∑s2
i=0

∑min[s2,s3−i]
j=0

∑min[s2−i,s3− j]
k=0

⌊
s1−i− j+2

2

⌋ ⌊
s2−i−k+2

2

⌋ ⌊
s3− j−k+2

2

⌋
New Algorithm (11) 2(s − 3) + 3s2s3 + (s2 + 1)(s3 + 1) − d(d+1)

2

New Algorithm (12) 2(s − 3) + (s3+1)(s3+2)(3s2−s3+3)
6 −

⌈
d(d+2)(2d+5)

24

⌉
Willink (2005) (13) 2(s − 3) + 3(s1s2 + s1s3 + s2s3) + 4s1s2s3

Kan (2008) (14) ⌊(s1 + 1)(s2 + 1)(s3 + 1)/2⌋⌊s/2 + 1⌋

For comparison, Table 4 presents the number of terms for different methods under different combinations of
(s1, s2, s3). From Table 4, we can see that our two new algorithms, (11) and (12) generally requiring summing

3Details on the derivation of the number of terms in Table 3 are available upon request.

5



up fewer terms than other competing methods. This is particularly the case when s1 is large. However, even for
small (s1, s2, s3), our new methods still offer substantial improvement over existing methods. For example, when
s1 = s2 = s3 = 4, (11) requires summing up 81 terms and (12) requires summing up 60 terms, whereas the other
methods require summing up from 213 to 434 terms. Comparing (11) with (12), we see that the number of terms are
comparable in most cases, but when (s1, s2, s3) is large, (11) requires summing up far fewer terms than (12).

Table 4: Number of terms for computing µ′s1 ,s2 ,s3
under different combinations of (s1, s2, s3)

Number of Terms
(s1, s2, s3) (9) (11) (12) (13) (14)

(1,1,1) 4 6 4 13 8
(4,1,1) 12 13 11 49 40
(4,4,1) 45 33 25 148 125
(4,4,4) 213 81 60 418 434

(10,1,1) 27 25 23 121 154
(10,4,1) 117 46 38 346 440
(10,4,4) 624 103 85 958 1370

(10,10,1) 396 87 67 796 1331
(10,10,4) 2365 207 174 2182 3926
(10,10,10) 10836 420 435 4954 10640
(100,1,1) 252 205 203 1201 10504
(100,4,1) 1197 226 218 3316 26765
(100,4,4) 6834 283 265 9058 69410
(100,10,1) 4986 268 248 7546 62216
(100,10,4) 32062 397 367 20542 161066

(100,10,10) 179711 655 740 46534 372710
(100,100,1) 262701 897 697 70996 1030301
(100,100,4) 1883605 2097 1884 192802 2626706

(100,100,10) 13166076 4470 6735 436414 5947130
(100,100,100) 3321449001 35745 262020 4090594 77787650

Ultimately, what matters most is the speed of computing µ′s for various algorithms. We do not report the CPU time
for computing µ′s in Table 4 because there are many cases that such computation is infeasible for the earlier algorithms
as they involve a very large number of terms. To illustrate the benefit of (11) relative to the older algorithms, we
consider a case with s = (s1, 5, 5) for 5 ≤ s1 ≤ 100. In Fig. 1, we plot the ratio of CPU time of µ′s1,5,5

of (13), (14)
and (9) to the CPU time of (11) as a function of s1.4 As we can see from Fig. 1, the new algorithm (11) significantly
outperforms existing algorithms in terms of computation time. In addition, the advantage increases with s1. This is
because in our new algorithm, we only need to compute E[zi

1] for 0 ≤ i ≤ s1 and E[z j
2zk

3] for 0 ≤ j ≤ 5 and 0 ≤ k ≤ 5.
Since the computation time of moments of z1 only grows linearly with s1 and the computation time of the bivariate
moments of (z2, z3) is of O(s2s3), our new algorithm (11) significantly outperforms the other algorithms which typical
has computation time that is of O(s1s2s3) or even higher.

3. New Algorithms for the General Case

Before we present our new algorithms for computing µ′s for the general n case, we first introduce some notation.
For a vector of nonnegative integers ν = (ν1, ν2, . . . , νn), we define |ν| =

∑n
i=1 νi, ν! =

∏n
i=1 νi!. For two vectors ν and

4We implement all the algorithms in Matlab. The programs are run on a Ryzen 5950x PC. All the Matlab programs for the current paper are
available at https://www-2.rotman.utoronto.ca/~kan/research.htm.

6

https://www-2.rotman.utoronto.ca/~kan/research.htm


Fig. 1: Ratio of CPU time of computing µ′s1 ,5,5
using three different methods, relative to (11)

7



s = (s1, . . . , sn), ν ≤ s is a short-hand notation for νi ≤ si for i = 1, . . . , n, and(
s
ν

)
=

n∏
i=1

(
si

νi

)
.

We now provide a quick summary of existing algorithms for computing µ′s. For general n, [9] provides an (n+ 1)-
term recursive relation for µ′s1,...,sn

:

µ′s1+1,...,sn
= µ1µ

′
s1,...,sn

+

n∑
j=1

s j>0

s jσ1 jµ
′
s1,...,s j−1,...,sn

, (15)

with the initial conditions of µ′0 = 1 and µ′ei
= µi, where ei is an n-vector of zeroes, except that its i-th element is equal

to one.
[5] provides the following explicit expression for µ′s:

µ′s =
∑

0≤ν≤s

⌊|s|/2⌋∑
r=0

(−1)|ν|
(
s
ν

) ( hT
νΣhν

2

)r (
hT
νµ

)s−2r

r!(s − 2r)!
, (16)

where hν = [s1/2 − ν1, . . . , sn/2 − νn]T.
[7] provides the following explicit formula of µ′s

µ′s =
∑
l∈Ls

ds,l

 n∏
i=1

n∏
j=i

σ
li j

i j


 n∏

i=1

µ
Ls,i
i

 , (17)

where l = (li j)1≤i≤n,i≤ j≤n is a vector of n(n + 1)/2 nonnegative integers,5

Ls,i = si −

i−1∑
j=1

l ji −

n∑
j=i+1

li j − 2lii,

ds,l =
s!

2
∑n

i=1 lii l!
∏n

i=1 Ls,i!
, (18)

and Ls stands for the set of l’s such that Ls,i ≥ 0 for i = 1, . . . , n.
We now provide a decomposition of ds,l that allows us to express µ′s as a sum of various products of univariate

moments of z1 and multivariate moments of (z2, . . . , zn). Let

s2 = (s2, . . . , sn),
l1 = (l12, . . . , l1n),
h = (li j)2≤i≤n,i≤ j≤n.

By writing l = (l11, l1, h), we can decompose ds,l as

ds,l =
s!

2l11 l11!(s1 − |l1| − 2l11)!l1!
1

2
∑n

i=2 lii h!
∏n−1

i=1 Ls2−l1,i!
=

s!
(s1 − |l1|)!(s2 − l1)!l1!

ds1−|l1 |,l11 ds2−l1,h,

where6

Ls2−l1,i = si+1 − l1,i+1 −

i∑
j=2

l j,i+1 −

n∑
j=i+2

li+1, j − 2li+1,i+1 = Ls,i+1, i = 1, . . . , n − 1.

5Ls,i is also a function of l but we suppress this dependence in its notation for convenience.
6It should be noted that Ls2−l1 ,i depends on h, whereas Ls,i depends on l.

8



Using this decomposition, we can write

µ′s =
∑
l∈Ls

s!
(s1 − |l1|)!(s2 − l1)!l1!

ds1−|l1 |,l11 ds2−l1,hσ
l11
11µ

s1−|l1 |−2l11
1

 n∏
i=2

σl1i
1i


 n∏

i=2

n∏
j=i

σ
li j

i j


n−1∏

i=1

µ
Ls2−l1 ,i

i+1


=

∑
l1≤s2
|l1 |≤s1

s!
(s1 − |l1|)!(s2 − l1)!l1!

 n∏
i=2

σl1i
1i

 ⌊(s1−|l1 |)/2⌋∑
l11=0

ds1−|l1 |,l11σ
l11
11µ

s1−|l1 |−2l11
1

×
∑

h∈Ls2−l1

ds2−l1,h

 n∏
i=2

n∏
j=i

σ
li j

i j


n−1∏

i=1

µ
Ls2−l1 ,i

i+1


=

∑
l1≤s2
|l1 |≤s1

s!
(s1 − |l1|)!(s2 − l1)!l1!

 n∏
i=2

σl1i
1i

 E
[
zs1−|l1 |

1

]
E

[
zs2−l12

2 · · · zsn−l1n
n

]
.

Writing ν = (ν2, . . . , νn) = l1 and k = |l1|, we obtain the following expression of µ′s:

µ′s
s!
=

min[s1,|s2 |]∑
k=0

E
[
zs1−k

1

]
(s1 − k)!

∑
|ν|=k
ν≤s2

∏n
i=2 σ

νi
1,i

ν!

E
[
zs2−ν2

2 · · · zsn−νn
n

]
(s2 − ν)!

.

Let κ = s2 − ν = (κ2, . . . , κn), we can also write the above expression as

µ′s
s!
=

∑
κ:κ≤s2

max(0,|s2 |−s1)≤|κ|

∏n
i=2 σ

si−κi
1,i

(s2 − κ)!

E
[
zs1−|s2−κ|

1

]
(s1 − |s2 − κ|)!

E
[
zκ22 · · · z

κn
n

]
κ!

. (19)

This expression allows us to express µ′s as a sum of various products of univariate moments of z1 and multivariate
moments of (z2, . . . , zn).

Repeating the above exercise, we can obtain an expression of µ′s that only depends on the univariate moments of
zi’s. Let b = (bi j)1≤i≤n−1,i< j≤n be a vector of n(n − 1)/2 nonnegative integers, we can write

µ′s
s!
=

∑
b∈Bs

n−1∏
i=1

n∏
j=i+1

σ
bi j

i j

bi j!

 n∏
i=1

E
[
zBs,i

i

]
Bs,i!

, (20)

where

Bs,i = si −

i−1∑
j=1

b ji −

n∑
j=i+1

bi j,

and Bs is the set of b’s such that Bs,i ≥ 0 for i = 1, . . . , n. As an example, we can explicitly write
∑

b∈Bs for n = 3 as

min[s1,s2]∑
b12=0

min[s3,s1−b12]∑
b13=0

min[s2−b12,s3−b13]∑
b23=0

.

Remark 1. When s1 = . . . = sn = 1, (19) can be simplified to

E[z1 . . . zn] = E[z1]E[z2 . . . zn] + σ12E[z3 . . . zn] + σ13E[z2z4 . . . zn] + . . . + σ1nE[z1 . . . zn−1],

which is the same as Willink’s recursive relation as given in (15).

Remark 2. When s1 = . . . = sn = 1, (20) and (17) give the same expression. This is because under this case, we must
have lii = 0 in order for Ls,i ≥ 0. As a result, we have Ls,i = Bs,i if we replace li j by bi j.

9



Remark 3. When µ = 0, E[zκ22 · · · z
κn
n ] in (19) vanishes when |κ| is odd. Therefore, we can obtain µ′s with fewer terms.

For even |s|, we have

µ′s
s!
=

⌊|s2 |/2⌋∑
k=max[0,(|s2 |−s1)/2]

∑
κ:κ≤s2
|κ|=2k

∏n
i=2 σ

si−κi
1,i

(s2 − κ)!

E
[
zs1−|s2−κ|

1

]
(s1 − |s2 − κ|)!

E
[
zκ22 · · · z

κn
n

]
κ!

.

Remark 4. Our decomposition formula (19) also offers a fast method for computing the number of terms in the
explicit expression of µ′s in (17). Let f (s) be the cardinality of Ls, we have7

f (s) =
∑

0≤κ≤s2
max[0,|s2 |−s1]≤|κ|

[⌊
s1 − |s2 − κ|

2

⌋
+ 1

]
f (κ).

Together with the boundary conditions of f (0) = 1 and f (s1) = ⌊s1/2⌋ + 1, the above recurrence relation allows us to
obtain f (s).

In general, (19) provides a much more efficient way of computing µ′s than the other methods. To illustrate this,
we consider a number of examples in Table 5. From Table 5, we can see that (19) requires summing up the fewest
number of terms, and the improvement is often substantial, especially when |s| is large.

Table 5: Number of terms for computing µ′s using different methods

Number of terms
Method s = 5 × 15 s = (15, 110) s = (40, 110) s = 10 × 15

Willink (2005) (15) 40165 113641 292841 893090
Kan (2008) (16) 50544 106496 545792 20393650
Song and Lee (2015) (17) 684450 869483 2408818 807739076
New Algorithm (19) 5741 7175 7225 68891
New Algorithm (20) 62821 123127 123187 10757011

Counting the number of terms does not tell the complete story as the terms in each method would require different
number of arithmetic operations. In Table 6, we report the CPU time of all the methods relative to that of (19) as well
as the CPU time for (19). As can be seen from Table 6, there is a substantial improvement of computation speed for
µ′s based on (19). In contrast, (17) and (20) perform the worst. Besides that these two methods require summing up
a larger number of terms, the enumeration of Ls and Bs is also quite time consuming, which leads to a much lower
execution speed for these two methods. Based on the results in Table 6 as well as the other experiments that we had
performed, we recommend the use of (19) to compute µ′s.

8

In addition, we demonstrate the advantage of using (19) to compute µ′s over existing algorithms. We consider a
case with s = (s1, 5, 5, 5) for 5 ≤ s1 ≤ 100. In Fig. 2, we plot the ratio of CPU time of µ′s1,5,5,5

of (15), (16) and (17) to
the CPU time of (19) as a function of s1. As we can see from Fig. 2, the new algorithm (19) significantly outperforms
existing algorithms in terms of computation time. In addition, the advantage increases with s1. Compared with the
case of n = 3 in Fig. 1, the case of using (19) is even more compelling for n = 4.9

7This follows because for two different κ’s, the explicit formula of µ′κ have no terms in common.
8All the algorithms involve summing up a number of terms and that can lead to cancellation error. This is particularly a concern for (16) because

the terms involved are often of opposite signs. For the other algorithms, whether cancellation errors occur or not depend on the signs of µi and σi j.
Nevertheless, we find that (19) and (20) produce almost identical answers to (15) and (17) in our experiment.

9Due to the scale of the graph, it is hard to read the ratio of CPU time for (15) to that of (19). This ratio goes up steadily from 1 to 16.8. In
addition, we do not report the ratio of CPU time of using (20) in Fig. 2. It is in general slower to use (20) than (19), with an average ratio of CPU
time of about 4.

10



Fig. 2: Ratio of CPU time of computing µ′s1 ,5,5,5
using three different methods, relative to (19)

11



Table 6: Ratio of CPU time for computing µ′s using different methods, relative to (19)

Relative CPU time
Method s = 5 × 15 s = (15, 110) s = (40, 110) s = 10 × 15

Willink (2005) (15) 1.5 7.5 18.8 5.2
Kan (2008) (16) 6.0 21.7 83.0 33.6
Song and Lee (2015) (17) 355.7 978.9 1431 103560
New Algorithm (20) 15.7 75.2 73.5 547.7
CPU Time of (19) (in seconds) 9.38e-5 8.13e-5 9.38e-5 7.53e-4

4. A General Decomposition Formula

In the last section, we provide two decomposition formulae for µ′s. The first one is in terms of products of univariate
moments of z1 and multivariate moments of (z2, . . . , zn). The second one is in terms of products of univariate moments
of z1 to zn. It is natural to ask if there exists other ways of decomposing µ′s. For example, can we express E[zs1

1 zs2
2 zs3

3 zs4
4 ]

in terms of product of bivariate moments of (z1, z2) and (z3, z4)? The following proposition answers the question in the
affirmative. In particular, it provides a general formula that decomposes the product moments of z in terms of product
of multivariate moments of two disjoint subsets of z.

Proposition 1. Let m be a positive integer with m < n, we define

sa = (s1, . . . , sm),
sb = (sm+1, . . . , sn),
li = (li,m+1, . . . , li,n), i = 1, . . . ,m,

where li j’s are nonnegative integers. Denote µ̃′s = µ
′
s/s!. We have

µ̃′s =
∑

l1+···+lm≤sb
|li |≤si, i=1,...,m

 m∏
i=1

n∏
j=m+1

σ
li j

i j

li j!

 µ̃′(sc,0n−m)µ̃
′
(0m,sd), (21)

where sc = sa − (|l1|, . . . , |lm|) and sd = sb − l1 − · · · − lm.

Proof. Let h1 = (li j)1≤i≤m,i≤ j≤m and h2 = (li j)m+1≤i≤n,i≤ j≤n, we can write l in (18) as l = (h1, l1, . . . , lm, h2). In addition,
we define10

Lsc,i = si − |li| −
i−1∑
j=1

l j,i −

m∑
j=i+1

li, j − 2li,i = Ls,i, i = 1, . . . ,m,

Lsd ,i = sm+i − l1,m+i − . . . lm,m+i −

m+i−1∑
j=m+1

l j,m+i −

n∑
j=m+i+1

lm+i, j − 2lm+i,m+i = Ls,m+i, i = 1, . . . , n − m.

This allows us to decompose ds,l in (18) as

ds,l =
s!∏m

i=1 li!
×

1
2
∑m

i=1 lii h1!
∏m

i=1 Lsc,i!
×

1
2
∑n

i=m+1 lii h2!
∏n−m

i=1 Lsd ,i!
=

s!
sc!sd!

∏m
i=1 li!

dsc,h1 dsd ,h2 .

10It should be noted that Lsc ,i is based on h1 and Lsd ,i is based on h2.

12



Using this decomposition, we obtain

µ′s =
∑
l∈Ls

ds,l

 n∏
i=1

n∏
j=i

σ
li j

i j


 n∏

i=1

µ
Ls,i
i


=

∑
l∈Ls

s!
sc!sd!

∏m
i=1 li!

dsc,h1 dsd ,h2

 n∏
i=1

n∏
j=i

σ
li j

i j


 m∏

i=1

µ
Lsc ,i

i

 n−m∏
i=1

µ
Lsd ,i

m+i


=

∑
l1+···+lm≤sb
|li |≤si, i=1,...,m

s!
sc!sd!

 m∏
i=1

n∏
j=m+1

σ
li j

i j

li j!


 ∑

h1∈Lsc

dsc,h1

 m∏
i=1

m∏
j=i

σ
li j

i j


 m∏

i=1

µ
Lsc ,i

i




×

 ∑
h2∈Lsd

dsd ,h2

 n∏
i=m+1

n∏
j=i

σ
li j

i j


n−m∏

i=1

µ
Lsd ,i

m+i




= s!
∑

l1+···+lm≤sb
|li |≤si, i=1,...,m

 m∏
i=1

n∏
j=m+1

σ
li j

i j

li j!

 µ′(sc,0n−m)

sc!

µ′(0m,sd)

sd!
.

Proposition 1 suggests that we can express the product moments of (z1, . . . , zn) in terms of product moments of
(z1, . . . , zm) and product moments of (zm+1, . . . , zn). When m = 1, this nests the expression of (19) as a special case.
Given that there are different ways of decomposing µ′s, it would be ideal to figure out the optimal decomposition of
µ′s that requires summing up the fewest number of terms. However, the optimal choice of m depends on the value of
s, and there is not a single decomposition that dominates the others for all values of s. To illustrate this, we consider
the case of n = 4. For this case, we can use explicit formula (17) or the product of univariate moment formula (20).
We can also use the decomposition formula (21) for m = 1 to m = 3 (m = 1 is the same as (19)). In Table 7, we
present the number of terms for these different methods under different values of (s1, s2, s3, s4). Compared with the
explicit formula of (17), both (20) and (21) require summing up fewer number of terms. However, there is no clear-cut
winner among these alternative algorithms. When s1 = s2 = s3 = s4 (as in the first three cases), the decomposition
formula of µ′s based on m = 2 has the fewest number of terms. However, when (s1, s2, s3, s4) are not balanced, the
other algorithms could involve summing up fewer number of terms. Since we consider cases with s1 ≥ s2 ≥ s3 ≥ s4
(which is without loss of generality as we can always rearrange the zi’s such that this condition is satisfied), we always
find that when s1 > s4, (21) with m = 1 involves summing up fewer terms than (21) with m = 3. This is easy
to understand because univariate moments require fewer terms to compute than trivariate moments, so it is better to
compute more univariate moments and less trivariate moments. When m = 1, we only need to compute trivariate
moments of (z2, z3, z4) up to order of (s2, s3, s4). However for m = 3, we need to compute trivariate moments of
(z1, z3, z3) up to order of (s1, s2, s3), and hence it is less efficient. For the general problem, further research is needed
to identify the optimal algorithm for computing µ′s for a given value of s.

5. Conclusion

The multivariate normal distribution is fundamental to mathematical statistics, and its moments play a central role
in statistical methodology. For example, many statistical estimators can be written as quadratic forms in multivariate
normal random variables, and their moments can be obtained by using the moments of product of multivariate normal
random variables. In addition, the computation of product moments of multivariate normal random variables is closely
related to the computation of multivariate Hermite polynomial (see [3] and [9]), and the latter have many useful
applications in statistical theory, e.g., in Gram-Charlier expansions and Edgeworth approximations of distributions of
sums of vector random variables.

There are also other applications that require the evaluation of µ′s. For example, suppose zi is the gross return (i.e.,
one plus net return) of an asset at time i. Then the terminal wealth of investing $1 in the asset for n period is

Wn = z1z2 · · · zn.

13



Table 7: Number of terms for computing µ′s1 ,s2 ,s3 ,s4
under different combinations of (s1, s2, s3, s4)

Number of Terms
Decomposition Formula (21)

(s1, s2, s3, s4) (17) (20) m = 1 m = 2 m = 3
(2,2,2,2) 123 64 86 58 86
(4,4,4,4) 3810 665 459 275 459
(6,6,6,6) 49006 3656 1312 788 1312

(10,2,2,2) 667 109 119 127 326
(20,2,2,2) 1352 129 139 207 626

(20,20,2,2) 45138 962 823 1328 4730
(20,20,20,2) 3596802 23167 5387 2812 35726

For an investor with an investment horizon of n periods, he is interested in the moments of Wn, i.e.,

E[Wk
n] = E[zk

1zk
2 · · · z

k
n].

These moments are easy to compute when returns are independent over time. However, if returns are serially corre-
lated, then the computation of E[Wk

n] is far from trivial. If we are willing to assume z ∼ N(µ,Σ), then the computation
of E[Wk

n] is the same as the computation of product moments of multivariate normal.
Therefore, an algorithm for the fast computation of µ′s is of important value. While recursive and explicit formulae

of µ′s for the multivariate normality case are readily available in the statistics literature, they are often impractical for
computational purpose when the number of random variables in the product is moderately large. In this paper, we
present a new algorithm for computing µ′s which provides a significant speed improvement over existing methods.
Although the results in this paper are presented for the multivariate normality case, our algorithm can be extended to
deal with the case that the random variables follow a multivariate elliptical distribution, along the line as suggested by
[5].

Acknowledgments

We thank Joonsuk Huh and two anonymous referees for helpful comments.

References

[1] L. J. Bain, Moments of a noncentral t and noncentral F-distribution, American Statistician 23(4) (1969) 33–34.
[2] R. Blacher, Multivariate quadratic forms of random vectors, Journal of Multivariate Analysis 87 (2003) 2–23.
[3] B. Holmquist, The d-variate vector Hermite polynomial of order k. Linear Algebra and its Applications 237/238 (1996) 155–190.
[4] L. Isserlis, On a fomula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables,

Biometrika 12 (1 and 2) (1918) 134–139.
[5] R. Kan, From moments of sum to moments of product, Journal of Multivariate Analysis 99 (2008) 542–554.
[6] T. H. Savits, Some statistical applications of Faa di Bruno, Journal of Multivariate Analysis 97 (2006) 2131–2140.
[7] I. Song, S. Lee, Explicit formulae for product moments of multivariate Gaussian random variables, Statistics and Probability Letters 100

(2015) 27–34.
[8] A. Takemura, K. Takeuchi, Some results on univariate and multivariate Cornish-Fisher expansion: algebraic properties and validity, Sankhyā:

The Indian Journal of Statistics, Series A 50(1) (1988) 111-136.
[9] R. Willink, Normal moments and Hermite polynomials, Statistics and Probability Letters 73 (2005) 271–275.

14


	Introduction
	Motivation
	New Algorithms for the General Case
	A General Decomposition Formula
	Conclusion

