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A Propositions, Lemmas and Proofs

Let f be a K-vector of factors and R a vector of returns on N test assets. We define Y = [f ′, R′]′

and its mean and covariance matrix as

µ = E[Y ] ≡

[
µf

µR

]
, (A.1)

V = Var[Y ] ≡

[
Vf VfR

VRf VR

]
, (A.2)

where V is assumed to be positive definite.1 The multiple regression betas of the N assets with

respect to the K factors are defined as β = VRfV
−1
f . In addition, we denote the covariance matrix

of the regression residuals of the N assets by Σ = VR − VRfV −1f VfR.

Let Yt = [f ′t , R
′
t]
′, where ft is the vector of K proposed factors at time t and Rt is a vector of

returns on N test assets at time t. Throughout the various appendices, we assume that the time

series Yt = [f ′t , R
′
t]
′ is jointly stationary and ergodic, with finite fourth moment. Suppose we have

T observations on Yt and denote the sample moments of Yt by

µ̂ =

[
µ̂f

µ̂R

]
=

1

T

T∑
t=1

Yt, (A.3)

V̂ =

[
V̂f V̂fR

V̂Rf V̂R

]
=

1

T

T∑
t=1

(Yt − µ̂)(Yt − µ̂)′. (A.4)

The estimated multiple regression betas are given by β̂ = V̂Rf V̂
−1
f .

Pricing Results

We first present the asymptotic distribution of the risk premium estimates when the weighting

matrix W is known.

Proposition A.1. Let H = (X ′WX)−1, A = HX ′W , and γt ≡ [γ0t, γ
′
1t]
′ = ARt. Under a

potentially misspecified model, the asymptotic distribution of γ̂ = (X̂ ′WX̂)−1X̂ ′Wµ̂R is given by

√
T (γ̂ − γ)

A∼ N(0K+1, V (γ̂)), (A.5)

1For most of our analysis, we only need to assume Vf is nonsingular and VRf is of full column rank. For the case
of generalized least squares (GLS) cross-sectional regression (CSR), we also need to assume VR is nonsingular.
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where

V (γ̂) =
∞∑

j=−∞
E[hth

′
t+j ], (A.6)

with

ht = (γt − γ)− (φt − φ)wt +Hzt, (A.7)

φt = [γ0t, (γ1t − ft)
′]′, φ = [γ0, (γ1 − µf )′]′, ut = e′W (Rt − µR), wt = γ′1V

−1
f (ft − µf ), and

zt = [0, ut(ft − µf )′V −1f ]′. When the model is correctly specified, we have:

ht = (γt − γ)− (φt − φ)wt. (A.8)

We do not provide the proof of Proposition A.1 as its proof is similar to that of Proposition A.2

below.

To conduct statistical tests, we need a consistent estimator of V (γ̂). This can be obtained by

replacing ht with

ĥt = (γ̂t − γ̂)− (φ̂t − φ̂)ŵt + Ĥẑt, (A.9)

where γ̂t ≡ [γ̂0t, γ̂
′
1t]
′ = (X̂ ′WX̂)−1X̂ ′WRt, φ̂t = [γ̂0t, (γ̂1t − ft)′]′, φ̂ = [γ̂0, (γ̂1 − µ̂f )′]′, ût =

ê′W (Rt − µ̂R) with ê = µ̂R − X̂γ̂, ŵt = γ̂′1V̂
−1
f (ft − µ̂f ), Ĥ = (X̂ ′WX̂)−1 and ẑt = [0, ût(ft −

µ̂f )′V̂ −1f ]′. In particular, if ht is uncorrelated over time, then we have V (γ̂) = E[hth
′
t], and its

consistent estimator is given by

V̂ (γ̂) =
1

T

T∑
t=1

ĥtĥ
′
t. (A.10)

When ht is autocorrelated, one can use Newey and West’s (1987) method to obtain a consistent

estimator of V (γ̂).

An inspection of (A.7) reveals that there are three sources of asymptotic variance for γ̂. The

first term γt − γ measures the asymptotic variance of γ̂ when the true betas (β) are used in the

CSR. For example, if Rt is i.i.d., then γt is also i.i.d. and we can use the time series variance of γt

to compute the standard error of γ̂. This coincides with the popular Fama and MacBeth (1973)

method. Since the betas are estimated with error in the first-pass time series regressions, an errors-

in-variables (EIV) problem is introduced in the second-pass CSR. The second term (φt − φ)wt is

the EIV adjustment term that accounts for the estimation errors in β̂. The first two terms together
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give us the V (γ̂) under the correctly specified model.2 When the model is misspecified (e 6= 0N ),

there is a third term Hzt, which we call the misspecification adjustment term. Traditionally, this

term has been ignored by empirical researchers.

We now turn our attention to the asymptotic distribution of γ̂ when W must be estimated. It

is easy to verify that the use of Ŵ instead of W does not alter the asymptotic distribution of γ̂

when the model is correctly specified. However, the asymptotic distribution is affected when the

model is misspecified. In the following proposition, we present the distribution for the GLS case.

Proposition A.2. Let H = (X ′V −1R X)−1, A = HX ′V −1R , and γt = [γ0t, γ
′
1t]
′ = ARt. Under a

potentially misspecified model, the asymptotic distribution of γ̂ = (X̂ ′V̂ −1R X̂)−1X̂ ′V̂ −1R µ̂R is given

by
√
T (γ̂ − γ)

A∼ N(0K+1, V (γ̂)), (A.11)

where

V (γ̂) =
∞∑

j=−∞
E[hth

′
t+j ], (A.12)

with

ht = (γt − γ)− (φt − φ)wt +Hzt − (γt − γ)ut, (A.13)

φt = [γ0t, (γ1t − ft)′]′, φ = [γ0, (γ1 − µf )′]′, ut = e′V −1R (Rt − µR), wt = γ′1V
−1
f (ft − µf ), zt =

[0, ut(ft − µf )′V −1f ]′. When the model is correctly specified, we have:

ht = (γt − γ)− (φt − φ)wt. (A.14)

Proof: The proof relies on the fact that γ̂ is a smooth function of µ̂ and V̂ . Therefore, once we

have the asymptotic distribution of µ̂ and V̂ , we can use the delta method to obtain the asymptotic

distribution of γ̂. Let

ϕ =

[
µ

vec(V )

]
, ϕ̂ =

[
µ̂

vec(V̂ )

]
. (A.15)

We first note that µ̂ and V̂ can be written as the generalized method of moments (GMM) estimator

that uses the moment conditions E[rt] = 0(N+K)(N+K+1), where

rt =

[
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

]
. (A.16)

2It can be verified that this expression coincides with the one given by Jagannathan and Wang (1998) in their
Theorem 1, except that our expression is easier to use in practice.
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Since this is an exactly identified system of moment conditions, it is straightforward to verify that

under the assumption that Yt is stationary and ergodic with finite fourth moment, we have:3

√
T (ϕ̂− ϕ)

A∼ N(0(N+K)(N+K+1), S0), (A.17)

where

S0 =
∞∑

j=−∞
E[rtr

′
t+j ]. (A.18)

Using the delta method, the asymptotic distribution of γ̂ under the misspecified model is given by

√
T (γ̂ − γ)

A∼ N

(
0K+1,

[
∂γ

∂ϕ′

]
S0

[
∂γ

∂ϕ′

]′)
. (A.19)

It is straightforward to obtain:

∂γ

∂µ′f
= 0(K+1)×K ,

∂γ

∂µ′R
= A. (A.20)

For the derivative of γ with respect to vec(V ), we first need to obtain ∂x/∂vec(V )′, where x =

vec(X). In order to prove this identity, we write:

Vf = [IK , 0K×N ]V [IK , 0K×N ]′, VRf = [0N×K , IN ]V [IK , 0K×N ]′ (A.21)

to obtain

∂vec(Vf )

∂vec(V )′
= [IK , 0K×N ]⊗ [IK , 0K×N ], (A.22)

∂vec(VRf )

∂vec(V )′
= [IK , 0K×N ]⊗ [0N×K , IN ]. (A.23)

With the following identity

∂vec(V −1f )

∂vec(V )′
=

∂vec(V −1f )

∂vec(Vf )′
∂vec(Vf )

∂vec(V )′

= −(V −1f ⊗ V −1f ) ([IK , 0K×N ]⊗ [IK , 0K×N ])

= [V −1f , 0K×N ]⊗ [−V −1f , 0K×N ], (A.24)

we can use the product rule to obtain

∂vec(β)

∂vec(V )′
= (V −1f ⊗ IN )

∂vec(VRf )

∂vec(V )′
+ (IK ⊗ VRf )

∂vec(V −1f )

∂vec(V )′

= [V −1f , 0K×N ]⊗ [0N×K , IN ] + [V −1f , 0K×N ]⊗ [−β, 0N×N ]

= [V −1f , 0K×N ]⊗ [−β, IN ]. (A.25)

3Note that S0 is a singular matrix as V̂ is symmetric, so there are redundant elements in ϕ̂. We could have written
ϕ̂ as [µ̂′, vech(V̂ )′]′, but the results are the same under both specifications.
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Finally, using the identity ∂x/∂vec(β)′ = [0K , IK ]′ ⊗ IN , we obtain:

∂x

∂vec(V )′
=

∂x

∂vec(β)′
∂vec(β)

∂vec(V )′
=
(

[0K , V
−1
f ]′, 0(K+1)×N

)
⊗ [−β, IN ]. (A.26)

LetKm,n be a commutation matrix (see, e.g., Magnus and Neudecker (1999)) such thatKm,nvec(A) =

vec(A′) where A is an m × n matrix. In addition, denote Kn,n by Kn. Then, using the product

rule, we obtain:

∂γ

∂vec(V )′
= (µ′RV

−1
R X⊗IK+1)

∂vec(H)

∂vec(V )′
+(µ′RV

−1
R ⊗H)

∂vec(X ′)

∂vec(V )′
+(µ′R⊗HX ′)

∂vec(V −1R )

∂vec(V )′
. (A.27)

The last two terms are given by

(µ′RV
−1
R ⊗H)

∂vec(X ′)

∂vec(V )′
= [H

[
0K , V

−1
f

]′
, 0(K+1)×N ]⊗ [−µ′RV −1R β, µ′RV

−1
R ], (A.28)

(µ′R ⊗HX ′)
∂vec(V −1R )

∂vec(V )′
= −[0′K , µ

′
RV
−1
R ]⊗ [0(K+1)×K , A]. (A.29)

For the first term, we use the chain rule to obtain

(µ′RV
−1
R X ⊗ IK+1)

∂vec(H)

∂vec(V )′

= (µ′RV
−1
R X ⊗ IK+1)

∂vec(H)

∂vec(H−1)′
∂vec(H−1)

∂vec(V )′

= −(µ′RV
−1
R X ⊗ IK+1)(H ⊗H)

[
(X ′V −1R ⊗ IK+1)KN,K+1

∂x

∂vec(V )′

+ (X ′ ⊗X ′)
∂vec(V −1R )

∂vec(V )′
+ (IK+1 ⊗X ′V −1R )

∂x

∂vec(V )′

]
= −(γ′ ⊗H)

{(
[−X ′V −1R β, X ′V −1R ]⊗

[
[0K , V

−1
f ]′, 0(K+1)×N

])
KN+K

− [0(K+1)×K , X
′V −1R ]⊗ [0(K+1)×K , X

′V −1R ]

+
[
[0K , V

−1
f ]′, 0(K+1)×N

]
⊗ [−X ′V −1R β, X ′V −1R ]

}
=

[
H[0K , V

−1
f ]′, 0(K+1)×N

]
⊗ [γ′X ′V −1R β, −γ′X ′V −1R ]

+ [0′K , γ
′X ′V −1R ]⊗ [0(K+1)×K , A]− [γ′1V

−1
f , 0′N ]⊗ [−Aβ, A]. (A.30)

Combining the three terms and using the first order condition β′V −1R e = 0K , we have:

∂γ

∂vec(V )′
=

[
H[0K , V

−1
f ]′, 0(K+1)×N

]
⊗
[
0′K , e

′V −1R

]
−
[
γ′1V

−1
f , 0′N

]
⊗ [−Aβ, A]−

[
0′K , e

′V −1R

]
⊗
[
0(K+1)×K , A

]
. (A.31)
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Using the expression for ∂γ/∂ϕ′, we can simplify the asymptotic covariance matrix of γ̂ to

V (γ̂) =

∞∑
j=−∞

E[hth
′
t+j ], (A.32)

where

ht =
∂γ

∂ϕ′
rt

= A(Rt − µR) + vec

(
[0′K , e

′V −1R ][(Yt − µ)(Yt − µ)′ − V ]

[
[0K , V

−1
f ]H

0N×(K+1)

])

− vec

(
[−Aβ, A][(Yt − µ)(Yt − µ)′ − V ]

[
V −1f γ1

0N

])

− vec

(
[0(K+1)×K , A][(Yt − µ)(Yt − µ)′ − V ]

[
0K

V −1R e

])
= (γt − γ) +H[0K , V

−1
f ]′(ft − µf )ut −A[(Rt − µR)− β(ft − µf )](ft − µf )′V −1f γ1

−A(Rt − µR)ut −H[0K , V
−1
f ]′VfRV

−1
R e−Aβγ1 +Aβγ1 +Ae

= (γt − γ) +Hzt − (φt − φ)wt − (γt − γ)ut. (A.33)

The last equality follows from the first order condition X ′V −1R e = 0K+1 (which implies β′V −1R e = 0K

and Ae = 0K+1) and the fact that Aβ = AX[0K , IK ]′ = [0K , IK ]′ gives us

A(Rt − µR)−Aβ(ft − µf ) = γt − γ −

[
0

ft − µf

]
= φt − φ. (A.34)

Note that when the model is correctly specified, we have e = 0N , ut = 0, and ht can be simplified

to

ht = (γt − γ)− (φt − φ)wt. (A.35)

This completes the proof.

Comparing (A.13) with the expression for ht in (A.7), we see that there is an extra term in

ht associated with the use of Ŵ instead of W . This fourth term vanishes only when the model is

correctly specified.

To gain a better understanding of the relative importance of the misspecification adjustment

term, in the following lemmas we derive explicit expressions for V (γ̂) under the assumption that

returns and factors are multivariate elliptically distributed, first when W is known, and then for

the GLS case.
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Lemma A.1. When the factors and returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter κ,4 the asymptotic covariance matrix of γ̂ = (X̂ ′WX̂)−1X̂ ′Wµ̂R is given by

V (γ̂) = Υw + Υw1 + Υ′w1 + Υw2, (A.36)

where

Υw = AVRA
′ + (1 + κ)γ′1V

−1
f γ1AΣA′, (A.37)

Υw1 = −(1 + κ)H[0, γ′1V
−1
f ]′e′WVRA

′, (A.38)

Υw2 = (1 + κ)e′WVRWeHṼ −1f H, (A.39)

with

Ṽ −1f =

[
0 0′K

0K V −1f

]
. (A.40)

Proof: In our proof, we rely on the mixed moments of multivariate elliptical distributions. Lemma 2

of Maruyama and Seo (2003) shows that if (Xi, Xj , Xk, Xl) are jointly multivariate elliptically

distributed and with mean zero, we have:

E[XiXjXk] = 0, (A.41)

E[XiXjXkXl] = (1 + κ)(σijσkl + σikσjl + σilσjk), (A.42)

where σij = Cov[Xi, Xj ]. We first note that since γt, φt, V
−1
f (ft − µf ), wt, and ut are all linear

functions of Rt and ft, they are also jointly elliptically distributed. In addition, using (A.34), we

have φt−φ = Aεt, where εt = Rt−µR−β(ft−µf ), which is uncorrelated with ft. Using this result

and applying (A.41) and (A.42), we can easily show that

E[(γt − γ)(φt − φ)′wt] = 0(K+1)×(K+1), (A.43)

E[(γt − γ)z′t] = 0(K+1)×(K+1), (A.44)

E[ztz
′
t] = (1 + κ)e′WVRWeṼ −1f , (A.45)

E[(φt − φ)z′twt] = (1 + κ)AVRWe[0, γ′1V
−1
f ], (A.46)

E[(φt − φ)(φt − φ)′w2
t ] = (1 + κ)γ′1V

−1
f γ1AΣA′. (A.47)

4The kurtosis parameter for an elliptical distribution is defined as κ = µ4/(3σ
4) − 1, where σ2 and µ4 are its

second and fourth central moments, respectively.
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Using these results and the i.i.d. assumption, we can now write:

V (γ̂) = E[hth
′
t]

= Var[γt]− E[(γt − γ)(φt − φ)′wt] + E[(γt − γ)z′t]H

+ E[(φt − φ)(φt − φ)′w2
t ]− E[(φt − φ)(γt − γ)′wt]− E[(φt − φ)z′twt]H

+HE[ztz
′
t]H +HE[zt(γt − γ)′]−HE[zt(φt − φ)′wt]

= AVRA
′ + (1 + κ)(γ′1V

−1
f γ1)AΣA′ + (1 + κ)e′WVRWeHṼ −1f H

− (1 + κ)AVRWe[0, γ′1V
−1
f ]H − (1 + κ)H[0, γ′1V

−1
f ]′e′WVRA

′. (A.48)

This completes the proof.

Note that when κ = 0, Lemma A.1 collapses to the expression given by Shanken and Zhou

(2007) in their Proposition 1 under normality. For general W , the misspecification adjustment term

Υw1 + Υ′w1 + Υw2 is not necessarily positive semidefinite. However, for true GLS with W = V −1R

or W = Σ−1, we have AVRWe = Ae = 0K+1, so Υw1 vanishes, resulting in the following simple

expression for V (γ̂):

V (γ̂) = H + (1 + κ)γ′1V
−1
f γ1(X

′Σ−1X)−1 + (1 + κ)QHṼ −1f H, (A.49)

where H = (X ′V −1R X)−1 and Q = e′V −1R e. The misspecification adjustment term (1+κ)QHṼ −1f H

is positive semidefinite in this case since 1 + κ > 0 (see Bentler and Berkane (1986)) and V −1f is

positive definite. Note that the adjustment term is positively related to the aggregate pricing-error

measure Q and the kurtosis parameter κ.

Lemma A.2. When the factors and returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter κ, the asymptotic covariance matrix of γ̂ = (X̂ ′V̂ −1R X̂)−1X̂ ′V̂ −1R µ̂R is given by

V (γ̂) = Υw + Υw2, (A.50)

where

Υw = H + (1 + κ)γ′1V
−1
f γ1(X

′Σ−1X)−1, (A.51)

Υw2 = (1 + κ)Q
[
(X ′Σ−1X)−1Ṽ −1f (X ′Σ−1X)−1 + (X ′Σ−1X)−1

]
, (A.52)

with H = (X ′V −1R X)−1, Q = e′V −1R e, and Ṽ −1f =

[
0 0′K

0K V −1f

]
.
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Proof: Under the i.i.d. assumption, the expression for V (γ̂) is given by

E[hth
′
t] = Var[γt]− E[(γt − γ)(φt − φ)′wt] + E[(γt − γ)z′t]H − E[(γt − γ)(γt − γ)′ut]

+ E[(φt − φ)(φt − φ)′w2
t ]− E[(φt − φ)(γt − γ)′wt]− E[(φt − φ)z′twt]H

+ E[(φt − φ)(γt − γ)′wtut] +HE[ztz
′
t]H +HE[zt(γt − γ)′]

−HE[zt(φt − φ)′wt]−HE[zt(γt − γ)′ut] + E[(γt − γ)(γt − γ)′u2t ]

− E[(γt − γ)(γt − γ)′ut] + E[(γt − γ)(φt − φ)′wtut]− E[(γt − γ)z′tut]H. (A.53)

Following the proof of Lemma A.1, we have:

Var[γt] = H, (A.54)

E[(γt − γ)(φt − φ)′wt] = 0(K+1)×(K+1), (A.55)

E[(γt − γ)z′t] = 0(K+1)×(K+1), (A.56)

E[ztz
′
t] = (1 + κ)QṼ −1f , (A.57)

E[(φt − φ)z′twt] = 0(K+1)×(K+1), (A.58)

E[(φt − φ)(φt − φ)′w2
t ] = (1 + κ)γ′1V

−1
f γ1(X

′Σ−1X)−1, (A.59)

E[(γt − γ)(γt − γ)′ut] = 0(K+1)×(K+1), (A.60)

E[(φt − φ)(γt − γ)′wtut] = 0(K+1)×(K+1), (A.61)

E[(γt − γ)(γt − γ)′u2t ] = (1 + κ)QH, (A.62)

E[zt(γt − γ)′ut] = (1 + κ)Q

[
0 0′K

0K IK

]
. (A.63)

By partitioning H as

H =

[
H11 H12

H21 H22

]
, (A.64)

where H11 is the (1, 1) element of H, and using (A.54)–(A.63), we can write:

E[hth
′
t] = H + (1 + κ)γ′1V

−1
f γ1(X

′Σ−1X)−1 + (1 + κ)QHṼ −1f H

− (1 + κ)QH

[
0 0′K

0K IK

]
+ (1 + κ)QH − (1 + κ)Q

[
0 0′K

0K IK

]
H

= Υw + (1 + κ)Q

(
HṼ −1f H +

[
H11 0′K

0K −H22

])

= Υw + (1 + κ)Q

[
H12V

−1
f H21 +H11 H12V

−1
f H22

H22V
−1
f H21 H22V

−1
f H22 −H22

]
. (A.65)
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By applying the identity (X ′Σ−1X)−1 = H − Ṽf , where Ṽf =

[
0 0′K

0K Vf

]
, we can verify that the

expression of Υw2 in (A.52) is the same as the second term in (A.65) as follows:5

(X ′Σ−1X)−1Ṽ −1f (X ′Σ−1X)−1 + (X ′Σ−1X)−1 = (H − Ṽf )Ṽ −1f (H − Ṽf ) +H − Ṽf

= HṼ −1f H +

[
H11 0′K

0K −H22

]
. (A.66)

In particular, the misspecification adjustment term for V (γ̂1) is

(1 + κ)Q(H22V
−1
f H22 −H22)

= (1 + κ)QH22V
−1
f (Vf − VfH−122 Vf )V −1f H22

= (1 + κ)QH22V
−1
f [Vf − VfRV −1R VRf + VfRV

−1
R 1N (1′NV

−1
R 1N )−11′NV

−1
R VRf ]V −1f H22,(A.67)

where the last equality is obtained by writing H−122 as

H−122 = β′V −1R β − β′V −1R 1N (1′NV
−1
R 1N )−11′NV

−1
R β. (A.68)

This completes the proof.

Note that the term Vf − VfRV −1R VRf in (A.67) is the variance of the residuals from projecting

the factors on the returns. For factors that have very low correlations with the returns (e.g.,

macroeconomic factors), the impact of this term and hence of the misspecification adjustment on

the asymptotic variance of γ̂1 can be very large.

In the following proposition, we present the asymptotic distribution of λ̂, the estimated param-

eters in the covariance-based model, for various cases. Since the derivation is very similar to the

derivation for γ̂, we do not provide the proof.

Proposition A.3. Under a potentially misspecified model, the asymptotic distribution of λ̂ is given

by
√
T (λ̂− λ)

A∼ N(0K+1, V (λ̂)), (A.69)

where

V (λ̂) =
∞∑

j=−∞
E[h̃th̃

′
t+j ]. (A.70)

5By comparing V (γ̂) for the estimated GLS case with the V (γ̂) for the true GLS case in (A.49), it is easy to
see that the use of V̂ −1

R instead of V −1
R as weighting matrix increases the asymptotic variance of γ̂0 but reduces the

asymptotic variance of γ̂1.
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To simplify the expressions for h̃t, we denote the last K elements of λ by λ1 and define G̃t =

(Rt − µR)(ft − µf )′ − VRf , z̃t = [0, ut(ft − µf )′]′, H̃ = (C ′WC)−1, Ã = H̃C ′W , λt = ÃRt, and

ut = e′W (Rt − µR).

(1) With a known weighting matrix W , λ̂ = (Ĉ ′WĈ)−1Ĉ ′Wµ̂R and

h̃t = (λt − λ)− ÃG̃tλ1 + H̃z̃t. (A.71)

(2) For estimated GLS, λ̂ = (Ĉ ′V̂ −1R Ĉ)−1Ĉ ′V̂ −1R µ̂R and

h̃t = (λt − λ)− ÃG̃tλ1 + H̃z̃t − (λt − λ)ut. (A.72)

When the model is correctly specified, we have:

h̃t = (λt − λ)− ÃG̃tλ1. (A.73)

Results for the Sample R2

We characterize the asymptotic distribution of ρ̂2 in the following proposition.

Proposition A.4. In the following, we set W to be V −1R for the GLS case.

(1) When ρ2 = 1,

T (ρ̂2 − 1) = −TQ̂
Q̂0

A∼ −
N−K−1∑
j=1

ξj
Q0

xj , (A.74)

where the xj’s are independent χ2
1 random variables, and the ξj’s are the eigenvalues of

P ′W
1
2SW

1
2P, (A.75)

where P is an N × (N −K − 1) orthonormal matrix with columns orthogonal to W
1
2C, S is the

asymptotic covariance matrix of 1√
T

∑T
t=1 εtyt, εt = Rt−µR− β(ft−µf ), and yt = 1− λ′1(ft−µf )

is the normalized stochastic discount factor (SDF).

(2) When 0 < ρ2 < 1,

√
T (ρ̂2 − ρ2) A∼ N

0,

∞∑
j=−∞

E[ntnt+j ]

 , (A.76)
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where

nt = 2
[
−utyt + (1− ρ2)vt

]
/Q0 for known W, (A.77)

nt =
[
u2t − 2utyt + (1− ρ2)(2vt − v2t )

]
/Q0 for Ŵ = V̂ −1R , (A.78)

with e0 = [IN − 1N (1′NW1N )−11′NW ]µR, ut = e′W (Rt − µR), and vt = e′0W (Rt − µR).

(3) When ρ2 = 0,

T ρ̂2
A∼

K∑
j=1

ξj
Q0

xj , (A.79)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of

[β′Wβ − β′W1N (1′NW1N )−11′NWβ]V (γ̂1), (A.80)

where V (γ̂1) is given in Proposition A.1 (for known weighting matrix W ) or Proposition A.2 (for

estimated GLS).6

Proof: (1) ρ2 = 1: We first derive the asymptotic distribution of

TQ̂ = T [µ̂′RŴ µ̂R − µ̂′RŴ X̂(X̂ ′Ŵ X̂)−1X̂ ′Ŵ µ̂R] (A.81)

under H0 : ρ2 = 1, where Ŵ
a.s.−→ W (this includes the known weighting matrix case as a special

case). This can be accomplished by using the GMM results of Hansen (1982). Let θ = (θ′1, θ
′
2)
′,

where θ1 = (α′, vec(β)′)′ and θ2 = γ. Define

gt(θ) ≡

[
g1t(θ1)

g2t(θ)

]
=

[
lt ⊗ εt
Rt −Xγ

]
, (A.82)

where lt = [1, f ′t ]
′ and εt = Rt − α − βft. When the model is correctly specified, we have

E[gt(θ)] = 0p+N , where p = N(K + 1). The sample moments of gt(θ) are given by

ḡT (θ) =

[
1
T

∑T
t=1 g1t(θ1)

1
T

∑T
t=1 g2t(θ)

]
. (A.83)

Let θ̂ = (θ̂′1, θ̂
′
2)
′, where θ̂1 = (α̂′, vec(β̂)′)′ is the ordinary least squares (OLS) estimator of α and

β, and

θ̂2 = γ̂ = (X̂ ′Ŵ X̂)−1X̂ ′Ŵ µ̂R (A.84)

6In the proof of this proposition, we show that ρ2 = 0 if and only if γ1 = 0K . Therefore, another way to test
H0 : ρ2 = 0 is to test the equivalent hypothesis H0 : γ1 = 0K , which can be easily performed by using a Wald test.
When computing V (γ̂1) for the test of H0 : ρ2 = 0, one could also impose the null hypothesis H0 : γ1 = 0K and drop
the EIV term (φt − φ)wt in the expressions for ht in Propositions A.1 and A.2.
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is the second-pass CSR estimator of γ. Note that θ̂ is the solution to the following first order

condition

BT ḡT (θ) = 0p+K+1, (A.85)

where

BT =

[
Ip 0p×N

0(K+1)×p X̂ ′Ŵ

]
a.s.−→

[
Ip 0p×N

0(K+1)×p X ′W

]
≡ B. (A.86)

Writing

lt ⊗ εt = vec(εtl
′
t) = (lt ⊗ IN )vec(εt), (A.87)

εt = Rt − α− βft = Rt − (l′t ⊗ IN )θ1, (A.88)

βγ1 = (γ′1 ⊗ IN )vec(β), (A.89)

we have:

∂g1t(θ1)

∂θ′1
= −ltl′t ⊗ IN , (A.90)

∂g1t(θ1)

∂θ′2
= 0p×(K+1), (A.91)

∂g2t(θ)

∂θ′1
= [0, −γ′1]⊗ IN , (A.92)

∂g2t(θ)

∂θ′2
= −X. (A.93)

Let

DT =
∂ḡT (θ)

∂θ′

=

[
−
(

1
T

∑T
t=1 ltl

′
t

)
⊗ IN 0p×(K+1)

[0, −γ′1]⊗ IN −X

]
a.s.−→

[
−E[ltl

′
t]⊗ IN 0p×(K+1)

[0, −γ′1]⊗ IN −X

]
≡ D. (A.94)

Hansen (1982, Lemma 4.1) shows that when the model is correctly specified,7 we have:

√
T ḡT (θ̂)

A∼ N(0p+N , [Ip+N −D(BD)−1B]Sg[Ip+N −D(BD)−1B]′), (A.95)

7Although it is possible that some of the GMM sample moment conditions are not asymptotically normally
distributed (see Gospodinov, Kan and Robotti (2010) for details), our results on the asymptotic distribution of
T (ρ̂2 − 1) are not affected by this problem.
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where

Sg =
∞∑

j=−∞
E[gt(θ)gt+j(θ)

′]. (A.96)

Using the partitioned matrix inverse formula, it is easy to verify that

E[ltl
′
t]
−1 =

[
1 + µ′fV

−1
f µf −µ′fV

−1
f

−V −1f µf V −1f

]
. (A.97)

It follows that

BD =

[
−E[ltl

′
t]⊗ IN 0p×(K+1)

[0, −γ′1]⊗X ′W −H−1

]
, (A.98)

(BD)−1 =

[
−E[ltl

′
t]
−1 ⊗ IN 0p×(K+1)

[−γ′1V
−1
f µf , γ

′
1V
−1
f ]⊗A −H

]
, (A.99)

D(BD)−1B =

[
Ip 0p×N

[−γ′1V
−1
f µf , γ

′
1V
−1
f ]⊗ (IN −XA) XA

]
, (A.100)

Ip+N −D(BD)−1B =

[
0p×p 0p×N

[γ′1V
−1
f µf , −γ′1V

−1
f ]⊗ (IN −XA) IN −XA

]
. (A.101)

We now provide a simplification of the asymptotic distribution of ḡ2T (θ̂). From (A.95), we have:

√
T ḡ2T (θ̂)

A∼ N(0N , Vq), (A.102)

where

Vq =

∞∑
j=−∞

E[qt(θ)qt+j(θ)
′], (A.103)

and

qt(θ) = [0N×p, IN ][Ip+N −D(BD)−1B]gt(θ)

= −(IN −XA)εtγ
′
1V
−1
f (ft − µf ) + (IN −XA)(Rt −Xγ)

= (IN −XA)[Rt − εtγ′1V −1f (ft − µf )]

= (IN −XA)εtyt

= [IN −X(X ′WX)−1X ′W ]εtyt

= W−
1
2 [IN −W

1
2X(X ′WX)−1X ′W

1
2 ]W

1
2 εtyt

= W−
1
2 [IN −W

1
2C(C ′WC)−1C ′W

1
2 ]W

1
2 εtyt

= W−
1
2PP ′W

1
2 εtyt, (A.104)
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where yt = 1− λ′1(ft − µf ) = 1− γ′1V
−1
f (ft − µf ). The fourth equality follows from the fact that,

under H0 : ρ2 = 1, (IN −XA)Rt = (IN −XA)εt. With this expression of qt(θ), we can write Vq as

Vq = W−
1
2PP ′W

1
2SW

1
2PP ′W−

1
2 . (A.105)

Having derived the asymptotic distribution of ḡ2T (θ̂), the asymptotic distribution of Q̂ is given by

TQ̂ = T ḡ2T (θ̂)′Ŵ ḡ2T (θ)
A∼
N−K−1∑
j=1

ξjxj , (A.106)

where the xj ’s are independent χ2
1 random variables, and the ξj ’s are the N − K − 1 nonzero

eigenvalues of

W
1
2VqW

1
2 = PP ′W

1
2SW

1
2PP ′. (A.107)

Equivalently, the ξj ’s are the eigenvalues of P ′W
1
2SW

1
2P . Since Q̂0

a.s.−→ Q0 > 0, we have:

T (ρ̂2 − 1) = −TQ̂
Q̂0

A∼ −
N−K−1∑
j=1

ξj
Q0

xj . (A.108)

(2) 0 < ρ2 < 1: The proof uses the same notation and delta method employed in the proof of

Proposition A.2 to obtain the asymptotic distribution of ρ̂2 as

√
T (ρ̂2 − ρ2) A∼ N

0,

∞∑
j=−∞

E[ntnt+j ]

 , (A.109)

where

nt =
∂ρ2

∂ϕ′
rt. (A.110)

Obtaining an explicit expression for nt requires computing ∂ρ2/∂ϕ′. For both the known weight-

ing matrix case and the estimated GLS case, we have:

∂ρ2

∂µf
= 0K , (A.111)

∂ρ2

∂µR
= 2Q−10 W [(1− ρ2)e0 − e]. (A.112)

Equation (A.111) follows because ρ2 does not depend on µf . For (A.112), using the first order

conditions 1′NWe0 = 0 and X ′We = 0K+1, we have:

∂Q0

∂µR
= 2We0,

∂Q

∂µR
= 2We. (A.113)
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It follows that

∂ρ2

∂µR
= −Q−10

∂Q

∂µR
+Q−20 Q

∂Q0

∂µR
= −2Q−10 We+ 2QQ−20 We0 = 2Q−10 W [(1− ρ2)e0 − e]. (A.114)

The expression for ∂ρ2/∂vec(V )′, however, depends on whether we use a known W or an estimate

of W , say Ŵ , as the weighting matrix. We start with the known weighting matrix W case.

Differentiating Q = e′We with respect to vec(V ), we obtain:

∂Q

∂vec(V )′
= 2e′W

∂(µR −Xγ)

∂vec(V )′
= −2e′W

[
(γ′ ⊗ IN )

∂x

∂vec(V )′
+X

∂γ

∂vec(V )′

]
. (A.115)

Note that the second term vanishes because of the first order condition X ′We = 0K+1. Using

(A.26) for the first term and the fact that β′We = 0K gives

∂Q

∂vec(V )′
= −2e′W

(
[γ′1V

−1
f , 0′N ]⊗ [−β, IN ]

)
= −2

(
[γ′1V

−1
f , 0′N ]⊗ [0′K , e

′W ]
)
. (A.116)

Since Q0 = e′0We0 does not depend on V , we have:

∂ρ2

∂vec(V )′
= −Q−10

∂Q

∂vec(V )′
= 2Q−10 [γ′1V

−1
f , 0′N ]⊗ [0′K , e

′W ]. (A.117)

Therefore, for the known weighting matrix W case, nt is given by

nt =
∂ρ2

∂ϕ′
rt

= 2Q−10 [(1− ρ2)e′0 − e′]W (Rt − µR) + 2Q−10 e′W (Rt − µR)(ft − µf )′V −1f γ1

= 2Q−10 [−utyt + (1− ρ2)vt]. (A.118)

We now turn to the Ŵ = V̂ −1R case. Differentiating Q = e′V −1R e with respect to vec(V ), we

obtain:

∂Q

∂vec(V )′
= 2e′V −1R

∂(µR −Xγ)

∂vec(V )′
+ (e′ ⊗ e′)

∂vec(V −1R )

∂vec(V )′

= −2
(

[γ′1V
−1
f , 0′N ]⊗ [0′K , e

′V −1R ]
)
− (e′ ⊗ e′)

(
[0N×K , V

−1
R ]⊗ [0N×K , V

−1
R ]
)

= −[2γ′1V
−1
f , e′V −1R ]⊗ [0′K , e

′V −1R ]. (A.119)

Similarly, we have:

∂Q0

∂vec(V )′
= −[0′K , e

′
0V
−1
R ]⊗ [0′K , e

′
0V
−1
R ]. (A.120)
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It follows that for the GLS case

∂ρ2

∂vec(V )′
= −Q−10

∂Q

∂vec(V )′
+Q−20 Q

∂Q0

∂vec(V )′

= Q−10

[
2γ′1V

−1
f , e′V −1R

]
⊗
[
0′K , e

′V −1R

]
−Q−10 (1− ρ2)

[
0′K , e

′
0V
−1
R

]
⊗
[
0′K , e

′
0V
−1
R

]
. (A.121)

Therefore, we have for the GLS case:

nt =
∂ρ2

∂ϕ′
rt

= 2Q−10 [(1− ρ2)e′0 − e′]V −1R (Rt − µR) +Q−10 e′V −1R (Rt − µR)[2γ′1V
−1
f (ft − µf )

+ e′V −1R (Rt − µR)]−Q−10 (1− ρ2)[e′0V −1R (Rt − µR)]2 −Q−10 Q+Q−10 (1− ρ2)Q0

= Q−10 [u2t − 2utyt + (1− ρ2)(2vt − v2t )]. (A.122)

(3) ρ2 = 0: We start by rewriting Q0 −Q as

Q0 −Q = µ′RWX(X ′WX)−1X ′WµR − µ′RW1N (1′NW1N )−11′NWµR

= µ′RWX(X ′WX)−1X ′WµR − µ′RWX

[
(1′NW1N )−1 0′K

0K 0K×K

]
X ′WµR

= γ′(X ′WX)γ − γ′(X ′WX)

[
(1′NW1N )−1 0′K

0K 0K×K

]
(X ′WX)γ

= γ′(X ′WX)γ − γ′
[

1′NW1N 1′NWβ

β′W1N β′W1N (1′NW1N )−11′NWβ

]
γ

= γ′1[β
′Wβ − β′W1N (1′NW1N )−11′NWβ]γ1. (A.123)

The matrix in the middle is positive definite because X is assumed to be of full column rank, so

the necessary and sufficient condition for Q0 = Q (i.e., ρ2 = 0) is γ1 = 0K . Note that (A.123) also

holds for its sample counterpart, so we can write ρ̂2 as

ρ̂2 = 1− Q̂

Q̂0

=
Q̂0 − Q̂
Q̂0

=
γ̂′1[β̂

′Ŵ β̂ − β̂′Ŵ1N (1′NŴ1N )−11′NŴ β̂]γ̂1

Q̂0

. (A.124)

Under the null hypothesis H0 : γ1 = 0K , we have:

√
T γ̂1

A∼ N(0K , V (γ̂1)), (A.125)

where V (γ̂1) is the asymptotic covariance matrix of γ̂1 obtained under the misspecified model. As

Q̂0
a.s.−→ Q0 > 0 and

β̂′Ŵ β̂ − β̂′Ŵ1N (1′NŴ1N )−11′NŴ β̂
a.s.−→ β′Wβ − β′W1N (1′NW1N )−11′NWβ, (A.126)
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it follows that

T ρ̂2
A∼

K∑
j=1

ξj
Q0

xj , (A.127)

where the xj ’s are independent χ2
1 random variables and the ξj ’s are the eigenvalues of

[β′Wβ − β′W1N (1′NW1N )−11′NWβ]V (γ̂1). (A.128)

This completes the proof.

Model Comparison Tests

Nested Models

Lemma A.3. ρ2A = ρ2B if and only if λA,2 = 0K2.

Proof: Partition CA = [CAa, CAb], where CAa is the first K1 + 1 columns of CA and CAb is the

last K2 columns of CA. Using the fact that CAa = CB, we can write the difference between QB

and QA as

QB −QA = µ′RWCA(C ′AWCA)−1C ′AWµR − µ′RWCB(C ′BWCB)−1C ′BWµR

= µ′RWCA(C ′AWCA)−1C ′AWµR − µ′RWCA

[
(C ′AaWCAa)

−1 0(K1+1)×K2

0K2×(K1+1) 0K2×K2

]
C ′AWµR

= λ′A(C ′AWCA)λA − λ′A(C ′AWCA)

[
(C ′AaWCAa)

−1 0(K1+1)×K2

0K2×(K1+1) 0K2×K2

]
(C ′AWCA)λA

= λ′A,2[C
′
AbWCAb − C ′AbWCAa(C

′
AaWCAa)

−1(C ′AaWCAb)]λA,2

= λ′A,2H̃
−1
A,22λA,2, (A.129)

where H̃A,22 is the lower right K2 ×K2 submatrix of H̃A = (C ′AWCA)−1. Since CA is assumed to

be of full column rank, H̃−1A,22 is a positive definite matrix. It follows that QA = QB if and only if

λA,2 = 0K2 . This completes the proof.

By this lemma, to test whether the models have the same ρ2, one can simply perform a test

of H0 : λA,2 = 0K2 . Let V̂ (λ̂A,2) be a consistent estimator of the asymptotic covariance matrix of
√
T (λ̂A,2 − λA,2). Then, under the null hypothesis,

T λ̂′A,2V̂ (λ̂A,2)
−1λ̂A,2

A∼ χ2
K2
, (A.130)
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and this statistic can be used to test H0 : ρ2A = ρ2B. If K2 = 1, we can also use the t-ratio associated

with λ̂A,2 to perform the test. However, it is important to note that, in general, we cannot conduct

this test using the usual standard error of λ̂A,2, which assumes that model A is correctly specified.

Instead, we need to rely on the misspecification-robust standard error of λ̂ given in Proposition A.3.

In the next proposition, we derive the asymptotic distribution of ρ̂2A − ρ̂2B and use this statistic

to test H0 : ρ2A = ρ2B.

Proposition A.5. Partition H̃A = (C ′AWCA)−1 as

H̃A =

[
H̃A,11 H̃A,12

H̃A,21 H̃A,22

]
, (A.131)

where H̃A,22 is K2 ×K2. Under the null hypothesis H0 : ρ2A = ρ2B,

T (ρ̂2A − ρ̂2B)
A∼

K2∑
j=1

ξj
Q0

xj , (A.132)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of H̃−1A,22V (λ̂A,2).

We do not provide the proof of Proposition A.5 since this proposition is a special case of Proposi-

tion A.6 below when K3 = 0.

Again, we emphasize that the misspecification-robust version of V (λ̂A,2) should be used to test

H0 : ρ2A = ρ2B. Model misspecification tends to create additional sampling variation in ρ̂2A − ρ̂2B.

Without taking this into account, one might mistakenly reject the null hypothesis when it is true.

In actual testing, we replace ξj with its sample counterpart ξ̂j , where the ξ̂j ’s are the eigenvalues of

ˆ̃H−1A,22V̂ (λ̂A,2), and ˆ̃HA,22 and V̂ (λ̂A,2) are consistent estimators of H̃A,22 and V (λ̂A,2), respectively.8

Non-Nested Models

Testing H0 : ρ2A = ρ2B is more complicated for non-nested models. The reason is that under H0,

there are three possible asymptotic distributions for ρ̂2A − ρ̂2B, depending on why the two models

have the same cross-sectional R2. To see this, we first define the normalized SDFs for models A

and B as

yA = 1− (f1 − E[f1])
′λA,1 − (f2 − E[f2])

′λA,2, yB = 1− (f1 − E[f1])
′λB,1 − (f3 − E[f3])

′λB,3.

(A.133)

8In the empirical application in the paper, we use the weighted chi-squared test in Proposition A.5 for nested
models. Results for the Wald test of λA,2 = 0K2 based on Lemma A.3 are consistent with those shown in Table IV.
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At first sight, it may appear that yA = yB is equivalent to the joint restriction λA,1 = λB,1,

λA,2 = 0K2 and λB,3 = 0K3 . The following lemma shows that the first equality is redundant,

however, since it is implied by the other two.

Lemma A.4. For non-nested models, yA = yB if and only if λA,2 = 0K2 and λB,3 = 0K3.

Proof: Given that yA = yB if and only if λA,1 = λB,1, λA,2 = 0K2 , and λB,3 = 0K3 , it suffices

to show that λA,2 = 0K2 and λB,3 = 0K3 imply λA,1 = λB,1. Premultiplying both sides of λA =

(C ′AWCA)−1C ′AWµR by C ′AWCA, we obtain:

[
C ′AaWCAa C ′AaWCAb

C ′AbWCAa C ′AbWCAb

] λA,0

λA,1

λA,2

 =

[
C ′AaWµR

C ′AbWµR

]
, (A.134)

where CAa is the first K1+1 columns of CA and CAb is the last K2 columns of CA. When λA,2 = 0K2 ,

the first block of this equation gives us[
λA,0

λA,1

]
= (C ′AaWCAa)

−1C ′AaWµR. (A.135)

Similarly for model B, when λB,3 = 0K3 , we have:[
λB,0

λB,1

]
= (C ′BaWCBa)

−1C ′BaWµR, (A.136)

where CBa is the first K1+1 columns of CB. Since CAa and CBa are both equal to [1N , Cov[Rt, f
′
1t]],

we have λA,0 = λB,0 and λA,1 = λB,1. This completes the proof.

Lemma A.4 shows that yA = yB implies that the two models have the same pricing errors

(eA = eB) and cross-sectional R2 (ρ2A = ρ2B). Note that this lemma is applicable even when the

models are misspecified. It implies that we can test H0 : yA = yB by testing the joint hypothesis

H0 : λA,2 = 0K2 , λB,3 = 0K3 . Let ψ = [λ′A,2, λ
′
B,3]
′ and ψ̂ = [λ̂′A,2, λ̂

′
B,3]
′. It can be easily

established that under H0 : yA = yB, the asymptotic distribution of ψ̂ is given by

√
T (ψ̂ − ψ)

A∼ N(0K2+K3 , V (ψ̂)), (A.137)

where

V (ψ̂) =

∞∑
j=−∞

E[q̃tq̃
′
t+j ], (A.138)
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and q̃t is a K2 +K3 vector obtained by stacking up the last K2 and K3 elements of h̃t for models A

and B, respectively, where h̃t is given in Proposition A.3.

Let V̂ (ψ̂) be a consistent estimator of V (ψ̂). Then, under the null hypothesis H0 : ψ = 0K2+K3 ,

T ψ̂′V̂ (ψ̂)−1ψ̂
A∼ χ2

K2+K3
, (A.139)

and this statistic can be used to test H0 : yA = yB. As in the nested models case, it is important

to conduct this test using the misspecification-robust standard error of ψ̂.

The following proposition gives the asymptotic distribution of ρ̂2A − ρ̂2B given H0 : yA = yB.

Proposition A.6. Let H̃A = (C ′AWCA)−1 and H̃B = (C ′BWCB)−1, and partition them as

H̃A =

[
H̃A,11 H̃A,12

H̃A,21 H̃A,22

]
, H̃B =

[
H̃B,11 H̃B,13

H̃B,31 H̃B,33

]
, (A.140)

where H̃A,11 and H̃B,11 are (K1 + 1)× (K1 + 1). Under the null hypothesis H0 : yA = yB,

T (ρ̂2A − ρ̂2B)
A∼
K2+K3∑
j=1

ξj
Q0

xj , (A.141)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of[

H̃−1A,22 0K2×K3

0K3×K2 −H̃−1B,33

]
V (ψ̂). (A.142)

Proof: We first derive a simplified expression for QB −QA. The aggregate pricing-error measure

for model A is given by

QA = e′AWeA = µ′RWµR − µ′RWCA(C ′AWCA)−1C ′AWµR. (A.143)

We now introduce a model M that uses only f1 as factors. The aggregate pricing-error measure

for model M is given by

QM = e′MWeM = µ′RWµR − µ′RWCM (C ′MWCM )−1C ′MWµR, (A.144)

where CM = [1N , Cov[R, f ′1]]. Using the fact that the CAa = CBa = CM and (A.129), we can write

the difference between QM and QA as

QM −QA = λ′A,2H̃
−1
A,22λA,2. (A.145)
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Similarly, we have:

QM −QB = λ′B,3H̃
−1
B,33λB,3. (A.146)

Subtracting (A.146) from (A.145), we obtain:

QB −QA = λ′A,2H̃
−1
A,22λA,2 − λ

′
B,3H̃

−1
B,33λB,3 = ψ′

[
H̃−1A,22 0K2×K3

0K3×K2 −H̃−1B,33

]
ψ, (A.147)

where ψ = [λ′A,2, λ
′
B,3]
′. This equation also holds for its sample counterpart, and under the null

hypothesis H0 : ψ = 0K2+K3 , we have
√
TV (ψ̂)−

1
2 ψ̂

A∼ N(0K2+K3 , IK2+K3). It follows that

T (Q̂B − Q̂A)
A∼
K2+K3∑
j=1

ξjxj , (A.148)

where the xj ’s are independent χ2
1 random variables and the ξj ’s are the eigenvalues of[

H̃−1A,22 0K2×K3

0K3×K2 −H̃−1B,33

]
V (ψ̂). (A.149)

Since ρ̂2A − ρ̂2B = (Q̂B − Q̂A)/Q̂0 and Q̂0
a.s.−→ Q0 > 0, we have

T (ρ̂2A − ρ̂2B)
A∼
K2+K3∑
j=1

ξj
Q0

xj . (A.150)

This completes the proof.

Note that we can think of the earlier nested models scenario as a special case of testing H0 :

yA = yB with K3 = 0. The only difference is that the ξj ’s in Proposition A.5 are all positive whereas

some of the ξj ’s in Proposition A.6 are negative. As a result, we need to perform a two-sided test

based on ρ̂2A − ρ̂2B in the non-nested models case.9

When yA 6= yB, the asymptotic distribution of ρ̂2A− ρ̂2B given H0 : ρ2A = ρ2B depends on whether

the models are correctly specified or not. The following proposition presents a simple chi-squared

statistic for testing whether models A and B are both correctly specified.

Proposition A.7. Let nA = N − K1 − K2 − 1 and nB = N − K1 − K3 − 1. Also let PA be an

N ×nA orthonormal matrix with columns orthogonal to W
1
2CA and PB be an N ×nB orthonormal

9Following Davidson and MacKinnon (2003, p.174), the p-value of a two-sided test associated with a realized
statistic τ̂ that has a possibly asymmetric distribution is computed as p = 2min[F (τ̂), 1 − F (τ̂)], where F (τ̂) is the
cumulative density function of the statistic τ̂ .
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matrix with columns orthogonal to W
1
2CB. Let εAt and εBt be the residuals of models A and B,

respectively, and define

gt(θ) =

[
gAt(λA)

gBt(λB)

]
=

[
εAtyAt

εBtyBt

]
, (A.151)

where θ = (λ′A, λ
′
B)′, and

S ≡

[
SAA SAB

SBA SBB

]
=

∞∑
j=−∞

E[gt(θ)gt+j(θ)
′]. (A.152)

If yA 6= yB and the null hypothesis H0 : ρ2A = ρ2B = 1 holds, then

T

[
P̂ ′AŴ

1
2 êA

P̂ ′BŴ
1
2 êB

]′ [
P̂ ′AŴ

1
2 ŜAAŴ

1
2 P̂A P̂ ′AŴ

1
2 ŜABŴ

1
2 P̂B

P̂ ′BŴ
1
2 ŜBAŴ

1
2 P̂A P̂ ′BŴ

1
2 ŜBBŴ

1
2 P̂B

]−1 [
P̂ ′AŴ

1
2 êA

P̂ ′BŴ
1
2 êB

]
A∼ χ2

nA+nB
, (A.153)

where êA and êB are the sample pricing errors of models A and B, and P̂A, P̂B, and Ŝ are consistent

estimators of PA, PB, and S, respectively.

Proof: See the proof of Proposition A.8.

An alternative specification test makes use of the cross-sectional R2s. The relevant asymptotic

distribution is given in the following proposition.

Proposition A.8. Using the notation in Proposition A.7, if yA 6= yB and the null hypothesis

H0 : ρ2A = ρ2B = 1 holds, then

T (ρ̂2A − ρ̂2B)
A∼
nA+nB∑
j=1

ξj
Q0

xj , (A.154)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of[

−P ′AW
1
2SAAW

1
2PA −P ′AW

1
2SABW

1
2PB

P ′BW
1
2SBAW

1
2PA P ′BW

1
2SBBW

1
2PB

]
. (A.155)

Proof: In the proof of Proposition A.4, we show that when model A is correctly specified,

√
T êA

A∼ N(0N , VqA), (A.156)

where

VqA =
∞∑

j=−∞
E[qAtq

′
A,t+j ], (A.157)
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with

qAt = W−
1
2PAP

′
AW

1
2 εAtyAt = W−

1
2PAP

′
AW

1
2 gAt. (A.158)

A similar result holds for model B. Stacking up the pricing errors of the two models, we have:

√
T

[
êA

êB

]
A∼ N(02N , Vq), (A.159)

where

Vq =
∞∑

j=−∞
E[qtq

′
t+j ], (A.160)

and

qt =

[
qAt

qBt

]
=

[
W−

1
2PAP

′
AW

1
2 gAt

W−
1
2PBP

′
BW

1
2 gBt

]
. (A.161)

We can then write Vq as

Vq =

[
W−

1
2PAP

′
AW

1
2SAAW

1
2PAP

′
AW

− 1
2 W−

1
2PAP

′
AW

1
2SABW

1
2PBP

′
BW

− 1
2

W−
1
2PBP

′
BW

1
2SBAW

1
2PAP

′
AW

− 1
2 W−

1
2PBP

′
BW

1
2SBBW

1
2PBP

′
BW

− 1
2

]
. (A.162)

It follows that

z =
√
T

[
P̂ ′AŴ

1
2 êA

P̂ ′BŴ
1
2 êB

]
A∼ N(0nA+nB , Vz), (A.163)

where

Vz =

[
P ′AW

1
2SAAW

1
2PA P ′AW

1
2SABW

1
2PB

P ′BW
1
2SBAW

1
2PA P ′BW

1
2SBBW

1
2PB

]
. (A.164)

Then, we have:

z′V̂ −1z z
A∼ χ2

nA+nB
. (A.165)

This completes the proof of Proposition A.7.

Using the first order condition Ĉ ′AŴ
′êA = 0K1+K2+1, we can write:

TQ̂A = T ê′AŴ
1
2 [P̂AP̂

′
A + Ŵ

1
2 ĈA(Ĉ ′AŴ ĈA)−1Ĉ ′AŴ

1
2 ]Ŵ

1
2 êA

= T ê′AŴ
1
2 P̂AP̂

′
AŴ

1
2 êA

= z′AzA, (A.166)

where zA is the first nA elements of z. Similarly, TQ̂B = z′BzB, where zB is the last nB elements

of z. Let QΞQ′ be the eigenvalue decomposition of

V
1
2
z

[
−InA 0nA×nB

0nB×nA InB

]
V

1
2
z , (A.167)
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where Ξ = Diag(ξ1, . . . , ξnA+nB ) is a diagonal matrix of the eigenvalues of (A.167) or, equivalently,

of the eigenvalues of (A.155). Writing z̃ = Q′V
− 1

2
z z

A∼ N(0nA+nB , InA+nB ), we have:

T (Q̂B − Q̂A) = z′

[
−InA 0nA×nB

0nB×nA InB

]
z = z′V

− 1
2

z QΞQ′V
− 1

2
z z = z̃′Ξz̃ =

nA+nB∑
j=1

ξjxj , (A.168)

where xj = z̃2j
A∼ χ2

1, j = 1, . . . , nA + nB, and they are asymptotically independent of each other.

Since ρ̂2A − ρ̂2B = (Q̂B − Q̂A)/Q̂0 and Q̂0
a.s.−→ Q0 > 0, we have:

T (ρ̂2A − ρ̂2B)
A∼
nA+nB∑
j=1

ξj
Q0

xj . (A.169)

This completes the proof of Proposition A.8.

Note that the ξj ’s are not all positive because ρ̂2A − ρ̂2B can be negative. Thus, again, we need

to perform a two-sided test of H0 : ρ2A = ρ2B.

The asymptotic distribution of ρ̂2A− ρ̂2B changes when the models are misspecified and the next

proposition presents the appropriate distribution for this case.

Proposition A.9. Suppose yA 6= yB and 0 < ρ2A = ρ2B < 1.10 We have:

√
T (ρ̂2A − ρ̂2B)

A∼ N

0,

∞∑
j=−∞

E[dtdt+j ]

 . (A.170)

When the weighting matrix W is known,

dt = 2Q−10

[
uBtyBt − uAtyAt − (ρ2A − ρ2B)vt

]
, (A.171)

where uAt = e′AW (Rt − µR), uBt = e′BW (Rt − µR), and vt is defined in Proposition A.4. For

estimated GLS,

dt = Q−10

[
u2At − 2uAtyAt − u2Bt + 2uBtyBt − (ρ2A − ρ2B)(2vt − v2t )

]
, (A.172)

where uAt = e′AV
−1
R (Rt − µR) and uBt = e′BV

−1
R (Rt − µR).11

10Since ρ2A = ρ2B = 0 implies yA = yB = 1, this case is already covered by the test based on Lemma A.4.
11One could impose H0 : ρ2A = ρ2B in (A.171) and (A.172) and the vt terms would drop out of these expressions.

However, our simulation results indicate that not imposing H0 : ρ2A = ρ2B in the computation of the standard errors
leads to improved finite-sample properties of the normal test. Similarly, we obtain better finite-sample performance
when, in the GLS case, we multiply ut and vt by (T −N − 2)/T .
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Proof: We start from the known weighting matrix case. Using the results of Proposition A.4, we

obtain the following expressions for models A and B:

nAt =

[
∂ρ2A
∂ϕ

]′
rt = 2Q−10 [−uAtyAt + (1− ρ2A)vt], (A.173)

nBt =

[
∂ρ2B
∂ϕ

]′
rt = 2Q−10 [−uBtyBt + (1− ρ2B)vt]. (A.174)

Now, using the delta method and equations (A.15)–(A.18), the asymptotic distribution of ρ̂2A− ρ̂2B
when both models are misspecified is given by

√
T (ρ̂2A − ρ̂2B − (ρ2A − ρ2B))

A∼ N

(
0,

[
∂(ρ2A − ρ2B)

∂ϕ

]′
S0

[
∂(ρ2A − ρ2B)

∂ϕ

])
. (A.175)

With the analytical expressions of nAt and nBt, the asymptotic variance of
√
T (ρ̂2A − ρ̂2B) can be

written as
∞∑

j=−∞
E[dtdt+j ], (A.176)

where

dt =

(
∂ρ2A
∂ϕ
−
∂ρ2B
∂ϕ

)′
rt = nAt − nBt. (A.177)

Therefore, we have:

dt = 2Q−10

[
uBtyBt − uAtyAt − (ρ2A − ρ2B)vt

]
. (A.178)

Using the same type of proof for the GLS case with Ŵ = V̂ −1R , we obtain:

dt = Q−10

[
u2At − 2uAtyAt − u2Bt + 2uBtyBt − (ρ2A − ρ2B)(2vt − v2t )

]
. (A.179)

This completes the proof.

Note that if yAt = yBt, then ρ2A = ρ2B, uAt = uBt, and hence dt = 0. Or, if yAt 6= yBt, but both

models are correctly specified (i.e., uAt = uBt = 0 and ρ2A = ρ2B = 1), then again dt = 0. Thus,

the normal test cannot be used in these cases, consistent with the maintained assumptions in the

proposition.

Discussion of the Sequential Test

Given the three distinct cases described above, testing H0 : ρ2A = ρ2B for non-nested models entails a

sequential test, as suggested by Vuong (1989). In our context, this involves first testingH0 : yA = yB

using (A.139) or (A.141). If we reject H0 : yA = yB, then we use (A.153) or (A.154) to test

26



H0 : ρ2A = ρ2B = 1. This second test can be viewed as a generalization of the cross-sectional

regression test (CSRT) of Shanken (1985) and later multivariate tests of the validity of the expected

return relation for a single pricing model. Finally, if the hypothesis that both models are correctly

specified is also rejected, we proceed to evaluate H0 : 0 < ρ2A = ρ2B < 1 using the normal test in

Proposition A.9. Let α1, α2 and α3 be the significance levels employed in these three tests. Then

the sequential test has an asymptotic significance level that is bounded above by max[α1, α2, α3].

Thus, if α1 = α2 = α3 = 0.05, the significance level of this procedure for testing H0 : ρ2A = ρ2B is

asymptotically no larger than 5%.12

In our empirical application in the paper, we implement the sequential test by using (A.141),

(A.154), and the normal test in Proposition A.9.

12Note that for the sequential test to reject ρ2A = ρ2B , all three tests must reject. Consider the first scenario, yA = yB .
P(reject ρ2A = ρ2B | yA = yB) ≤ P(test 1 rejects | yA = yB) = α1. Similarly, the probability that the sequential test
rejects under the second and third scenarios cannot exceed α2 and α3, respectively. Under H0 : ρ2A = ρ2B , one of the
three scenarios must hold, so the true probability of rejection cannot exceed the maximum.
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B Analysis with Portfolio Characteristics

We show how to accommodate portfolio characteristics in the CSR. In particular, we derive the

asymptotic distributions of the estimated parameters, sample cross-sectional R2s, and model com-

parison tests when both portfolio characteristics and estimated betas (or covariances) are used in

the CSR. The proofs of the various lemmas and propositions are omitted since they are similar to

the ones of Appendix A.

We are interested in determining whether the unconditional betas with respect to K factors

and L portfolio characteristics help explain the unconditional expected returns on N test assets.

Let Zt be an N × L matrix of L portfolio characteristics associated with the N test assets at the

beginning of period t. The proposed model states that unconditional expected returns are linear

in β = VRfV
−1
f and µZ = E[Zt]:

µR = Xγ, (B.1)

where X = [1N , β, µZ ]. In reality, the proposed model could be misspecified. In this case, the

vector of pseudo-true parameters γ is defined as

γ = (X ′WX)−1(X ′WµR), (B.2)

where W is an N × N positive definite weighting matrix. We partition the (K + L + 1)-vector

γ as γ = [γ0, γ
′
1, γ

′
2]
′, where γ0 is the zero-beta rate, γ1 is a K-vector of parameters associated

with the K systematic factors, and γ2 is an L-vector of parameters associated with the L portfolio

characteristics.

Since β and µZ are not observable, we need to use their sample estimates

β̂ =

[
1

T

T∑
t=1

(Rt − µ̂R)(ft − µ̂f )′

][
1

T

T∑
t=1

(ft − µ̂f )(ft − µ̂f )′

]−1
, µ̂Z =

1

T

T∑
t=1

Zt, (B.3)

in the second-pass CSR. Let X̂ = [1N , β̂, µ̂Z ], the sample estimate of γ is given by

γ̂ = (X̂ ′WX̂)−1(X̂ ′Wµ̂R). (B.4)

Note that this setup coincides with the one proposed by Jagannathan and Wang (1996) except that

we (1) take into account the estimation error in µ̂Z , and (2) allow for potential model misspecifi-

cation.
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Pricing Results

In the following proposition, we present the asymptotic distribution of γ̂ when the weighting matrix

W is known.

Proposition B.1. Let H = (X ′WX)−1, A = HX ′W , and γt ≡ [γ0t, γ
′
1t, γ

′
2t]
′ = ARt. Under a

potentially misspecified model, the asymptotic distribution of γ̂ is given by

√
T (γ̂ − γ)

A∼ N(0K+L+1, V (γ̂)), (B.5)

where

V (γ̂) =

∞∑
j=−∞

E[hth
′
t+j ], (B.6)

with

ht = (γt − γ)− (φt − φ)wt −A(Zt − µZ)γ2 +Hzt, (B.7)

φt = [γ0t, (γ1t− ft)′, γ′2t]′, φ = [γ0, (γ1−µf )′, γ′2]
′, ut = e′W (Rt−µR), wt = γ′1V

−1
f (ft−µf ), and

zt = [0, ut(ft − µf )′V −1f , e′WZt]
′. When the model is correctly specified, we have:

ht = (γt − γ)− (φt − φ)wt −A(Zt − µZ)γ2. (B.8)

The first term (γt − γ) is the Fama-MacBeth term, which ignores the estimation errors in β̂ and

µ̂Z . The second term (φt−φ)wt is the EIV adjustment term for β̂. The third term A(Zt−µZ)γ2 is

the EIV adjustment term for µ̂Z . The final term Hzt is the misspecification adjustment term due

to model misspecification.

We now turn our attention to the asymptotic distribution of γ̂ when W must be estimated. In

the following proposition, we present the distribution for the GLS case

Proposition B.2. Let H = (X ′V −1R X)−1, A = HX ′V −1R , and γt = [γ0t, γ
′
1t, γ

′
2t]
′ = ARt. Under

a potentially misspecified model, the asymptotic distribution of γ̂ = (X̂ ′V̂ −1R X̂)−1X̂ ′V̂ −1R µ̂R is given

by
√
T (γ̂ − γ)

A∼ N(0K+L+1, V (γ̂)), (B.9)

where

V (γ̂) =
∞∑

j=−∞
E[hth

′
t+j ], (B.10)

29



with

ht = (γt − γ)− (φt − φ)wt −A(Zt − µZ)γ2 +Hzt − (γt − γ)ut, (B.11)

φt = [γ0t, (γ1t − ft)′, γ′2t]′, φ = [γ0, (γ1 − µf )′, γ′2]
′, ut = e′V −1R (Rt − µR), wt = γ′1V

−1
f (ft − µf ),

and zt = [0, ut(ft − µf )′V −1f , e′V −1R Zt]
′. When the model is correctly specified, we have:

ht = (γt − γ)− (φt − φ)wt −A(Zt − µZ)γ2. (B.12)

Note that when the model is correctly specified, the estimation error in the weighting matrix does

not affect the asymptotic distribution of γ̂.

If we replace β̂ by V̂Rf in the second-pass CSR, we have

λ̂ = (Ĉ ′WĈ)−1Ĉ ′Wµ̂R, (B.13)

where

Ĉ = [1N , V̂Rf , µ̂Z ]. (B.14)

Also, define the population counterpart of λ̂ as

λ = (C ′WC)−1C ′WµR, (B.15)

where

C = [1N , VRf , µZ ]. (B.16)

We denote the K-vector of parameters associated with the K risk factors by λ1 and the L-vector

of parameters associated with the L portfolio characteristics by λ2. It is easy to see that there is a

one-to-one mapping between γ and λ, which is given by

λ0 = γ0, λ1 = V −1f γ1, λ2 = γ2. (B.17)

The next proposition derives the asymptotic distribution of λ̂ under potentially misspecified models.

Proposition B.3. Under a potentially misspecified model, the asymptotic distribution of λ̂ is given

by
√
T (λ̂− λ)

A∼ N(0K+L+1, V (λ̂)), (B.18)
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where

V (λ̂) =
∞∑

j=−∞
E[h̃th̃

′
t+j ]. (B.19)

To simplify the expressions for h̃t, we define G̃t = (Rt − µR)(ft − µf )′ − VRf , z̃t = [0, ut(ft −

µf )′, e′WZt]
′, H̃ = (C ′WC)−1, Ã = H̃C ′W , λt = ÃRt, and ut = e′W (Rt − µR).

(1) With a known weighting matrix W , λ̂ = (Ĉ ′WĈ)−1Ĉ ′Wµ̂R and

h̃t = (λt − λ)− ÃG̃tλ1 − Ã(Zt − µZ)λ2 + H̃z̃t. (B.20)

(2) For estimated GLS, λ̂ = (Ĉ ′V̂ −1R Ĉ)−1Ĉ ′V̂ −1R µ̂R and

h̃t = (λt − λ)− ÃG̃tλ1 − Ã(Zt − µZ)λ2 + H̃z̃t − (λt − λ)ut. (B.21)

When the model is correctly specified, we have:

h̃t = (λt − λ)− ÃG̃tλ1 − Ã(Zt − µZ)λ2. (B.22)

Results for the Sample R2

We characterize the asymptotic distribution of ρ̂2 in the following proposition.

Proposition B.4. In the following, we set W to be V −1R for the GLS case.

(1) When ρ2 = 1,

T (ρ̂2 − 1) = −TQ̂
Q̂0

A∼ −
N−K−L−1∑

j=1

ξj
Q0

xj , (B.23)

where the xj’s are independent χ2
1 random variables, and the ξj’s are the eigenvalues of

P ′W
1
2SW

1
2P, (B.24)

where P is an N × (N −K − L − 1) orthonormal matrix with columns orthogonal to W
1
2C, S is

the asymptotic covariance matrix of 1√
T

∑T
t=1 [εtyt − (Zt − µZ)λ2], εt = Rt − µR − β(ft − µf ), and

yt = 1− λ′1(ft − µf ) is the normalized SDF.

(2) When 0 < ρ2 < 1,

√
T (ρ̂2 − ρ2) A∼ N

0,

∞∑
j=−∞

E[ntnt+j ]

 , (B.25)
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where

nt = 2
[
−ut + (1− ρ2)vt + γ′zt

]
/Q0 for known W, (B.26)

nt =
[
u2t − 2ut + (1− ρ2)(2vt − v2t ) + 2γ′zt

]
/Q0 for Ŵ = V̂ −1R , (B.27)

with e0 = [IN − 1N (1′NW1N )−11′NW ]µR, ut = e′W (Rt − µR), vt = e′0W (Rt − µR), and zt =

[0, ut(ft − µf )′V −1f , e′WZt]
′.

(3) When ρ2 = 0,

T ρ̂2
A∼
K+L∑
j=1

ξj
Q0

xj , (B.28)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of

[X ′1WX1 −X ′1W1N (1′NW1N )−11′NWX1]([0K+L, IK+L]V (γ̂)[0K+L, IK+L]′), (B.29)

where X1 = [β, µZ ] and V (γ̂) is given in Proposition B.1 (for known weighting matrix W ) or

Proposition B.2 (for estimated GLS).

Model Comparison Tests

Consider models A and B. Let f1, f2, and f3 be three sets of distinct factors, where fi is of

dimension Ki × 1, i = 1, 2, 3. Similarly, let Z1, Z2, and Z3 be three sets of distinct portfolio

characteristics, where Zi is of dimension N × Li, i = 1, 2, 3. Assume that model A uses factors f1

and f2 and portfolio characteristics Z1 and Z2 while model B uses factors f1 and f3 and portfolio

characteristics Z1 and Z3. Therefore, model A specifies that the expected returns on the test assets

are linear in the betas (or covariances) with respect to f1 and f2 and the means of Z1 and Z2, i.e.,

µR = 1NλA,0 + Cov[R, f ′1]λA,1 + µZ1λA,2 + Cov[R, f ′2]λA,3 + µZ2λA,4 = CAλA, (B.30)

where CA = [1N , Cov[R, f ′1], µZ1 , Cov[R, f ′2], µZ2 ] and λA = [λA,0, λ
′
A,1, λ

′
A,2, λ

′
A,3, λ

′
A,4]
′.

Similarly, model B specifies that expected returns are linear in the betas (or covariances) with

respect to f1 and f3 and the means of Z1 and Z3, i.e.,

µR = 1NλB,0 + Cov[R, f ′1]λB,1 + µZ1λB,2 + Cov[R, f ′3]λB,3 + µZ3λB,4 = CBλB, (B.31)

where CB = [1N , Cov[R, f ′1], µZ1 , Cov[R, f ′3], µZ3 ] and λB = [λB,0, λ
′
B,1, λ

′
B,2, λ

′
B,3, λ

′
B,4]
′.
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Nested Models

Without loss of generality, assume K3 = 0 and L3 = 0, so that model A nests model B. In addition,

assume K2 + L2 > 0.

Lemma B.1. ρ2A = ρ2B if and only if λA,3 = 0K2 and λA,4 = 0L2.

By the lemma, to test whether two nested models have the same R2, one can simply perform a test

of H0 : λA,3 = 0K2 , λA,4 = 0L2 using a Wald test. Let V̂ ([λ̂′A,3, λ̂
′
A,4]
′) be a consistent estimator of

V ([λ̂′A,3, λ̂
′
A,4]
′), the asymptotic covariance matrix of

√
T ([λ̂′A,3, λ̂

′
A,4]
′− [λ′A,3, λ

′
A,4]
′). Then, under

the null hypothesis,

T [λ̂′A,3, λ̂
′
A,4]V̂ ([λ̂′A,3, λ̂

′
A,4]
′)−1[λ̂′A,3, λ̂

′
A,4]
′ A∼ χ2

K2+L2
, (B.32)

and this statistic can be used to test H0 : ρ2A = ρ2B.

Alternatively, it is possible to derive the asymptotic distribution of ρ̂2A− ρ̂2B and use this statistic

to test H0 : ρ2A = ρ2B.

Proposition B.5. Define H̃A,22 as the lower right (K2 + L2) × (K2 + L2) submatrix of H̃A =

(C ′AWCA)−1. Under the null hypothesis H0 : ρ2A = ρ2B,

T (ρ̂2A − ρ̂2B)
A∼
K2+L2∑
j=1

ξj
Q0

xj , (B.33)

where the xj’s are independent χ2
1 random variables, the ξj’s are the eigenvalues of the matrix

H̃−1A,22V ([λ̂′A,3, λ̂
′
A,4]
′).

Non-Nested Models

Testing H0 : ρ2A = ρ2B is more complicated for non-nested models. The reason is that under H0,

there are three possible asymptotic distributions of ρ̂2A − ρ̂2B, depending on why the two models

have the same cross-sectional R2.

We first provide a lemma which will be useful for deriving the first asymptotic distribution of

ρ̂2A − ρ̂2B.
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Lemma B.2. The conditions λ′A,1f1,t + λ′A,3f2,t = λ′B,1f1,t + λ′B,3f3,t and Z1tλA,2 + Z2tλA,4 =

Z1tλB,2 + Z3tλB,4 hold if and only if

λA,3 = 0K2 , λB,3 = 0K3 , λA,4 = 0L2 , λB,4 = 0L3 . (B.34)

The above lemma implies that when (B.34) holds, the pricing errors of the two models are the same

(eA = eB) and the two models have the same cross-sectional R2 (ρ2A = ρ2B).

A pre-test of (B.34) can be obtained in two ways. We can perform a Wald test of H0 : ψ =

0K2+L2+K3+L3 , where ψ = [λ′A,3, λ
′
A,4, λ

′
B,3, λ

′
B,4]
′. Alternatively, we can derive the asymptotic

distribution of T (ρ̂2A − ρ̂2B).

Proposition B.6. Under the conditions in (B.34),

T (ρ̂2A − ρ̂2B)
A∼
K2+K3+L2+L3∑

j=1

ξj
Q0

xj , (B.35)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of[

H̃−1A,22 0K2×K3

0K3×K2 −H̃−1B,22

]
V (ψ̂), (B.36)

where H̃A,22 is the lower right (K2 + L2)× (K2 + L2) submatrix of H̃A = (C ′AWCA)−1 and H̃B,22

is the lower right (K3 + L3)× (K3 + L3) submatrix of H̃B = (C ′BWCB)−1.

Models A and B can also be both correctly specified and the asymptotic distribution of ρ̂2A− ρ̂2B is

different in this case. Below, we provide two different pre-tests of H0 : ρ2A = ρ2B = 1. The first test

is a chi-squared test of eA = eB = 0N , which is given in the following proposition:

Proposition B.7. Let nA = N −K1 −K2 − L1 − L2 − 1 and nB = N −K1 −K3 − L1 − L3 − 1.

Also let PA be an N × nA orthonormal matrix with columns orthogonal to W
1
2CA and PB be an

N × nB orthonormal matrix with columns orthogonal to W
1
2CB. Let εAt and εBt be the regression

residuals of the N test assets in models A and B, respectively, and define

gt(θ) =

[
gAt(λA)

gBt(λB)

]
=

[
εAtyAt − (Z1,t − µZ1)λA,2 − (Z2,t − µZ2)λA,4

εBtyBt − (Z1,t − µZ1)λB,2 − (Z3,t − µZ3)λB,4

]
, (B.37)
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where θ = (λ′A, λ
′
B)′, yAt = 1− λ′A,1f1,t − λ′A,3f2,t, yBt = 1− λ′B,1f1,t − λ′B,3f3,t, and

S ≡

[
SAA SAB

SBA SBB

]
=

∞∑
j=−∞

E[gt(θ)gt+j(θ)
′]. (B.38)

If (B.34) does not hold and the null hypothesis H0 : ρ2A = ρ2B = 1 is satisfied, then

T

[
P̂ ′AŴ

1
2 êA

P̂ ′BŴ
1
2 êB

]′ [
P̂ ′AŴ

1
2 ŜAAŴ

1
2 P̂A P̂ ′AŴ

1
2 ŜABŴ

1
2 P̂B

P̂ ′BŴ
1
2 ŜBAŴ

1
2 P̂A P̂ ′BŴ

1
2 ŜBBŴ

1
2 P̂B

]−1 [
P̂ ′AŴ

1
2 êA

P̂ ′BŴ
1
2 êB

]
A∼ χ2

nA+nB
, (B.39)

where êA and êB are the sample pricing errors of models A and B, and P̂A, P̂B, and Ŝ are consistent

estimators of PA, PB, and S, respectively.

The second pre-test of H0 : ρ2A = ρ2B = 1 is a weighted chi-squared test based on the asymptotic

distribution of ρ̂2A − ρ̂2B, which is given in the following proposition:

Proposition B.8. Assuming (B.34) does not hold and H0 : ρ2A = ρ2B = 1 is satisfied, then

T (ρ̂2A − ρ̂2B)
A∼
nA+nB∑
j=1

ξj
Q0

xj , (B.40)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of[

−P ′AW
1
2SAAW

1
2PA −P ′AW

1
2SABW

1
2PB

P ′BW
1
2SBAW

1
2PA P ′BW

1
2SBBW

1
2PB

]
. (B.41)

Finally, if (B.34) does not hold and both models are misspecified, we can test H0 : ρ2A − ρ2B
using the normal test provided in the next proposition.

Proposition B.9. Suppose (B.34) does not hold and 0 < ρ2A = ρ2B < 1. We have:

√
T (ρ̂2A − ρ̂2B)

A∼ N

0,
∞∑

j=−∞
E[dtdt+j ]

 . (B.42)

When the weighting matrix W is known,

dt = 2Q−10

[
uBt − uAt − (ρ2A − ρ2B)vt + (γ′AzAt − γ′BzBt)

]
, (B.43)

where uAt = e′AW (Rt − µR), uBt = e′BW (Rt − µR), vt is defined in Proposition B.4, γA and γB

are the γ’s for models A and B, respectively, and zAt and zBt are the zt’s for models A and B,

respectively. For estimated GLS,

dt = Q−10

[
u2At − 2(uAt − uBt)− u2Bt − (ρ2A − ρ2B)(2vt − v2t ) + 2(γ′AzAt − γ′BzBt)

]
, (B.44)
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where uAt = e′AV
−1
R (Rt − µR) and uBt = e′BV

−1
R (Rt − µR).13

The normal test in Proposition B.9 will break down when dt = 0. There are two different scenarios

for dt = 0. The first case occurs when λ′A,1f1,t+λ
′
A,3f2,t = λ′B,1f1,t+λ

′
B,3f3,t and Z1tλA,2+Z2tλA,4 =

Z1tλB,2 + Z3tλB,4. The second case occurs when ρ2A = ρ2B = 1.

13One could impose H0 : ρ2A = ρ2B in (B.43) and (B.44) and the vt terms would drop out of these expressions.
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C The Price of Covariance Risk

As mentioned in the paper (see Section II.A), there are some subtle differences between the prices of

beta risk and the prices of covariance risk when the risk factors are correlated. Let γ = [γ0, γ
′
1, γ

′
2]
′

be the zero-beta rate and risk premia for two sets of factors, f1 and f2. The standard relation

between multiple regression betas and covariances then implies that there is a one-to-one corre-

spondence between γ and λ; the zero-beta rates are identical and the usual risk premia are obtained

by multiplying the prices of covariance risk by the factor covariance matrix:[
γ1

γ2

]
=

[
Var[f1] Cov[f1, f

′
2]

Cov[f2, f
′
1] Var[f2]

][
λ1

λ2

]
. (C.1)

Hence, when λ2 = 0K2 , the risk premia associated with f2 are γ2 = Cov[f2, f
′
1]λ1. Clearly, γ2 can

still be nonzero unless f1 and f2 are uncorrelated.14 Similarly, we can show that γ2 = 0K2 does not

imply λ2 = 0K2 unless f1 and f2 are uncorrelated.

Here, we provide some numerical illustrations of these points. In the first example, we consider

two factors with

Vf =

[
15 −10

−10 15

]
. (C.2)

Suppose there are four assets and their expected returns and covariances with the two factors are

µR = [2, 3, 4, 5]′, VfR =

[
1 2 3 4

3 5 2 1

]
. (C.3)

It is clear that the covariances of the four assets with respect to the first factor alone can fully

explain µR because µR is exactly linear in the first row of VfR. As a result, the second factor

is irrelevant from a cross-sectional expected return perspective. However, when we compute the

(multiple regression) beta matrix with respect to the two factors, we obtain:

β = VRfV
−1
f =

[
0.36 0.64 0.52 0.56

0.44 0.76 0.48 0.44

]′
. (C.4)

Simple calculations give γ = [1, 15, −10]′ and γ2 is nonzero even though f2 is irrelevant.15

14When λ2 = 0K2 , we see that γ1 = Var[f1]λ1. Consequently, the risk premia for f1 stay the same when we add f2
to the model.

15This suggests that when the CAPM is true, it does not imply that the betas with respect to the other two
Fama-French factors should not be priced. See Grauer and Janmaat (2009) for a discussion of this point.
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In the second example, we change µR to [10, 17, 14, 15]′. In this case, the covariances with

respect to f1 alone do not fully explain µR (in fact, the OLS R2 for the model with just f1 is only

28%). However, it is easy to see that µR is linear in the first column of the beta matrix, implying

that the R2 of the full model is 100%. Simple calculations give us γ = [1, 25, 0]′ and γ2 = 0 even

though f2 is needed in the factor model, along with f1, to explain µR.
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D Excess Returns Analysis

We provide the necessary tools for implementing the excess returns analysis described in the paper.

The proofs of the various lemmas and propositions are omitted since they are similar to the ones

of Appendix A.

Let f be a K-vector of factors and R a vector of excess returns (i.e., returns on zero investment

portfolios) on N test assets. In many applications, R is a vector of returns on N assets in excess

of the risk-free rate. The multiple regression betas of the N assets with respect to the K factors

are defined as β = VRfV
−1
f .

The proposed K-factor beta pricing model specifies that asset expected excess returns are linear

in the betas, i.e.,

µR = βγ, (D.1)

where γ is a vector of risk premia on the K factors. When the model is misspecified, the pricing-

error vector, µR − βγ, will be nonzero for all values of γ. In that case, it makes sense to choose

γ to minimize some aggregation of pricing errors. Denoting by W an N × N symmetric positive

definite weighting matrix, we define the (pseudo-true) risk premia as

γ = (β′Wβ)−1β′WµR. (D.2)

The corresponding pricing errors on the N assets are then given by

e = µR − βγ (D.3)

and the cross-sectional R2 is defined as

ρ2 = 1− Q

Q0
, (D.4)

where

Q0 = µ′RWµR, (D.5)

Q = e′We = µ′RWµR − µ′RWβ(β′Wβ)−1β′WµR. (D.6)

The estimated betas from the first-pass time-series regression are given by the matrix β̂ = V̂Rf V̂
−1
f .

We then run a single CSR of µ̂R on β̂ to estimate γ in the second pass. When the weighting matrix

39



W is known (say OLS CSR), we can estimate γ in (D.2) by

γ̂ = (β̂′Wβ̂)−1β̂′Wµ̂R. (D.7)

Instead of using β̂, we can use V̂Rf in the second-pass CSR. The pseudo-true parameters of this

alternative second-pass CSR are given by

λ = (VfRWVRf )−1VfRWµR. (D.8)

Similarly, we can estimate λ in (D.8) by

λ̂ = (V̂fRWV̂Rf )−1V̂fRWµ̂R. (D.9)

In the GLS case, the weighting matrix W involves unknown parameters and, therefore, we need to

substitute a consistent estimate of W , Ŵ = V̂ −1R , in (D.7) and (D.9).

The sample measure of ρ2 is similarly defined as

ρ̂2 = 1− Q̂

Q̂0

, (D.10)

where Q̂0 and Q̂ are consistent estimators of Q0 and Q in (D.5) and (D.6), respectively.

Pricing Results

Proposition D.1. Let H = (β′Wβ)−1, A = Hβ′W , and γt = ARt. Under a potentially misspeci-

fied model, the asymptotic distribution of γ̂ = (β̂′Wβ̂)−1β̂′Wµ̂R is given by

√
T (γ̂ − γ)

A∼ N(0K , V (γ̂)), (D.11)

where

V (γ̂) =
∞∑

j=−∞
E[hth

′
t+j ], (D.12)

with

ht = (γt − γ)− (φt − φ)wt +Hzt, (D.13)

φt = γt−ft, φ = γ−µf , ut = e′W (Rt−µR), wt = γ′V −1f (ft−µf ), and zt = V −1f (ft−µf )ut. When

the model is correctly specified, we have:

ht = (γt − γ)− (φt − φ)wt. (D.14)
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Proposition D.2. Let H = (β′V −1R β)−1, A = Hβ′V −1R , and γt = ARt. Under a potentially

misspecified model, the asymptotic distribution of γ̂ = (β̂′V̂ −1R β̂)−1β̂′V̂ −1R µ̂R is given by

√
T (γ̂ − γ)

A∼ N(0K+1, V (γ̂)), (D.15)

where

V (γ̂) =

∞∑
j=−∞

E[hth
′
t+j ], (D.16)

with

ht = (γt − γ)− (φt − φ)wt +Hzt − (γt − γ)ut, (D.17)

φt = γt − ft, φ = γ − µf , ut = e′V −1R (Rt − µR), wt = γ′V −1f (ft − µf ), zt = V −1f (ft − µf )ut. When

the model is correctly specified, we have:

ht = (γt − γ)− (φt − φ)wt. (D.18)

Lemma D.1. When the factors and returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter κ, the asymptotic covariance matrix of γ̂ = (β̂′Wβ̂)−1β̂′Wµ̂R is given by

V (γ̂) = Υw + Υw1 + Υ′w1 + Υw2, (D.19)

where

Υw = AVRA
′ + (1 + κ)γ′V −1f γAΣA′, (D.20)

Υw1 = −(1 + κ)HV −1f γe′WVRA
′, (D.21)

Υw2 = (1 + κ)e′WVRWeHV −1f H. (D.22)

Lemma D.2. When the factors and returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter κ, the asymptotic covariance matrix of γ̂ = (β̂′V̂ −1R β̂)−1β̂′V̂ −1R µ̂R is given by

V (γ̂) = Υw + Υw2, (D.23)

where

Υw = H + (1 + κ)γ′V −1f γ(β′Σ−1β)−1, (D.24)

Υw2 = (1 + κ)Q[HV −1f H −H], (D.25)

with H = (β′V −1R β)−1 and Q = e′V −1R e.
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Proposition D.3. Under a potentially misspecified model, the asymptotic distribution of λ̂ is given

by
√
T (λ̂− λ)

A∼ N(0K , V (λ̂)), (D.26)

where

V (λ̂) =
∞∑

j=−∞
E[h̃th̃

′
t+j ]. (D.27)

To simplify the expressions for h̃t, we define G̃t = (Rt − µR)(ft − µf )′ − VRf , H̃ = (VfRWVRf )−1,

Ã = H̃VfRW , λt = ÃRt, ut = e′W (Rt − µR), and z̃t = (ft − µf )ut.

(1) With a known weighting matrix W , λ̂ = (V̂fRWV̂Rf )−1V̂fRWµ̂R and

h̃t = (λt − λ)− ÃG̃tλ+ H̃z̃t. (D.28)

(2) For estimated GLS, λ̂ = (V̂fRV̂
−1
R V̂Rf )−1V̂fRV̂

−1
R µ̂R and

h̃t = (λt − λ)− ÃG̃tλ+ H̃z̃t − (λt − λ)ut. (D.29)

When the model is correctly specified, we have:

h̃t = (λt − λ)− ÃG̃tλ. (D.30)

Results for the Sample R2

Proposition D.4. In the following, we set W to be V −1R for the GLS case.

(1) When ρ2 = 1,

T (ρ̂2 − 1) = −TQ̂
Q̂0

A∼ −
N−K∑
j=1

ξj
Q0

xj , (D.31)

where the xj’s are independent χ2
1 random variables, and the ξj’s are the eigenvalues of

P ′W
1
2SW

1
2P, (D.32)

where P is an N × (N − K) orthonormal matrix with columns orthogonal to W
1
2VRf , S is the

asymptotic covariance matrix of 1√
T

∑T
t=1 εtyt, εt = Rt − µR − β(ft − µf ), and yt = 1− λ′(ft − µf )

is the normalized SDF.
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(2) When 0 < ρ2 < 1,

√
T (ρ̂2 − ρ2) A∼ N

0,
∞∑

j=−∞
E[ntnt+j ]

 , (D.33)

where

nt = 2
[
−utyt + (1− ρ2)vt

]
/Q0 for known W, (D.34)

nt =
[
u2t − 2utyt + (1− ρ2)(2vt − v2t )

]
/Q0 for Ŵ = V̂ −1R , (D.35)

with ut = e′W (Rt − µR) and vt = µ′RW (Rt − µR).

(3) When ρ2 = 0,

T ρ̂2
A∼

K∑
j=1

ξj
Q0

xj , (D.36)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of

(β′Wβ)V (γ̂), (D.37)

where V (γ̂) is given in Proposition D.1 (for known weighting matrix W ) or Proposition D.2 (for

estimated GLS).

Model Comparison Tests

Consider two competing beta pricing models. Let f1, f2, and f3 be three sets of distinct factors,

where fi is of dimension Ki × 1, i = 1, 2, 3. Assume that model A uses f1 and f2, while Model B

uses f1 and f3 as factors. Therefore, model A requires that the expected returns on the test assets

are linear in the betas or covariances with respect to f1 and f2, i.e.,

µR = Cov[R, f ′1]λA,1 + Cov[R, f ′2]λA,2 = CAλA, (D.38)

where CA = [Cov[R, f ′1], Cov[R, f ′2]] and λA = [λ′A,1, λ
′
A,2]
′. Model B requires that expected

returns are linear in the betas or covariances with respect to f1 and f3, i.e.,

µR = Cov[R, f ′1]λB,1 + Cov[R, f ′3]λB,3 = CBλB, (D.39)

where CB = [Cov[R, f ′1], Cov[R, f ′3]] and λB = [λ′B,1, λ
′
B,3]
′.
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Given a weighting matrix W , the λi that maximizes the ρ2 of model i is given by

λi = (C ′iWCi)
−1C ′iWµR, (D.40)

where Ci is assumed to have full column rank, i = A,B. For each model, the pricing-error vector

ei, the aggregate pricing-error measure Qi, and the corresponding goodness-of-fit measure ρ2i are

all defined at the beginning of Appendix D.

Nested Models

Lemma D.3. ρ2A = ρ2B if and only if λA,2 = 0K2.

Proposition D.5. Partition H̃A = (C ′AWCA)−1 as

H̃A =

[
H̃A,11 H̃A,12

H̃A,21 H̃A,22

]
, (D.41)

where H̃A,22 is K2 ×K2. Under the null hypothesis H0 : ρ2A = ρ2B,

T (ρ̂2A − ρ̂2B)
A∼

K2∑
j=1

ξj
Q0

xj , (D.42)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of H̃−1A,22V (λ̂A,2).

Non-Nested Models

Define the normalized SDFs for models A and B as

yA = 1− (f1 − E[f1])
′λA,1 − (f2 − E[f2])

′λA,2, yB = 1− (f1 − E[f1])
′λB,1 − (f3 − E[f3])

′λB,3.

(D.43)

Lemma D.4. For non-nested models, yA = yB if and only if λA,2 = 0K2 and λB,3 = 0K3.

Proposition D.6. Let H̃A = (C ′AWCA)−1 and H̃B = (C ′BWCB)−1, and partition them as

H̃A =

[
H̃A,11 H̃A,12

H̃A,21 H̃A,22

]
, H̃B =

[
H̃B,11 H̃B,13

H̃B,31 H̃B,33

]
, (D.44)
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where H̃A,11 and H̃B,11 are K1 ×K1. Under the null hypothesis H0 : yA = yB,

T (ρ̂2A − ρ̂2B)
A∼
K2+K3∑
j=1

ξj
Q0

xj , (D.45)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of[

H̃−1A,22 0K2×K3

0K3×K2 −H̃−1B,33

]
V (ψ̂). (D.46)

Proposition D.7. Let nA = N −K1 −K2 and nB = N −K1 −K3. Also let PA be an N × nA
orthonormal matrix with columns orthogonal to W

1
2CA and PB be an N × nB orthonormal matrix

with columns orthogonal to W
1
2CB. Let εAt and εBt be the residuals of models A and B, respectively,

and define

gt(θ) =

[
gAt(λA)

gBt(λB)

]
=

[
εAtyAt

εBtyBt

]
, (D.47)

where θ = (λ′A, λ
′
B)′, and

S ≡

[
SAA SAB

SBA SBB

]
=

∞∑
j=−∞

E[gt(θ)gt+j(θ)
′]. (D.48)

If yA 6= yB and the null hypothesis H0 : ρ2A = ρ2B = 1 holds, then

T

[
P̂ ′AŴ

1
2 êA

P̂ ′BŴ
1
2 êB

]′ [
P̂ ′AŴ

1
2 ŜAAŴ

1
2 P̂A P̂ ′AŴ

1
2 ŜABŴ

1
2 P̂B

P̂ ′BŴ
1
2 ŜBAŴ

1
2 P̂A P̂ ′BŴ

1
2 ŜBBŴ

1
2 P̂B

]−1 [
P̂ ′AŴ

1
2 êA

P̂ ′BŴ
1
2 êB

]
A∼ χ2

nA+nB
, (D.49)

where êA and êB are the sample pricing errors of models A and B, and P̂A, P̂B, and Ŝ are consistent

estimators of PA, PB, and S, respectively.

Proposition D.8. Using the notation in Proposition D.7, if yA 6= yB and the null hypothesis

H0 : ρ2A = ρ2B = 1 holds, then

T (ρ̂2A − ρ̂2B)
A∼
nA+nB∑
j=1

ξj
Q0

xj , (D.50)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of[

−P ′AW
1
2SAAW

1
2PA −P ′AW

1
2SABW

1
2PB

P ′BW
1
2SBAW

1
2PA P ′BW

1
2SBBW

1
2PB

]
. (D.51)
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Proposition D.9. Suppose yA 6= yB and 0 < ρ2A = ρ2B < 1. We have:

√
T (ρ̂2A − ρ̂2B)

A∼ N

0,

∞∑
j=−∞

E[dtdt+j ]

 . (D.52)

When the weighting matrix W is known,

dt = 2Q−10

[
uBtyBt − uAtyAt − (ρ2A − ρ2B)vt

]
, (D.53)

where uAt = e′AW (Rt − µR), uBt = e′BW (Rt − µR), and vt is defined in Proposition D.4 in

Appendix D. With the GLS weighting matrix Ŵ = V̂ −1R ,

dt = Q−10

[
u2At − 2uAtyAt − u2Bt + 2uBtyBt − (ρ2A − ρ2B)(2vt − v2t )

]
, (D.54)

where uAt = e′AV
−1
R (Rt − µR) and uBt = e′BV

−1
R (Rt − µR).

In the following, we report additional estimation results for the excess returns case. These results

complement the ones in Table V in the paper.
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Table VII
Estimates and t-ratios of Risk Premia with a Constrained Zero-Beta Rate

The table presents the estimation results of eight beta pricing models. The models include the CAPM, the
conditional CAPM (C-LAB) of Jagannathan and Wang (1996), the Fama and French (1993) three-factor
model (FF3), the intertemporal CAPM (ICAPM) specification of Petkova (2006), the consumption CAPM
(CCAPM), the conditional consumption CAPM (CC-CAY) of Lettau and Ludvigson (2001), the ultimate
consumption CAPM (U-CCAPM) of Parker and Julliard (2005), and the durable consumption CAPM (D-
CCAPM) of Yogo (2006). The models are estimated using monthly excess returns on the 25 Fama-French
size and book-to-market ranked portfolios and five industry portfolios. The data are from February 1959 to
July 2007 (582 observations). We report parameter estimates γ̂ (multiplied by 100), the Fama and MacBeth
(1973) t-ratio under correctly specified models (t-ratiofm), the Shanken (1992) and the Jagannathan and
Wang (1998) t-ratios under correctly specified models that account for the EIV problem (t-ratios and t-
ratiojw, respectively), and our model misspecification-robust t-ratios (t-ratiopm).

Panel A: OLS

CAPM C-LAB FF3

γ̂vw γ̂vw γ̂lab γ̂prem γ̂vw γ̂smb γ̂hml

Estimate 0.63 0.57 −0.20 0.40 0.50 0.16 0.39
t-ratiofm 3.33 3.15 −1.46 3.13 2.75 1.24 3.21
t-ratios 3.32 3.11 −0.97 2.09 2.75 1.24 3.21
t-ratiojw 3.30 3.14 −0.82 2.13 2.74 1.24 3.19
t-ratiopm 3.31 2.94 −0.69 1.43 2.74 1.23 3.15

ICAPM CCAPM

γ̂vw γ̂term γ̂def γ̂div γ̂rf γ̂cg

Estimate 0.53 0.31 −0.10 −0.06 −0.59 0.67
t-ratiofm 2.90 3.86 −1.55 −5.27 −4.17 3.38
t-ratios 2.81 2.19 −0.88 −3.35 −2.38 2.58
t-ratiojw 2.85 2.03 −0.79 −3.40 −2.15 2.47
t-ratiopm 2.82 1.99 −0.79 −3.26 −2.20 2.48

CC-CAY U-CCAPM D-CCAPM

γ̂cay γ̂cg γ̂cg·cay γ̂cg36 γ̂vw γ̂cg γ̂cgdur

Estimate 0.67 0.35 0.01 4.67 0.55 0.93 0.00
t-ratiofm 1.63 2.19 2.31 3.63 3.06 3.70 0.00
t-ratios 1.19 1.60 1.69 2.11 3.00 2.36 0.00
t-ratiojw 1.25 1.51 1.52 2.19 3.02 2.25 0.00
t-ratiopm 0.29 0.32 0.26 2.20 2.91 0.96 0.00
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Table VII (Continued)
Estimates and t-ratios of Risk Premia with a Constrained Zero-Beta Rate

Panel B: GLS

CAPM C-LAB FF3

γ̂vw γ̂vw γ̂lab γ̂prem γ̂vw γ̂smb γ̂hml

Estimate 0.50 0.51 −0.12 0.02 0.51 0.23 0.41
t-ratiofm 2.81 2.82 −1.84 0.22 2.82 1.80 3.51
t-ratios 2.81 2.81 −1.75 0.21 2.82 1.80 3.50
t-ratiojw 2.81 2.82 −1.77 0.21 2.82 1.79 3.49
t-ratiopm 2.80 2.82 −0.76 0.09 2.82 1.79 3.49

ICAPM CCAPM

γ̂vw γ̂term γ̂def γ̂div γ̂rf γ̂cg

Estimate 0.52 0.24 −0.07 −0.04 −0.42 0.26
t-ratiofm 2.91 5.15 −1.94 −4.72 −4.36 2.44
t-ratios 2.89 3.56 −1.36 −3.70 −3.03 2.33
t-ratiojw 2.90 3.52 −1.19 −3.69 −2.74 2.26
t-ratiopm 2.89 2.44 −0.94 −3.02 −2.29 1.24

CC-CAY U-CCAPM D-CCAPM

γ̂cay γ̂cg γ̂cg·cay γ̂cg36 γ̂vw γ̂cg γ̂cgdur

Estimate 0.73 0.27 0.00 1.95 0.50 0.16 0.62
t-ratiofm 2.88 2.37 0.50 3.86 2.80 1.31 1.60
t-ratios 2.50 2.06 0.44 3.36 2.79 1.27 1.54
t-ratiojw 2.46 2.08 0.42 3.72 2.81 1.28 1.56
t-ratiopm 1.38 1.08 0.17 2.16 2.80 0.63 1.00
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Table VIII
Estimates and t-ratios of Prices of Covariance Risk with a Constrained Zero-Beta

Rate (OLS Case)

The table presents the estimation results of eight beta pricing models. The models include the CAPM, the
conditional CAPM (C-LAB) of Jagannathan and Wang (1996), the Fama and French (1993) three-factor
model (FF3), the intertemporal CAPM (ICAPM) specification of Petkova (2006), the consumption CAPM
(CCAPM), the conditional consumption CAPM (CC-CAY) of Lettau and Ludvigson (2001), the ultimate
consumption CAPM (U-CCAPM) of Parker and Julliard (2005), and the durable consumption CAPM (D-
CCAPM) of Yogo (2006). The models are estimated using monthly excess returns on the 25 Fama-French
size and book-to-market ranked portfolios and five industry portfolios. The data are from February 1959
to July 2007 (582 observations). We report parameter estimates λ̂ and the model misspecification-robust
t-ratio (t-ratiopm).

CAPM C-LAB FF3

λ̂vw λ̂vw λ̂lab λ̂prem λ̂vw λ̂smb λ̂hml

Estimate 336.31 20.28 −153.11 240.85 439.97 1.87 8.15
t-ratiopm 2.99 0.10 −0.81 1.54 3.56 1.20 4.70

ICAPM CCAPM

λ̂vw λ̂term λ̂def λ̂div λ̂rf λ̂cg

Estimate −2161.60 288.94 −271.79 −802.35 −107.68 10980.68
t-ratiopm −2.09 1.09 −1.26 −2.10 −1.31 2.42

CC-CAY U-CCAPM D-CCAPM

λ̂cay λ̂cg λ̂cg·cay λ̂cg36 λ̂vw λ̂cg λ̂cgdur

Estimate 2337.11 63.90 6707.55 4214.10 −126.03 160.84 −10.54
t-ratiopm 0.29 0.42 0.28 2.18 −0.24 0.90 −0.43
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Table IX
Tests of Equality of Cross-Sectional R2s with a Constrained Zero-Beta Rate

The table presents pairwise tests of equality of the OLS and GLS cross-sectional R2s of eight beta pricing
models. The models include the CAPM, the conditional CAPM (C-LAB) of Jagannathan and Wang (1996),
the Fama and French (1993) three-factor model (FF3), the intertemporal CAPM (ICAPM) specification
of Petkova (2006), the consumption CAPM (CCAPM), the conditional consumption CAPM (CC-CAY) of
Lettau and Ludvigson (2001), the ultimate consumption CAPM (U-CCAPM) of Parker and Julliard (2005),
and the durable consumption CAPM (D-CCAPM) of Yogo (2006). The models are estimated using monthly
excess returns on the 25 Fama-French size and book-to-market ranked portfolios and five industry portfolios.
The data are from February 1959 to July 2007 (582 observations). We report the difference between the
sample cross-sectional R2s of the models in row i and column j, ρ̂2i − ρ̂2j , and the associated p-value (in

parenthesis) for the test of H0 : ρ2i = ρ2j . The p-values are computed under the assumption that the models
are potentially misspecified.

Panel A: OLS

C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM

CAPM −0.035 −0.100 −0.115 −0.022 −0.028 −0.088 −0.025
(0.292) (0.001) (0.062) (0.594) (0.481) (0.108) (0.525)

C-LAB −0.065 −0.080 0.013 0.007 −0.053 0.009
(0.280) (0.222) (0.809) (0.888) (0.331) (0.877)

FF3 −0.015 0.078 0.072 0.012 0.074
(0.310) (0.183) (0.266) (0.639) (0.220)

ICAPM 0.093 0.087 0.026 0.089
(0.148) (0.216) (0.393) (0.174)

CCAPM −0.006 −0.066 −0.004
(0.913) (0.206) (0.913)

CC-CAY −0.060 0.002
(0.270) (0.962)

U-CCAPM 0.063
(0.274)

Panel B: GLS

C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM

CAPM −0.032 −0.216 −0.281 0.014 −0.047 −0.052 −0.025
(0.635) (0.000) (0.071) (0.843) (0.614) (0.597) (0.618)

C-LAB −0.184 −0.248 0.046 −0.015 −0.020 0.007
(0.054) (0.139) (0.618) (0.883) (0.857) (0.923)

FF3 −0.065 0.230 0.169 0.164 0.191
(0.681) (0.009) (0.148) (0.134) (0.008)

ICAPM 0.295 0.234 0.229 0.256
(0.095) (0.210) (0.233) (0.127)

CCAPM −0.061 −0.066 −0.039
(0.491) (0.516) (0.342)

CC-CAY −0.005 0.022
(0.963) (0.796)

U-CCAPM 0.027
(0.787)
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Table X
Multiple Model Comparison Tests with a Constrained Zero-Beta Rate

The table presents multiple model comparison tests of the OLS and GLS cross-sectional R2s of eight beta
pricing models. The models include the CAPM, the conditional CAPM (C-LAB) of Jagannathan and
Wang (1996), the Fama and French (1993) three-factor model (FF3), the intertemporal CAPM (ICAPM)
specification of Petkova (2006), the consumption CAPM (CCAPM), the conditional consumption CAPM
(CC-CAY) of Lettau and Ludvigson (2001), the ultimate consumption CAPM (U-CCAPM) of Parker and
Julliard (2005), and the durable consumption CAPM (D-CCAPM) of Yogo (2006). The models are estimated
using monthly excess returns on the 25 Fama-French size and book-to-market ranked portfolios and five
industry portfolios. The data are from February 1959 to July 2007 (582 observations). We report the
benchmark models in column 1 and their sample R2s in column 2. r in column 3 denotes the number
of alternative models in each multiple non-nested model comparison. LR in column 4 is the value of the
likelihood ratio statistic with p-value given in column 5. s in column 6 denotes the number of models that
nest the benchmark model. Finally, ρ̂2M − ρ̂2 in column 7 denotes the difference between the sample R2 of
the expanded model (M) and the sample R2 of the benchmark model with p-value given in column 8.

Panel A: OLS

Benchmark ρ̂2 r LR p-value s ρ̂2M − ρ̂2 p-value

CAPM 0.858 2 2.592 0.106 4 0.121 0.155
C-LAB 0.893 5 1.491 0.282
FF3 0.958 5 1.029 0.535
ICAPM 0.972 5 0.000 0.810
CCAPM 0.880 4 2.089 0.165 2 0.019 0.952
CC-CAY 0.886 5 1.534 0.289
U-CCAPM 0.946 5 0.730 0.575
D-CCAPM 0.883 5 1.852 0.228

Panel B: GLS

Benchmark ρ̂2 r LR p-value s ρ̂2M − ρ̂2 p-value

CAPM 0.058 2 0.381 0.421 4 0.354 0.296
C-LAB 0.091 5 4.351 0.102
FF3 0.274 5 0.169 0.738
ICAPM 0.339 5 0.000 0.680
CCAPM 0.044 4 7.137 0.023 2 0.077 0.655
CC-CAY 0.105 5 2.412 0.210
U-CCAPM 0.110 5 2.418 0.197
D-CCAPM 0.083 5 7.594 0.032
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E Multiple Model Comparison

We discuss the details of the multiple model comparison test and provide a numerically efficient

procedure for computing its p-value.

Our multiple model comparison test is based on the multivariate inequality test of Wolak (1989).

Let δ = (δ2, . . . , δp) and δ̂ = (δ̂2, . . . , δ̂p), where δi = ρ21 − ρ2i and δ̂i = ρ̂21 − ρ̂2i for i = 2, . . . , p. We

are interested in testing

H0 : δ ≥ 0r vs. H1 : δ ∈ <r, (E.1)

where r = p − 1 is the number of non-negativity restrictions. Under the null hypothesis, model 1

(the benchmark) performs at least as well as models 2 to p (the competing models).

We assume that
√
T (δ̂ − δ) A∼ N(0r,Σδ̂). (E.2)

Sufficient conditions for this assumption to hold are i) 0 < ρ2i < 1, and ii) the implied SDFs of the

different models are distinct (see Appendix A).

The test statistic is constructed by first solving the following quadratic programming problem

min
δ

(δ̂ − δ)′Σ̂−1
δ̂

(δ̂ − δ) s.t. δ ≥ 0r, (E.3)

where Σ̂δ̂ is a consistent estimator of Σδ̂. Let δ̃ be the optimal solution of the problem in (E.3).

The likelihood ratio test of the null hypothesis is given by

LR = T (δ̂ − δ̃)′Σ̂−1
δ̂

(δ̂ − δ̃). (E.4)

For computational purposes, it is convenient to consider the dual problem

min
λ
λ′δ̂ +

1

2
λ′Σ̂δ̂λ s.t. λ ≥ 0r. (E.5)

Let λ̃ be the optimal solution of the problem in (E.5). The Kuhn-Tucker test of the null hypothesis

is given by

KT = T λ̃′Σ̂δ̂λ̃. (E.6)

It can be readily shown that LR = KT .
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To conduct statistical inference, we need to derive the asymptotic distribution of LR. Wolak

(1989) shows that under H0 : δ = 0r (i.e., the least favorable value of δ under the null hypothesis),

LR has a weighted chi-squared distribution

LR
A∼

r∑
i=0

wi(Σ
−1
δ̂

)Xi =

r∑
i=0

wr−i(Σδ̂)Xi, (E.7)

where the Xi’s are independent χ2 random variables with i degrees of freedom, χ2
0 ≡ 0, and the

weights wi sum up to one. To compute the p-value of LR, we replace Σ−1
δ̂

with Σ̂−1
δ̂

in the weight

functions.

The biggest hurdle in determining the p-value of this multivariate inequality test is the compu-

tation of the weights. For a given r×r covariance matrix Σ = (σij), the expressions for the weights

wi(Σ), i = 0, . . . , r, are given in Kudo (1963). The weights depend on Σ through the correlation

coefficients ρij = σij/(σiσj). When r = 1, w0 = w1 = 1/2. When r = 2,

w0 =
1

2
− w2, (E.8)

w1 =
1

2
, (E.9)

w2 =
1

4
+

arcsin(ρ12)

2π
. (E.10)

When r = 3,

w0 =
1

2
− w2, (E.11)

w1 =
1

2
− w3, (E.12)

w2 =
3

8
+

arcsin(ρ12·3) + arcsin(ρ13·2) + arcsin(ρ23·1)

4π
, (E.13)

w3 =
1

8
+

arcsin(ρ12) + arcsin(ρ13) + arcsin(ρ23)

4π
, (E.14)

where

ρij·k =
ρij − ρikρjk

[(1− ρ2ik)(1− ρ2jk)]
1
2

. (E.15)

For r > 3, the computation of the weights is more complicated. Following Kudo (1963), we

let P = {1, . . . , r}. There are 2r subsets of P , which are indexed by M . Let n(M) be the

number of elements in M and M ′ be the complement of M relative to P . Define ΣM as the

submatrix that consists of the rows and columns in the set M , ΣM ′ as the submatrix that consists
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of the rows and columns in the set M ′, ΣM,M ′ the submatrix with rows corresponding to the

elements in M and columns corresponding to the elements in M ′ (ΣM ′,M is similarly defined), and

ΣM ·M ′ = ΣM − ΣM,M ′Σ
−1
M ′ΣM ′,M . Kudo (1963) shows that

wi(Σ) =
∑

M : n(M)=i

P (Σ−1M ′)P (ΣM ·M ′), (E.16)

where P (A) is the probability for a multivariate normal distribution with zero mean and covariance

matrix A to have all positive elements. In the above equation, we use the convention that P [Σ∅·P ] =

1 and P [Σ−1∅ ] = 1. Using (E.16), we have w0(Σ) = P (Σ−1) and wr(Σ) = P (Σ).

Researchers have typically used a Monte Carlo approach to compute the positive orthant prob-

ability P (A). However, the Monte Carlo approach is not efficient because it requires a large number

of simulations to achieve the accuracy of a few digits, even when r is relatively small.

We overcome this problem by using a formula for the positive orthant probability due to Childs

(1967) and Sun (1988a). Let R = (rij) be the correlation matrix corresponding to A. Childs (1967)

and Sun (1988a) show that

P2k(A) =
1

22k
+

1

22k−1π

∑
1≤i<j≤2k

arcsin(rij)

+

k∑
j=2

1

22k−jπj

∑
1≤i1<···<i2j≤2k

I2j

(
R(i1,...,i2j)

)
, (E.17)

P2k+1(A) =
1

22k+1
+

1

22kπ

∑
1≤i<j≤2k+1

arcsin(rij)

+
k∑
j=2

1

22k+1−jπj

∑
1≤i1<···<i2j≤2k+1

I2j

(
R(i1,...,i2j)

)
, (E.18)

where R(i1,...,i2j) denotes the submatrix consisting of the (i1, . . . , i2j)-th rows and columns of R, and

I2j(Λ) =
(−1)j

(2π)j

∫ ∞
−∞
· · ·
∫ ∞
−∞

(
2j∏
i=1

1

ωi

)
exp

(
−ω
′Λω

2

)
dω1 · · · dω2j , (E.19)

where Λ is a 2j × 2j covariance matrix and ω = (ω1, . . . , ω2j)
′. Sun (1988a) provides a recursive

relation for I2j(Λ) that allows us to obtain I2j starting from I2. Sun’s formula enables us to compute

the 2j-th order multivariate integral I2j using a (j − 1)-th order multivariate integral, which can

be obtained numerically using the Gauss-Legendre quadrature method. Sun (1988b) provides a

Fortran subroutine to compute P (A) for r ≤ 9. We improve on Sun’s program and are able to

accurately compute P (A) and hence wi(Σ) for r ≤ 11.
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F Simulation Designs

We provide a detailed description of the various simulation designs. In all of our simulations, the

factors and the returns on the test assets are drawn from a multivariate normal distribution. We

incorporate the pricing-model restrictions for the different scenarios by changing the mean return

vector µR. The covariance matrix of the factors and returns, V , is chosen based on the covariance

matrix estimated from the data, i.e., V = V̂ . Since the distribution of ρ̂2 is independent of µf ,

without loss of generality we set µf = 0K in all simulation designs.

Single R2s

We start with the specification tests — the R2 test based on Proposition A.4 and the approximate

F -test. To evaluate the size properties of these tests, we simulate data from a world in which FF3

is exactly true. The corresponding mean return vector is set to be

µR = X̂γ̂, (F.1)

where X̂ and γ̂ are the sample estimates of X and γ. Here, and in the calibration of other simulation

parameters below, we refer to the estimates obtained using the actual data. To analyze the power

of the specification tests, we set µR = µ̂R, which implies that the population R2s for FF3 are 0.747

(OLS) and 0.298 (GLS), the sample values reported in Table I in the paper.

Turning to the size properties of the test of H0 : ρ2 = 0, we simulate a world in which FF3 has

no explanatory power, i.e., we set

µR = γ̂01N + ê, (F.2)

where γ̂0 and ê are the estimated zero-beta rate and sample pricing errors from FF3. To study the

power of the test of H0 : ρ2 = 0, we set µR = µ̂R.

Pairwise Tests of Equality of Cross-Sectional R2s

For nested models, we consider CAPM (model B), which is nested by FF3 (model A). To evaluate

the size of the weighted chi-squared test described in Proposition A.5, we choose µR such that

0 < ρ2A = ρ2B < 1. Specifically, we set

µR = ĈBλ̂B + êA, (F.3)
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where ĈB and λ̂B are the sample estimates of CB and λB obtained from CAPM and êA are the

sample pricing errors obtained from FF3. This will guarantee that λA,2 = 0K2 and 0 < ρ2A = ρ2B < 1.

This simulation design yields population R2s of 0.313 (OLS) and 0.132 (GLS). To evaluate the power

of the test, we set µR = µ̂R, which implies that the population R2s for FF3 and CAPM are 0.747

and 0.115 for OLS and 0.298 and 0.107 for GLS, the sample values reported in Table I in the paper.

For the non-nested models case, it is more complicated to generate µR such that ρ2A = ρ2B. Since

we focus on the normal test (Proposition A.9), we need to generate µR such that yA 6= yB and also

both models are misspecified. We define

µR = (ĈAλ̂A + ĈBλ̂B)/2 + aêA + bêB, (F.4)

where a and b are chosen such that

µ′RŴ ĈA(Ĉ ′AŴ ĈA)−1Ĉ ′AŴµR = µ′RŴ ĈB(Ĉ ′BŴ ĈB)−1Ĉ ′BŴµR, (F.5)

i.e., ρ2A = ρ2B = ρ2, and ρ2 is set to be as close as possible to (ρ̂2A + ρ̂2B)/2. With our choice of a

and b, ρ2 is the same for FF3 and C-LAB: 0.647 for OLS and 0.203 for the GLS case. These are

the averages of the sample R2s reported in Table I in the paper. To evaluate the power of the test,

we set µR = µ̂R, which implies that the population R2s for FF3 and C-LAB are set equal to their

sample values in Table I in the paper.

Multiple Tests of Equality of Cross-Sectional R2s

Finally, we examine the multiple-comparison inequality test for non-nested models. To evaluate

the size of the test, we consider the case in which all models have the same ρ2 value, so as to

maximize the likelihood of rejection under the null. We simulate six different single-factor models

corresponding to the factors vw, smb, cg36, lab, prem, and rf and implement the likelihood ratio

test with r = 5. We now explain how we can set µR such that the cross-sectional R2 for each

single-factor model is the same.

Let VRf,i = Cov[Rt, fit] for i = 1, . . . ,K. Suppose W is the weighting matrix. Let

M = IN − η(η′η)−1η′, (F.6)

where η = W
1
2 1N .
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The cross-sectional R2 of the model with factor i is given by

ρ2i =
(V ′Rf,iW

1
2MW

1
2µR)2

(V ′Rf,iW
1
2MW

1
2VRf,i)(µ

′
RW

1
2MW

1
2µR)

. (F.7)

Let

V n
Rf,i =

VRf,i

(V ′Rf,iW
1
2MW

1
2VRf,i)

1
2

, (F.8)

we can then write

ρ2i =
(V n
Rf,i
′W

1
2MW

1
2µR)2

µ′RW
1
2MW

1
2µR

. (F.9)

To ensure that all models have the same ρ2, a sufficient condition is

V n
Rf,i
′W

1
2MW

1
2µR = c, (F.10)

where c is a constant. Let V n
Rf = [V n

Rf,1, . . . , V
n
Rf,K ], we have

V n
Rf
′W

1
2MW

1
2µR = c1K . (F.11)

If we set µR = VRfλ1, then

λ1 = c(V n
Rf
′W

1
2MW

1
2VRf )−11K , (F.12)

and we can choose µR to be

µR = ĉV̂Rf (V̂ n
Rf
′Ŵ

1
2 M̂Ŵ

1
2 V̂Rf )−11K , (F.13)

where M̂ is a consistent estimator of M and V̂ n
Rf is a consistent estimator of V n

Rf . In our simulations,

we choose ĉ = V̂ n
Rf
′Ŵ

1
2 M̂Ŵ

1
2 µ̂R when the factor is the value-weighted market return. The common

ρ2 for the various models is 0.306 for OLS and 0.235 for the GLS case.

To examine the power of the test, we set µR = µ̂R and simulate five of our original models

(CCAPM, U-CCAPM, C-LAB, FF3, and ICAPM), so that the population R2 of each model is set

equal to its sample R2 in Table I in the paper.
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