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ABSTRACT

Over the years, many asset pricing studies have employed the sample cross-sectional regression

(CSR) R2 as a measure of model performance. We derive the asymptotic distribution of this

statistic and develop associated model comparison tests, taking into account the impact of model

misspecification on the variability of the CSR estimates. We encounter several examples of large R2

differences that are not statistically significant. A version of the intertemporal CAPM exhibits the

best overall performance, followed by the three-factor model of Fama and French (1993). Interest-

ingly, the performance of prominent consumption CAPMs is sensitive to variations in experimental

design.
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The traditional empirical methodology for exploring asset pricing models entails estimation of asset

betas (systematic risk measures) from time-series factor model regressions, followed by estimation

of risk premia via cross-sectional regressions (CSR) of asset returns on the estimated betas. In the

classic analysis of the capital asset pricing model (CAPM) by Fama and MacBeth (1973), a CSR is

run each month, with inference ultimately based on the time-series mean and standard error of the

monthly risk premium estimates. Also see the related paper by Black, Jensen, and Scholes (1972).

A formal econometric analysis of the two-pass methodology was first provided by Shanken

(1992). He shows how the asymptotic standard error of the second-pass risk premium estimator

is influenced by estimation error in the first-pass betas, requiring an adjustment to the traditional

Fama-MacBeth standard errors. A test of the validity of the pricing model’s constraint on expected

returns can also be derived from the cross-sectional regression residuals (see, for example, Shanken

(1985)).

As a practical matter, however, models are at best approximations to reality. It is therefore

desirable to have a measure of “goodness-of-fit” with which to assess the performance of a risk-

return model. The most popular measure, given its simple intuitive appeal, has been the R2 for the

cross-sectional relation. This R2 indicates the extent to which the model’s risk measures (betas)

account for the cross-sectional variation in average returns, typically for a set of asset portfolios.

The R2 for average returns is employed in this context, rather than the average of monthly R2s,

since the latter could be high, with positive ex post risk premia for some months and negative

premia for others, even if the ex ante (average) premium is zero.

A recent paper by Lewellen, Nagel, and Shanken (2010) explores the sampling distribution of

the R2 estimator via simulations. However, despite its widespread use in conjunction with the

two-pass methodology, the cross-sectional R2 has been treated mainly as a descriptive statistic in

asset pricing research. We take an important step beyond this limited approach by deriving the

asymptotic distribution of the R2 estimator.

Ultimately, though, researchers are interested in comparing models, and so it is also important

to determine the distribution of the difference between R2s for competing models. This issue

appears to have been completely neglected in the literature thus far, even in simulations. Again,

we provide the relevant asymptotic distribution and find, through a series of simulations, that

it provides a good approximation to the actual sampling distribution. The simulation analysis
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employs 50 years of monthly data, consistent with much empirical practice. Our main econometric

analysis of model comparison based on R2 parallels that in Kan and Robotti (2009), who focus

exclusively on the Hansen and Jagannathan (1997, HJ hereafter) distance, an alternative measure

of model fit. In addition, we explore, for the first time, model comparison based on R2 in an excess

returns specification with the zero-beta rate constrained to equal the risk-free rate. Finally, we

derive asymptotic tests of multiple model comparison, that is, we evaluate the joint hypothesis

that a given model dominates a set of alternative models in terms of the cross-sectional R2.

All of our procedures account for the fact that each model’s parameters must be estimated and

that these estimates will typically be correlated across models. Both ordinary least squares (OLS)

and generalized least squares (GLS) R2s are considered. OLS is more relevant if the focus is on the

expected returns for a particular set of assets or test portfolios, but the GLS R2 may be of greater

interest from an investment perspective. In this regard, Kandel and Stambaugh (1995) show that

there is a direct relation between the GLS R2 and the relative efficiency of a market index. They

also argue, as do Roll and Ross (1994), that there is virtually no relation at all for the OLS R2

unless the index is exactly efficient.1

Model comparison essentially presumes that deviations from the implied restrictions are likely

for some or all models. This “misspecification” might be due, for example, to the omission of some

relevant risk factor, imperfect measurement of the factors, or failure to incorporate some relevant

aspect of the economic environment—taxes, transaction costs, irrational investors, etc. Thus,

misspecification of some sort seems inevitable given the inherent limitations of asset pricing theory.

Yet researchers often conduct inferences about risk premia or other asset pricing model parameters

imposing the null hypothesis that the model is correctly specified. Indeed, it is not uncommon to see

this done even when a model is clearly rejected by the data—a logical inconsistency. Therefore, the

asymptotic properties of the two-pass methodology are derived here under quite general assumptions

that allow for model misspecification, extending the results of Hou and Kimmel (2006) and Shanken

and Zhou (2007) under normality.

Empirically, our interest is in rigorously evaluating and comparing the performance of several

prominent asset pricing models based on their cross-sectional R2s. In addition to the basic CAPM

and consumption CAPM (CCAPM), the theory-based models considered are the CAPM with

labor income of Jagannathan and Wang (1996), the CCAPM conditioned on the consumption-
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wealth ratio of Lettau and Ludvigson (2001), the ultimate consumption risk model of Parker and

Julliard (2005), the durable consumption model of Yogo (2006), and the five-factor implementation

of the intertemporal CAPM (ICAPM) used by Petkova (2006). We also study the well-known

three-factor model of Fama and French (1993). Although this model was primarily motivated by

empirical observation, its size and book-to-market factors are sometimes viewed as proxies for more

fundamental economic factors.

Our main empirical analysis uses the “usual” 25 size and book-to-market portfolios of Fama and

French (1993) plus five industry portfolios as the assets. The industry portfolios are included to

provide a greater challenge to the various asset pricing models, as recommended by Lewellen, Nagel,

and Shanken (2010). We limit ourselves to five industry portfolios since some of our asymptotic

results become less reliable as the number of test portfolios increases. Specification tests reject the

hypothesis of a perfect fit for the majority of the models, so that statistical methods that are robust

to model misspecification are clearly needed. We show empirically that misspecification-robust

standard errors can be substantially higher than the usual ones when a factor is “non-traded,” that

is, is not some benchmark portfolio return. As one example, consider the t-statistic on the GLS

risk premium estimator for the consumption growth factor in the durable consumption model of

Yogo (2006). The Fama-MacBeth t-statistic declines from 2.50 to 2.20 with the usual adjustment

for errors in the betas, but it is further reduced to only 1.36 when misspecification is taken into

account.

Although there is still some evidence of pricing, significance is often substantially reduced for

consumption and ICAPM factors. In the model comparison tests, the basic CAPM and CCAPM

specifications are clearly the worst performers, with low cross-sectional R2s that are often statisti-

cally dominated by those of other models at the 5% level. The conditional CCAPM based on the

consumption-wealth ratio is also a poor performer.

Across the various specifications considered, Petkova’s ICAPM specification has the best overall

fit, yet the three-factor model is found to statistically dominate other models far more frequently.

This is due in part to the fact that the ICAPM R2 is sometimes not very precisely estimated.

Indeed, we see many cases in which large differences between sample R2s are not reliably different

from zero. For example, the ICAPM OLS R2 exceeds that of the CAPM by a full 65 percentage

points and is still not statistically significant. This highlights the difficulty of distinguishing between
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models and the limitations of simply comparing point estimates of R2s. In this respect, our work

reinforces and extends the simulation-based conclusion of Lewellen, Nagel, and Shanken (2010),

who focus on individual R2s rather than differences across models.

We find that the durable goods version of the CCAPM performs about as well as the top

models in our basic analysis. Its relative performance deteriorates substantially, however, when we

constrain the zero-beta rate to equal the risk-free T-bill rate. Our exploration of this modification

of the usual CSR approach is motivated by the observation that most of the estimated zero-beta

rates are far too high to be consistent with plausible spreads between borrowing and lending rates,

as required by theory.

Another issue concerns the fact that when a model is misspecified, its fit will generally vary

with the test assets employed. Empirically, therefore, we would like to know whether a model that

performs well on a given set of test portfolios continues to perform well on other assets of interest.

Toward this end, following some earlier studies, we examine the sensitivity of our model comparison

results using 25 portfolios formed by ranking stocks on size and CAPM beta. Interestingly, the

conditional CCAPM and ICAPM are the best performers in this context, both dominating the

three-factor model at the 5% level in the OLS case. Again, precision plays an important role here,

as other models with lower R2s than the three-factor model are not statistically dominated.

Finally, an important related question is whether a particular factor in a multifactor model

makes an incremental contribution to the model’s overall explanatory power, given the presence

of the other factors. We show that this question cannot be answered by examining the usual

risk premium coefficients on the multiple regression betas, which have been the exclusive focus

of most prior CSR analyses. Rather, one must consider the cross-sectional relation with simple

regression betas (equivalently, asset covariances with the factors) as the explanatory variables and

determine whether the corresponding coefficient differs from zero. The result that we derive provides

a rigorous underpinning for the discussion of these issues at a more intuitive level in Jagannathan

and Wang (1998) and complements a related finding by Cochrane (2005, Chapter 13.4) in the

stochastic discount factor (SDF) framework. Our empirical investigation of this issue results in

a surprising finding for the three-factor model. With an unconstrained zero-beta rate, the much

heralded book-to-market factor is not statistically significant in terms of covariance risk, but the

size factor is.
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The rest of the paper is organized as follows. Section I presents an asymptotic analysis of the

zero-beta rate and risk premium estimates under potentially misspecified models. In addition, we

provide an asymptotic analysis of the sample cross-sectional R2s. Section II introduces tests of

equality of cross-sectional R2s for two competing models and provides the asymptotic distribu-

tions of the test statistics for different scenarios. Section III presents our main empirical findings.

Section IV introduces a new test of multiple model comparison. We explore the small-sample prop-

erties of the various tests in Section V. Section VI summarizes our main conclusions. Propositions,

proofs, and additional material are provided in the Internet Appendix.2

I. Asymptotic Analysis under Potentially Misspecified Models

As discussed in the introduction, an asset pricing model seeks to explain cross-sectional differ-

ences in expected asset returns in terms of asset betas computed relative to the model’s systematic

economic factors. Let f be a K-vector of factors, R be a vector of returns on N test assets with

mean µR and covariance matrix VR, and β be the N ×K matrix of multiple regression betas of the

N assets with respect to the K factors. The proposed K-factor beta pricing model specifies that

asset expected returns are linear in β, that is,

µR = Xγ, (1)

where X = [1N , β] is assumed to be of full column rank, 1N is an N -vector of ones, and γ = [γ0, γ
′
1]
′

is a vector consisting of the zero-beta rate (γ0) and risk premia on the K factors (γ1).
3 The zero-

beta rate may be higher than the risk-free interest rate if risk-free borrowing rates exceed lending

rates in the economy.

When the model is misspecified, the pricing-error vector, µR−Xγ, will be nonzero for all values

of γ. In that case, it makes sense to choose γ to minimize some aggregation of pricing errors.

Denoting by W an N × N symmetric positive-definite weighting matrix, we define the (pseudo)

zero-beta rate and risk premia as the choice of γ that minimizes the quadratic form of pricing

errors:

γW ≡
[
γW,0
γW,1

]
= argminγ(µR −Xγ)′W (µR −Xγ) = (X ′WX)−1X ′WµR. (2)

The corresponding pricing errors of the N assets are then given by

eW = µR −XγW = [IN −X(X ′WX)−1X ′W ]µR. (3)
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In addition to aggregating the pricing errors, researchers are often interested in a normalized

goodness-of-fit measure for a model. A popular measure is the cross-sectional R2. Following Kandel

and Stambaugh (1995), this is defined as

ρ2W = 1− Q

Q0
, (4)

where

Q = e′WWeW , (5)

Q0 = e′0We0, (6)

and e0 = [IN − 1N (1′NW1N )−11′NW ]µR represents the deviations of mean returns from their cross-

sectional average. In order for ρ2W to be well defined, we need to assume that µR is not proportional

to 1N (the expected returns are not all equal) so that Q0 > 0. Note that 0 ≤ ρ2W ≤ 1 and it is a

decreasing function of the aggregate pricing-error measure Q = e′WWeW . Thus, ρ2W is a natural

measure of goodness of fit.

One would, of course, obtain the same ranking of models using Q itself, which is the focus

of much of the multivariate literature on asset pricing tests.4 The widespread use of the cross-

sectional R2 statistic in evaluating asset pricing models indicates that researchers also value a

relative measure, one that compares the magnitude of model expected return deviations to that of

typical deviations from the average expected return.

While multiple regression betas or “factor loadings” are typically used as the regressors in the

second-pass CSR, we also consider an alternative specification in terms of the N ×K matrix VRf of

covariances between returns and the factors (equivalently, the simple regression betas). Thus, let

C = [1N , VRf ] and λW ≡ [λW,0, λ
′
W,1]

′ be the choice of coefficients that minimizes the corresponding

quadratic form in the pricing errors, µR − Cλ. It is easy to show that the pricing errors from this

alternative second-pass CSR are the same as those in (3) and thus that the ρ2W for these two CSRs

are also identical. However, as we discuss in Section II.A, there are important differences in the

economic interpretation of the pricing coefficients when K > 1.5

It should be emphasized that unless the model is correctly specified, γW , λW , eW , and ρ2W

depend on the choice of W . We consider two popular choices of W in the literature, W = IN (OLS

CSR) and W = V −1R (GLS CSR). To simplify the notation, we suppress the subscript W from γW ,

λW , eW , and ρ2W when the choice of W is clear from the context.
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Note that the use of GLS in the present setting differs from that elsewhere in the asset pricing

literature, where a model is typically treated as providing an exact description of expected returns.

In that context, a unique vector of (true) risk premia satisfies the relation, and OLS and GLS are

different methods for estimating that same parameter vector. Although there are no population

deviations from the model, in any sample there will, of course, be deviations from the estimated

model. As is well known, OLS and GLS differ in the manner that they weight these sample devia-

tions (residuals), with the result that GLS is an asymptotically more efficient estimation procedure

under familiar assumptions (see Shanken (1992)). In contrast, as indicated by the equations above,

we basically presume misspecification, that is, population deviations from the model. Here, OLS

and GLS represent different ways of measuring and aggregating these true model “mistakes.” The

choice between OLS and GLS, therefore, is not based on estimation efficiency, but rather on which

method provides an economically more relevant indication of overall model success or failure.

The HJ-distance is an alternative goodness-of-fit measure. As emphasized by Kan and Zhou

(2004), the HJ-distance evaluates a model’s ability to explain prices whereas R2 is oriented toward

expected returns. With the zero-beta rate as a free parameter, as is usual in the asset pricing

literature, Kan and Zhou (2004) show that the two measures need not rank models the same way.

Thus, the choice of metric depends on whether pricing deviations (specifically, the maximum) or

expected return deviations are of greater interest. The R2 measure would seem to be more relevant

if the model is to be used to determine expected return inputs to a portfolio decision.

We now turn to estimation of the models. Let ft be the vector of K proposed factors at time t

and Rt be a vector of returns on N test assets at time t. The popular two-pass method first obtains

estimates β̂, the betas of the N assets, by running the following multivariate regression:

Rt = α+ βft + εt, t = 1, . . . , T. (7)

We then run a single CSR of the sample mean vector µ̂R on X̂ = [1N , β̂] to estimate γ in the

second pass.6

When the weighting matrix W is known, as in OLS CSR, we can estimate γ in (2) by

γ̂ = (X̂ ′WX̂)−1X̂ ′Wµ̂R. (8)

Similarly, letting Ĉ = [1N , V̂Rf ], where V̂Rf is the sample estimate of VRf , we estimate λ by

λ̂ = (Ĉ ′WĈ)−1Ĉ ′Wµ̂R. In the GLS case, we need to substitute the inverse of the sample covariance
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matrix of returns in the γ̂ and λ̂ expressions above. The sample measure of ρ2 is similarly defined

as

ρ̂2 = 1− Q̂

Q̂0

, (9)

where Q̂0 and Q̂ are obtained by substituting the sample counterparts of the parameters in (5) and

(6).

A. Asymptotic Distribution of γ̂ under Potentially Misspecified Models

When computing the standard error of γ̂, researchers typically rely on the asymptotic distribu-

tion of γ̂ under the assumption that the model is correctly specified. Shanken (1992) presents the

asymptotic distribution of γ̂ under the conditional homoskedasticity assumption on the residuals.

Jagannathan and Wang (1998) extend Shanken’s results by allowing for conditional heteroskedas-

ticity as well as autocorrelated errors.7

Two recent papers investigate the asymptotic distribution of γ̂ under potentially misspecified

models. Hou and Kimmel (2006) derive the asymptotic distribution of γ̂ for the case of GLS

CSR with a known value of γ0, and Shanken and Zhou (2007) present asymptotic results for

the OLS, weighted least squares, and GLS cases with γ0 unknown. However, both analyses are

somewhat restrictive, as they rely on the i.i.d. normality assumption. We relax this assumption

and provide general expressions for the asymptotic variances of both γ̂ and λ̂ under potential model

misspecification in Internet Appendix Section I.8

To enhance our intuition, we also consider the special case in which the factors and returns are

i.i.d. multivariate elliptically distributed. With this assumption, the usual Fama-MacBeth variance

for the GLS estimator (see Internet Appendix Section I) is augmented by two terms, one that

adjusts for estimation error in the betas and one that is a misspecification adjustment term that

increases in the degree of model misspecification as measured by Q (see (5)). Moreover, each of

these adjustment terms is magnified when stock returns are fat-tailed. We also show that the

misspecification adjustment term crucially depends on the variance of the residuals from projecting

the factors on the returns. For factors that have very low correlation with returns (for example,

macroeconomic factors), the impact of misspecification on the asymptotic variance of γ̂1 can be

very large. This new insight will be helpful in understanding the empirical results in Section III.

B. Asymptotic Distribution of the Sample Cross-Sectional R2
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The sample R2 (ρ̂2) in the second-pass CSR is a popular measure of goodness of fit for a model.

A high ρ̂2 is viewed as evidence that the model under study does a good job of explaining the

cross-section of expected returns. Lewellen, Nagel, and Shanken (2010) point out several pitfalls to

using this approach and explore simulation techniques to obtain approximate confidence intervals

for ρ2.9 In this subsection, we provide an overview of the first formal statistical analysis of ρ̂2.

In Internet Appendix Section I, we show that the asymptotic distribution of ρ̂2 crucially depends

on the value of ρ2. When ρ2 = 1 (that is, a correctly specified model), the asymptotic distribution

serves as the basis for a specification test of the beta pricing model. This is an alternative to the

various multivariate asset pricing tests that have been developed in the literature. Although all of

these tests focus on an aggregate pricing-error measure, the R2-based test examines pricing errors

in relation to the cross-sectional variation in expected returns, allowing for a simple and appealing

interpretation. At the other extreme, the asymptotic distribution when ρ2 = 0 (a misspecified

model that does not explain any of the cross-sectional variation in expected returns) permits a test

of whether the model has any explanatory power for expected returns.

When 0 < ρ2 < 1 (a misspecified model that provides some explanatory power), the case of

primary interest, ρ̂2 is asymptotically normally distributed around its true value. It is readily

verified that the asymptotic standard error of ρ̂2 approaches zero as ρ2 → 0 or ρ2 → 1, and thus it

is not monotonic in ρ2. The asymptotic normal distribution of ρ̂2 breaks down for the two extreme

cases (ρ2 = 0 or 1) because, by construction, ρ̂2 will always be above zero (even when ρ2 = 0) and

below one (even when ρ2 = 1).

Most of the autocorrelations of the relevant terms in the expressions for the asymptotic variances

in our propositions in the Internet Appendix are small (under 0.1 and frequently under 0.05) and

not statistically significant. Therefore, consistent with much of the literature, we conduct inference

assuming these terms are serially uncorrelated. However, we also explore the impact of a one-lag

Newey and West (1987) adjustment and find very little effect on our inferences about pricing and

R2s. These additional results are summarized briefly in the footnotes.

II. Tests for Comparing Competing Models

In this section, we develop a test of model comparison based on the sample cross-sectional R2s
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of two beta pricing models. Toward this end, we derive the asymptotic distribution of the difference

between the sample R2s of two models under the null hypothesis that the population values are the

same. We show that this distribution depends on whether the two models are nested or non-nested

and whether the models are correctly specified. Our analysis is related to the model selection tests

of Kan and Robotti (2009), Li, Xu, and Zhang (2010), and Gospodinov, Kan, and Robotti (2013),

who, building on the earlier statistical work of Vuong (1989), Rivers and Vuong (2002), and Golden

(2003), develop tests of equality of the HJ-distances of two competing asset pricing models.

We consider two competing beta pricing models. Let f1, f2, and f3 be three sets of distinct

factors, where fi is of dimension Ki × 1, i = 1, 2, 3. Assume that model A uses f1 and f2, while

model B uses f1 and f3 as factors. Therefore, model A requires that the expected returns on the

test assets be linear in the betas or covariances with respect to f1 and f2, that is,

µR = 1NλA,0 + Cov[R, f ′1]λA,1 + Cov[R, f ′2]λA,2 = CAλA, (10)

where CA = [1N , Cov[R, f ′1], Cov[R, f ′2]] and λA = [λA,0, λ
′
A,1, λ

′
A,2]
′. Model B requires that

expected returns be linear in the betas or covariances with respect to f1 and f3, that is,

µR = 1NλB,0 + Cov[R, f ′1]λB,1 + Cov[R, f ′3]λB,3 = CBλB, (11)

where CB = [1N , Cov[R, f ′1], Cov[R, f ′3]] and λB = [λB,0, λ
′
B,1, λ

′
B,3]
′.

In general, both models can be misspecified. Following the development in Section I, given a

weighting matrix W , the λi that maximizes the ρ2 of model i is given by

λi = (C ′iWCi)
−1C ′iWµR, (12)

where Ci is assumed to have full column rank, i = A,B. For each model, the pricing-error vector

ei, the aggregate pricing-error measure Qi, and the corresponding goodness-of-fit measure ρ2i are

all defined as in Section I.

When K2 = 0, model B nests model A as a special case. Similarly, when K3 = 0, model A

nests model B. When both K2 > 0 and K3 > 0, the two models are non-nested. We study the

nested models case in the next subsection and deal with non-nested models in Section II.B.

A. Nested Models
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When models are nested, it is natural to suppose that the explanatory power of the larger model

will exceed that of the smaller model precisely when expected returns are related to the betas on

the additional factors. Our next result demonstrates that this is true, but only if we formulate this

condition in terms of the simple betas or covariances with the factors. Without loss of generality,

we assume K3 = 0, so that model A nests model B.

In Internet Appendix Section I, we show that even when the models are misspecified, ρ2A = ρ2B

if and only if λA,2 = 0K2 .10 Furthermore, this condition and the restriction that the corresponding

subvector of γ equals zero are not equivalent unless f1 and f2 are uncorrelated. To test whether

the models have the same ρ2, one can simply perform a test of H0 : λA,2 = 0K2 based on the

CSR estimate and its misspecification-robust covariance matrix. Alternatively, in keeping with the

common practice of comparing cross-sectional R2s, we can use ρ̂2A − ρ̂2B to test H0 : ρ2A = ρ2B. We

derive the asymptotic distribution of this statistic in Internet Appendix Section I.

Before moving on to the case of non-nested models, we highlight an important issue about

risk premia that does not appear to be widely understood. Empirical work on multifactor asset

pricing models typically focuses on whether factors are “priced” in the sense that coefficients on

the multiple regression betas are nonzero in the CSR relation. While the economic interpretation

of these risk premia can be of interest for other reasons, the results in Internet Appendix Section I

tell us that if the question is whether the extra factors f2 improve the cross-sectional R2, then what

matters is whether the prices of covariance risk associated with f2 are nonzero.11

B. Non-Nested Models

Testing H0 : ρ2A = ρ2B is more complicated for non-nested models. The reason is that under H0,

there are three possible asymptotic distributions for ρ̂2A − ρ̂2B, depending on why the two models

have the same cross-sectional R2. We give a brief overview of the different scenarios here and

provide details in Internet Appendix Section I.

One possibility is that the factors that are not common to the two non-nested models are

irrelevant for explaining expected returns. As a result, the models have the same pricing errors and

identical population R2s. Alternatively, the two models may produce different pricing errors but

still have the same overall goodness of fit. Intuitively, one model might do a good job of pricing

some assets that the other prices poorly and vice versa, such that the aggregation of pricing errors
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is the same in each case (ρ2A = ρ2B < 1). In this scenario, Internet Appendix Section I shows that

the difference in R2s is asymptotically normally distributed. Finally, it is theoretically possible

for two models to both be correctly specified (that is, ρ2A = ρ2B = 1) even though their factors

differ. This occurs, for example, if model A is correct and the factors f3 in model B are given by

f3 = f2 + ε, where ε is pure “noise” — a vector of measurement errors with mean zero, independent

of returns. In this case, we have CA = CB and both models produce zero pricing errors.

Given the three distinct cases described above, testing H0 : ρ2A = ρ2B for non-nested models

entails a fairly complicated sequential procedure, as suggested by Vuong (1989). We describe this

test in Internet Appendix Section I. Another approach is to simply perform the normal test of

H0 : 0 < ρ2A = ρ2B < 1. This implicitly rules out the unlikely scenario that the additional factors

in each model are completely irrelevant for explaining cross-sectional variation in expected returns.

In addition, this approach assumes that, because asset pricing models are merely approximations

of reality, it is implausible that both models will be perfectly specified. In our empirical work,

we conduct both the sequential test and the normal test when comparing non-nested models. We

focus mainly on the normal test, however, as this test is more powerful insofar as the simplifying

assumptions above are valid.

III. Empirical Analysis

We use our methodology to evaluate the performance of several prominent asset pricing models.

First, we describe the data used in the empirical analysis and outline the different specifications of

the beta pricing models considered. Next, we present our results. Simulation results supporting

the use of our tests are deferred to a later section so that we can get right to the empirical analysis.

A. Data and Beta Pricing Models

The return data are from Kenneth French’s website and consist of the monthly value-weighted

returns on the 25 Fama-French size and book-to-market ranked portfolios plus five industry port-

folios. The data are from February 1959 to July 2007 (582 monthly observations). The beginning

date of our sample period is dictated by consumption data availability.

We analyze eight asset pricing models starting with the simple static CAPM. The cross-sectional
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specification for this model is

µR = γ0 + βvwγvw,

where vw is the excess return (in excess of the one-month T-bill rate from Ibbotson Associates) on

the value-weighted stock market index (NYSE-AMEX-NASDAQ) from Kenneth French’s website.

The CAPM performed well in early tests, for example, Fama and MacBeth (1973), but has fared

poorly since.

One extension that has performed better is our second model, the conditional CAPM (C-LAB)

of Jagannathan and Wang (1996). This model incorporates measures of the return on human

capital as well as the change in financial wealth and allows the conditional betas to vary with a

state variable, prem, the lagged yield spread between Baa- and Aaa-rated corporate bonds from

the Board of Governors of the Federal Reserve System.12 The cross-sectional specification is

µR = γ0 + βvwγvw + βlabγlab + βpremγprem,

where lab is the growth rate in per capita labor income, L, defined as the difference between

total personal income and dividend payments, divided by the total population (from the Bureau

of Economic Analysis). Following Jagannathan and Wang (1996), we use a two-month moving

average to construct the growth rate labt = (Lt−1 + Lt−2)/(Lt−2 + Lt−3) − 1, for the purpose of

minimizing the influence of measurement error.

Our third model (FF3), which extends the CAPM by including two empirically motivated

factors, is the Fama-French (1993) three-factor model,

µR = γ0 + βvwγvw + βsmbγsmb + βhmlγhml,

where smb is the return difference between portfolios of stocks with small and large market capi-

talizations, and hml is the return difference between portfolios of stocks with high and low book-

to-market ratios (“value” and “growth” stocks, respectively) from Kenneth French’s website.

The fourth model (ICAPM) is an empirical implementation of Merton’s (1973) intertemporal

extension of the CAPM based on Campbell (1996), who argues that innovations in state variables

that forecast future investment opportunities should serve as the factors. The five-factor specifica-

tion proposed by Petkova (2006) is

µR = γ0 + βvwγvw + βtermγterm + βdefγdef + βdivγdiv + βrfγrf ,
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where term is the difference between the yields of 10-year and one-year government bonds, def

is the difference between the yields of long-term corporate Baa bonds and long-term government

bonds (from Ibbotson Associates), div is the dividend yield on the Center for Research in Security

Prices (CRSP) value-weighted stock market portfolio, and rf is the one-month T-bill yield (from

CRSP, Fama Risk Free Rates). The actual factors for term, def , div, and rf are their innovations

from a VAR(1) system of seven state variables that also includes vw, smb, and hml.13

Next, we consider consumption-based models. Our fifth model (CCAPM) is the unconditional

consumption model,

µR = γ0 + βcgγcg,

where cg is the growth rate in real per capita nondurable consumption (seasonally adjusted at

annual rates) from the Bureau of Economic Analysis. This model has generally not performed

well empirically. Therefore, we also examine other consumption models that have yielded more

encouraging results.

One such model (CC-CAY) is a conditional version of the CCAPM due to Lettau and Ludvigson

(2001). The relation is

µR = γ0 + βcayγcay + βcgγcg + βcg·cayγcg·cay,

where cay, the conditioning variable, is a consumption-aggregate wealth ratio.14 This specification

is obtained by scaling the constant term and the cg factor of a linearized consumption CAPM by

a constant and cay. Scaling factors by instruments is one popular way to allow factor risk premia

and betas to vary over time. See Shanken (1990) and Cochrane (1996), among others.

Our seventh model (U-CCAPM) is the ultimate consumption model of Parker and Julliard

(2005), which measures asset systematic risk as the covariance with future as well as contem-

poraneous consumption, allowing for slow adjustment of consumption to the information driving

returns. The specification is

µR = γ0 + βcg36γcg36,

where cg36 is the growth rate in real per capita nondurable consumption over three years starting

with the given month.

The last model (D-CCAPM), due to Yogo (2006), highlights the cyclical role of durable con-
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sumption in asset pricing. The specification is

µR = γ0 + βvwγvw + βcgγcg + βcgdurγcgdur,

where cgdur is the growth rate in real per capita durable consumption (seasonally adjusted at

annual rates) from the Bureau of Economic Analysis.

B. Results

We start by estimating the cross-sectional R2s of the various pricing models just described. We

then analyze pricing and the impact of potential model misspecification on the statistical properties

of the estimated γ and λ parameters. Next, we present the results of our pairwise tests of equality

of the cross-sectional R2s for different models. Finally, we examine the sensitivity of our findings

to requiring that the zero-beta rate equal the risk-free rate.

B.1. Sample Cross-Sectional R2s of the Models

In Table I, we report ρ̂2 for each model and investigate whether the model does a good job of

explaining the cross-section of expected returns. We denote the p-value of a specification test of

H0 : ρ2 = 1 by p(ρ2 = 1), and the p-value of a test of H0 : ρ2 = 0 by p(ρ2 = 0). Both tests are

based on the asymptotic results in Internet Appendix Section I for the sample cross-sectional R2

statistic. We also provide an approximate F -test of model specification for comparison. Next, we

report the asymptotic standard error of the sample R2, se(ρ̂2), computed under the assumption

that 0 < ρ2 < 1. Finally, No. of para. is the number of parameters in each asset pricing model.

The F -test is a generalized version of the CSRT of Shanken (1985). It is based on a quadratic

form in the model’s deviations, Q̂c = ê′V̂ (ê)+ê, where V̂ (ê) is a consistent estimator of the asymp-

totic variance of the sample pricing errors and V̂ (ê)+ its pseudo-inverse. When the model is

correctly specified (that is, e = 0N or ρ2 = 1), we have TQ̂c
A∼ χ2

N−K−1.
15 Following Shanken, the

reported p-value, p(Qc = 0), is for a transformation of Q̂c that has an approximate F distribution:

Q̂c
app.∼

(
N−K−1
T−N+1

)
FN−K−1,T−N+1.
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Table I about here

In Panels A and B of Table I, we provide results for the OLS and GLS CSRs, respectively.

First, we consider the specification tests. The OLS F -test rejects five of the eight models at the
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1% level, with four of those five also rejected by the R2 test. Using GLS, all models are rejected at

the 5% level and all but one at the 1% level. For OLS, D-CCAPM has the highest R2 of 77.2%,

with ICAPM and FF3 close behind. The same three models have the highest GLS R2s, with FF3

the highest at 29.8%. Turning to the test of ρ2 = 0, we see that this null hypothesis is rejected at

the 5% level for five of the eight models using OLS and for just three models with GLS.

Note that FF3, with an OLS R2 of 74.7%, is rejected at the 1% level by both tests, whereas

C-LAB, with a lower R2 of 54.8%, is rejected at about the 5% level by the R2 test, but is not

even rejected at the 10% level with the F -test. This is understandable when we observe that the

FF3 OLS R2 has the lowest standard error of all the models. Thus, a strong rejection by the

specification test may be driven by relatively small deviations from a model if those deviations

are precisely estimated. As a result, the specification test is not useful for model comparison. An

alternative test will be needed to determine whether a model like FF3 significantly outperforms

other models.

Another issue is the number of factors in a model. While ICAPM has five factors, the other

models considered have at most three factors. The extra degrees of freedom will be an advantage

for ICAPM in any given sample, holding true explanatory power constant across models. However,

our formal test will take this sampling variation into account and enable us to infer whether the

model is superior in population, that is, whether it better explains true expected returns.

Assuming that 0 < ρ2 < 1, se(ρ̂2) captures the sampling variability of ρ̂2. In Table I, we

observe that the ρ̂2s of several models are quite volatile. In particular, the ICAPM GLS R2 is not

significantly different from zero; despite being the second highest of eight R2s, its standard error

is the largest. Four of the eight OLS standard errors exceed 0.2, with U-CCAPM’s the highest at

0.244. This high volatility will make it hard to distinguish between models.17

Several observations emerge from the results in Table I. First, there is strong evidence of the need

to incorporate model misspecification into our statistical analysis. Second, there is considerable

sampling variability in ρ̂2 and so it is not entirely clear whether one model truly outperforms the

others. Finally, specification-test results are sometimes sensitive to whether we employ OLS or

GLS estimation, and it is not always the case that models with high ρ̂2s pass the specification test.
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B.2. Properties of the γ and λ Estimates under Correctly Specified and Potentially Misspecified

Models

Next, we examine the pricing results based on the γ and λ estimators. As far as we know, all

previous CSR studies except the recent paper by Shanken and Zhou (2007) use standard errors

that assume the model is correctly specified. As we argued in the introduction, it is difficult to

justify this practice because (as we just saw empirically) some, if not all, of the models are bound

to be misspecified. In this subsection, we investigate whether inferences about pricing are affected

by using an asymptotic standard error that is robust to such model misspecification.

In Table II, we focus on the zero-beta rate and risk premium estimates, γ̂, of the beta pricing

models. For each model, we report γ̂ and associated t-ratios under correctly specified and potentially

misspecified models. For correctly specified models, we give the t-ratio of Fama and MacBeth

(1973), followed by that of Shanken (1992) and Jagannathan and Wang (1998), which account for

estimation error in the betas. Last, we report the t-ratio under a potentially misspecified model,

based on our new results provided in Internet Appendix Section I. The various t-ratios are identified

by subscripts fm, s, jw, and pm, respectively.

Table II about here

We see in Panel A (OLS) that the ultimate consumption factor cg36, the value minus growth

factor hml, and the prem state variable have coefficients that are reliably positive at the 5% level.

In Panel B (GLS), hml is again positively priced. As in many past studies, the market factor

vw is negatively priced in several specifications, contrary to the usual theoretical prediction.18 In

addition, the zero-beta rates exceed the risk-free rate (the average one-month T-bill rate was 0.45%

per month) by large amounts that would seem hard to reconcile with theory. We return to these

issues later on.

Consistent with our theoretical results, we find that the t-ratios under correctly specified and

potentially misspecified models are similar for traded factors, for example, the FF3 factors, but

they can differ substantially for factors that have low correlations with asset returns. As an ex-

ample of the latter, consider the consumption factor cg in D-CCAPM. With GLS estimation, we

have t-ratiofm = 2.50, t-ratios = 2.20, t-ratiojw = 2.14, and t-ratiopm = 1.36, which shows that
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the misspecification adjustment can make a significant difference. ICAPM provides another illus-

tration of the different conclusions that one can reach by using misspecification-robust standard

errors. While the t-ratios under correctly specified models in Panel B suggest that γ̂term is highly

statistically significant (t-ratiofm = 3.07, t-ratios = 2.58, and t-ratiojw = 2.59), the robust t-ratio

is only 1.61, not quite significant at the 10% level. The scale factor cay is one more example. In

short, both model misspecification and beta estimation error materially affect inference about the

expected return relation.

As discussed in Section II.A, there are issues with testing whether an individual factor risk

premium is zero in a multifactor model. Unless the factors are uncorrelated, only the prices of

covariance risk (elements of λ1) allow us to identify factors that improve the explanatory power

of the expected return model (equivalently, simple regression betas can be used). The usual risk

premium for a given factor does not permit such an inference. Table III presents estimation results

for λ. To conserve space, only the OLS t-ratios under potentially misspecified models are presented.

Table III about here

As an illustration of our point that risk premia and prices of covariance risk can deliver different

messages, consider FF3. The size-factor coefficient λ̂smb is statistically significant at the 1% level,

with a robust t-ratio of 2.79. In contrast, γ̂smb in Table II has a robust t-ratio of only 1.19. The

reverse occurs for hml, with λ̂hml not quite significant at the 10% level, yet γ̂hml commanding

a t-ratio of 3.42 earlier. Hence, by focusing on the usual risk premia (the γs), one might think

that smb is not an important factor in FF3 and that hml is. This conclusion would be incorrect,

however. Results for the prices of covariance risk (the λs) imply that smb has explanatory power for

the cross-section of expected returns above and beyond the other factors in FF3, while the role of

hml is questionable. Thus, surprisingly, we cannot reject the hypothesis that the expected returns

generated by a two-factor model consisting of the market and smb equal those based on FF3.19

To summarize, accounting for model misspecification often makes a qualitative difference in

determining whether estimates of the risk premia or the prices of covariance risk are statistically

significant, especially when the factor has low correlation with asset returns. This is the case

for several of the models (ICAPM, D-CCAPM, CC-CAY) that include macroeconomic or scaled

factors. In addition, focusing on the γ̂s, rather than λ̂s, as is typical in the literature, can lead to
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erroneous conclusions as to whether a factor is helpful in explaining the cross-section of expected

returns.20

B.3. Tests of Equality of the Cross-Sectional R2s of Two Competing Models

In Table IV, we report pairwise tests of equality of R2s for different models, some nested and

others non-nested. For the reasons discussed earlier, we present the normal test for non-nested

models and comment briefly on the sequential test results. Panel A corresponds to the OLS CSR

and Panel B to the GLS CSR. Each panel shows the differences between the sample cross-sectional

R2s for various pairs of models and the associated p-values (in parentheses). In the case of non-

nested models, the reported p-values are two-tailed p-values. We use ∗ to highlight those cases in

which the p-value is at most 0.05.

Table IV about here

The main findings can be summarized as follows. First, the results show that CAPM and

CCAPM are often outperformed by other models at the 1% and 5% levels. Specifically, CCAPM

is dominated at the 5% level by U-CCAPM, FF3, D-CCAPM, and ICAPM in Panel A, and again

by the last two models in Panel B. CAPM is dominated by C-LAB, FF3, and D-CCAPM in

Panel A, and by FF3 in Panel B. In many cases the OLS R2 differences with CAPM exceed 60

or 70 percentage points. In addition, FF3 dominates the consumption models CC-CAY (OLS and

GLS) and U-CCAPM (GLS).21

There are several cases of large R2 differences that do not give rise to statistical rejections due

to limited precision of the estimates. Recall, for example, that U-CCAPM has the highest OLS

standard error (0.244) in Table I. Despite an R2 difference of 27 percentage points in favor of FF3,

the p-value in Panel A of Table IV is 0.226. As another example, the ICAPM OLS R2 exceeds

that of CAPM by a full 65 percentage points and still just misses being statistically significant at

the 5% level. Clearly, the common practice of simply comparing sample R2 values is not a reliable

method for identifying superior models.22

We also explored the effect of including the three Fama-French factors, along with the 30

portfolios, as test assets in the various model comparisons. For models with one or more of these
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traded factors, inclusion requires that the estimated price of risk conform to the corresponding

model restriction (that is, equal the expected market premium over the zero-beta rate or equal the

expected spread return for smb and hml). As discussed by Lewellen, Nagel, and Shanken (2010),

this holds either exactly (GLS) or approximately (OLS). The changes in results here are minimal,

perhaps because the factors are closely mimicked by the original test assets. For comparison with

other studies, we also performed the analysis using just the 25 size and book-to-market portfolios.

The range in R2s was slightly wider in this case and the standard error of ρ̂2 was higher for every

model. Consistent with the lower precision, there were 11 instances of model comparison rejections

at the 5% level, as compared to 15 in Table IV.

Inherent in model misspecification is the fact that one model may exhibit superior performance

with some test assets, but worse performance with other assets. To explore this possibility, we

repeated the analysis with 25 portfolios formed by sorting stocks into quintiles based on size and

then, within each size quintile, by the estimate of the simple vw beta.23 In contrast to the earlier

results, the performance of CC-CAY is impressive with these portfolios. Its OLS R2 is 0.874 (0.366

earlier), about the same as that for ICAPM, and CC-CAY actually dominates FF3 at the 5% level.

With GLS estimation, its R2 of 0.432 is the highest of all the models and CC-CAY is the only

model not rejected by the specification tests. Thus, model comparison can be very sensitive to the

test assets employed. However, the comparatively strong performance of ICAPM is a fairly robust

empirical finding for the test portfolios we examine.

B.4. Excess Returns Analysis

Consistent with standard practice in the literature, the CSR analysis thus far has proceeded with

the zero-beta rate and risk premium coefficients unconstrained. The resulting R2 is a reasonable

measure of a model’s success in explaining cross-sectional differences in average returns. However,

given the high values of the zero-beta rate and the negative market premia, we may not want to

“credit” the theories for all of this explanatory power. One way of dealing with this issue is to

constrain the zero-beta rate to equal the risk-free rate, a practice that is common in other parts

of the empirical asset pricing literature. For example, studies that focus on time-series “alphas”

when all factors are traded impose this restriction (see, for example, Gibbons, Ross, and Shanken

(1989)).
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We implement the zero-beta rate restriction in the CSR context by working with test portfolio

returns in excess of the T-bill rate, while excluding the constant from the expected return rela-

tions.24 Thus, the expected excess return is simply the sum of the betas times the corresponding

risk premia coefficients. As is typical for regression analysis without a constant, the corresponding

R2 measure involves (weighted) sums of squared values of the dependent variable (mean excess

returns) in the denominator, not squared deviations from the cross-sectional average. This ensures

that R2 is always between zero and one.

Table V presents R2s and other model information for the excess returns specification, in the

same format as Table I. The first thing that we notice are the large OLS values of R2. These

numbers are not directly comparable to the earlier values, however, for the reason just mentioned.

Since the models do not include a constant, simply getting the overall level of mean returns right

can now enhance a model’s R2. In contrast, a positive value of the earlier goodness-of-fit measure

indicates that a model has some ability to explain deviations of mean test-portfolio returns from

the cross-sectional average.

Table V about here

The OLS sample R2 measures in Panel A range from 0.858 (CAPM) to 0.972 (ICAPM), whereas

the GLS values in Panel B are much lower, ranging from 0.044 (CCAPM) to 0.339 (ICAPM).

Moreover, ICAPM is the only model that is not rejected at the 5% level by either OLS specification

test. The empirical results in Internet Appendix Section IV show that the market risk premium

estimates are now all positive with the constrained zero-beta rate. In addition, the OLS γ̂s for cg

(in CCAPM), cg36, vw, hml, and term are significantly positive, while those for rf and div are

significantly negative at the 5% level. The GLS results are similar, except that γ̂cg is no longer

statistically significant.

The D-CCAPM factor cgdur is no longer significantly priced using excess returns, and the

model, which was the top OLS performer earlier, now has one of the lowest cross-sectional R2

values. Thus, although a linear function of the D-CCAPM betas came closest to spanning expected

returns earlier (in the OLS metric), it did so with a zero-beta rate almost two percentage points

per month above the risk-free rate. With that coefficient constrained to equal the T-bill rate, the

fit of the model deteriorates substantially. On the other hand, U-CCAPM moves up in the OLS
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rankings, now just behind ICAPM and FF3. Also noteworthy is the fact that hml is the dominant

factor in this FF3 specification, that is, it now has a significant price of covariance risk, while smb

does not.

The model comparison results in Internet Appendix Section IV show that there are fewer

rejections now. FF3 dominates CAPM (OLS and GLS), as well as CCAPM and D-CCAPM (both

GLS), all at the 1% level. There are no additional rejections at the 5% level, although FF3 barely

misses over C-LAB (GLS) and ICAPM comes close to dominating CAPM (OLS and GLS). It is

interesting to note that while FF3 dominates more models statistically, ICAPM has the higher

sample R2s. Precision appears to play a role in this. The standard error of ICAPM’s GLS R2 is the

highest of all the models. Again, the importance of taking information about sampling variation

into account is evident.25

Earlier, we noted that the performance of CC-CAY was impressive with size-beta portfolios

employed as the test assets. The model even dominated FF3 at the 5% level (OLS). This is no

longer true in the excess returns specification with size-beta portfolios. In this case, ICAPM is again

the top OLS performer, followed by FF3. However, CAPM is the only model dominated at the 5%

level. With GLS estimation, the CC-CAY R2 of 0.5 is about twice that of the nearest competitor,

but due to its large standard error (0.196) the model does not dominate FF3 or ICAPM, even at

the 10% level.

In short, with the zero-beta rate constrained to equal the risk-free rate, only ICAPM and FF3

consistently rank at or near the top of our list of models based on the cross-sectional R2. However,

apart from CAPM and CCAPM, only D-CCAPM is dominated at the 5% level.

IV. Multiple Model Comparison

Thus far, we have considered comparison of two competing models. However, given a set of

models of interest, one may want to test whether one model, the “benchmark,” has the highest ρ2

of all models in the set. This gives rise to a common problem in applied work — if we focus on the

statistic that provides the strongest evidence of rejection, without taking into account the process

of searching across alternative specifications, there will be a tendency to reject the benchmark more

often than the nominal size of the tests suggests.26 In other words, the true p-value will be larger
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than the one associated with the most extreme statistic. For example, in a head-on competition,

we saw earlier that FF3 dominates C-LAB at the 5% level with GLS estimation. But will C-LAB

still be statistically rejected from the perspective of multiple model comparison?

In this section, we develop and implement a formal test of multiple model comparison. This

is a multivariate inequality test based on results in the statistics literature due to Wolak (1987,

1989). Suppose we have p models. Let ρ2i denote the population cross-sectional R2 of model i and

let δ ≡ (δ2, . . . , δp), where δi ≡ ρ21 − ρ2i . We are interested in testing the null hypothesis that the

benchmark, model 1, performs at least as well as all others, that is, H0 : δ ≥ 0r with r = p − 1.

The alternative is that some model has a higher population R2 than model 1.

The test is based on the sample counterpart of δ, δ̂ ≡ (δ̂2, . . . , δ̂p), where δ̂i ≡ ρ̂21 − ρ̂2i . We

assume that 0 < ρ2i < 1 for all i, so that δ̂ has an asymptotic normal distribution with mean δ and

covariance matrix Σδ̂ (additional technical conditions are provided in Internet Appendix Section V).

Let δ̃ be the optimal solution in the following quadratic programming problem:

min
δ

(δ̂ − δ)′Σ̂−1
δ̂

(δ̂ − δ) s.t. δ ≥ 0r, (13)

where Σ̂δ̂ is a consistent estimator of Σδ̂. The likelihood ratio test of the null hypothesis is

LR = T (δ̂ − δ̃)′Σ̂−1
δ̂

(δ̂ − δ̃). (14)

Since the null hypothesis is composite, to construct a test with the desired size we require the

distribution of LR under the least favorable value of δ, which is δ = 0r. This distribution is derived

in Internet Appendix Section V, along with a numerically efficient computational procedure that

greatly improves on methods employed in previous research. We use this procedure to obtain

asymptotically valid p-values.

In comparing a benchmark model with a set of alternative models, we first remove those al-

ternative models i that are nested by the benchmark model since, by construction, δi ≥ 0 in this

case. If any of the remaining alternatives is nested by another alternative model, we remove the

“smaller” model since the ρ2 of the “larger” model will be at least as big. Finally, we also remove

from consideration any alternative models that nest the benchmark, since the normality assumption

on δ̂i does not hold under the null hypothesis that δi = 0. An alternative testing procedure for

multiple model comparison is needed in this case. We return to this issue below. Table VI provides

our findings.

23



Table VI about here

For the OLS comparisons in Panel A, only CCAPM is rejected, with a p-value of 0.000. The

GLS results in Panel B provide additional evidence against the consumption models. CCAPM and

CC-CAY are rejected at the 5% level and U-CCAPM just misses rejection with a p-value of 0.053.

C-LAB, which was dominated in the pairwise comparison with FF3 (p-value 0.025), is no longer

rejected in the multiple model comparison. The GLS p-value of 0.073 in Table VI is higher than

before, since it takes into account the element of searching over alternative models.

Next, we turn to the topic of nested multiple model comparison. Although the LR test is

no longer applicable here (δ̂ is not asymptotically normally distributed), fortunately our earlier

approach to testing for equality of R2s can easily be adapted to this context. One need only

consider a single expanded model that includes all of the factors contained in the models that

nest the benchmark. For example, in the case of CCAPM, this expanded model includes cg,

cay, cay · cg, vw, and cgdur from CC-CAY and D-CCAPM. Using a lemma provided in Internet

Appendix Section I, it is easily demonstrated that the expanded model dominates the benchmark

model if and only if one or more of the “larger” models dominate it. Thus, the null hypothesis

that the benchmark model has the same R2 as these alternatives can be tested using the earlier

methodology.27

The results are as follows. The CCAPM p-values are 0.009 (OLS) and 0.092 (GLS), while the p-

values for CAPM are 0.057 (OLS) and 0.458 (GLS). Given the p-value of 0.001 for the CAPM/FF3

comparison in Table IV (OLS and GLS), a Bonferroni approach would have yielded a stronger

rejection of CAPM in this case. With four models nesting CAPM, the Bonferroni (upper-bound)

p-value is 4× 0.001 = 0.004. But of course, the decision about which joint test to perform should

really be made a priori.

We conclude with a few observations about results for our alternative empirical specifications.

Consistent with our earlier evidence that the performance of D-CCAPM declines in the excess

returns specification, Internet Appendix Section IV shows that the model is rejected at the 5%

level in multiple comparison tests with excess returns, as is CCAPM (GLS). Also, multiple model

comparison confirms the decline of FF3 when size-beta portfolios are employed. FF3 is rejected at

the 5% level in this case, as are CAPM and CCAPM (OLS). Since several models with lower R2s
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are not rejected, again the greater precision with which the FF3 R2 is estimated contributes to this

finding. With excess returns and size-beta portfolios, however, only CAPM (OLS and GLS) and

CCAPM (GLS) are dominated at the 5% level.

V. Simulation Evidence

In this section, we explore the small-sample properties of our various test statistics via Monte

Carlo simulations. In all simulation experiments, the test assets are the 25 size and book-to-market

portfolios plus five industry portfolios used in most of our analysis. The time-series sample size is

taken to be T = 600, close to the actual sample size of 582 in our empirical work. The factors and

the returns on the test assets are drawn from a multivariate normal distribution. Both OLS and

GLS specifications are examined. We compare actual rejection rates over 10,000 iterations to the

nominal 5% level of our tests. A more detailed description of the various simulation designs can be

found in Internet Appendix Section VI.

We start with the specification tests — the R2 test based on a proposition in Internet Appendix

Section I and the approximate F -test. To evaluate the size properties of these tests, we simulate data

for a world in which FF3 is exactly true with expected returns taken to be the sample estimates

implied by the model. The F -test of FF3 performs very well in both cases, with just a slight

tendency to overreject (5.5% OLS, 5.6% GLS). The R2 test is right on the money for OLS, but

rejects a bit too much (7.8%) for GLS. To analyze the power of these tests, we simulate data

assuming that expected returns equal the sample means. This ensures that FF3 is now misspecified,

with population R2s in the simulations equal to the sample values observed earlier, 0.747 (OLS)

and 0.298 (GLS). The rejection rates for the specification tests of FF3 are close to one in all cases.28

Both of our tests of the hypothesis ρ2 = 0 have the correct size when we simulate a world in

which FF3 has no explanatory power, that is, with expected returns taken to be orthogonal to

the FF3 loadings. The tests also display good power against alternatives where the true R2s for

the simulated data equal the sample R2s for FF3. Similar conclusions hold for the nested-models

test of equality of R2s, with CAPM nested in FF3. Here, the size of the test is inferred from

simulations in which CAPM is misspecified and the additional FF3 factors are of no help. Power

for the nested-models test is evaluated by simulating data for which the true R2s equal the sample

values and thus CAPM is dominated by FF3.
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Next, we turn to our main test, the normal test of equality of R2s for non-nested models. In

this experiment, the expected returns are specified in such a way that ρ2 is the same for FF3 and

C-LAB, 0.647 (OLS) or 0.203 (GLS). These are averages of the sample R2s obtained earlier for the

two models. The size property of the test is very good in the OLS case (5.8%), while there is a

tendency to underreject a bit (2.7%) with GLS (this tendency is more pronounced for lower values

of T ).

The power of the normal test is explored using the sample R2s of FF3 and C-LAB as the

population R2 values. These are 0.747 and 0.548 for OLS, and 0.298 and 0.109 for GLS, so the

null hypothesis of equivalent model performance is false in these simulations. The rejection rate is

only 14.6% for OLS, but somewhat higher at 31.5% in the GLS case. This is a reflection of the

limited precision of the sample R2s, given the substantial noise (unexpected) component of returns.

We also examine power using CCAPM and FF3 as the two models, with the CCAPM ρ2 equal to

0.044 (OLS) or 0.011 (GLS). Naturally, power increases substantially, given the large differences in

performance. The rejection rates are now 87% (OLS) and 76% (GLS).

Finally, we examine the multiple-comparison inequality test for non-nested models. Recall that

the composite null hypothesis for this test maintains that ρ2 for the benchmark model is at least as

high as that for all other models under consideration. Therefore, to evaluate size, we consider the

case in which all models have the same ρ2 value, so as to maximize the likelihood of rejection under

the null. We simulate six different single-factor models corresponding to the factors vw, smb, cg36,

lab, prem, and rf and implement the likelihood ratio test with r = 5. The rejection rates range

from 3.3% to 5% (OLS) and from 2.7% to 6% (GLS). Thus, the tests are fairly well specified under

the null of equivalent model performance.

To examine power, we simulate five of our original models, CCAPM, U-CCAPM, C-LAB,

FF3, and ICAPM, with the earlier sample R2s serving as the population R2s. Since FF3 and

ICAPM have the highest R2s, we let each of the remaining models serve as the null model in

a multiple comparison test against four alternative models. Thus, we evaluate power for three

different scenarios. The rejection rates for the OLS test are 13.8% (C-LAB), 35.9% (U-CCAPM),

and 86.3% (CCAPM). The corresponding GLS numbers are 25.1%, 64.9%, and 72%, respectively.

Naturally, power increases as the ρ2 of the benchmark model decreases, and “good” power requires

that the differences in model performance are fairly large.
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Overall, these simulation results suggest that the tests should be fairly reliable for the sample

size encountered in our empirical work.

VI. Conclusion

We analyze the asymptotic properties of the traditional cross-sectional regression methodology

and the associated R2 goodness-of-fit measure when an underlying beta pricing model fails to

hold exactly. We also empirically demonstrate the importance of adjusting standard errors for

model misspecification for several prominent asset pricing models. As far as we know, our study

is the first to consider (analytically or even in simulations) the important sampling distribution

of the difference between the sample R2s of two competing models. As we show, the asymptotic

distribution of this difference depends on whether the models are correctly specified and whether

they are nested or non-nested.

Our main analysis employs the 25 Fama-French size and book-to-market portfolios plus five

industry portfolios as the test assets. In this case, the ICAPM specification of Petkova (2006)

is the best overall performer, with the three-factor model of Fama and French (FF3, 1993) right

behind. The R2 differences betweeen these two models are not reliably different from zero, however,

regardless of whether OLS or GLS estimation is employed, and regardless of whether the zero-beta

rate is constrained to equal the risk-free rate. The durable goods consumption model of Yogo

(2006) is competitive with FF3 and ICAPM in the main analysis, but its performance declines

dramatically when we impose economic restrictions on the zero-beta rates.

With an alternative set of test assets, namely, 25 size-beta portfolios, some important changes

emerge. The conditional CCAPM of Lettau and Ludvigson (2001), one of the poorer performers

in the main analysis, now competes with ICAPM for top honors in several specifications. On the

other hand, FF3 exhibits some vulnerability with these test assets, and is dominated at the 5%

level by both models.

The evidence discussed above involves pairwise model comparison. While this method takes us

well beyond the common practice of simply comparing point estimates of R2, the pairwise model

comparison tests are open to the criticism common in applied work that the process of searching over

various models to identify interesting results can lead to an overstatement of statistical significance.
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We address this issue by introducing tests of multiple model comparison for nested and non-nested

models. Naturally, this results in fewer rejections than were obtained earlier. Several of our main

conclusions are reinforced, however: rejections of the basic CAPM and CCAPM, near-rejections (at

the 5% level) of both the conditional and ultimate CCAPMs, rejection of the durable CCAPM in

the excess returns specification, and rejection of FF3 when the test assets are size-beta portfolios.

To summarize, the robust performance of ICAPM and the fact that it is the only model that is

never statistically dominated in any of our analyses is impressive. Nevertheless, we should keep in

mind that the ICAPM R2 is sometimes not estimated very precisely. Also, the model achieves its

superior explanatory power with five factors, two more than any of the competing models. Still,

while this undoubtedly can be an advantage, additional risk measures certainly do not have to be

related to actual expected returns, and our statistical analysis does take into account sampling

variation related to the larger degrees of freedom.

Looking to the future, other asset pricing models not considered here could, of course, be

examined. In terms of the methodology, although our simulation results are encouraging, the

small-sample properties of the test statistics proposed in this paper should be explored further.

Other metrics for comparing models besides the cross-sectional R2 could also be considered. Finally,

incorporating theoretical restrictions on the risk premia in the measure of model performance might

be a way to enhance power and provide more informative model comparison tests.
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Notes

1See Lewellen, Nagel, and Shanken (2010) for a related multifactor GLS result with “mimicking
portfolios” substituted for factors that are not returns.

2The Internet Appendix is available on the Journal of Finance website.

3Internet Appendix Section II shows how to accommodate portfolio characteristics in the CSR.

4See Lewellen, Nagel, and Shanken (2010) and the references therein.

5Another solution to this problem is to use simple regression betas as the regressors in the
second-pass CSR, as in Chen, Roll, and Ross (1986) and Jagannathan and Wang (1996, 1998).
Kan and Robotti (2011) provide asymptotic results for the CSR with simple regression betas under
potentially misspecified models.

6 Some studies allow β̂ to change throughout the sample period. For example, in the original
Fama and MacBeth (1973) study, the betas used in the CSR for month t are estimated from data
prior to month t. It has become more customary in recent decades to use full-period beta estimates
for portfolios formed by ranking stocks on various characteristics. Generalized method of moments
(GMM) and maximum likelihood approaches for estimation and testing have also been developed.
See Shanken and Zhou (2007) for detailed references to this literature and a discussion of relations
between the different methodologies.

7See Jagannathan, Skoulakis, and Wang (2010) for a synthesis of the two-pass methodology.

8White (1994) and Hall and Inoue (2003) provide an asymptotic analysis of the GMM estimator
when a model is misspecified. However, their GMM representation is not general enough to accom-
modate the sequential nature of the two-pass CSR estimator. While Hansen (1982, Theorem 3.1)
provides the asymptotic distribution of a more general GMM estimator that permits two-pass CSR
as a special case (see Cochrane (2005)), his result is only applicable under the assumption that the
model is correctly specified. We relax this assumption and provide general formulas to compute
standard errors that are robust to model misspecification.

9Jagannathan, Kubota, and Takehara (1998), Kan and Zhang (1999), and Jagannathan and
Wang (2007) use simulations to examine the sampling errors of the cross-sectional R2 and risk
premium estimates under the assumption that one of the factors is “useless,” that is, independent
of returns.

10Assuming that an SDF is spanned by f1, f2, and a constant, Cochrane (2005, Chapter 13.4)
shows that the condition λA,2 = 0K2 indicates that the factors f2 do not help to explain variation
in that SDF, given that the factors f1 are already included in the model.

11Numerical illustrations of these points are provided in Internet Appendix Section III.

12All bond yield data are from this source unless noted otherwise.

29



13In contrast to Petkova (2006), we do not orthogonalize the innovations since the R2 of the
model is the same whether we orthogonalize or not.

14Following Jørgensen and Attanasio (2003), we linearly interpolate the quarterly values of cay
to permit analysis at the monthly frequency. As in Lettau and Ludvigson (2001), the cointegrating
vector used to obtain the quarterly cay series is estimated from the full sample. The monthly series
is otherwise predictive in the sense that the returns in a given month are conditioned on a value of
cay derived from quarterly observations prior to that month.

15Our Q̂c is more general than the CSRT of Shanken (1985) because we can use sample pricing
errors from any CSR, not just the ones from the GLS CSR. In addition, we allow for conditional
heteroskedasticity and autocorrelated errors.

16Simulation evidence suggests that this test has better size properties than the asymptotic test,
especially when N is large relative to T .

17With a one-lag Newey-West adjustment, the p-values under 0.10 for the R2-based specification
test barely change (OLS and GLS). For the F -test, the only noteworthy change is a decline in
the OLS D-CCAPM p-value from 0.077 to 0.037. p-values for the OLS and GLS tests of ρ2 = 0
change little. Finally, most of the standard errors of ρ̂2 barely change. The largest change across
all specifications is an increase for U-CCAPM from 0.244 to 0.269 (OLS).

18The market premium is positive in CAPM. In ICAPM, it is positive after controlling for the
market’s exposure to the hedging factors. See, for example, Fama (1996).

19As expected, for one-factor models, γ̂1 and λ̂1 result in similar inferences. In this case, the
t-ratios of γ̂1 and λ̂1 would be identical if we imposed the null hypotheses of γ1 = 0 and λ1 = 0, so
that the errors-in-variables (EIV) adjustment terms drop out of the analysis.

20Most of the changes in t-statistics with a one-lag Newey-West adjustment are trivial, with the
largest across all specifications being a drop from 2.34 to 2.10 for the OLS estimator γ̂cg36.

21As noted earlier, all p-values in Table IV are computed under the assumption that the relevant
terms are serially uncorrelated. For p-values less than 0.10, the largest change observed with a
one-lag Newey-West adjustment is an increase from 0.032 to 0.049 for the CCAPM/U-CCAPM
comparison. Most other changes are trivial.

22Using the normal test to test the equality of R2s for non-nested models, we find that there are
nine rejections at the 5% level in Table IV. If instead we use the sequential test as discussed in
Internet Appendix Section I, then there is one less rejection.

23All NYSE-AMEX-NASDAQ common stocks are considered. This is similar to the approach of
Fama and French (1992). We use quintiles, rather than deciles, to mitigate potential finite-sample
issues related to the inversion of a large sample covariance matrix.

24With the zero-beta rate constrained in this manner, it follows from the results of Kan and
Robotti (2008) that equality of GLS R2s for two models is equivalent to equality of their HJ-
distances, provided that the SDF is written as a linear function of the de-meaned factors. No
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such relation exists for the OLS R2. Details of the excess returns analysis are provided in Internet
Appendix Section IV.

25Using the normal test to test the equality of R2s for non-nested models, we find that there
are two rejections at the 5% level in Internet Appendix Section IV. Using the sequential test as
discussed in Internet Appendix Section I, we obtain the same number of rejections.

26Chen and Ludvigson (2009) employ the “reality check” of White (2000) to draw inferences
about multiple model comparison with the HJ-distance.

27If one of the models has a higher R2, then so will the expanded model. Conversely, if none of
the models improves the R2, then for each of the additional factors, the vector of asset covariances
must be orthogonal to the CSR residuals of the benchmark model, as will any linear combination
of these covariance vectors. Thus, the expanded model must have the same R2 as the benchmark.

28When the nominal size of the test differs from the actual size, this should be interpreted as
power corresponding to the latter.
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Table I
Sample Cross-Sectional R2s and Specification Tests of the Models

The table presents the sample cross-sectional R2 (ρ̂2) and the generalized CSRT (Q̂c) of eight beta pricing
models. The models include the CAPM, the conditional CAPM (C-LAB) of Jagannathan and Wang (1996),
the Fama and French (1993) three-factor model (FF3), the intertemporal CAPM (ICAPM) specification
of Petkova (2006), the consumption CAPM (CCAPM), the conditional consumption CAPM (CC-CAY) of
Lettau and Ludvigson (2001), the ultimate consumption CAPM (U-CCAPM) of Parker and Julliard (2005),
and the durable consumption CAPM (D-CCAPM) of Yogo (2006). The models are estimated using monthly
returns on the 25 Fama-French size and book-to-market ranked portfolios and five industry portfolios. The
data are from February 1959 to July 2007 (582 observations). p(ρ2 = 1) is the p-value for the test of
H0 : ρ2 = 1. p(ρ2 = 0) is the p-value for the test of H0 : ρ2 = 0. se(ρ̂2) is the standard error of ρ̂2 under
the assumption that 0 < ρ2 < 1. p(Qc = 0) is the p-value for the approximate F -test of H0 : Qc = 0.
No. of para. is the number of parameters in the model.

Panel A: OLS

CAPM C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM

ρ̂2 0.115 0.548 0.747 0.766 0.044 0.366 0.473 0.772
p(ρ2 = 1) 0.000 0.051 0.002 0.327 0.000 0.001 0.116 0.237
p(ρ2 = 0) 0.258 0.042 0.009 0.009 0.510 0.256 0.005 0.007
se(ρ̂2) 0.200 0.221 0.117 0.145 0.130 0.211 0.244 0.125

Q̂c 0.131 0.060 0.098 0.058 0.137 0.102 0.100 0.067
p(Qc = 0) 0.000 0.170 0.001 0.135 0.000 0.001 0.002 0.077
No. of para. 2 4 4 6 2 4 2 4

Panel B: GLS

CAPM C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM

ρ̂2 0.107 0.109 0.298 0.242 0.011 0.015 0.034 0.239
p(ρ2 = 1) 0.000 0.000 0.001 0.024 0.000 0.000 0.000 0.007
p(ρ2 = 0) 0.005 0.337 0.000 0.076 0.547 0.933 0.280 0.016
se(ρ̂2) 0.069 0.071 0.101 0.137 0.036 0.040 0.059 0.133

Q̂c 0.126 0.128 0.099 0.086 0.143 0.141 0.149 0.084
p(Qc = 0) 0.000 0.000 0.001 0.004 0.000 0.000 0.000 0.010
No. of para. 2 4 4 6 2 4 2 4
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Table II
Estimates and t-ratios of Zero-Beta Rate and Risk Premia under Correctly Specified

and Misspecified Models

The table presents the estimation results of eight beta pricing models. The models include the CAPM, the
conditional CAPM (C-LAB) of Jagannathan and Wang (1996), the Fama and French (1993) three-factor
model (FF3), the intertemporal CAPM (ICAPM) specification of Petkova (2006), the consumption CAPM
(CCAPM), the conditional consumption CAPM (CC-CAY) of Lettau and Ludvigson (2001), the ultimate
consumption CAPM (U-CCAPM) of Parker and Julliard (2005), and the durable consumption CAPM (D-
CCAPM) of Yogo (2006). The models are estimated using monthly returns on the 25 Fama-French size and
book-to-market ranked portfolios and five industry portfolios. The data are from February 1959 to July 2007
(582 observations). We report parameter estimates γ̂ (multiplied by 100), the Fama and MacBeth (1973)
t-ratio under correctly specified models (t-ratiofm), the Shanken (1992) and the Jagannathan and Wang
(1998) t-ratios under correctly specified models that account for the EIV problem (t-ratios and t-ratiojw,
respectively), and our model misspecification-robust t-ratios (t-ratiopm). The various t-ratios of γ̂0 are for
the test of the null hypothesis that the excess zero-beta rate (in excess of the average T-bill rate) is equal to
zero.

Panel A:OLS

CAPM C-LAB FF3

γ̂0 γ̂vw γ̂0 γ̂vw γ̂lab γ̂prem γ̂0 γ̂vw γ̂smb γ̂hml

Estimate 1.61 −0.46 1.77 −0.90 0.21 0.45 1.94 −0.95 0.16 0.41
t-ratiofm 3.48 −1.19 4.16 −2.48 1.76 3.53 5.64 −3.00 1.18 3.41
t-ratios 3.46 −1.18 2.63 −1.70 1.12 2.25 5.45 −2.93 1.18 3.41
t-ratiojw 3.39 −1.17 2.79 −1.79 1.20 2.46 5.53 −2.93 1.19 3.44
t-ratiopm 3.12 −1.11 2.78 −1.76 0.99 2.71 5.17 −2.75 1.19 3.42

ICAPM CCAPM

γ̂0 γ̂vw γ̂term γ̂def γ̂div γ̂rf γ̂0 γ̂cg

Estimate 1.14 −0.15 0.20 −0.14 −0.02 −0.44 0.96 0.18
t-ratiofm 2.61 −0.47 2.50 −2.69 −1.32 −3.13 2.57 0.75
t-ratios 1.69 −0.33 1.62 −1.75 −0.89 −2.03 2.51 0.73
t-ratiojw 1.76 −0.35 1.56 −1.55 −0.91 −1.84 2.53 0.76
t-ratiopm 1.56 −0.32 1.38 −1.50 −0.85 −1.85 2.14 0.65

CC-CAY U-CCAPM D-CCAPM

γ̂0 γ̂cay γ̂cg γ̂cg·cay γ̂0 γ̂cg36 γ̂0 γ̂vw γ̂cg γ̂cgdur

Estimate 1.46 −1.46 −0.02 0.00 0.68 3.46 2.20 −1.18 0.45 1.84
t-ratiofm 3.81 −2.42 −0.13 0.99 1.15 3.39 5.82 −3.48 2.26 3.25
t-ratios 2.62 −1.67 −0.09 0.69 0.80 2.36 4.41 −2.81 1.72 2.48
t-ratiojw 3.26 −2.07 −0.10 0.78 0.93 2.66 5.22 −3.27 1.69 2.42
t-ratiopm 2.86 −1.21 −0.06 0.30 0.95 2.34 5.10 −3.22 1.25 2.30
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Table II (Continued)
Estimates and t-ratios of Zero-Beta Rate and Risk Premia under Correctly Specified

and Misspecified Models

Panel B:GLS

CAPM C-LAB FF3

γ̂0 γ̂vw γ̂0 γ̂vw γ̂lab γ̂prem γ̂0 γ̂vw γ̂smb γ̂hml

Estimate 1.75 −0.79 1.74 −0.79 0.01 0.02 1.77 −0.81 0.23 0.41
t-ratiofm 7.01 −3.07 6.73 −2.98 0.12 0.28 6.05 −2.86 1.78 3.46
t-ratios 6.89 −3.04 6.60 −2.95 0.12 0.27 5.87 −2.80 1.78 3.46
t-ratiojw 6.87 −3.03 6.58 −2.93 0.12 0.27 5.92 −2.78 1.78 3.47
t-ratiopm 6.11 −2.83 5.60 −2.59 0.06 0.13 5.09 −2.49 1.79 3.47

ICAPM CCAPM

γ̂0 γ̂vw γ̂term γ̂def γ̂div γ̂rf γ̂0 γ̂cg

Estimate 1.48 −0.51 0.16 −0.04 0.01 −0.27 1.32 0.11
t-ratiofm 4.71 −1.82 3.07 −0.98 0.45 −2.66 6.56 0.98
t-ratios 3.93 −1.62 2.58 −0.82 0.39 −2.24 6.49 0.97
t-ratiojw 3.89 −1.61 2.59 −0.74 0.37 −2.09 6.40 0.97
t-ratiopm 2.94 −1.31 1.61 −0.55 0.27 −1.58 5.78 0.59

CC-CAY U-CCAPM D-CCAPM

γ̂0 γ̂cay γ̂cg γ̂cg·cay γ̂0 γ̂cg36 γ̂0 γ̂vw γ̂cg γ̂cgdur

Estimate 1.32 0.01 0.09 0.00 1.28 0.92 1.90 −0.94 0.31 1.05
t-ratiofm 5.93 0.04 0.79 0.52 6.13 1.72 7.60 −3.58 2.50 2.70
t-ratios 5.85 0.04 0.78 0.52 5.91 1.66 6.64 −3.31 2.20 2.38
t-ratiojw 5.74 0.04 0.78 0.51 5.97 1.73 6.57 −3.33 2.14 2.49
t-ratiopm 4.67 0.03 0.45 0.26 5.27 1.08 5.84 −3.07 1.36 1.86
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Table III
Estimates and t-ratios of Zero-Beta Rate and Prices of Covariance Risk under

Misspecified Models (OLS Case)

The table presents the estimation results of eight beta pricing models. The models include the CAPM, the
conditional CAPM (C-LAB) of Jagannathan and Wang (1996), the Fama and French (1993) three-factor
model (FF3), the intertemporal CAPM (ICAPM) specification of Petkova (2006), the consumption CAPM
(CCAPM), the conditional consumption CAPM (CC-CAY) of Lettau and Ludvigson (2001), the ultimate
consumption CAPM (U-CCAPM) of Parker and Julliard (2005), and the durable consumption CAPM (D-
CCAPM) of Yogo (2006). The models are estimated using monthly returns on the 25 Fama-French size
and book-to-market ranked portfolios and five industry portfolios. The data are from February 1959 to
July 2007 (582 observations). We report parameter estimates λ̂ (with λ̂0 multiplied by 100) and the model

misspecification-robust t-ratio (t-ratiopm). The various t-ratios of λ̂0 are for the test of the null hypothesis
that the excess zero-beta rate (in excess of the average T-bill rate) is equal to zero.

CAPM C-LAB FF3

λ̂0 λ̂vw λ̂0 λ̂vw λ̂lab λ̂prem λ̂0 λ̂vw λ̂smb λ̂hml

Estimate 1.61 −2.45 1.77 −6.17 120.82 260.84 1.94 −5.25 4.63 3.33
t-ratiopm 3.12 −1.12 2.78 −2.09 0.82 2.75 5.17 −2.25 2.79 1.60

ICAPM CCAPM

λ̂0 λ̂vw λ̂term λ̂def λ̂div λ̂rf λ̂0 λ̂cg

Estimate 1.14 −18.06 147.13 −325.08 −605.05 −108.40 0.96 29.19
t-ratiopm 1.56 −1.89 0.62 −1.87 −1.63 −1.52 2.14 0.65

CC-CAY U-CCAPM D-CCAPM

λ̂0 λ̂cay λ̂cg λ̂cg·cay λ̂0 λ̂cg36 λ̂0 λ̂vw λ̂cg λ̂cgdur

Estimate 1.46 −65.77 0.75 4222.68 0.68 31.26 2.20 −7.82 62.72 20.14
t-ratiopm 2.86 −1.43 0.01 0.43 0.95 2.30 5.10 −2.56 0.94 1.57
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Table IV
Tests of Equality of Cross-Sectional R2s

The table presents pairwise tests of equality of the OLS and GLS cross-sectional R2s of eight beta pricing
models. The models include the CAPM, the conditional CAPM (C-LAB) of Jagannathan and Wang (1996),
the Fama and French (1993) three-factor model (FF3), the intertemporal CAPM (ICAPM) specification
of Petkova (2006), the consumption CAPM (CCAPM), the conditional consumption CAPM (CC-CAY) of
Lettau and Ludvigson (2001), the ultimate consumption CAPM (U-CCAPM) of Parker and Julliard (2005),
and the durable consumption CAPM (D-CCAPM) of Yogo (2006). The models are estimated using monthly
returns on the 25 Fama-French size and book-to-market ranked portfolios and five industry portfolios. The
data are from February 1959 to July 2007 (582 observations). We report the difference between the sample
cross-sectional R2s of the models in row i and column j, ρ̂2i − ρ̂2j , and the associated p-value (in parentheses)

for the test of H0 : ρ2i = ρ2j . The p-values are computed under the assumption that the models are potentially
misspecified. ∗ indicates significance at the 5% level.

Panel A: OLS

C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM
CAPM −0.432∗ −0.631∗ −0.651 0.072 −0.251 −0.358 −0.657∗

(0.034) (0.001) (0.055) (0.818) (0.440) (0.367) (0.009)

C-LAB −0.199 −0.219 0.504 0.182 0.075 −0.224
(0.341) (0.369) (0.066) (0.484) (0.812) (0.306)

FF3 −0.020 0.703∗ 0.380∗ 0.274 −0.025
(0.865) (0.000) (0.031) (0.226) (0.742)

ICAPM 0.723∗ 0.400 0.293 0.006
(0.000) (0.067) (0.279) (0.967)

CCAPM −0.322 −0.429∗ −0.728∗

(0.171) (0.032) (0.002)

CC-CAY −0.107 −0.406∗

(0.701) (0.037)

U-CCAPM −0.299
(0.199)

Panel B: GLS

C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM

CAPM −0.002 −0.191∗ −0.135 0.096 0.092 0.074 −0.132
(0.980) (0.001) (0.418) (0.268) (0.303) (0.452) (0.141)

C-LAB −0.189∗ −0.133 0.098 0.094 0.075 −0.130
(0.025) (0.325) (0.263) (0.295) (0.433) (0.257)

FF3 0.055 0.287∗ 0.283∗ 0.264∗ 0.059
(0.696) (0.008) (0.008) (0.021) (0.608)

ICAPM 0.231 0.227 0.209 0.003
(0.110) (0.117) (0.170) (0.986)

CCAPM −0.004 −0.023 −0.228∗

(0.950) (0.715) (0.008)

CC-CAY −0.019 −0.224
(0.764) (0.065)

U-CCAPM −0.205
(0.140)
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Table V
Sample Cross-Sectional R2s and Specification Tests of the Models with a

Constrained Zero-Beta Rate

The table presents the sample cross-sectional R2 (ρ̂2) and the generalized CSRT (Q̂c) of eight beta pricing
models. The models include the CAPM, the conditional CAPM (C-LAB) of Jagannathan and Wang (1996),
the Fama and French (1993) three-factor model (FF3), the intertemporal CAPM (ICAPM) specification
of Petkova (2006), the consumption CAPM (CCAPM), the conditional consumption CAPM (CC-CAY) of
Lettau and Ludvigson (2001), the ultimate consumption CAPM (U-CCAPM) of Parker and Julliard (2005),
and the durable consumption CAPM (D-CCAPM) of Yogo (2006). The models are estimated using monthly
excess returns on the 25 Fama-French size and book-to-market ranked portfolios and five industry portfolios.
The data are from February 1959 to July 2007 (582 observations). p(ρ2 = 1) is the p-value for the test of
H0 : ρ2 = 1. p(ρ2 = 0) is the p-value for the test of H0 : ρ2 = 0. se(ρ̂2) is the standard error of ρ̂2 under
the assumption that 0 < ρ2 < 1. p(Qc = 0) is the p-value for the approximate F -test of H0 : Qc = 0.
No. of para. is the number of parameters in the model.

Panel A: OLS
CAPM C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM

ρ̂2 0.858 0.893 0.958 0.972 0.880 0.886 0.946 0.883
p(ρ2 = 1) 0.000 0.010 0.000 0.414 0.006 0.003 0.358 0.001
p(ρ2 = 0) 0.001 0.002 0.000 0.000 0.001 0.003 0.000 0.001
se(ρ̂2) 0.078 0.075 0.025 0.022 0.075 0.081 0.038 0.076

Q̂c 0.219 0.104 0.159 0.058 0.129 0.106 0.089 0.089
p(Qc = 0) 0.000 0.001 0.000 0.166 0.000 0.001 0.014 0.007
No. of para. 1 3 3 5 1 3 1 3

Panel B: GLS
CAPM C-LAB FF3 ICAPM CCAPM CC-CAY U-CCAPM D-CCAPM

ρ̂2 0.058 0.091 0.274 0.339 0.044 0.105 0.110 0.083
p(ρ2 = 1) 0.000 0.000 0.000 0.075 0.000 0.000 0.000 0.000
p(ρ2 = 0) 0.005 0.314 0.000 0.003 0.190 0.387 0.028 0.216
se(ρ̂2) 0.039 0.071 0.076 0.166 0.068 0.098 0.095 0.060

Q̂c 0.220 0.189 0.158 0.078 0.197 0.146 0.175 0.196
p(Qc = 0) 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000
No. of para. 1 3 3 5 1 3 1 3

41



Table VI
Multiple Model Comparison Tests

The table presents multiple model comparison tests of the OLS and GLS cross-sectional R2s of eight beta
pricing models. The models include the CAPM, the conditional CAPM (C-LAB) of Jagannathan and
Wang (1996), the Fama and French (1993) three-factor model (FF3), the intertemporal CAPM (ICAPM)
specification of Petkova (2006), the consumption CAPM (CCAPM), the conditional consumption CAPM
(CC-CAY) of Lettau and Ludvigson (2001), the ultimate consumption CAPM (U-CCAPM) of Parker and
Julliard (2005), and the durable consumption CAPM (D-CCAPM) of Yogo (2006). The models are estimated
using monthly returns on the 25 Fama-French size and book-to-market ranked portfolios and five industry
portfolios. The data are from February 1959 to July 2007 (582 observations). We report the benchmark
models in column 1 and their sample R2s in column 2. r in column 3 denotes the number of alternative
models in each multiple non-nested model comparison. LR in column 4 is the value of the likelihood ratio
statistic with p-value given in column 5. s in column 6 denotes the number of models that nest the benchmark
model. Finally, ρ̂2M − ρ̂2 in column 7 denotes the difference between the sample R2 of the expanded model
(M) and the sample R2 of the benchmark model with p-value given in column 8.

Panel A: OLS

Benchmark ρ̂2 r LR p-value s ρ̂2M − ρ̂2 p-value

CAPM 0.115 2 0.844 0.259 4 0.734 0.057
C-LAB 0.548 5 1.056 0.330
FF3 0.747 5 0.129 0.901
ICAPM 0.766 5 0.002 0.825
CCAPM 0.044 4 21.12 0.000 2 0.733 0.009
CC-CAY 0.366 5 4.728 0.059
U-CCAPM 0.473 5 1.646 0.222
D-CCAPM 0.772 5 0.000 0.921

Panel B: GLS

Benchmark ρ̂2 r LR p-value s ρ̂2M − ρ̂2 p-value

CAPM 0.107 2 0.000 0.607 4 0.337 0.458
C-LAB 0.109 5 5.399 0.073
FF3 0.298 5 0.000 0.866
ICAPM 0.242 5 0.153 0.567
CCAPM 0.011 4 7.349 0.021 2 0.248 0.092
CC-CAY 0.015 5 7.695 0.025
U-CCAPM 0.034 5 5.456 0.053
D-CCAPM 0.239 5 0.264 0.563
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