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A Propositions, Lemmas and Proofs

Let f be a K-vector of factors and R a vector of returns on N test assets. We define Y = [f’, R/

and its mean and covariance matrix as

,u
IR
Ve V)
V = Var[Y] = A , (A.2)
Vey Vg

where V is assumed to be positive definite.!

The multiple regression betas of the N assets with
respect to the K factors are defined as 8 = VRfo_l. In addition, we denote the covariance matrix

of the regression residuals of the IV assets by ¥ = Vg — VRfoflvf R.

Let Y; = [f{, R}]', where f; is the vector of K proposed factors at time ¢ and R, is a vector of
returns on N test assets at time ¢. Throughout the various appendices, we assume that the time
series Y; = [f{, R} is jointly stationary and ergodic, with finite fourth moment. Suppose we have

T observations on Y; and denote the sample moments of Y; by
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The estimated multiple regression betas are given by B = VRfo_l.

Pricing Results

We first present the asymptotic distribution of the risk premium estimates when the weighting

matrix W is known.

Proposition A.1. Let H = (X'WX)™', A = HX'W, and v+ = [y, 75,/ = ARi. Under a

potentially misspecified model, the asymptotic distribution of 4 = (X’WX)_lX’WﬂR is given by

VT =) 2 N(0g41,V(3)), (A.5)

!For most of our analysis, we only need to assume V; is nonsingular and Vzy is of full column rank. For the case
of generalized least squares (GLS) cross-sectional regression (CSR), we also need to assume Vg is nonsingular.



where

V() = > Elhihy ), (A.6)
j=—00
with
ht = (’}/t — ’y) — (d)t - (b)wt + HZt, (A7)

oy = [’YOu (’71t - ft)/]/7 ¢ = [’YO, (’71 - ,U«f)/]/7 Uy = €/W(Rt - MR), wy = ’Y{Vf_l(ft - Nf); and
2zt = [0, we(fy — uf)’Vf_l]’. When the model is correctly specified, we have:

hi = (v — ) — (¢t — )wr. (A.8)

We do not provide the proof of Proposition A.1 as its proof is similar to that of Proposition A.2

below.
To conduct statistical tests, we need a consistent estimator of V' (¥). This can be obtained by
replacing h; with
iLt = ("Ayt - "3/) — ((it - ¢E>’11A}t + ﬁét, (Ag)
where 3¢ = [or. ) = (XWX)'X'WRe, & = [or, (e — 1)1 6 = Fo, (G — ag)), e =
EW(R; — fir) with & = fip — X4, by = 3V; ' (fr — fip), H = (X'WX)™" and 2 = [0, a(f; —
fir) Vf_l]’ . In particular, if h; is uncorrelated over time, then we have V(%) = E[h:h}], and its

consistent estimator is given by

V(3) = =5 bl (A.10)

N

When h; is autocorrelated, one can use Newey and West’s (1987) method to obtain a consistent

estimator of V(7).

An inspection of (A.7) reveals that there are three sources of asymptotic variance for 4. The
first term - — v measures the asymptotic variance of 4 when the true betas () are used in the
CSR. For example, if R; is i.i.d., then - is also i.i.d. and we can use the time series variance of 4
to compute the standard error of 4. This coincides with the popular Fama and MacBeth (1973)
method. Since the betas are estimated with error in the first-pass time series regressions, an errors-
in-variables (EIV) problem is introduced in the second-pass CSR. The second term (¢ — ¢)w; is

the EIV adjustment term that accounts for the estimation errors in B . The first two terms together



give us the V(¥) under the correctly specified model.? When the model is misspecified (e # Oy),
there is a third term Hz;, which we call the misspecification adjustment term. Traditionally, this

term has been ignored by empirical researchers.

We now turn our attention to the asymptotic distribution of 4 when W must be estimated. It
is easy to verify that the use of W instead of W does not alter the asymptotic distribution of 4
when the model is correctly specified. However, the asymptotic distribution is affected when the

model is misspecified. In the following proposition, we present the distribution for the GLS case.

Proposition A.2. Let H = (X’Vlng)_l, A= HX’Vlgl, and v = [yor, Vi) = ARy Under a
potentially misspecified model, the asymptotic distribution of ¥ = (X’Vlng)_lX/VglﬂR s given

by
VT3 —7) ~ N(0g+1, V(7)) (A11)
where .
V(§) = Z Elhhy ), (A.12)
with
hi = (v —7) = (¢t — Q)we + Hzp — (v — 7)us, (A.13)

¢t = [’YOta (’)/lt - ft)/]lf ¢ = [’707 (71 - ;uf),]lz Ut = e/VR_l(Rt - MR); wy = Wivf_l(ft - /J*f)z 2t =
[0, we(fe — uf)’Vf_l]’. When the model is correctly specified, we have:

ht = (ve —7) — (¢t — P)we. (A.14)

Proof: The proof relies on the fact that 4 is a smooth function of i and V. Therefore, once we
have the asymptotic distribution of /i and V, we can use the delta method to obtain the asymptotic

distribution of 4. Let

i

~

vool®) (A.15)
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vec(V)

We first note that i and V can be written as the generalized method of moments (GMM) estimator

that uses the moment conditions E[r¢] = O(y4x)(n+K+1), Where
B Yi—n

vee((Yy = p)(Ye — p)' = V)

It can be verified that this expression coincides with the one given by Jagannathan and Wang (1998) in their
Theorem 1, except that our expression is easier to use in practice.

(A.16)




Since this is an exactly identified system of moment conditions, it is straightforward to verify that

under the assumption that Y; is stationary and ergodic with finite fourth moment, we have:3

. A
VT (¢ — ) ~ N(Ontry(N+K+1): 50)s (A.17)
where
oo
So= Y E[rril. (A.18)
j=—00

Using the delta method, the asymptotic distribution of 4 under the misspecified model is given by

. A Iy oY
Ty — ~ N — — . A.19
V(5 —7) <0K+1, [&p,} So {390’] ) (A.19)
It is straightforward to obtain:
vy 0y
87;} = 0(k+1)xK> o = A. (A.20)
For the derivative of v with respect to vec(V'), we first need to obtain dx/dvec(V)', where z =
vec(X). In order to prove this identity, we write:
Vi = Ik, Okxn)V [k, Oxxn]', Vif = [Onxr, IN]V[Ik, Ogxn] (A.21)
to obtain
ovec(Vy)
—= = |Ig, 0 Ir, 0 A.22
Bvec(V)! Ur, Oxxn] ® [Ix, Oxxn], ( )
8V€C(VRf)
_— Ir, O 0 In]. A.23
dvec(V) Ur, Okxn] ® [Onxk, IN] ( )
With the following identity
8vec(Vf_1) B 6vec(Vf_1) dvec(Vy)
ovec(V) — Ovec(Vy) Ovec(V)
= —(Vf_l ® Vf_l) (Uk, Oxxn] ® [Ir, Ok xnN])
= Vil Orxn] @ [=ViY, Ok, (A.24)
we can use the product rule to obtain
—1
Ovec(p) _1 ovec(Vgy) Ovec(V; )
TVENT) In) TR (1@ Vi)
Ovec(V') Vi ®In) Ovec(V') + Uk @ Viy) Ovec(V)
= [Vf_la 0K><N] ® [ONXKa IN] + [Vf_la OKxN] ® [_Bv 0N><N]
= Vil Orxn] ® [-8, In]. (A.25)

3Note that Sp is a singular matrix as Vs symmetric, so there are redundant elements in . We could have written
@ as [{i’, vech(V)']’, but the results are the same under both specifications.



Finally, using the identity dz/0vec(B8)" = [0k, Ix| @ In, we obtain:

ox dx  Ovec(p)

avec(V) — dvec(B) dvec(V) (105, V7YY Oy ) @ =B, In (A.26)

Let K, », be a commutation matrix (see, e.g., Magnus and Neudecker (1999)) such that K, ,vec(A) =
vec(A’) where A is an m x n matrix. In addition, denote K, by K. Then, using the product

rule, we obtain:

( / —1 aveC(X,) / /
ve +(MRVR ®H) aVGC(V)/ +(IMR®HX )

dvec(Vit)

Dveety (A20)

- 00 = /
Ovec(V') (MR Ve

The last two terms are given by

_ Ovec(X'’ 11 _ _
(V' ® H)a((V)) [H [0, V| 0csnyn] @ =R Vi '8 ViV, (A28)
dvec(Vy 1) _
(g ® HX/)&,T({;), —[0%, HRrVy e 0(x+1yx K> Al (A.29)

For the first term, we use the chain rule to obtain

Ovec(H)
ovec(V)
Ovec(H) Ovec(H™ 1)
dvec(H=1) dvec(V)

(WrVE'X ® Ig41)

= (WrVy'X ® Ik 1)

) B or
= —(Vy X @I, 1) (H® H) {(X’VR '® IK—i—l)KN,K—HW
dvec(V; 1) - Oz
X’ X/ 71% I X/ 1 -
+HX ®X) ovec(V') T ® Xy )8VGC(V)/

= —(Y®H) {([—X’Vglﬁ, Xvill® [[OK, v, O(KH)XND Knik
- [O(K-‘rl)XKa X/V}-gl] ® [O(K+1)><K7 legl]
= [H[OK, fol}', 0(K+1)><N} ® [V X'VZ18, -/ X'V; 1

+ [0, VX'V © Oy Al— MV, Oy] @ [—AB, Al (A.30)
Combining the three terms and using the first order condition 'V le = 0g, we have:

oy B )
&/T(V)’ = [H[OK, Vf 1]/7 O(K+1)xN} ® [O/K7 BIVR 1]
- [73‘/;1, oﬂ ® [-AB, Al — [0, €Vi'] @ [0ki1yxrs A] . (A31)

5



Using the expression for 9v/0¢’, we can simplify the asymptotic covariance matrix of 4 to

o0

V() = Y Elhhiyyl, (A.32)

j=—o0
where

0y
ht == wrt

[OK, Vf_l]H ])

= A(R¢ — pr) + vec ([0%7 eV (Ve — ) (Y — ) = V]
ONx(K+1)

Vfil’yl
On
Or

Vgle )

= (v —7)+HOk, Vi (fi = np)ue — ARy — pr) = B(fe — )l (fe — 1) Vi '
— A(R; — pr)us — H[Ok, Vi '\'VirVi'e — AByi + ABm + Ae

= (m—7)+Hz— (¢ — p)we — (v — 7w (A.33)

~ vec ([—Aﬂ, AJ[(Y: = ) (Y — ) — V]

— vec ([O(K-i-l)xKv AH(Yt — ) (Y — M)/ - V]

The last equality follows from the first order condition X'V, Ye = 0x41 (which implies £ Ve le =0k
and Ae = 0x1) and the fact that A = AX [0k, Ix] = [0k, Ik] gives us
0

] = ¢ — . (A.34)
Je — g

A(Ry — pg) —Aﬁ(ft—lif) =7 - [

Note that when the model is correctly specified, we have e = On, uz = 0, and h; can be simplified

to
he = (e =) = (¢r — P)wy. (A.35)
This completes the proof.

Comparing (A.13) with the expression for h; in (A.7), we see that there is an extra term in
h; associated with the use of W instead of W. This fourth term vanishes only when the model is

correctly specified.

To gain a better understanding of the relative importance of the misspecification adjustment
term, in the following lemmas we derive explicit expressions for V(%) under the assumption that
returns and factors are multivariate elliptically distributed, first when W is known, and then for

the GLS case.



Lemma A.1. When the factors and returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter k,* the asymptotic covariance matriz of 4 = (X/WX)*IX’W,&R s given by

V(§) = Tw + Tur + Ty + Tus, (A.36)
where
Y, = AVRA' + (1487 V; 'mATA, (A.37)
Tur = —(1+r)H[0, nV; ' eWVRA, (A.38)
Twr = (1+/<c)e’WVRWer/f_1H, (A.39)
with
. 0 0
vil= . (A.40)
Ok V;

Proof: In our proof, we rely on the mixed moments of multivariate elliptical distributions. Lemma 2
of Maruyama and Seo (2003) shows that if (X;, X;, Xj, X)) are jointly multivariate elliptically

distributed and with mean zero, we have:

E[X;X;X;] = 0, (A.41)

EX:X; X, X)) = (1+k)(oijon + oo+ 0qoji), (A.42)

where 0;; = Cov[X;, X;]. We first note that since v, ¢, Vf_l(ft — puf), we, and u; are all linear
functions of R; and fy, they are also jointly elliptically distributed. In addition, using (A.34), we
have ¢ — ¢ = A€y, where ¢, = Ry — pug — B(ft — ptf), which is uncorrelated with f;. Using this result
and applying (A.41) and (A.42), we can easily show that

El(v =)0t — 9)'we] = Ots1)x (k415 (A.43)
El(v =Mzl = Ok1)x(K+1)» (A.44)

Elziz) = (1+r)eWVpWeV; !, (A.45)

E[(¢r — d)zwe] = (14 r)AVRWe[0, 1V, '], (A.46)

El(¢r = ¢)(¢r — ¢)wi] = (1+r)%V; mASA (A.4T7)

4The kurtosis parameter for an elliptical distribution is defined as x = pa/(30?) — 1, where o and 4 are its
second and fourth central moments, respectively.



Using these results and the i.i.d. assumption, we can now write:

V() = Eluh]
= Varly] = B[(v =) (¢t — &)'wi] + El(v — 7)1 H
+ Bl(¢ = 0)(¢r — ¢)'wi] = El(¢r — &) (% —7)'wi] = El(dy — ¢)zywi] H
+ HE[ziz)H + HE[2(ve —)'] — HE[21(dr — ¢)'wi]
= AVRA + (1+ r) (V) ASA + (1 4 k) WVRWeHV H

— (14 K)AVRWe[0, 1V HH — (1 + k)H[0, vV eWVRA. A .48
f f
This completes the proof.

Note that when x = 0, Lemma A.1 collapses to the expression given by Shanken and Zhou
(2007) in their Proposition 1 under normality. For general W, the misspecification adjustment term
Ywi + Tiy + YTue2 is not necessarily positive semidefinite. However, for true GLS with W = Vj; !
or W = Y71, we have AVRWe = Ae = 041, so Ty vanishes, resulting in the following simple

expression for V' (¥):
V(§) = H+(1+ )%V, (X' X)) + (1+ w)QHV, ' H, (A.49)

where H = (X’VR_IX)*1 and ) = e’Vgle. The misspecification adjustment term (1+ ﬁ)QHVf_lH
is positive semidefinite in this case since 1 + £ > 0 (see Bentler and Berkane (1986)) and Vf_1 is
positive definite. Note that the adjustment term is positively related to the aggregate pricing-error

measure () and the kurtosis parameter .

Lemma A.2. When the factors and returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter K, the asymptotic covariance matriz of 4 = (X’VR_IX)AX’VB?I/ALR s given by

V(;Y) =Ty, + Tw27 (A.50)
where
YT, = H+(1+r)%V, XS 1X) (A.51)
Twr = (14+8)Q|X'T'X)W XTI X)) + (X' X)), (A.52)
. —1 —1 (r—1 0 O/K
with H = (X/VR X)_l} Q = e/VR e, and Vf — -
Ok V;

8



Proof: Under the i.i.d. assumption, the expression for V(%) is given by

Elhthy) = Var[y] — E[(ve — ) (¢ — ¢)'wi] + El(v — 7)z]H — E[(v — 7) (7 — ) w4

+ E[(¢r — ) (1
+ E[(¢r — o) (%

— HE[z(¢r — ¢) wy

¢ ¢)w7] —
¢
t

] _
El(v —7)(ve —7)u

Following the proof of Lemma A.1, we have:

By partitioning H as

Var[y] = H,
El(v =6t — 0wl = Ots1yx(k+1)»
El(v =zl = O®+1)x(k+1)s
Elzaz] = (1+r)QV/,
= O(x+1)x(K+1)s

A+ rmnV; 'm(X's71 X))

El(v —7)(ve =) u]l = Otrsyx(x+1),
El(¢r — @) (vt — ) wiue] = Ogy1)x(K+1)>
El(v =) (e —7)ui] = (14 r)QH,
, 0 oy
Elzi(ve —7)u] = (1+r8)Q .
0 Ik
"o Hy1 Hipo 7
Hy1  Hao

where Hy; is the (1,1) element of H, and using (A.54)—(A.63), we can write:

Elhhy) = H+Q+rmV; ' m(X'S7X) " + 1+ 5)QHV, 'H

- (1+r)QH Ok

O Ik

Ty + (1+r)Q | HV;'H +

Ok
H12Vf71H21 + Hyp

Ty +(1+k)Q B
( ) HyV, YHy

9

+(1+I€)QH—(1+I€)Q[ 0

Ok Ik

0
—Hoo
H12Vf71H22
H22Vf_1H22 — Has

HE[z(ve — ) ut] + E[(v =) (ve =)'

|+ El(v —7)(¢¢ — ¢)'weur] — E[(ve — ) zpue] H.

] |

u]

O

El(¢t — ¢)(ve — 7)'we] — El(¢r — ¢)zwe] H

v)'wiue] + HE[z 2] H + HE [z (7 — 7)']

]H

(A.53)

(A.65)



0 0
Ox Vf
expression of T2 in (A.52) is the same as the second term in (A.65) as follows:”

By applying the identity (X'S~'X)~! = H — V}, where Vf =

] , we can verify that the

X' X) VX ETIX) T (XSTIX) T = (H=V) VN H - V) + H -V

N Hy 0

= gvitE | K
Ok —Ha

] . (A.66)
In particular, the misspecification adjustment term for V' (51) is
(14 K)Q(HxV; ' Hay — Hy)
= (1+r)QHxnV; ' (Vy — ViHy Vi)V, ' Hay

= (14 8)QH2V; Vi = ViV 'Vas + VirViy v (Vi ) T Vi VeIV Hao(A67)
where the last equality is obtained by writing H2_21 as
Hy' = BV B =BV "in(Uy Vi y) V8. (A.68)
This completes the proof.

Note that the term Vy — V;gVy 1VRf in (A.67) is the variance of the residuals from projecting
the factors on the returns. For factors that have very low correlations with the returns (e.g.,
macroeconomic factors), the impact of this term and hence of the misspecification adjustment on

the asymptotic variance of 41 can be very large.

In the following proposition, we present the asymptotic distribution of 5\, the estimated param-
eters in the covariance-based model, for various cases. Since the derivation is very similar to the

derivation for 4, we do not provide the proof.

Proposition A.3. Under a potentially misspecified model, the asymptotic distribution ofj\ 18 given

by
VT(A = X) 2 N(0g41, V(A)), (A.69)
where -
V(A = ‘Z Elhhy ). (A.70)

"By comparing V() for the estimated GLS case with the V() for the true GLS case in (A.49), it is easy to
see that the use of Vi ! instead of Ve ! as weighting matrix increases the asymptotic variance of 4o but reduces the
asymptotic variance of 91.

10



To simplify the expressions for hy, we denote the last K elements of X by \i and define Gy =
(Rt - /’LR)(ft - ,Ltf)/ - VRf7 Zt = [07 ut(ft - Mf)/]/7 H = (C/WC)717 A = FIC/W; At = ARt; and
Ut = GIW(Rt — /LR).

(1) With a known weighting matrizc W, A = (C'WC)"*C'W g and
he = (N —A) — AGM + H,. (A.71)
(2) For estimated GLS, \ = (C”Vglé)_lé’vglﬂjg and
he = (A — \) — AG A + Hz — (A — Ny, (A.72)

When the model is correctly specified, we have:

hi = (M — A) — AGi ). (A.73)
Results for the Sample R?
We characterize the asymptotic distribution of p? in the following proposition.

Proposition A.4. In the following, we set W to be Vgl for the GLS case.

(1) When p* =1,

T A N—-K-1 )
(1) = - fo Loy Ha (A.74)
=1

where the x;’s are independent X3 random variables, and the & ’s are the eigenvalues of

J

P'WzSW:zP, (A.75)

where P is an N x (N — K — 1) orthonormal matrixz with columns orthogonal to W%C’, S is the
asymptotic covariance matrix of % Ethl €yt, € = Ry —pr — B(fe —pg), and ype = 1 — N (fe — py)
is the normalized stochastic discount factor (SDF).

(2) When 0 < p? < 1,

VI(P* — p*) ~ N |0, f} Elngnig] | (A.76)

j=—o0

11



where
ne = 2[—wy+(1- pg)vt] /Qo for known W, (A.T7)
ne = [uf — 2wy + (1— p?) (20 — v7)] /Qo for W = Vgl, (A.78)
with eg = [Iy — IN(UNWIN) MU Wng, ue = €W (Ry — ur), and vy = eyW (R — pg).

(3) When p? =0,
éﬂ

0

£

Tj, (A79)

O

K
TP ALY
j=1

where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of
BWB = BWiy (W) Iy WAV (), (A.80)

where V(41) is given in Proposition A.1 (for known weighting matriz W) or Proposition A.2 (for
estimated GLS).5

Proof: (1) p? = 1: We first derive the asymptotic distribution of

TQ = T|ppWiir — figWX(X'WX) ' X'Wig] (A.81)
under Hy : p?> = 1, where WS w (this includes the known weighting matrix case as a special
case). This can be accomplished by using the GMM results of Hansen (1982). Let 6 = (0], 65),
where 01 = (o/, vec(B)")" and 63 = ~. Define

g1:(01) ] _
92¢(0)

where I; = [1, f/]' and ¢ = Ry — o — Bfr. When the model is correctly specified, we have

I ® €

0) =
gt( ) Ry — X~

(A.82)

Elg:(0)] = 0p+n, where p = N(K + 1). The sample moments of g¢(6) are given by
T i1 91(61) ]
T .
% > ot=192t(0)
Let 6 = (0], 05)', where 6, = (&, vec(3)')' is the ordinary least squares (OLS) estimator of o and

B, and

gr(0) = [ (A.83)

Oy =4 = (X'WX)"'X'Wig (A.84)

In the proof of this proposition, we show that p? = 0 if and only if 41 = Ox. Therefore, another way to test
Hy : p? = 0 is to test the equivalent hypothesis Hy : 71 = Ox, which can be easily performed by using a Wald test.
When computing V' (§1) for the test of Hy : p*> = 0, one could also impose the null hypothesis Ho : 71 = Ox and drop
the EIV term (¢: — ¢)w: in the expressions for h; in Propositions A.1 and A.2.

12



is the second-pass CSR estimator of 7. Note that 6 is the solution to the following first order

condition
Brgr(0) = Op k41, (A.85)
where
I 0 . I 0
Br = A = v V= B (A.86)
Ort1)xp X'W Ok+1)xp X W
Writing
L@e = vec(ely) = (It @ In)vec(er), (A.87)
& = Ri—a—ffi =R — (l;®In)01, (A.88)
Bn = (1 ®In)vec(B), (A.89)
we have:
0g14(0
ggé,l ) _ —Ll, ® I, (A.90)
091¢(01
89(’2 ) - Opx (K+1); (A.91)
0gar (0
5;§ ) - 0, =l @ In, (A.92)
1
9g2:(0)
= —X .
o0 (A.93)
Let
_ Ogr(9)
bro= "oy
_ - (% Zf:l ltli) ®IN Opx(r+1)
[0, —vi] ® In -X
s —ElLl)®Iy 0
s [Llt] @ IN - Ops(k41) . (A.94)
0, —v]®Iv  -X
Hansen (1982, Lemma 4.1) shows that when the model is correctly specified,” we have:
_ A A _ _
\/TQT(Q) ~ N(Op4n, Upyn — D(BD) 1B]Sg[lp+N — D(BD) 1B]/)7 (A.95)

"Although it is possible that some of the GMM sample moment conditions are not asymptotically normally
distributed (see Gospodinov, Kan and Robotti (2010) for details), our results on the asymptotic distribution of
T(p* — 1) are not affected by this problem.
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where

o0

Sy =Y _ Elgi(0)ges;(0)]. (A.96)

j==o0

Using the partitioned matrix inverse formula, it is easy to verify that

B 1 + ,u/ V_l,uzf _M/ V—l
A ‘f_lf Vf_lf (A.97)
—Vy Bf f
It follows that
—Elll®I 0
BD [ ' d Ny (A.98)
[0, n]eXxX'W  -H
. —El ] © Iy Opx (K+1) A
(BD) o lv—l lv—l A _H ’ ( 99)
L [—71 F oHf Ny ] ®
i I 0px N
-1 p pX
DBy 5 A Wolle (In—XA) XA | (4.100)
L (=71 F oHf Ny @ (In )
[ Opxp Opr
I,.,n — D(BD)"'B B h . (A.101)
pev = DIBD) Vs AV (I - XA) Iy — XA

We now provide a simplification of the asymptotic distribution of gor(6). From (A.95), we have:

VTgar(0) 2 N(0x, V), (A.102)
where
Vo= i Elq:(0)qr+5(0)'], (A.103)
and s
@(0) = [Onxp, IN]{Lprn — D(BD)™' Blgi(0)

= —(In = XA)e )V (fr — pp) + (In — X A) (R — X7)
= (IN — XA)[Rt — Gt’yivf_l(ft — ,u,f)]

= (IN - XA)Etyt

= [Iy - X(X'WX) ' X'W]esy

= WeIy - WeX(X'WX) ' X'W2|Weey,

— W3 [Iy - WiC(C'WO) L' WE Wi e,

= W 2PPWaey, (A.104)
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where yy =1 = N (fi —pf) =1—- Vf_l( ft — 1y). The fourth equality follows from the fact that,
under Ho: p? =1, (Iy — XA)R; = (In — X A)e;. With this expression of ¢:(6), we can write V; as

V,=W :PP'W2SW2PP'W 2. (A.105)

Having derived the asymptotic distribution of §2T(é), the asymptotic distribution of Q is given by

N—-K-1
TQ = ngT(é)’ngT(H) ,é Z fjacj, (A.106)

where the x;’s are independent X3 random variables, and the §j’s are the N — K — 1 nonzero

eigenvalues of

WaV,W2 = PPW2SW2PP. (A.107)

Equivalently, the &;’s are the eigenvalues of P’ W3SW3P. Since Qo > Qo > 0, we have:

T —1)=— o, > éﬂoxj (A.108)

(2) 0 < p? < 1: The proof uses the same notation and delta method employed in the proof of

Proposition A.2 to obtain the asymptotic distribution of 52 as

VT(3* - p2) A N o, Z [neners] | (A.109)
j=—00
where
op°
ng = Frt (A.110)

Obtaining an explicit expression for n; requires computing 9p?/d¢’. For both the known weight-

ing matrix case and the estimated GLS case, we have:

op*

op* _ -1 2

Y 2Q, W1 — p*)eg — €. (A.112)
HUR

Equation (A.111) follows because p? does not depend on py. For (A.112), using the first order
conditions 1%,Wey = 0 and X'We = 0x 1, we have:
Q

Qo
—Wey,  —X —9oWe. A113
Opr 0 Our ( )
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It follows that

o
Our

1 8Q 3@0

=—Q . QOQQ = —2Qy ' We +2QQy*Wey = 2Q, ' W[(1 — p*)eg —e]. (A.114)

The expression for dp?/dvec(V)', however, depends on whether we use a known W or an estimate
of W, say W, as the weighting matrix. We start with the known weighting matrix W case.
Differentiating @ = ¢'We with respect to vec(V'), we obtain:

Q O — X7)
7% _9 T\ AT
ovec(V') W ovec(V)

Ox 0
=2 "'® I X . A1l
W [(7 © N)é?vec(V)’ * 8vec(V)’] ( 5)

Note that the second term vanishes because of the first order condition X'We = 0g.1. Using

(A.26) for the first term and the fact that 5'We = 0k gives

? ! A Vou / Iy — / / /
8vec?V)’ =—2cW ([71Vf Loyl @ [-8, IN]) =-2 ([vlvf Loy @ [0k, e W]) . (A.116)

Since Qo = e,Weq does not depend on V', we have:

op* 4 0Q . o
Bvee(VY — 9 Bvee(Vy =2Q0 ' 11Vy ", 0x] @ [0, €W, (A.117)

Therefore, for the known weighting matrix W case, n; is given by

ne = gp,Tt
= 2Q,'[(1 = p*)ep — €IW(R: — pr) +2Q5 W (Ry — pr)(fr — 1) Vi 'm
= 2Q " [~uyr + (1= p*)u. (A.118)

We now turn to the W = VR_I case. Differentiating @) = e’Vgle with respect to vec(V), we

obtain:
oQ i / —16(,“R _X’V) / 8V€C(VR_1)
ovec(V) 26 Vi Ovec(V') +lead) Ovec(V')
= —2(PVh oM@ Ok, €VE']) = (€ @) (O, Vi1 @ [0nrcs Vi)
= -2Vl EVvRlle 0k, €Vt (A.119)
Similarly, we have:
Qv
Dvec(VY —[0%, epVi ' ® 0%, epVi '), (A.120)
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It follows that for the GLS case

op? _ 9Q 2, 9Qo
dvec(V) Q' Avec(V)! Qo Qavec(V)
= Qi vy vt @ [k v
—Qy'(1=p%) [0, V'] @ [0, egVy '] (A.121)

Therefore, we have for the GLS case:

dp?
ng — Wrt
= 2Qq'[(1 = p*)ep — WVt (R — nr) + Q¢ Vi (R — nr) 2V (fe = 1)
+ eV (R — pr)] = Q' (1= pP) eV ' (B — ur))” = Q5 Q + Qp ' (1 = ) Qo

= Qy'[uf — 2wy + (1 — p*)(2ve — v7)]. (A.122)

(3) p? = 0: We start by rewriting Qo — Q as

Qo—Q = peWXXWX) ' X'Wup — gWiy(INWiy) 1 Wr

WWin)~t 0
= WX X'WX) ' X'Wur — WpgWX SUEY K X'Woug
Ok O xK
WWin)~t 0
= WXy -y eewx) | YT O ey,
Ok Orxk
1 W1 W
= Y XWXy A | NN o ’ L
BWly BWin(Wiy) W3
= NIBWB = BWIN(INWin) ' IyWaBn. (A.123)

The matrix in the middle is positive definite because X is assumed to be of full column rank, so
the necessary and sufficient condition for Qo = @ (i.e., p*> = 0) is 41 = Ox. Note that (A.123) also
holds for its sample counterpart, so we can write p? as
2, Q Q-0 HIFWSE-FWInAyWiy) "1 WHH
pr=1- x
Q Qo Qo
Under the null hypothesis Hy : v1 = O, we have:

(A.124)

VT4 & N0k, V(5)), (A.125)

where V' (41) is the asymptotic covariance matrix of 4; obtained under the misspecified model. As

QQ 25 Qo > 0 and
BWS = BWIn(IyWin) Iy WS 25 BWE — B Wiy (W) 1y W5, (A.126)
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it follows that

£

1, (A.127)
0

AKS
Tp? ~

O

where the z;’s are independent X3 random variables and the §;’s are the eigenvalues of

[BWB — B Win(INWin) U BV (51). (A.128)

This completes the proof.

Model Comparison Tests

Nested Models

Lemma A.3. pi = pQB if and only if Ag2 = Ok,.

Proof: Partition Cy = [Caq, Cap), where Cy, is the first K1 + 1 columns of Cy4 and Cyy is the

last Ko columns of C'4. Using the fact that Cy, = Cp, we can write the difference between Qp

and Q4 as

Qp—Qa =

PRW CA(CAW CA) T CUW g — fzgW Cp(CrW Cp) ' CpW g

C WOt 0
W CA(CLW O Wi — sy | (Gl Caa Qv | oy
0K2><(K1+1) 0K2><K2
Ch WCx) ' 0
Ny (CLW Ca)Aa — Ny (CyWCa) (CaaWCaa) ™ Orcrsiyxrs (CWCA)Aa
0K2><(K1+1) OKQXKQ
Ny o[CW Cap — Clyy W Caa(ClyaW Caa) ™ (CluaWC ) A a2
NioH 3 hoAa2, (A.129)

where gA’QQ is the lower right Ko x K5 submatrix of Hj = (CyWC4)~1. Since Cy is assumed to

be of full column rank, JEIZIQQ is a positive definite matrix. It follows that Q4 = @ p if and only if

A2 = Og,. This completes the proof.

By this lemma, to test whether the models have the same p?, one can simply perform a test

of Hy: A2 = Og,. Let V(S\ A,2) be a consistent estimator of the asymptotic covariance matrix of

ﬁ(S\AQ — Aa2). Then, under the null hypothesis,

1ty 15 A
TNy oV (Aap) a2~ xk,, (A.130)
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and this statistic can be used to test Hy : p124 = p2B. If K5 = 1, we can also use the t-ratio associated
with A2 to perform the test. However, it is important to note that, in general, we cannot conduct
this test using the usual standard error of A 4,2, which assumes that model A is correctly specified.

Instead, we need to rely on the misspecification-robust standard error of A given in Proposition A.3.

In the next proposition, we derive the asymptotic distribution of ,6124 — ,623 and use this statistic

to test Ho : p% = p%.

Proposition A.5. Partition Ha = (C',WC4)~" as

N H H
= ~A,11 ~A,12 7 (A.131)
Hpo1 Haoo
where I:[A,gg 18 Ko x K5. Under the null hypothesis Hy : p124 = pQB,
4_A
T(p% —iB) ~ > 0% (A.132)
=1

where the x;’s are independent X3 random variables and the & ’s are the eigenvalues ofﬁ;éQV(S\AQ).

We do not provide the proof of Proposition A.5 since this proposition is a special case of Proposi-

tion A.6 below when K3 = 0.

Again, we emphasize that the misspecification-robust version of V(S\ A,2) should be used to test
Hy : p% = p%. Model misspecification tends to create additional sampling variation in p% — p%.
Without taking this into account, one might mistakenly reject the null hypothesis when it is true.
In actual testing, we replace {; with its sample counterpart éj, where the fj’s are the eigenvalues of

1:1212217(5\,4,2), and I‘}A’QQ and V(S\A,Q) are consistent estimators of I:IAQQ and V(S\A,Q), respectively.®

Non-Nested Models

Testing Hy : p% = p% is more complicated for non-nested models. The reason is that under Hy,
there are three possible asymptotic distributions for ,6124 — p%, depending on why the two models
have the same cross-sectional R?. To see this, we first define the normalized SDFs for models A

and B as

ya=1—(fi— E[fi])’2a1 — (f2 — E[f2])' Aaz2, yg=1—(fi — E[fi]) 1 — (fs — E[f3])' XB,3-
(A.133)

8In the empirical application in the paper, we use the weighted chi-squared test in Proposition A.5 for nested
models. Results for the Wald test of Aa,2 = Ok, based on Lemma A.3 are consistent with those shown in Table IV.
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At first sight, it may appear that y4 = yp is equivalent to the joint restriction Ag1 = Ap 1,
A2 = Ok, and Ap3 = Og,. The following lemma shows that the first equality is redundant,

however, since it is implied by the other two.
Lemma A.4. For non-nested models, ya = yp if and only if Aa2 = Ok, and Ap3 = Og,.

Proof: Given that y4 = yp if and only if Aa1 = A1, Aa2 = Ok,, and Ap3 = Og,, it suffices
to show that Ayo = Og, and Ag3 = Ok, imply Aa1 = Ap,;1. Premultiplying both sides of Ay =
(CyWC )" IC\Wug by CyWC4, we obtain:

A
Ol WCia CWCa 40 O Wit
/ / Aap | = (A.134)
A2

where Cy, is the first K141 columns of C'4 and Cy is the last Ko columns of C'y. When Ay 2 = O,

the first block of this equation gives us

[ AA,0 _
| = (ChaWCaa) ™ Cu,W pig. (A.135)
71 n

Similarly for model B, when Ap3 = Ok,, we have:

[\
PO = (Cp W Cpa) T ClWpin, (A.136)

- AB71 -~

where Cp,, is the first K1 +1 columns of C'z. Since C4, and Cp, are both equal to [1x, Cov[Ry, f1,]],

we have Ay o = Ao and Ay 1 = Ap 1. This completes the proof.

Lemma A.4 shows that y4 = yp implies that the two models have the same pricing errors
(ea = ep) and cross-sectional R? (p% = p%). Note that this lemma is applicable even when the
models are misspecified. It implies that we can test Hy : y4 = yp by testing the joint hypothesis
Hy : A2 = Og,, A3 = Og,. Let ¢ = [)\;172, )\’373]’ and ¢ = [5\;172, 5\’373]’. It can be easily

established that under Hy : y4 = yp, the asymptotic distribution of gZ; is given by

VT = ) © N(Ogyix5 V (D)), (A.137)
where .
V)= Y Elad) (A.138)



and ¢ is a Ko+ K3 vector obtained by stacking up the last K5 and K3 elements of hy for models A

and B, respectively, where hy is given in Proposition A.3.

Let V(1)) be a consistent estimator of V(¢)). Then, under the null hypothesis Ho : ¢ = O, 5.
e N1 A
TY'V ()™M ~ Xy iy (A.139)

and this statistic can be used to test Hy : y4 = yp. As in the nested models case, it is important

to conduct this test using the misspecification-robust standard error of 1&

The following proposition gives the asymptotic distribution of ﬁi — ﬁzB given Hy : y4 = yB-

Proposition A.6. Let Hy = (C'yWC)~! and Hg = (CyWCp)™Y, and partition them as

_ H H 8 H H
A= fan Ha ’ Ay = 1B B3 7 (A.140)
Hpo1 Haoo Hp31 Hpgs
where fIA,H and IEIB,H are (K1 4+ 1) x (K1 +1). Under the null hypothesis Hy : ya = yB,
A Ko+K3 €
T - A Y Sy, (A.141)
= Qo
where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of
b, 0 .
S R (A.142)
0K3><K2 _HB’33

Proof: We first derive a simplified expression for @Qp — Q4. The aggregate pricing-error measure

for model A is given by
Qa=esWen = pgWur — WgWCA(C'AWCA) Oy W pg. (A.143)

We now introduce a model M that uses only f; as factors. The aggregate pricing-error measure

for model M is given by
Qur = eyWen = WpWug — lgWCy(ClyyWCry) 1O W g, (A.144)

where Cyy = [1y, Cov[R, f{]]. Using the fact that the Ca, = Cp, = Cps and (A.129), we can write

the difference between Qs and Q4 as
Qun —Qa= )\2,21512,122)%,2 (A.145)
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Similarly, we have:
Qu — Qp = Ng3Hpls\ps. (A.146)
Subtracting (A.146) from (A.145), we obtain:
. N Hyh  Okyxk
Qp—Qa=NyoH 5 a2 — NpsHph s =0/ 422 2, (A.147)
’ ' 0K3 X Ko _HB’33
where ¢ = P‘;\,?’ /13,3]/ . This equation also holds for its sample counterpart, and under the null
hypothesis Hy : ¢ = Ok, + K5, we have \/TV(@ZA))_%@ 2 N(Ogy+ ks, I, K5). 1t follows that

Ko+K3

T(Qp —Qa) 2 Z g, (A.148)
j=1

where the z;’s are independent X3 random variables and the &;’s are the eigenvalues of

rr—1
[ HA722 0K2><K3

rr—1
0K3><K2 _HB733

] V(). (A.149)
Since p% — p% = (QB —Q4)/Qo and Qo 2% Qo > 0, we have
T(p53—pp)~ Y, ;. (A.150)

This completes the proof.

Note that we can think of the earlier nested models scenario as a special case of testing Hy :
ya = yp with K3 = 0. The only difference is that the ¢;’s in Proposition A.5 are all positive whereas
some of the ¢;’s in Proposition A.6 are negative. As a result, we need to perform a two-sided test

based on p% — p% in the non-nested models case.”

When y4 # yp, the asymptotic distribution of ;331 — ﬁzB given Hy : pi = sz depends on whether
the models are correctly specified or not. The following proposition presents a simple chi-squared

statistic for testing whether models A and B are both correctly specified.

Proposition A.7. Let ngy = N — Ky — Ky —1 and ng = N — K1 — K3 — 1. Also let Py be an

N X n4 orthonormal matrix with columns orthogonal to W%CA and Pg be an N x ng orthonormal

Following Davidson and MacKinnon (2003, p.174), the p-value of a two-sided test associated with a realized
statistic 7 that has a possibly asymmetric distribution is computed as p = 2min[F(7),1 — F(7)], where F(7) is the
cumulative density function of the statistic 7.
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matriz with columns orthogonal to W%CB. Let ex¢+ and epy be the residuals of models A and B,

respectively, and define

gt(0) =

A
gat(Aa) _ | eayar ’ (A151)
9Bt(AB) €BtYBt

where = (N, N)', and

5= [ Saa Sas

P 'Z E[g:(0)ge+(0)]- (A.152)

If ya # yp and the null hypothesis Hy : p4 = p% = 1 holds, then

AL A / AL A ~ ~ N A, A ~ ~ N —1 AL A

. PiWaey | [ PyWaSaaWePy PIWzSasWe2Pp PiWzea ] 4 (A153)
NN A a1 oA N A a1 oA N N X )
PuyWiep | | PaWiSpaWsPy PLW38p5W3Pp PLiWiép natne

where é4 and ég are the sample pricing errors of models A and B, and Py, Pg, and S are consistent

estimators of P4, Pp, and S, respectively.

Proof: See the proof of Proposition A.8.

An alternative specification test makes use of the cross-sectional R?s. The relevant asymptotic

distribution is given in the following proposition.

Proposition A.8. Using the notation in Proposition A.7, if ya # yp and the null hypothesis
Hy : p% = p% =1 holds, then

na+np

TR - A Y Sy, (A.154)
= @
where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of

—P\W2S44AW2Py —P W3S gW3Pp

- A - A (A.155)
PBW2SBAW2PA PBW2SBBW2PB

Proof: In the proof of Proposition A.4, we show that when model A is correctly specified,

VTea 2 N(Oy, V), (A.156)
where
Vaa = Z E[QAtQ%7t+jL (A.157)
Jj=—00
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with
qar = W 2PAP YW 2eaya = W2 PAPy\W2ga,. (A.158)

A similar result holds for model B. Stacking up the pricing errors of the two models, we have:

é
vT| ! ] 2 N (0an, Vi), (A.159)
€B
where
e}
Vo= Y Eladiyyl, (A.160)
j=—00
and ) )
qat W2 PAP W2 ga
@ = = LA : (A.161)
qBt W~ 2PgP,W2gp
We can then write V; as
y W2 Py P \W2S sW2P,P\W ™2 W 2PoP,W2SsgW2PgPLW 2 (4162
T | WoiPgPWESpaWEPAP\W 2 W2 PgPyWiSpsWiPsPpW 2 | '
It follows that .
P Wzaey
2=VT | 2 A NOnying Vo), (A.163)
PLiWiep
where ) ) ) )
P\W2SyaW=2Py P\W25,5W2Pp (A.164)
PLW2Sp W2P, PLW:SpsWaPp | '
Then, we have:
N1 A
JV A XflAJrnB. (A.165)
This completes the proof of Proposition A.7.
Using the first order condition C",W’é4 = Ox, 4k, 11, We can write:
A B B Y SV VA IS T
TQa = Teé,W2[PaPy+W2CA(CyWCy) " CyuW2|W2éy
= T\ W2P P\W2é,
= 2424, (A.166)

where z4 is the first na elements of z. Similarly, TQ B = Zzp, where zp is the last np elements

of z. Let QZQ’ be the eigenvalue decomposition of

_InA OnAXnB

N|=

1
v V2, (A.167)

O?’LBXTZA InB
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where E = Diag (&1, ..., &n 4ny) is a diagonal matrix of the eigenvalues of (A.167) or, equivalently,

1
of the eigenvalues of (A.155). Writing 2 = Q'V; %z < N(Ony4nps Ins4ny ), we have:

. . A I Onuxng RS S | o nAtns
T(@Q@p—Qa) =2 2=2'V, 2Q=Q'V, 2z =%z = Z &xj,  (A.168)
OTLBXTLA I?’LB :
where x; = ~]2- 2 X3, =1,...,n4 +npg, and they are asymptotically independent of each other.

Since p4 — p% = (QB — QA)/QO and Qp =2 Qo > 0, we have:

N na+np 5
TGa-pe)~ 2. 5ot (A.169)
=1

This completes the proof of Proposition A.8.

Note that the {;’s are not all positive because pa — ﬁ2B can be negative. Thus, again, we need

to perform a two-sided test of Hy : p% = p%.

The asymptotic distribution of [3124 — [323 changes when the models are misspecified and the next

proposition presents the appropriate distribution for this case.
Proposition A.9. Suppose ys # yp and 0 < P,24 = pQB < 1.19 We have:

VI - i) AN (0. Blddi) | (A.170)

j=—00

When the weighting matrix W is known,

dy = 2@61 [uBtth —UAtY AL — (P,24 - P2B)Ut] ) (A.171)

where uay = € ,W(R; — pur), upy = €gW(Ry — ur), and vy is defined in Proposition A.4. For
estimated GLS,

dy = Qp ' [wlhy — 2uaryar — uby + 2upyne — (P2 — pB) v — v7)] (A.172)

where uay = eAVR_l(Rt — ug) and ugy = eﬁBVR_l(Rt — pg). 1t

0Since p%4 = p% = 0 implies y4 = yp = 1, this case is already covered by the test based on Lemma A.4.

" One could impose Hy : p% = p% in (A.171) and (A.172) and the v; terms would drop out of these expressions.
However, our simulation results indicate that not imposing Ho : p% = p% in the computation of the standard errors
leads to improved finite-sample properties of the normal test. Similarly, we obtain better finite-sample performance
when, in the GLS case, we multiply u: and v; by (T'— N —2)/T.
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Proof: We start from the known weighting matrix case. Using the results of Proposition A.4, we

obtain the following expressions for models A and B:

op4 ]’ _
nat = [;sﬂ re = 2Qq [—uawar + (1= p2)vd, (A.173)
_ 8/)23 , =9 —1 2 A
npt = % Tt = 20 [_uBtth +(1— PB)Ut]' (A.174)

Now, using the delta method and equations (A.15)-(A.18), the asymptotic distribution of p% — p%

when both models are misspecified is given by

2 97/ 2 9
VI — s~ (=) A N(o, [8<’)Aa¢”3>] S [‘9(“&0"'3)}). (A.175)

With the analytical expressions of na; and np;, the asymptotic variance of vT(5% — p%) can be

written as
> Eldidy), (A.176)
j=—00
where ,
Op% _ Orf
dy= | 52— 22 ) 1o =nar —npi. A77
t ( B By Tt =NAt — NBt ( )
Therefore, we have:
dy = QQEI [UBtth — UAtYAt — (,0,24 - p2B)Ut] . (A.178)

Using the same type of proof for the GLS case with W = Vgl, we obtain:
di = Qp ' [uhy — 2uayar — uly + 2upryn: — (07 — p) (20 — 07)] - (A.179)

This completes the proof.

Note that if y4; = yp:, then pi = pQB, uAs = upt, and hence d; = 0. Or, if y4¢ # ypt, but both
models are correctly specified (i.e., uqy = upy = 0 and ,0124 = ,02B = 1), then again d; = 0. Thus,
the normal test cannot be used in these cases, consistent with the maintained assumptions in the

proposition.

Discussion of the Sequential Test

Given the three distinct cases described above, testing Hy : p%4 = p% for non-nested models entails a
sequential test, as suggested by Vuong (1989). In our context, this involves first testing Hy : y4 = yB
using (A.139) or (A.141). If we reject Hy : ya = yp, then we use (A.153) or (A.154) to test
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Hy : p4 = p% = 1. This second test can be viewed as a generalization of the cross-sectional
regression test (CSRT) of Shanken (1985) and later multivariate tests of the validity of the expected
return relation for a single pricing model. Finally, if the hypothesis that both models are correctly
specified is also rejected, we proceed to evaluate Hy : 0 < p124 = pQB < 1 using the normal test in
Proposition A.9. Let aj, as and ag be the significance levels employed in these three tests. Then
the sequential test has an asymptotic significance level that is bounded above by max|ay, g, as).
Thus, if a1 = a2 = a3 = 0.05, the significance level of this procedure for testing Hy : p% = p% is

asymptotically no larger than 5%.2

In our empirical application in the paper, we implement the sequential test by using (A.141),

(A.154), and the normal test in Proposition A.9.

12Note that for the sequential test to reject p4 = p%, all three tests must reject. Consider the first scenario, y4 = ys.
P(reject p% = p% | ya = yp) < P(test 1 rejects | ya = yp) = ai1. Similarly, the probability that the sequential test
rejects under the second and third scenarios cannot exceed a2 and as, respectively. Under Hy : p% = p%, one of the
three scenarios must hold, so the true probability of rejection cannot exceed the maximum.
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B Analysis with Portfolio Characteristics

We show how to accommodate portfolio characteristics in the CSR. In particular, we derive the
asymptotic distributions of the estimated parameters, sample cross-sectional R?s, and model com-
parison tests when both portfolio characteristics and estimated betas (or covariances) are used in
the CSR. The proofs of the various lemmas and propositions are omitted since they are similar to

the ones of Appendix A.

We are interested in determining whether the unconditional betas with respect to K factors
and L portfolio characteristics help explain the unconditional expected returns on N test assets.
Let Z; be an N x L matrix of L portfolio characteristics associated with the N test assets at the
beginning of period ¢. The proposed model states that unconditional expected returns are linear
in 8= VgsV; ' and pz = E[Z]:

pr =X, (B.1)

where X = [1y, B, pz]. In reality, the proposed model could be misspecified. In this case, the

vector of pseudo-true parameters -y is defined as
Y= (XWX) (X W i), (B.2)

where W is an N x N positive definite weighting matrix. We partition the (K + L + 1)-vector
v as vy = [y, Vi, V5], where 7o is the zero-beta rate, 71 is a K-vector of parameters associated
with the K systematic factors, and 2 is an L-vector of parameters associated with the L portfolio

characteristics.

Since 8 and pyz are not observable, we need to use their sample estimates

1 T - 1 T
T —ap =) | . hz=5y 7. (B3)
t=1

t=1

T
B= |5 S0 (R~ ) (fo — fag)
t=1

in the second-pass CSR. Let X = 1y, B, fiz], the sample estimate of v is given by
§ = (X'WX)" (X'Wig). (B.4)

Note that this setup coincides with the one proposed by Jagannathan and Wang (1996) except that
we (1) take into account the estimation error in fiz, and (2) allow for potential model misspecifi-

cation.
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Pricing Results

In the following proposition, we present the asymptotic distribution of 4 when the weighting matrix

W is known.

Proposition B.1. Let H = (X'WX) ', A= HX'W, and v = [Yot, Vi Vo] = AR:. Under a

potentially misspecified model, the asymptotic distribution of 4 is given by

V(5 =) & N0kt 241, V() (B.5)
where .
V() = Y Elhhil, (B.6)
j=—00
with
he = (ve =) = (¢t — Q)wr — A(Zt — pz)v2 + Hat, (B.7)

¢ = [yors (e = fo)'s Al 0 = [y (= ng)'s ), we = €W (R — pg), we = V; H(fe = y), and
2zt = [0, w(fr — uf)’Vf_l, eWZ;]'. When the model is correctly specified, we have:

he = (v =) — (90 — P)wr — A(Ze — pz)y2. (B.8)

The first term (7 — ) is the Fama-MacBeth term, which ignores the estimation errors in 3 and
fiz. The second term (¢; — ¢)wy is the EIV adjustment term for 3. The third term A(Z; — juz)ys is
the EIV adjustment term for fiz. The final term Hz; is the misspecification adjustment term due

to model misspecification.

We now turn our attention to the asymptotic distribution of 4 when W must be estimated. In

the following proposition, we present the distribution for the GLS case

Proposition B.2. Let H = (X'V;'X)™!, A= HX'V;', and v = o, Vigs Vol = ARy Under

a potentially misspecified model, the asymptotic distribution of 4 = (X'/Vglf()_lf(’vglﬂjg 18 given

by
VT =) % N(Or1 141, V(3)), (B.9)
where .
V) = Y Elhhi], (B.10)
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with
he = (v —7)— (¢t — P)wy — A(Zy — pz)y2 + Hzp — (v — v)us, (B.11)

¢t = [Vota (’Ylt - ft)/7 ’Yét]/i ¢ = [’707 (71 - :uf)/v ’Yé]lf Ut = e/VR_I(Rt - /’LR)7 Wy = f)/iv_l(ft - /’Lf):
and z = [0, ue(fr — uf)'Vf_l, 'V ' Z,). When the model is correctly specified, we have:

he = (v =) — (¢r — d)wr — A(Ze — pz)y2. (B.12)

Note that when the model is correctly specified, the estimation error in the weighting matrix does

not affect the asymptotic distribution of 4.

If we replace B by VRf in the second-pass CSR, we have
A= (C'WC)'C'Wjig, (B.13)

where

C =, Vay, fiz). (B.14)
Also, define the population counterpart of \ as
A= (C'WC)'C'W g, (B.15)

where

C = [1n, Vry, pzl. (B.16)

We denote the K-vector of parameters associated with the K risk factors by A; and the L-vector
of parameters associated with the L portfolio characteristics by As. It is easy to see that there is a

one-to-one mapping between v and A, which is given by
Ao = 70, AL = f_l’YL A2 = 2. (B.17)

The next proposition derives the asymptotic distribution of A under potentially misspecified models.

Proposition B.3. Under a potentially misspecified model, the asymptotic distribution ofj\ 18 given
by
A A ~
VTG =N A N O 4101, VV), (B.18)
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where

V(A = i Elhihy, ;). (B.19)

j=—00
To simplify the expressions for hy, we define Gy = (Ry — pg)(fi — p) — Ve, Ze = [0, w(fe —
we), €Wz, H=(C'WC)~', A= HC'W, \, = ARy, and w, = €W (R; — jiR).

(1) With a known weighting matriz W, A = (C'WC)'C'W g and

he = (At —A) — AG\ — A<Zt — pz)A2 + H,. (B.20)

(2) For estimated GLS, X = (C”V}glé’)_lé’V};lﬂR and

hi =M\ —A) — AG A — A(Zy — pz)do + Hz — (M — Ny (B.21)

When the model is correctly specified, we have:

he = (M — A) — AG M — A(Zy — pz) e (B.22)

Results for the Sample R?

We characterize the asymptotic distribution of 52 in the following proposition.

Proposition B.4. In the following, we set W to be Vgl for the GLS case.

(1) When p? =1,
N-K—L-1

TP -1) =LA 3 iy, (B.23)
j=1

X b
Qo Qo
where the x;’s are independent X3 random variables, and the & ’s are the eigenvalues of
P'W2SW2P, (B.24)

where P is an N x (N — K — L — 1) orthonormal matriz with columns orthogonal to W%C’, S is
the asymptotic covariance matriz of % ZtT:l letye — (Ze — pz)Aa), € = Ry — pr — B(fr — pf), and
yr = 1 — N (ft — ps) is the normalized SDF.

(2) When 0 < p? <1,

VI(P* — p*) ~ N |0, f} Elngnig] | (B.25)

j=—o0
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where

n = 2 [—ut + (1= p?)v + ’y'zt} /Qo for known W,  (B.26)
e = [uf — 2w+ (1—p*) (20 —v7) +2v'2] /Qo for W = ‘A/R_l, (B.27)
with eg = [Iy — IN(UyW1Nn) "W\ Wlug, us = €W(R: — pr), ve = egW (Rt — pg), and z =
[0, we(fe — us)'Vi', €WZ]'.
(3) When p? = 0,

K+L

TRASY S B.28
p Z 05 (B.28)
Ji
where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of
[(XIW X1 — XiW iy (W) " I WX (042, Trcs 2]V () Osctrs Trerr]’), (B.29)

where X1 = [, pz| and V(%) is given in Proposition B.1 (for known weighting matriz W) or
Proposition B.2 (for estimated GLS).

Model Comparison Tests

Consider models A and B. Let fi, fo, and f3 be three sets of distinct factors, where f; is of
dimension K; x 1, ¢ = 1,2,3. Similarly, let Z;, Zs, and Z3 be three sets of distinct portfolio
characteristics, where Z; is of dimension N x L;, i = 1,2,3. Assume that model A uses factors fi
and fo and portfolio characteristics Z; and Zs while model B uses factors f; and f3 and portfolio
characteristics Z1 and Z3. Therefore, model A specifies that the expected returns on the test assets

are linear in the betas (or covariances) with respect to fi and fo and the means of Z; and Zy, i.e.,

Hr = 1InAao + COV[R, fﬂ)\A,l +pz A2 + COV[R, fé]>\A73 + pz,A a4 = Cala, (B.30)

where Cy = [1n, Cov[R, fﬂ? 1z, Cov(R, fé]v 1z,] and Ay = [)\A,Oa {A,l? 14,27 1473’ {4,4]/‘

Similarly, model B specifies that expected returns are linear in the betas (or covariances) with

respect to f1 and f3 and the means of Z; and Z3, i.e.,
pr = 1InAgo + Cov[R, filAB1 + pz Ag2 + Cov(R, f5] B3 + pzsApa = CeAp, (B.31)
where Cp = [1n, Cov[R, f1], pz,, Cov[R, fi], pz,) and Ap = [Ap, XB,I’ )\3372, )\23137 )\3974]’.
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Nested Models

Without loss of generality, assume K5 = 0 and L3 = 0, so that model A nests model B. In addition,

assume Ko + Loy > 0.
Lemma B.1. pz‘ = pQB if and only if A\a3 = Ok, and Aa4 = 0p,.

By the lemma, to test whether two nested models have the same R?, one can simply perform a test
of Hy: A3 = 0x,, Aaa = 0r, using a Wald test. Let V([A;m, A’AA]’) be a consistent estimator of
V([Af473, A’AA]’), the asymptotic covariance matrix of \/T([A;"g, 5‘/A,4]/ — [Ny 30 Ay 4l"). Then, under

the null hypothesis,

Q Q P Q 101 Q A
T /A,3a /\14,4]‘/([/\14,37 >‘/A,4]/) 1[)\14,3, /A,4]/ ~ X%(2+L27 (B.32)

and this statistic can be used to test Hy : p% = p%.

Alternatively, it is possible to derive the asymptotic distribution of ﬁi — ﬁQB and use this statistic

to test Hy : pi = pQB.

Proposition B.5. Define gAQQ as the lower right (Ko + Lo) X (K2 + La) submatriz of Hy =
(CyWC4)~t. Under the null hypothesis Hy : p% = p%,

~ ~ A j
T(p% —PB) ~ >, =, (B.33)

where the x;’s are independent X3 random wvariables, the §j’s are the eigenvalues of the matriz

H ooV (Ny s Naal')-

Non-Nested Models

Testing Hy : P,24 = pQB is more complicated for non-nested models. The reason is that under Hy,
there are three possible asymptotic distributions of p% — p%, depending on why the two models
have the same cross-sectional R?.

We first provide a lemma which will be useful for deriving the first asymptotic distribution of

52 _ 52
PA— PB-
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Lemma B.2. The conditions Ny | f1t + Ny3for = Ng fie + Npsfsr and Zudag + Zudas =
th)\B,Q + Z3t)\B,4 hold if and only if

A3 = 0g,, AB3 = Ok, Aa=0p,, A4 =0p;. (B.34)

The above lemma implies that when (B.34) holds, the pricing errors of the two models are the same

(ea = ep) and the two models have the same cross-sectional R? (p% = p%).

A pre-test of (B.34) can be obtained in two ways. We can perform a Wald test of Hy : ¢ =
0Kyt Lot Ka+Ls, Where o = [N, 5, Ny, Ngs, Np,l'. Alternatively, we can derive the asymptotic

distribution of T(p% — p%).

Proposition B.6. Under the conditions in (B.34),

" Ko+ Ksz+La+L3 5
T(p% — h) ~ L, (B.35)
— Qo
J_
where the x;’s are independent X% random variables and the &;’s are the eigenvalues of
H! Or, x K N
Az T V@), (B.36)
Orcs x K _HB,22

where fNIAQQ is the lower right (Ko + Lo) X (Ko + Lo) submatriz of Hy = (CYWCA)™L and fNIBQQ
is the lower right (K3 + L3) x (K3 + L3) submatriz of Hg = (CyWCpg) ™.

Models A and B can also be both correctly specified and the asymptotic distribution of [)E‘ — ,623 is
different in this case. Below, we provide two different pre-tests of Hy : p124 = pQB = 1. The first test

is a chi-squared test of e4 = ep = Op, which is given in the following proposition:

Proposition B.7. LetTLA:N—Kl—KQ—Ll—LQ—l (mdnB:N—Kl—Kg—Ll—Lg—l.
Also let Pa be an N X na orthonormal matriz with columns orthogonal to W%C'A and Pg be an
N X np orthonormal matriz with columns orthogonal to W%CB. Let €4y and ep; be the regression

residuals of the N test assets in models A and B, respectively, and define

(B.37)

a(0) [ gat(Aa) ] [ eayar — (Zig — pz)Aa2 — (Zog — pizy)Aaa
t pr— pr—

9Bt(AB) estypt — (Z14 — wz ) B2 — (Zsg — p1z5)\Ba |
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where 0 = (Ny, M), yar =1 =Ny fre — Nygfor, ype =1 = Ng  fie — Np 3fa, and

5= ! Saa Sas

o0

= > Elgu(0)gi+;(9)). (B.38)

j==o0

Spa Ssa

If (B.34) does not hold and the null hypothesis Hy : ,0124 = p2B =1 is satisfied, then

AL A / A, A ~ a A AL A N ~ ~ —1 AL, A

. PWwaey | [ PuWeSaaWe Py PyWzSapWePp PyWees 14 (.39
A U A NI P A A1 oA NN ~ X ) .
PuyWsep | | PLWiSpaWsPy PLW3S8p5W3 Py PLiiep natne

where €4 and ég are the sample pricing errors of models A and B, and ]5,4, PB, and S are consistent

estimators of P4, Pp, and S, respectively.

The second pre-test of Hy : pi = p2B = 1 is a weighted chi-squared test based on the asymptotic

distribution of ﬁi — ﬁQB, which is given in the following proposition:

Proposition B.8. Assuming (B.34) does not hold and Hy : p% = p% = 1 is satisfied, then

nat+npg

TR Y (8.40)
=1 <"

where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of
—P\W2SsAW2Py —P,W2S43W2Pp (B.41)
PLW2Sp,W2Py  PLW2SppW2Pp ‘

Finally, if (B.34) does not hold and both models are misspecified, we can test Hy : pa — pQB

using the normal test provided in the next proposition.

Proposition B.9. Suppose (B.34) does not hold and 0 < pi = ,023 < 1. We have:

~ ~ A >
VT(p% = pB) ~ N (0, Y Eldidiyj] | - (B.42)

j=—00

When the weighting matriz W is known,

dy = 2Qq " [upe —uwar — (P74 — pB)ve + (Yazar — Vp2mt)] (B.43)

where ua = ey\W (Rt — pr), upt = €gW (Rt — pr), v¢ is defined in Proposition B.4, va and yp
are the v’s for models A and B, respectively, and za; and zp; are the z;’s for models A and B,

respectively. For estimated GLS,
dy = Qu " [uhy — 2(uar — upt) — uhy — (07 — pB)2ue — v7) + 2(Vazar — Vp2mi)] (B.44)
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where ua; = e;‘VR_l(Rt — ug) and ugy = e’BVR_l(Rt — pg).B?
The normal test in Proposition B.9 will break down when d; = 0. There are two different scenarios
for d; = 0. The first case occurs when XA,lfl,t'i_XA,SfZ,t = )\33,1f17t+)\’373f37t and Ziyda o+ Zotdaa =

Z1tAB,2 + Z3tAp 4. The second case occurs when pi = pQB =1.

30ne could impose Ho : p% = p% in (B.43) and (B.44) and the v; terms would drop out of these expressions.
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C The Price of Covariance Risk

As mentioned in the paper (see Section II.A), there are some subtle differences between the prices of
beta risk and the prices of covariance risk when the risk factors are correlated. Let v = [y0, 71, V5]
be the zero-beta rate and risk premia for two sets of factors, fi and fo. The standard relation
between multiple regression betas and covariances then implies that there is a one-to-one corre-
spondence between v and A; the zero-beta rates are identical and the usual risk premia are obtained

by multiplying the prices of covariance risk by the factor covariance matrix:

ME

Hence, when \y = Og,, the risk premia associated with fo are v = Cov|[fa, f{]A\1. Clearly, 72 can

(C.1)

Var[fi]  Cov[f1, f}] ] [ M ]
Covlfa, fi]  Var[fa] Ao |

still be nonzero unless f; and fo are uncorrelated.'* Similarly, we can show that 72 = O, does not

imply A2 = Ok, unless f; and f2 are uncorrelated.

Here, we provide some numerical illustrations of these points. In the first example, we consider

s [ -0 2
=1 210 15 | '

Suppose there are four assets and their expected returns and covariances with the two factors are

two factors with

(C.3)

, 12 3 4
MR:[27 37 47 5]a VfR: .

3 5 2 1

It is clear that the covariances of the four assets with respect to the first factor alone can fully
explain pp because pp is exactly linear in the first row of Vyr. As a result, the second factor
is irrelevant from a cross-sectional expected return perspective. However, when we compute the

(multiple regression) beta matrix with respect to the two factors, we obtain:

036 0.64 052 056 |

(C.4)
0.44 0.76 0.48 0.44

B=VriV; ! =

Simple calculations give v = [1, 15, —10]’ and -, is nonzero even though f5 is irrelevant.!?

“When A2 = Ok, , we see that 41 = Var[fi]A\;. Consequently, the risk premia for f; stay the same when we add fo
to the model.

15This suggests that when the CAPM is true, it does not imply that the betas with respect to the other two
Fama-French factors should not be priced. See Grauer and Janmaat (2009) for a discussion of this point.
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In the second example, we change pug to [10, 17, 14, 15)'. In this case, the covariances with
respect to fi alone do not fully explain pg (in fact, the OLS R? for the model with just f; is only
28%). However, it is easy to see that up is linear in the first column of the beta matrix, implying
that the R? of the full model is 100%. Simple calculations give us v = [1, 25, 0] and v, = 0 even
though f5 is needed in the factor model, along with fi, to explain ug.
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D Excess Returns Analysis

We provide the necessary tools for implementing the excess returns analysis described in the paper.
The proofs of the various lemmas and propositions are omitted since they are similar to the ones

of Appendix A.

Let f be a K-vector of factors and R a vector of excess returns (i.e., returns on zero investment
portfolios) on N test assets. In many applications, R is a vector of returns on N assets in excess
of the risk-free rate. The multiple regression betas of the N assets with respect to the K factors

are defined as g = VRfofl.

The proposed K-factor beta pricing model specifies that asset expected excess returns are linear

in the betas, i.e.,

where ~y is a vector of risk premia on the K factors. When the model is misspecified, the pricing-
error vector, ur — B, will be nonzero for all values of 7. In that case, it makes sense to choose
~ to minimize some aggregation of pricing errors. Denoting by W an N x N symmetric positive

definite weighting matrix, we define the (pseudo-true) risk premia as
Y= (BWB) B Wpr. (D:2)

The corresponding pricing errors on the N assets are then given by

e=pur— By (D.3)

and the cross-sectional R? is defined as

2 Q
=1- =, D4
P 0o (D.4)
where

Qo = prWhpg, (D.5)
Q = We=pzgWpug— pgWB(BWB) ' B'Wpg. (D.6)

The estimated betas from the first-pass time-series regression are given by the matrix B=Vg ff/f—l.

We then run a single CSR of jip on B to estimate 7 in the second pass. When the weighting matrix
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W is known (say OLS CSR), we can estimate 7 in (D.2) by
5= (BWB) B Wi. (D.7)
Instead of using B , We can use VRf in the second-pass CSR. The pseudo-true parameters of this
alternative second-pass CSR are given by
A= (VirWVrs) ™ VirW . (D.8)
Similarly, we can estimate A in (D.8) by
A= (VirWVirs) ' VirW fig. (D.9)

In the GLS case, the weighting matrix W involves unknown parameters and, therefore, we need to

substitute a consistent estimate of W, W = VR_I, in (D.7) and (D.9).

The sample measure of p? is similarly defined as

ﬁ2:1—g

, D.10
Os (D.10)

where Qy and Q are consistent estimators of Qg and Q in (D.5) and (D.6), respectively.

Pricing Results

Proposition D.1. Let H = (BFWpB)™', A= HB'W, and v; = AR;. Under a potentially misspeci-
fied model, the asymptotic distribution of ¥ = (W B)™L8'W i is given by

VT (5 =7) & N (0K, V(4)), (D.11)
where
V(3) = i Elhihy. ), (D.12)
with o
he = (3 — ) = (¢4 — d)wy + Hz, (D.13)

S ="—Fft, 0=7v—pf, u = €W(R;—pr), wy = W/fol(ft*,uf); and z; = fol(ft — pg)ug. When

the model is correctly specified, we have:
he = (v =) = (¢t — D). (D.14)
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Proposition D.2. Let H = (B’VR_lﬁ)*l, A = HB'V;Y, and v+ = AR,. Under a potentially
misspecified model, the asymptotic distribution of 4 = (B’V};lﬁ)*l,bc”vglﬂjg s given by

VT(§ =) 2 N0k 11,V(3)), (D.15)
where
VE)= Y Bl (D.16)
with s
he = (w—7)— (¢ — Q)we + Her — (v — 7)ue, (D.17)

dr="—fr, p=7—ps, u = Vi (Rt — pg), wy = ’Y'Vf_l(ft —pif), 2 = Vf_l(ft — pf)ug. When

the model is correctly specified, we have:
hi = (e =) = (¢ — ). (D.18)

Lemma D.1. When the factors and returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter k, the asymptotic covariance matriz of 4 = (B’WBA)_lﬁA’WﬂR s given by

V(3) = Tw + Tut + Ty + Tuz, (D.19)
where
Yw = AVRA' + (14 k)Y V;HASA, (D.20)
Tur = —(1+r)HV; veWVRA' (D.21)
Yur = (1+rK)WVrWeHV; 'H. (D.22)

Lemma D.2. When the factors and returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter K, the asymptotic covariance matriz of 4 = (B’Vglﬁ)*lﬁfv,glm% s given by

V(#) =Tw + Tue, (D.23)

where
Ty = H+(1+ “)’Ylvfil'Y(B,E_lﬁ)_l» (D.24)
Yuwe = (1+rx)QHV,'H— H], (D.25)

with H = (B'V;'8)™ and Q = 'V e.
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Proposition D.3. Under a potentially misspecified model, the asymptotic distribution ofjx 18 given

by
VI(A =) 2 N0k, V(A),
where .
V(A) = > Elhh ).
j=—00

To simplify the expressions for hy, we define Gy = (Ry — pg)(fi — pf) — Viy,
121 = .E[VfRW, )\t = ARt, Uy = GIW(Rt - /,LR), and Zt = (ft - ,U,f)ut

(1) With a known weighting matric W, X = (VfRWVRf)_IVfRWﬂR and
iLt = ()\t — )\) — Aét)\ + ﬁét
(2) For estimated GLS, X = (Vfgvglva)_lvaV]glﬂR and

th =N—-A)— flét)\—i- ﬁft — (A = Ny

When the model is correctly specified, we have:

he = (A — A) — AG .

Results for the Sample R?

Proposition D.4. In the following, we set W to be Vgl for the GLS case.

(1) When p? =1,

-1 =22 4 Z

(D.26)

(D.27)

f{ = (VfRWVRf)_l,

(D.28)

(D.29)

(D.30)

(D.31)

where the x;’s are independent X3 random variables, and the & ’s are the eigenvalues of

P'W2SW?2P,

(D.32)

where P is an N x (N — K) orthonormal matriz with columns orthogonal to W%VRf, S s the

asymptotic covariance matriz of % Z?zl €y, & = Ry —pr — B(fr — pf), and y =1 — N (fy — pyf)

1s the normalized SDF.

42



(2) When 0 < p* <1,

. A -
VT(p® = p?) SN [0, Y Byl |, (D.33)
Jj=—00
where
ne = 2[—wy+ (1—p*)v] /Qo for known W, (D.34)
ne = [uf = 2wy + (1 p*) (20 = v7)] /Qo for W =V !, (D.35)

with uy = 'W(Ry — pr) and vy = Wy W (Ry — pR)-

(3) When p* =0,

£

15, (D.36)
0

AK§
Tp? ~

where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of

O

(BWBV (%), (D.37)

where V(%) is given in Proposition D.1 (for known weighting matriz W) or Proposition D.2 (for
estimated GLS).

Model Comparison Tests

Consider two competing beta pricing models. Let fi, f2, and f3 be three sets of distinct factors,
where f; is of dimension K; x 1, ¢ = 1,2,3. Assume that model A uses f; and f5, while Model B
uses f1 and f3 as factors. Therefore, model A requires that the expected returns on the test assets

are linear in the betas or covariances with respect to fi; and fo, i.e.,
pir = Cov[R, fi]lAa1 + Cov([R, f3]Aa2 = Cada, (D.38)

where C4 = [Cov([R, fi], Cov[R, f3]] and Aa = [N, Nj,)'. Model B requires that expected

returns are linear in the betas or covariances with respect to f; and f3, i.e.,
UR = COV[R, fﬂ/\BJ + COV[R, fé])\B’g = CgAp, (D39)
where Cp = [Cov[R, f{], Cov[R, f3]] and Ap = [Nj 1, A5
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Given a weighting matrix W, the \; that maximizes the p? of model i is given by
N = (CIWCi)'CiW up, (D.40)

where C; is assumed to have full column rank, i = A, B. For each model, the pricing-error vector
e;, the aggregate pricing-error measure ();, and the corresponding goodness-of-fit measure p? are

all defined at the beginning of Appendix D.

Nested Models

Lemma D.3. p% = p% if and only if Aao = Ok, .

Proposition D.5. Partition Ha = (C',WC4)~" as

N H H
= ~A,11 ~,4,12 , (D.41)
Hpo1 Hapo
where ﬁAQQ 1s Ko x Ko. Under the null hypothesis Hy : p124 = pQB,
PR &
T(p% — %)~ > 00" (D.42)
j=1

where the x;’s are independent X3 random variables and the & ’s are the eigenvalues ofJEIZlZQV(S\AVQ).

Non-Nested Models

Define the normalized SDF's for models A and B as

ya=1—(fi — E[fil) a1 — (f2 — E[f2]) Xa2, yp=1—(f1 — E[f1]) A1 — (f3 — E[f3])' Ap 3.
(D.43)

Lemma D.4. For non-nested models, ya = yp if and only if Aap = Ok, and A\p3 = Ok,

Proposition D.6. Let Hy = (C'\WC4)~! and Hg = (CxyWCp)™", and partition them as
8 H H N H H
A Hano 7 s Hpas ’ (D.44)
Hp31 Hpgss
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where I:[A,H and [:13711 are K1 X K1. Under the null hypothesis Hy : ya = yp,

" Ko+K3 ¢;
TGh=pb)~ 2. 5o (D.45)
j=1

where the x;’s are independent X? random variables and the & ’s are the eigenvalues of

H7 L OroxK A
TR | V). (D.46)
OKg ><K2 7HB 33
Proposition D.7. Let ny = N — K1 — Ky and ng = N — K1 — K3. Also let Py be an N X ny
orthonormal matriz with columns orthogonal to W%CA and Pg be an N X ng orthonormal matriz

with columns orthogonal to W%CB. Let e 4¢ and ep; be the residuals of models A and B, respectively,

and define

9Bt(AB) €BtYBt

a(0) = [ gat(Aa) ] _ [ EAtY AL ] | (D.47)

where § = (N, N)', and

= > Ela@)g;0). (D.48)

j=—o0

5= Saa Sas
| Spa Sps

If ya # yp and the null hypothesis Hy : p4 = p% = 1 holds, then

-1

T pAW%éA PAW%S’AAW%PA pAW%S'ABVAV%pB PAW%éA A o (D49)
A A NN N NN N A ~ X ) .
PLiWeeg PLW2SpaWaP, PLW2855W2Pp PLWzeg natns

where €4 and ép are the sample pricing errors of models A and B, and PA, PB, and S are consistent

estimators of P4, Pp, and S, respectively.

Proposition D.8. Using the notation in Proposition D.7, if ya # yp and the null hypothesis
Hy : p% = p% =1 holds, then

T(54 — i) ~ Z—f% (D.50)
where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of

—P\W2SasW2Py —P,W2S,5W2Pg

e . h— R (D.51)
PBW2SBAW2PA PBW2SBBW2PB
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Proposition D.9. Suppose ya # yp and 0 < p% = p% < 1. We have:

VI~ p%) A N |0, fj Elddy+j] | - (D.52)

j==o0

When the weighting matrix W is known,

dy = QQEI [UBtth — UALYAL — (P,24 - P2B)Ut] ) (D.53)

where uay = €4W(Ry — pr), upt = €W (Ry — ur), and v is defined in Proposition D.4 in

Appendiz D. With the GLS weighting matriz W = VR_I,
dy = Qy ' [uly; — 2uaryar — uBby + 2urype — (P4 — pB)(2ve — v7)] (D.54)

where ua; = e;‘VR_l(Rt — pRr) and ugy = e/BVR_l(Rt — 1R)-

In the following, we report additional estimation results for the excess returns case. These results

complement the ones in Table V in the paper.
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Table VII
Estimates and t-ratios of Risk Premia with a Constrained Zero-Beta Rate

The table presents the estimation results of eight beta pricing models. The models include the CAPM, the
conditional CAPM (C-LAB) of Jagannathan and Wang (1996), the Fama and French (1993) three-factor
model (FF3), the intertemporal CAPM (ICAPM) specification of Petkova (2006), the consumption CAPM
(CCAPM), the conditional consumption CAPM (CC-CAY) of Lettau and Ludvigson (2001), the ultimate
consumption CAPM (U-CCAPM) of Parker and Julliard (2005), and the durable consumption CAPM (D-
CCAPM) of Yogo (2006). The models are estimated using monthly excess returns on the 25 Fama-French
size and book-to-market ranked portfolios and five industry portfolios. The data are from February 1959 to
July 2007 (582 observations). We report parameter estimates 4 (multiplied by 100), the Fama and MacBeth
(1973) t-ratio under correctly specified models (t-ratiof,,), the Shanken (1992) and the Jagannathan and
Wang (1998) t-ratios under correctly specified models that account for the EIV problem (¢-ratios and t-
ratioj,,, respectively), and our model misspecification-robust ¢-ratios (t-ratiop,).

Panel A: OLS
CAPM C-LAB FF3
ra/vw ’?vw 'AYl ab ﬁpr em ﬁ/vw '?smb ﬁhml
Estimate 0.63 0.57 —=0.20 0.40 0.50 0.16 0.39
t-ratio f., 3.33 3.15 —146 3.13 2775 1.24  3.21
t-ratiog 3.32 3.11  —-0.97 2.09 2775 1.24  3.21
t-ratiojq, 3.30 3.14 —-0.82 2.13 274 124 3.19
t-ratiopm, 3.31 294 —-0.69 1.43 2774 123 3.15
ICAPM CCAPM
:Yvw ’A}/term ’AYde f fAYdiv :71“ f ’Ach
Estimate 0.53 0.31 —0.10 —-0.06 —0.59 0.67
t-ratiof,, 2.90 386 —1.55 —5.27 —4.17 3.38
t-ratiog 281 219 -0.88 -—-3.35 —-238 2.58
t-ratioj, 2.85 2.03 -0.79 -3.40 -2.15 2.47
t-ratioy,, 2.82 199 -0.79 -3.26 —2.20 2.48
CC-CAY U-CCAPM D-CCAPM
’AYcay ﬁcg ’?cg-cay 'S/cg36 ﬂ/vw &cg ;chdur
Estimate 0.67  0.35 0.01 4.67 0.55 0.93 0.00
t-ratiof,, 1.63  2.19 2.31 3.63 3.06 3.70  0.00
t-ratiog 1.19 1.60 1.69 2.11 3.00 2.36  0.00
t-ratiojq, 1.25 1.51 1.52 2.19 3.02 2.25  0.00
t-ratiop,  0.29  0.32 0.26 2.20 2.91 0.96 0.00
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Table VII (Continued)
Estimates and t-ratios of Risk Premia with a Constrained Zero-Beta Rate

Panel B: GLS
CAPM C-LAB FF3
’A)/vw '%)w 'A)’lab &prem ;Y'Uw ﬁ/smb ﬁ/hml
Estimate 0.50 0.51 —-0.12 0.02 0.51 0.23 041
t-ratio f., 2.81 2.82 —1.84 0.22 282 1.80 3.51
t-ratiog 2.81 281 —-1.75 0.21 2.82 1.80 3.50
t-ratiojq, 2.81 2.82 =177 0.21 2.82 1.79 3.49
t-ratiopm, 2.80 2.82 —=0.76 0.09 282 1.79 3.49
ICAPM CCAPM
fAYvw 'AYterm 'AYde f &div ’A}/T f ’A)/cg
Estimate 0.52 0.24 —-0.07 —-0.04 —-0.42 0.26
tratiop, 2.91 515 —1.94 —4.72 —4.36 2.44
tratio, 289 356 —1.36 —3.70 —3.03 2.33
tratioj, 290 352 —119 —3.69 -2.74 2.26
t-ratioy,, 2.89 244 094 -3.02 -2.29 1.24
CC-CAY U-CCAPM D-CCAPM
'A)’cay ’%g 'A}/cg-cay 'A)’cg36 'S/vw '%g 'A)’cgdur
Estimate 0.73  0.27 0.00 1.95 0.50 0.16 0.62
t-ratior, 2.88 2.37 0.50 3.86 2.80 1.31  1.60
t-ratiog 2.50 2.06 0.44 3.36 2.79 1.27  1.54
t-ratiojq, 2.46 2.08 0.42 3.72 2.81 1.28  1.56
t-ratiop, 1.38 1.08 0.17 2.16 2.80 0.63 1.00
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Table VIII
Estimates and t-ratios of Prices of Covariance Risk with a Constrained Zero-Beta
Rate (OLS Case)

The table presents the estimation results of eight beta pricing models. The models include the CAPM, the
conditional CAPM (C-LAB) of Jagannathan and Wang (1996), the Fama and French (1993) three-factor
model (FF3), the intertemporal CAPM (ICAPM) specification of Petkova (2006), the consumption CAPM
(CCAPM), the conditional consumption CAPM (CC-CAY) of Lettau and Ludvigson (2001), the ultimate
consumption CAPM (U-CCAPM) of Parker and Julliard (2005), and the durable consumption CAPM (D-
CCAPM) of Yogo (2006). The models are estimated using monthly excess returns on the 25 Fama-French
size and book-to-market ranked portfolios and five industry portfolios. The data are from February 1959
to July 2007 (582 observations). We report parameter estimates X and the model misspecification-robust
t-ratio (t-ratiopm).

CAPM C-LAB FF3
;\vw ;\vw Xlab 5\prem ;\vw ;\smb ;\hml
Estimate 336.31 20.28 —153.11 240.85 439.97 1.87 8.15
t-ratiopm, 2.99 0.10 —0.81 1.54 3.56 1.20 4.70
ICAPM CCAPM
5\11111 5\1567"771 5\def Xali'u 5\rf Xcg
Estimate —2161.60 288.94 —271.79 —802.35 —107.68 10980.68
t-ratiopm, —2.09 1.09 —1.26 —2.10 —1.31 2.42
CC-CAY U-CCAPM D-CCAPM
;\cay 5\cg Xcg~cay 5\0936 5\vw ;\cg 5\cgdur
Estimate 2337.11 63.90 6707.55 4214.10 —126.03 160.84 —10.54
t-ratiopm 0.29 0.42 0.28 2.18 —0.24 0.90 —-0.43
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The table presents pairwise tests of equality of the OLS and GLS cross-sectional R?s of eight beta pricing
models. The models include the CAPM, the conditional CAPM (C-LAB) of Jagannathan and Wang (1996),
the Fama and French (1993) three-factor model (FF3), the intertemporal CAPM (ICAPM) specification
of Petkova (2006), the consumption CAPM (CCAPM), the conditional consumption CAPM (CC-CAY) of
Lettau and Ludvigson (2001), the ultimate consumption CAPM (U-CCAPM) of Parker and Julliard (2005),
and the durable consumption CAPM (D-CCAPM) of Yogo (2006). The models are estimated using monthly
excess returns on the 25 Fama-French size and book-to-market ranked portfolios and five industry portfolios.
The data are from February 1959 to July 2007 (582 observations). We report the difference between the
sample cross-sectional R*s of the models in row i and column j, 57 — p3, and the associated p-value (in
parenthesis) for the test of Hy : p? = ,0?. The p-values are computed under the assumption that the models

are potentially misspecified.

Table IX
Tests of Equality of Cross-Sectional R?s with a Constrained Zero-Beta Rate

Panel A: OLS
C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM

CAPM —0.035 —0.100 -0.115 —0.022 —0.028 —0.088 -0.025
(0.292) (0.001) (0.062) (0.594) (0.481) (0.108) (0.525)

C-LAB —0.065 —0.080 0.013 0.007 —0.053 0.009
(0.280) (0.222) (0.809) (0.888) (0.331) (0.877)

FF3 —0.015 0.078 0.072 0.012 0.074
(0.310) (0.183) (0.266) (0.639) (0.220)

ICAPM 0.093 0.087 0.026 0.089
(0.148) (0.216) (0.393) (0.174)

CCAPM —0.006 —0.066 —0.004
(0.913) (0.206) (0.913)

CC-CAY —0.060 0.002
(0.270) (0.962)

U-CCAPM 0.063
(0.274)

Panel B: GLS
C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM

CAPM —0.032 —-0.216 —0.281 0.014 —0.047 —0.052 —0.025
(0.635) (0.000) (0.071) (0.843) (0.614) (0.597) (0.618)

C-LAB —0.184 —0.248 0.046 —0.015 —0.020 0.007
(0.054) (0.139) (0.618) (0.883) (0.857) (0.923)

FF3 —0.065 0.230 0.169 0.164 0.191
(0.681) (0.009) (0.148) (0.134) (0.008)

ICAPM 0.295 0.234 0.229 0.256
(0.095) (0.210) (0.233) (0.127)

CCAPM —0.061 —0.066 —0.039
(0.491) (0.516) (0.342)

CC-CAY —0.005 0.022
(0.963) (0.796)

U-CCAPM 0.027
(0.787)
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Table X
Multiple Model Comparison Tests with a Constrained Zero-Beta Rate

The table presents multiple model comparison tests of the OLS and GLS cross-sectional R?s of eight beta
pricing models. The models include the CAPM, the conditional CAPM (C-LAB) of Jagannathan and
Wang (1996), the Fama and French (1993) three-factor model (FF3), the intertemporal CAPM (ICAPM)
specification of Petkova (2006), the consumption CAPM (CCAPM), the conditional consumption CAPM
(CC-CAY) of Lettau and Ludvigson (2001), the ultimate consumption CAPM (U-CCAPM) of Parker and
Julliard (2005), and the durable consumption CAPM (D-CCAPM) of Yogo (2006). The models are estimated
using monthly excess returns on the 25 Fama-French size and book-to-market ranked portfolios and five
industry portfolios. The data are from February 1959 to July 2007 (582 observations). We report the
benchmark models in column 1 and their sample R2s in column 2. 7 in column 3 denotes the number
of alternative models in each multiple non-nested model comparison. LR in column 4 is the value of the
likelihood ratio statistic with p-value given in column 5. s in column 6 denotes the number of models that
nest the benchmark model. Finally, p%, — 52 in column 7 denotes the difference between the sample R? of
the expanded model (M) and the sample R? of the benchmark model with p-value given in column 8.

Panel A: OLS
Benchmark — p? r LR pvalue s p3,—p> p-value
CAPM 0.858 2 2592 0.106 4 0.121 0.155
C-LAB 0.893 5 1.491 0.282
FF3 0.958 5 1.029 0.535
ICAPM 0.972 5 0.000 0.810
CCAPM 0.880 4 2.089 0.165 2 0.019 0.952
CC-CAY 0.886 5 1.534 0.289
U-CCAPM 0946 5 0.730 0.575
D-CCAPM 0.883 5 1.852 0.228

Panel B: GLS
Benchmark — p? r LR p-value s f)ﬂ — p?  p-value
CAPM 0.068 2 0.381 0421 4 0.354 0.296
C-LAB 0.091 5 4.351 0.102
FF3 0.274 5 0.169 0.738
ICAPM 0.339 5 0.000 0.680
CCAPM 0.044 4 7.137 0.023 2  0.077 0.655
CC-CAY 0.105 5 2.412 0.210
U-CCAPM 0.110 5 2.418 0.197
D-CCAPM 0.083 5 7.594 0.032
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E Multiple Model Comparison

We discuss the details of the multiple model comparison test and provide a numerically efficient

procedure for computing its p-value.

Our multiple model comparison test is based on the multivariate inequality test of Wolak (1989).
Let § = (62,...,0p) and & = (52,...,5])), where 6; = p? — p? and 5; =p3—p2fori=2,...,p. We
are interested in testing

Hy:6>0, vs. Hy:0e®R", (E.1)

where r = p — 1 is the number of non-negativity restrictions. Under the null hypothesis, model 1

(the benchmark) performs at least as well as models 2 to p (the competing models).
We assume that
VT (3 - 6) X N(0,,%y). (E.2)
Sufficient conditions for this assumption to hold are i) 0 < p? < 1, and ii) the implied SDFs of the
different models are distinct (see Appendix A).

The test statistic is constructed by first solving the following quadratic programming problem

min(6 — oySM(6—4) st 6>0, (E.3)

where & 5 1s a consistent estimator of ;. Let & be the optimal solution of the problem in (E.3).

The likelihood ratio test of the null hypothesis is given by
LR=T(5—-5)2" (6 —9). (E.4)
For computational purposes, it is convenient to consider the dual problem
. /5 1 I
m}}n)\ o+ 5/\ YA st A >0, (E.5)

Let A be the optimal solution of the problem in (E.5). The Kuhn-Tucker test of the null hypothesis
is given by

KT = TN\, (E.6)
It can be readily shown that LR = KT.
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To conduct statistical inference, we need to derive the asymptotic distribution of LR. Wolak
(1989) shows that under Hy : § = 0, (i.e., the least favorable value of § under the null hypothesis),

LR has a weighted chi-squared distribution
A T 3 T
LR~ wi(S7)Xi =Y w,—i(55) X, (E.7)
i=0 i=0

where the X;’s are independent y? random variables with i degrees of freedom, x3 = 0, and the
weights w; sum up to one. To compute the p-value of LR, we replace 28_1 with 28_1 in the weight

functions.

The biggest hurdle in determining the p-value of this multivariate inequality test is the compu-
tation of the weights. For a given r x r covariance matrix ¥ = (0y;), the expressions for the weights
wi(X), i =0,...,r, are given in Kudo (1963). The weights depend on ¥ through the correlation
coefficients p;; = 045/(0305). When r =1, wg = wy = 1/2. When r = 2,

1
wo = 5w (E.8)
1
wp = 5, (Eg)
1 .
wy = -+ 7arcsm(p12). (E.10)
4 27
When r = 3,
1
wy = 5—11)2, (E.ll)
1
3 i . i . i .
wy = 24 arcsin(pio.3) + arcsin(pi3.2) + arcsin(pas 1), (E.13)
8 47
1 . . .
w = Lo arcsin(pi2) + arcsin(pis) + 211‘(38111(,023)7 (F.14)
8 dm
where
Pijs = Pij — PikPjk (E.15)

(1= PR =p4)]2

For r > 3, the computation of the weights is more complicated. Following Kudo (1963), we
let P = {1,...,7}. There are 2" subsets of P, which are indexed by M. Let n(M) be the
number of elements in M and M’ be the complement of M relative to P. Define X, as the

submatrix that consists of the rows and columns in the set M, ¥,/ as the submatrix that consists
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of the rows and columns in the set M’, ¥/ the submatrix with rows corresponding to the
elements in M and columns corresponding to the elements in M’ (X7 5/ is similarly defined), and
Sy = Su — Sarar Xy S - Kudo (1963) shows that
wi(£)= > PE)PEymam), (E.16)
M: n(M)=i
where P(A) is the probability for a multivariate normal distribution with zero mean and covariance
matrix A to have all positive elements. In the above equation, we use the convention that P[¥y.p] =

1 and P[Ew_l] = 1. Using (E.16), we have wo(X) = P(X7!) and w,(X) = P(%).

Researchers have typically used a Monte Carlo approach to compute the positive orthant prob-
ability P(A). However, the Monte Carlo approach is not efficient because it requires a large number

of simulations to achieve the accuracy of a few digits, even when r is relatively small.

We overcome this problem by using a formula for the positive orthant probability due to Childs
(1967) and Sun (1988a). Let R = (r;;) be the correlation matrix corresponding to A. Childs (1967)
and Sun (1988a) show that

1 1 .
Py(A) = ﬁ—km Z arcsin(r;;)
1<i<j<2k

k
1
+ 22 m Z IQj <R(i17~~~7i2j)> ’ (E17)
j:

1<y <+ <ig; <2k
1 1

P2k+1(A) = W + % Z aI"CSiIl(’I"Z‘j)
1<i<j<2k+1
LA

+ D s > Ly <R<z‘1,...¢zj>> ) (E.18)

j=2 1<y <o <inj <2k+1
where R(;, ., denotes the submatrix consisting of the (iy, ..., iz;)-th rows and columns of R, and

. 2] ’

(—1)7 /°° /°° 1 ( wAw)

IQ‘A = - — | eXp | — dwl‘--dwg‘, E.19
J( ) (27_‘_)] . e Zl;II W; 2 J ( )
where A is a 2j x 2j covariance matrix and w = (w1, ...,ws;)’. Sun (1988a) provides a recursive

relation for I;(A) that allows us to obtain Iy; starting from I5. Sun’s formula enables us to compute
the 2j-th order multivariate integral I»; using a (j — 1)-th order multivariate integral, which can
be obtained numerically using the Gauss-Legendre quadrature method. Sun (1988b) provides a
Fortran subroutine to compute P(A) for » < 9. We improve on Sun’s program and are able to

accurately compute P(A) and hence w;(X) for r < 11.
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F Simulation Designs

We provide a detailed description of the various simulation designs. In all of our simulations, the
factors and the returns on the test assets are drawn from a multivariate normal distribution. We
incorporate the pricing-model restrictions for the different scenarios by changing the mean return
vector pr. The covariance matrix of the factors and returns, V', is chosen based on the covariance
matrix estimated from the data, i.e., V = V. Since the distribution of p?* is independent of yy,

without loss of generality we set puy = Ox in all simulation designs.

Single R%s

We start with the specification tests — the R? test based on Proposition A.4 and the approximate
F-test. To evaluate the size properties of these tests, we simulate data from a world in which FF3

is exactly true. The corresponding mean return vector is set to be
nr = X%, (F.1)

where X and 4 are the sample estimates of X and . Here, and in the calibration of other simulation
parameters below, we refer to the estimates obtained using the actual data. To analyze the power
of the specification tests, we set ug = fig, which implies that the population R?s for FF3 are 0.747
(OLS) and 0.298 (GLS), the sample values reported in Table I in the paper.

Turning to the size properties of the test of Hy : p?> = 0, we simulate a world in which FF3 has

no explanatory power, i.e., we set
LR = Yln + é, (F.2)

where 49 and é are the estimated zero-beta rate and sample pricing errors from FF3. To study the

power of the test of Hy : p> =0, we set g = fiR.

Pairwise Tests of Equality of Cross-Sectional R?s

For nested models, we consider CAPM (model B), which is nested by FF3 (model A). To evaluate
the size of the weighted chi-squared test described in Proposition A.5, we choose pugr such that

0 < p4 = p% < 1. Specifically, we set
R = CpAp + éa, (F.3)
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where g and ;\B are the sample estimates of Cp and Ap obtained from CAPM and é4 are the
sample pricing errors obtained from FF3. This will guarantee that Ay 2 = O, and 0 < p124 = ,023 < 1.
This simulation design yields population R2s of 0.313 (OLS) and 0.132 (GLS). To evaluate the power
of the test, we set ugp = fir, which implies that the population R?s for FF3 and CAPM are 0.747
and 0.115 for OLS and 0.298 and 0.107 for GLS, the sample values reported in Table I in the paper.

For the non-nested models case, it is more complicated to generate g such that p124 = pQB. Since
we focus on the normal test (Proposition A.9), we need to generate up such that y4 # yp and also

both models are misspecified. We define
pr = (Cada+ CAp)/2 4 aéa + bép, (F.4)
where a and b are chosen such that
P W CA(CYWCA) T CAW g = gW Cp(CEWCB) T CuW g, (F.5)

ie., p4 = p% = p?, and p? is set to be as close as possible to (p% + p%)/2. With our choice of a
and b, p? is the same for FF3 and C-LAB: 0.647 for OLS and 0.203 for the GLS case. These are
the averages of the sample R?s reported in Table I in the paper. To evaluate the power of the test,
we set jup = fig, which implies that the population R?s for FF3 and C-LAB are set equal to their

sample values in Table I in the paper.

Multiple Tests of Equality of Cross-Sectional R?s

Finally, we examine the multiple-comparison inequality test for non-nested models. To evaluate
the size of the test, we consider the case in which all models have the same p? value, so as to
maximize the likelihood of rejection under the null. We simulate six different single-factor models
corresponding to the factors vw, smb, cg36, lab, prem, and rf and implement the likelihood ratio
test with 7 = 5. We now explain how we can set pp such that the cross-sectional R? for each

single-factor model is the same.

Let Vryi = Cov[Ry, fir] for i =1,..., K. Suppose W is the weighting matrix. Let
M = Iy —n(n'n) =", (F.6)
where n = WélN.
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The cross-sectional R? of the model with factor i is given by

1 1
. (Vi W2 MW pg)? (F.7)
L (Vi WEMWE Vi) (W2 MW 2 )
Let
VRyi
Vi = (F.8)
(VRf7Z.W2 MW?2Vgy;)2
we can then write ) )
, (Vi W3 MW pg)?
P = L 1 . (F.9)
PrRW2MW?2pug
To ensure that all models have the same p?, a sufficient condition is
Vﬁf,/W%MW%uR =c, (F.10)
where ¢ is a constant. Let Vg, = [Vgﬁl, el V}?ﬁK]a we have
VE/WEMW3pup = clg. (F.11)
If we set ur = VgyA1, then
A = (VR W MW Vigs) M, (F.12)
and we can choose ugr to be
UR = éVRf(ng/W%MW%VRf)fllK, (F.13)

where M is a consistent estimator of M and ng is a consistent estimator of Vﬁf. In our simulations,
we choose ¢ = ‘A/[{f’ WaMW3 itr when the factor is the value-weighted market return. The common

p? for the various models is 0.306 for OLS and 0.235 for the GLS case.

To examine the power of the test, we set ur = fir and simulate five of our original models
(CCAPM, U-CCAPM, C-LAB, FF3, and ICAPM), so that the population R? of each model is set
equal to its sample R? in Table I in the paper.
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