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Abstract

This note derives the shapes of the yield curve as a function of the current spot rate under
Cox, Ingersoll, and Ross (CIR) (1985b) single factor model. Corresponding results reported in
CIR are shown to be incorrect.

1 Introduction

In Cox, Ingersoll, and Ross (CIR) (1985a,b), they develop a general equilibrium model of the term

structure of interest rates. The term structure of interest rates are linked directly to the specifica-

tions of preferences, technologies, and the distributions of the underlying sources of uncertainty.

As a special case, they derive a single factor model of the term structure. Under this single

factor model, the interest rate dynamics can be expressed as:

dr = κ(θ − r)dt+ σ
√
rdz (1)

where dz is a standard Weiner process, and κ, θ, and σ2 are constants, with κθ ≥ 0, and σ2 > 0.

When the current spot rate is r, the yield-to-maturity of a τ -period pure discount bond is then

given by:

R(r, τ) =
rB(τ)− logA(τ)

τ
(2)

where

A(τ) ≡
[

2γe(κ+λ+γ)τ/2

(κ+ λ+ γ) (eγτ − 1) + 2γ

]2κθ/σ2

(3)

B(τ) ≡ 2 (eγτ − 1)
(κ+ λ+ γ) (eγτ − 1) + 2γ

(4)
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γ =
[
(κ+ λ)2 + 2σ2

]1/2
(5)

From (2), it is easy to see

R(r, 0) = r (6)

R(r,∞) =
2κθ

γ + κ+ λ
(7)

In other words, when the current spot rate is r, the yield curve starts at r and approaches a limit

of 2κθ
γ+κ+λ as maturity increases to infinity.

CIR provide a characterization of the shape of the yield curve as a function of the current spot

rate. They claim that when r ≤ 2κθ
γ+κ+λ , the yield curve is uniformly rising. With r ≥ κθ

κ+λ , the

yield curve is falling. For 2κθ
γ+κ+λ < r < κθ

κ+λ , the yield curve is humped.

It is easy to see this characterization of the yield curve is incorrect because if the yield curve is

humped when r = 2κθ
γ+κ+λ , then the yield curve cannot be uniformly increasing for all r < 2κθ

γ+κ+λ .

Otherwise, R(r, τ) will be a discontinuous function of r for some τ > 0, which is contrary to (2)

that R(r, τ) is a linear function of r for a fixed τ . In fact, for r that is less than but close to 2κθ
γ+κ+λ ,

the yield curve must also be humped and it has to go above the long-term yield 2κθ
γ+κ+λ before

approaching this limit. Another problem of this characterization is we need κ+ λ > 0 in order for

2κθ
γ+κ+λ <

κθ
κ+λ . However, the model does not always imply this condition. In particular, when the

term premium is positive, λ is negative and for κ small enough, κ+ λ could be negative as well.1

In the next section, we will provide the correct characterization of the yield curve as a function

of the spot rate under CIR single factor model.

2 Characterization of the Shape of the Yield Curve

Before we derive the shape of the yield curve as a function of the current spot rate, we first note

that the yield curve is in fact determined by only three parameters: κ+ λ, κθ, and σ2. Therefore,

1In Gibbons and Ramaswamy (1988), they estimate the CIR single factor model and find that κ̂+ λ̂ is −0.7. In
the next section, we will show that the yield curve can only be humped or increasing when κ+ λ ≤ 0 and r ≥ 0.
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by letting α = κθ and β = κ+ λ, we can express the yield curve as follows:

R(r, τ) = f(τ) + g(τ)r (8)

where

f(τ) ≡
−2α log

[
2γe(γ+β)τ/2

(γ+β)(eγτ−1)+2γ

]
σ2τ

=
2α
σ2τ

log
[

(γ + β) (eγτ − 1) + 2γ
2γ

]
− α(γ + β)

σ2
(9)

g(τ) ≡ 2 (eγτ − 1)
[(γ + β) (eγτ − 1) + 2γ] τ

(10)

γ =
(
β2 + 2σ2

)1/2
(11)

We first prove the following lemmata:

Lemma 1 f(τ) is an increasing function of τ . It starts out at 0 with a slope of α/2 when τ = 0

and approaches a limit of 2α
γ+β as τ →∞.

Proof:

f ′(τ) =
2α
σ2τ2

[
(γ + β)γτeγτ

(γ + β) (eγτ − 1) + 2γ
+ log

[
2γ

(γ + β) (eγτ − 1) + 2γ

]]
=

2α
σ2τ2

F (γτ) (12)

where F (x) is defined as:

F (x) =
xex

ex − 1 + a
+ log

(
a

ex − 1 + a

)
a =

2γ
γ + β

> 1 (13)

With L’Hôpital’s Rule, one can easily show f(0) = 0, f(∞) = 2α
γ+β , and f ′(0) = α/2. Note that

F (0) = 0 and F ′(x) = xex(a−1)
(ex−1+a)2

> 0 for x > 0. Therefore we have F (x) > 0 for x > 0 and f ′(τ) > 0

for τ > 0.

Lemma 2 g(τ) starts out at 1 with a slope of −β/2 when τ = 0 and approaches a limit of 0 as

τ → ∞. If β ≥ 0, g(τ) is a uniformly decreasing function of τ . If β < 0, g(τ) first increases to a

maximum value and then decreases to 0.
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Proof:

g′(τ) =
−2
[
β (eγτ − 1)2 + γ

(
e2γτ − 2γτeγτ − 1

)]
[(γ + β) (eγτ − 1) + 2γ]2 τ2

=
−(γ − β)

2σ2τ2
G(γτ) (14)

where G(x) is defined as:

G(x) =
(2− a)(ex − 1)2 + a(e2x − 2xex − 1)

(ex − 1 + a)2
a =

2γ
γ + β

> 1 (15)

With L’Hôpital’s Rule, one can easily show g(0) = 1, g(∞) = 0, and g′(0) = −β/2. Consider the

numerator of G(x). By Taylor series expansion, we have

(2− a)(ex − 1)2 + a(e2x − 2xex − 1)

=
∞∑
i=2

aix
i

i!
(16)

where

ai = (2i − 2)(2− a) + (2i − 2i)a i ≥ 2 (17)

If β ≥ 0, we have a ≤ 2 and ai ≥ 0. Therefore G(x) ≥ 0 for x ≥ 0 and g(τ) is a decreasing function

of τ for τ ≥ 0. When β < 0, we have a2 < 0 and note that whenever ai > 0, it implies ai+1 > 0.

Therefore, ai changes sign only once and by a simple extension of Descartes’ Rule of Signs, G(x)

has only one positive root.2 Hence, when β < 0, g(τ) is an increasing function when τ = 0 and it

reaches a maximum value before decreasing to 0 as τ →∞.

We now describe the yield curve by the following proposition:

Proposition 1 If κ+λ > 0, the yield curve is uniformly falling when r ≥ κθ
κ+λ and it is uniformly

rising when 0 ≤ r ≤ κθ
γ . For κθ

γ < r < κθ
κ+λ , the yield curve first increases to a maximum value and

then decreases to the long-term yield 2κθ
γ+κ+λ . If κ+ λ ≤ 0, the yield curve is uniformly rising when

0 ≤ r ≤ κθ
γ . For r > κθ

γ , the yield curve first increases to a maximum value and then decreases to

the long-term yield 2κθ
γ+κ+λ .

2Let Z be the number of positive zeros of a power series with radius of convergence ρ =∞ and let the number of
changes of signs in the sequence of coefficients be C. Then Z ≤ C and C − Z is a non-negative even number. In our
case, C = 1 and we must have Z = 1. See, for example, Pólya and Szegö (1976, Part V) for a proof of this result.
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Proof:

R2(r, τ) =
∂R(r, τ)
∂τ

= f ′(τ) + g′(τ)r

=
2α
σ2τ2

[
F (γτ)− r(γ − β)

4α
G(γτ)

]
=

2α
σ2τ2

H(r, γτ) (18)

where H(r, x) is defined as:

H(r, x) = F (x)− r(γ − β)
4α

G(x) (19)

We first show that for a fixed r, H(r, x) can have at most one positive root.

H2(r, x) =
∂H(r, x)
∂x

= F ′(x)− r(γ − β)
4α

G′(x)

=
xex(a− 1)

(ex − 1 + a)2
− r(γ − β)

4α
2axex(ex + 1− a)

(ex − 1 + a)3

=
xex

(ex − 1 + a)3

∞∑
i=0

bix
i

i!
(20)

where bi are obtained by Taylor series expansion and they are:

b0 = a(a− 1)
(

1− rβ

α

)
(21)

bi = (a− 1)
(

1− rγ

α

)
i ≥ 1 (22)

Therefore, bi can change sign at most once and H2(r, x) can have at most one positive root. Since

H(r, 0) = 0, H(r, x) can also have at most one positive root by Rolle’s theorem. Hence, the yield

curve can change direction at most once. If β > 0, bi will change sign if and only if α
γ < r < α

β . If

β ≤ 0, bi will change sign if and only if r > α
γ . In other words, for β > 0, the yield curve is humped

if and only if α
γ < r < α

β and for β ≤ 0, the yield curve is humped if and only if r > α
γ .

By lemmata 1 and 2, we have R2(r, 0) = f ′(0) + g′(0)r = α−βr
2 . If β > 0, R2(r, 0) > 0 when

r < α
β and R2(r, 0) ≤ 0 when r ≥ α

β . Therefore, the yield curve will be uniformly falling if r ≥ α
β

and it will be uniformly increasing if r ≤ α
γ . For α

γ < r < α
β , the yield curve is humped. If β ≤ 0,
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R2(r, 0) is always positive and the yield curve can only be upward sloping or humped. For r ≤ α
γ ,

the yield curve is uniformly increasing, and for r > α
γ , the yield curve is humped.

3 Summary

We derive the correct characterization of the yield curve under CIR single factor model. For

0 ≤ r ≤ κθ
γ , the yield curve is uniformly increasing. For κ + λ > 0, the yield curve is uniformly

decreasing if r ≥ κθ
κ+λ . For all the other cases, the yield curve is humped.
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