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Abstract

Using available return data, many multi-factor asset pricing models present impressive in-

sample Sharpe ratios, significantly surpassing that of the market portfolio. Such a perfor-

mance, however, contradicts the conventional wisdom in finance. Investors cannot realisti-

cally attain the in-sample Sharpe ratios. They obtain the out-of-sample Sharpe ratios, which

are significantly lower. Estimation risk is one reason for this performance deterioration. We

theoretically study the effect of estimation risk by obtaining the exact distributions of in-

sample and out-of-sample Sharpe ratios, and argue that such effect needs to be considered

in model comparisons.
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1. Introduction

Many multi-factor asset pricing models have been proposed since the capital asset pricing

model (CAPM) of Sharpe (1964) and Lintner (1965). Relative to the CAPM, the multi-

factor models, especially the more recently proposed ones, tend to perform better in terms

of explaining the cross-section of expected asset returns. However, none of these models can

completely explain the cross-section, and it is likely that additional asset pricing models will

be proposed.

In this paper, we consider the CAPM that uses the value-weighted market portfolio as

the benchmark portfolio, and seven popular multi-factor asset pricing models. The multi-

factor models that we consider are: (1) Fama and French’s (1993) 3-factor model (FF-3),

which adds size and book-to-market factor to the CAPM; (2) Carhart’s (1997) 4-factor

model (Carhart-4), which adds the momentum factor to FF-3; (3) the betting against beta

(BAB) model of Frazzini and Pedersen (2014), which adds the return difference between

low and high beta portfolios as an additional factor to the CAPM; (4) Fama and French’s

(2015) 5-factor model (FF-5), which adds profitability and investment factors to FF-3; (5)

Hou, Xue, and Zhang’s (2015) q-factor model (HXZ q), which adds size, investment and

profitability factors to the CAPM; (6) Barillas and Shanken’s (2018) 6-factor model (BS-6),

which combines the market factor, size factor, momentum factor, HXZ’s profitability and

investment factors, and a monthly updated book-to-market factor from Asness and Frazzini

(2013); and (7) Hou, Mo, Xue, and Zhang’s (2021) q5 model (HMXZ q5), which adds an

expected growth factor to HXZ q.

Using monthly data over the 1967/1–2021/12 period, we empirically examine the perfor-

mance of the eight asset pricing models in terms of sample Sharpe ratios.1 The value-weighted

market portfolio has a monthly sample Sharpe ratio of 0.133. The seven multi-factor asset

pricing models all produce significantly higher sample Sharpe ratios than that of the CAPM,

and the sample Sharpe ratios steadily increase with newer models, ranging from 0.184 for

FF-3 to 0.599 for HMXZ q5. Given the work of Barillas and Shanken (2017), this trend is

not entirely surprising. Superior asset pricing models that are uncovered over time should

have Sharpe ratios that are higher than those of past asset pricing models.

However, the conventional wisdom in finance suggests that high Sharpe ratios are not

1Barillas and Shanken (2017) suggest that comparing models with traded factors can be reduced to a
comparison of their Sharpe ratios, and such comparison is independent of the choice of test assets.
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easy to find and are unlikely to survive. A Sharpe ratio that is twice that of the market

portfolio is considered to be very high (e.g., Ross, 1976; MacKinlay, 1995; Cochrane and

Saá-Requejo, 2000).2 Therefore, the high Sharpe ratios of the multi-factor models that we

observe, especially the more recent ones, do not seem to be consistent with this widely

accepted view.

There are several possible reasons why investors cannot obtain the high Sharpe ratios

we observe for the multi-factor asset pricing models. First, market frictions, such as short-

selling constraints, transaction costs, and taxes, can prevent investors from realizing the

observed returns of the factor portfolios, especially those that involve long-short portfolios

(e.g., Novy-Marx and Velikov, 2016; Patton and Weller, 2020; Detzel, Novy-Marx, and

Velikov, 2023). Second, investors may not have confidence that the high sample Sharpe

ratios of the multi-factor models can be sustained. The underlying true performance of the

model may change over time. For example, publishing the model (and making investors aware

of the new findings) can potentially influence the model performance in the post-publication

period (e.g., Welch and Goyal, 2008; McLean and Pontiff, 2016). In addition, the published

multi-factor asset pricing models may be subject to the repeated testing problem (e.g., Lo

and MacKinlay, 1990; Harvey, Liu, and Zhu, 2016), and the surviving models may have

unusually high sample Sharpe ratios compared to their population Sharpe ratios. This is

particularly true for models that are motivated by anomalies, yet models rooted in theories

are not exempt from this issue.

There is another reason that investors cannot realistically attain the sample Sharpe ratios

of the multi-factor models. At the time of portfolio construction, the observed Sharpe ratio

of a multi-factor model is computed based on the historical returns of the ex post optimal

portfolio. We refer to this Sharpe ratio as the in-sample Sharpe ratio, which is unattainable

for investors. When the out-of-sample performance is considered, investors would like to hold

the true optimal portfolio (and obtain the population Sharpe ratio), which is constructed

using the true mean and covariance matrix of the factors. In practice, these parameter values

are unknown to investors. When investors have only historical data to work with, they need

to estimate the optimal portfolio, which we call the sample optimal portfolio. What investors

can get is what we term as the out-of-sample Sharpe ratio, that is, the Sharpe ratio of the

2Such a view is also supported by evidence from the investing world. For example, the Sharpe ratio of
Berkshire Hathaway Inc. (ticker symbol: BRK.A), which was managed by Warren Buffett, arguably the
most illustrious investor of our generation, is 0.227 for the period from November 1976 to December 2021.
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sample optimal portfolio in the out-of-sample period. The out-of-sample Sharpe ratio clearly

deviates from the in-sample Sharpe ratio, and it is subject to estimation risk. In this paper,

we focus on understanding the effect of estimation risk.

We first empirically examine the gap between the in-sample and the out-of-sample Sharpe

ratios of the multi-factor asset pricing models. Specifically, we divide our sample period into

the estimation window and the out-of-sample period, and then compute and compare the

in-sample and the out-of-sample Sharpe ratios of the models. The results for all the multi-

factor models show that the out-of-sample Sharpe ratios are significantly lower than the

in-sample ones. We also find that all the multi-factor models significantly outperform the

CAPM based on the in-sample Sharpe ratio, but most of the significance disappears when

we consider the out-of-sample Sharpe ratio.

One possible reason for the observed gap between the in-sample and the out-of-sample

Sharpe ratios of the multi-factor models is that the model performance is different in the

estimation window and the out-of-sample period due to e.g., the publication decay, the

repeated testing problem, or simply random sampling. To control for this potential effect,

we conduct a bootstrap exercise, and compute the in-sample and the out-of-sample Sharpe

ratios based on the simulated data. Across 10,000 simulations, the average out-of-sample

Sharpe ratio of a given multi-factor model continues to present a performance deterioration

relative to the corresponding average in-sample Sharpe ratio. While the magnitude of this

deterioration is smaller than what we observe empirically, it remains substantial. Estimation

risk is the likely explanation for this remaining gap between the in-sample and the out-of-

sample Sharpe ratios of the multi-factor models.

We next theoretically examine the effect of estimation risk on the performance of a multi-

factor asset pricing model. Specifically, we assume that returns of the traded factors are

identically and independently distributed (i.i.d.) with a multivariate normal distribution,

and then study the properties of the in-sample and the out-of-sample Sharpe ratios of a

multi-factor model. In this framework, the opportunity set is constant, and estimation risk

is the only reason for the gap between the in-sample and the out-of-sample Sharpe ratios.

We obtain a simple stochastic representation of the in-sample and the out-of-sample

Sharpe ratios of a multi-factor asset pricing model, and derive the finite sample distributions

using the stochastic representation. We show that the out-of-sample Sharpe ratio is always

lower than the population Sharpe ratio, whereas the in-sample Sharpe ratio is an upward

biased estimator of the population Sharpe ratio. In addition, we find that the difference be-
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tween the out-of-sample Sharpe ratio and the in-sample Sharpe ratio is negatively correlated

with the in-sample Sharpe ratio. Therefore, the observed in-sample Sharpe ratio is not a

reliable indicator of what an investor can obtain out-of-sample.

Due to estimation risk, the out-of-sample Sharpe ratio of a multi-factor model is lower

than its population Sharpe ratio. Since the out-of-sample Sharpe ratio is the relevant one for

investors, we argue that the effect of estimation risk needs to be considered when comparing

asset pricing models. Because the out-of-sample Sharpe ratio of the CAPM is free from

estimation risk, we select the CAPM as the benchmark model to illustrate the comparison.

When the estimation risk is taken into account, the equality in the population Sharpe ratio

does not necessarily suggest that two models are equally good; a multi-factor model needs a

higher population Sharpe ratio (i.e., the break-even Sharpe ratio) to be comparable to the

CAPM.

We define the break-even Sharpe ratio based on the theoretically derived finite sample

distribution of the out-of-sample Sharpe ratio. As this distribution is significantly left-

skewed, we propose using an expected shortfall measure to obtain the break-even Sharpe

ratio. In both the classical frequentist framework and the Bayesian framework, we illustrate

how to incorporate the break-even Sharpe ratio in model comparisons. With the break-even

Sharpe ratio, we find that it is less likely to reject the null hypothesis that a multi-factor

model is as good as the CAPM, and the effect is stronger when the estimation window is

short.

Other than the finite sample distributions, the stochastic representation also enables us

to obtain the limiting distributions of the in-sample and the out-of-sample Sharpe ratios. We

consider two different asymptotic distributions: i) the number of traded factors (N) is fixed

when the length of the estimation window (T ) goes to infinity, and ii) N → ∞, T → ∞, and

N/T → ρ ∈ (0, 1). When N is fixed and T → ∞, the limiting distribution of the in-sample

Sharpe ratio is well known, but that of the out-of-sample Sharpe ratio is new. We show that

the limiting distribution of the out-of-sample Sharpe ratio is proportional to a chi-squared

distribution and it converges to the population Sharpe ratio at a rate of 1/T . For the case

N → ∞, T → ∞, and N/T → ρ ∈ (0, 1), the limiting distributions are currently unavailable

in the literature. We provide such distributions and show that neither the in-sample Sharpe

ratio nor the out-of-sample Sharpe ratio converge to the population Sharpe ratio in this case.

Researchers may opt to use the asymptotic distribution instead of the finite sample

distribution due to its simplicity. This is particularly appealing when the approximation
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error of the limiting distribution is small. We evaluate the accuracy of the two asymptotic

distributions using our finite sample results. In approximating the exact distribution of

the in-sample Sharpe ratio, the traditional fixed N asymptotic does not perform well but

the fixed N/T asymptotic works well, even when N is small. In approximating the exact

distribution of the out-of-sample Sharpe ratio, the fixed N asymptotic works well only for

small N . As N increases, the fixed N/T asymptotic starts to do a better job than the fixed

N asymptotic, but both approximations significantly deviate from the exact distribution.

Therefore, unless N is small, the exact distribution is a better choice to draw inferences.

Our focus on the Sharpe ratios of the asset pricing models is built on Barillas and Shanken

(2017), who argue that with traded factors, the comparison of asset pricing models can be

reduced to a comparison of the Sharpe ratios. Based on this argument, model comparison

in the Bayesian framework is developed (e.g., Barillas and Shanken, 2018; Chib, Zeng, and

Zhao, 2020; Chib, Zhao, and Zhou, 2024). Barillas, Kan, Robotti, and Shanken (2020) show

how to conduct asymptotically valid model comparisons. Fama and French (2018) use out-

of-sample Sharpe ratios from bootstrap simulations to compare models. All of these studies

focus on testing the equality of the population Sharpe ratios of different models. We argue

that given estimation risk, the equality in the population Sharpe ratio does not necessarily

suggest that two models are equally good. We recommend the effect of estimation risk be

included when comparing asset pricing models.

Previous studies propose taking into account the effect of market frictions when evaluating

and comparing asset pricing models. For example, Detzel, Novy-Marx, and Velikov (2023)

present model comparison results after incorporating transaction costs. Li, DeMiguel, and

Martin-Utrera (2023) provide a formal statistical test to compare factor models with price

impact. Our paper adds to this strand of literature by recommending that the effect of

estimation risk be included in model comparisons.

Our empirical results that the out-of-sample Sharpe ratios of the multi-factor asset pricing

models are significantly lower than the corresponding in-sample Sharpe ratios are consistent

with the findings from other papers (e.g., Welch and Goyal, 2008; McLean and Pontiff,

2016). McLean and Pontiff (2016) show that academic publications can contribute to a

decrease in performance, suggesting that the underlying model parameters are likely to

be time varying. In addition, poor out-of-sample Sharpe ratios can be the result of the

repeated testing problem (e.g., Lo and MacKinlay, 1990; Harvey, Liu, and Zhu, 2016). We

present evidence that estimation risk is another substantial contributor to the documented

5



performance deterioration.

Finally, the effect of estimation risk has been studied extensively in the portfolio choice

literature. The theoretical analyses in this paper are built and developed from the analytical

tools provided in e.g., Kan and Zhou (2007), Kan, Wang, and Zhou (2022), and Kan and

Wang (2023).

The remainder of the paper is organized as follows. In Section 2, we report some empirical

results to motivate the theoretical analysis. In Section 3, we outline the problem and present

our theoretical results. In Section 4, we illustrate how to compare a multi-factor model

against the CAPM, taking into account the estimation risk. We conclude in Section 5. The

Appendix contains all the proofs.

2. Some empirical results

In this section, we examine the empirical performance of the eight asset pricing models:

(1) CAPM, (2) FF-3, (3) Carhart-4, (4) BAB, (5) FF-5, (6) HXZ q, (7) BS-6, and (8)

HMXZ q5. The sample period is 1967/1–2021/12. We obtain the monthly factor returns of

the CAPM, FF-3, Carhart-4, and FF-5 from Ken French’s website. Monthly returns of the q

and q5 factors are downloaded from global-q.org. Monthly returns of the betting-against-

beta factor in BAB and the monthly updated value factor in BS-6 are available from AQR’s

website.

In Table 1, we report the maximum sample Sharpe ratios of the eight asset pricing

models using data for the full sample period (1967/1–2021/12), as well as two subperiods

(1967/1–1994/6 and 1994/7–2021/12). The year in which the model was first published is

also presented in the table. In addition, we compare the performance of a given multi-factor

model with that of the CAPM using the Gibbons-Ross-Shanken (1989) F -test (i.e., the GRS

test), and report the corresponding significance in the table.

Table 1 about here

Over the 1967/1–2021/12 period, the CAPM has a monthly sample Sharpe ratio of 0.133,

and all the multi-factor asset pricing models produce statistically significantly higher (at the

1% level) sample Sharpe ratios than that of the CAPM. Note that the sample Sharpe ratios

for the asset pricing models steadily increase with their dates of publication. It starts with

6
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0.133 for the CAPM in 1964, increases to 0.184 for FF-3 in 1993, and reaches 0.599 for

HMXZ q5 in 2021. A similar pattern holds for both subperiods (1967/1–1994/6 and 1994/7–

2021/12). Except for the CAPM, the sample Sharpe ratios of the asset pricing models are

lower in the second subperiod.3

The sample Sharpe ratios of the multi-factor models in Table 1 are computed based on

the ex post optimal portfolios, and we call such Sharpe ratio the in-sample Sharpe ratio, as

discussed above. The in-sample Sharpe ratios are not attainable for investors in practice. In

addition, investors do not know the true mean and covariance matrix of the traded factors

and have only historical data to work with. Therefore, they are not able to construct the true

optimal portfolio, and the population Sharpe ratio is also not attainable. What investors

can construct and hold out-of-sample is the optimal portfolio based on parameters estimated

using historical data (i.e., the sample optimal portfolio). As discussed above, we call the

Sharpe ratio of the sample optimal portfolio computed using the out-of-sample returns the

out-of-sample Sharpe ratio.

Table 2 about here

In Table 2, we present the out-of-sample Sharpe ratios of the asset pricing models, and

compare them to the in-sample Sharpe ratios. Specifically, we divide the sample period

into halves, and treat the first half as the estimation window and the second half as the

out-of-sample period. We assume an investor estimates the sample optimal portfolio using

data in the estimation window and holds it throughout the out-of-sample period. The out-

of-sample Sharpe ratio (OS-SR) is computed using the returns in the out-of-sample period

of the sample optimal portfolio; the in-sample Sharpe ratio (IS-SR) is computed using the

returns in the estimation window of the sample optimal portfolio.4 In the left (right) panel of

the table, the sample period is 1967/1–2021/12 (1994/12–2021/12). The in-sample Sharpe

ratio of a multi-factor model is compared to that of the CAPM using the GRS test. The

corresponding out-of-sample Sharpe ratio comparison is based on a one-sided test using the

asymptotic distribution.5

3The exact mechanism underlying this dynamic pattern of the sample Sharpe ratio is out of the scope of
this paper, and we leave it for future study.

4A similar empirical exercise is performed by Fama and French (2018). They use the out-of-sample
Sharpe ratio to infer which asset pricing model has a higher population Sharpe ratio based on a bootstrap
experiment.

5This approach, suggested by Jobson and Korkie (1981), tests whether the population Sharpe ratios of
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Table 2 shows that for the multi-factor models, the out-of-sample Sharpe ratios (i.e.,

OS-SR) are all inferior to their in-sample Sharpe ratios (i.e., IS-SR), often by a substantial

amount. For the 1967/1–2021/12 sample period (left panel), the performance deterioration

of OS-SR relative to IS-SR (i.e., (OS-SR − IS-SR)/IS-SR) ranges from 46.97% for HMXZ

q5 to 71.28% for BS-6. For the 1994/7–2021/12 sample period (right panel), the range is

from 13.60% for BAB to 68% for Carhart-4. In both panels, all of the multi-factor models

have an IS-SR that is significantly higher than that of the CAPM. The significance, however,

disappears in most cases when the OS-SR is considered. Some of the multi-factor models

even have an OS-SR that is smaller than that of the CAPM.

At the time of portfolio construction, only the IS-SR is observable to the investor. The

results in Table 2 suggest that the observed IS-SR is not a reliable indicator of what the

investor can obtain out-of-sample.

Table 3 about here

One potential reason for the gap between OS-SR and IS-SR documented in Table 2 is

that the model performance is poorer in the out-of-sample period than that in the estimation

window. To control for such effect, we conduct a bootstrap simulation exercise. Specifically,

we apply the stationary block bootstrap procedure proposed in Politis and Romano (1994) to

our dataset to generate T monthly data, with an expected block length of 10 months. The T

simulated monthly data are divided into halves, with the first half treated as the estimation

window and the second half as the out-of-sample period. IS-SR and OS-SR, similar to those

in Table 2, are computed using the simulated data. We run such simulation 10,000 times,

and report the average values of IS-SR and OS-SR in Table 3. The standard deviations

of IS-SR and OS-SR across 10,000 simulations are shown in brackets. We examine both

T = 660 (i.e., the full length of our sample period) and T = 330.

Table 3 also shows that there is a substantial performance deterioration for OS-SR relative

to IS-SR for all the multi-factor models. The magnitude of the deterioration is, however,

smaller in Table 3 than that in Table 2 for all the cases except for FF-5 with T = 330.

When T = 660, the magnitude of the deterioration ranges from 5.38% for BAB to 22.75%

for FF-3. When T = 330, the magnitude increases, ranging from 10.65% for BAB to 35.68%

for FF-3. These findings suggest that time-varying model performance indeed contributes to

two portfolios are equal to each other.
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the gap between IS-SR and OS-SR (in Table 2),6 but it clearly does not explain the entire

gap. The remaining gap is still sizable, and the estimation risk is the likely explanation for

the remaining gap.

3. Theoretical distributions of in-sample and out-of-sample Sharpe ratios

In this section, we conduct a theoretical analysis and obtain the distributions of the in-

sample and the out-of-sample Sharpe ratios of a multi-factor asset pricing model to gain a

better understanding of the effect of estimation risk.

3.1. The setup

We consider a multi-factor asset pricing model with N traded factors and N ≥ 2. Let rt

be the excess returns of the N traded factors at time t. The elements of rt can be returns of

risky assets in excess of the risk-free rate, or they can be return differences of two risky assets.

We define the mean and covariance matrix of rt as µ = E[rt] and Σ = Var[rt], respectively.

We assume µ is a nonzero vector and Σ is positive definite. For a mean-variance investor

who wants to hold a portfolio with a target standard deviation of σ, it is easy to show that

his optimal portfolio has weights of

w∗ =
σ

θ
Σ−1µ

in the N traded factors, where θ =
√
µ′Σ−1µ is the maximum Sharpe ratio that one can

obtain from the N factors (i.e., the population Sharpe ratio). Obviously, the Sharpe ratio

of portfolio w∗ is θ:
w∗′µ√
w∗′Σw∗

=
µ′Σ−1µ√
µ′Σ−1µ

=
√

µ′Σ−1µ = θ. (1)

In practice, the investor does not know the mean and covariance matrix of the factors, and

therefore, the optimal portfolio w∗ and θ are unattainable. Suppose the investor estimates

µ and Σ using historical data on rt for t = 1, . . . , T . The sample estimators of µ and Σ are

6There are different potential explanations for the time-varying model performance. One possibility is
that the parameter values (i.e., the expected returns and the covariance matrix of the traded factors) are
time varying. Explicitly modeling the time-varying parameters and exploring the corresponding implications
on the out-of-sample Sharpe ratios of the asset pricing models is an interesting problem but beyond the scope
of this paper.
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given by

µ̂ =
1

T

T∑
t=1

rt, (2)

Σ̂ =
1

T

T∑
t=1

(rt − µ̂)(rt − µ̂)′, (3)

and the sample estimator of θ is

θ̂ =

√
µ̂′Σ̂−1µ̂. (4)

A natural estimator of w∗ is

ŵ =
σ

θ̂
Σ̂−1µ̂, (5)

which we call the sample optimal portfolio. It is easy to see that θ̂ is the Sharpe ratio of

the sample optimal portfolio in the estimation window, i.e., ŵ′µ̂/
√
ŵ′Σ̂ŵ =

√
µ̂′Σ̂−1µ̂ = θ̂,

which is an ex post measure of performance and it is unattainable for investors. We call θ̂

the in-sample Sharpe ratio of the factors (or asset pricing model).

The out-of-sample mean and variance of the sample optimal portfolio are

ŵ′µ =
σ

θ̂
µ̂′Σ̂−1µ, (6)

ŵ′Σŵ =
σ2

θ̂2
µ̂′Σ̂−1ΣΣ̂−1µ̂. (7)

The corresponding Sharpe ratio is then given by

θ̃ =
ŵ′µ√
ŵ′Σŵ

=
µ̂′Σ̂−1µ

(µ̂′Σ̂−1ΣΣ̂−1µ̂)
1
2

. (8)

We call θ̃ the out-of-sample Sharpe ratio of the factors (or asset pricing model). Unlike θ̂ or

θ, θ̃ is what an investor can obtain out-of-sample by holding the sample optimal portfolio ŵ.

Note that both θ̂ and θ̃ are random variables because they depend on the realizations

of µ̂ and Σ̂. Next, we derive the distribution of θ̂ and θ̃, assuming that rt is i.i.d. with a

multivariate normal distribution that has mean µ and covariance Σ.

3.2. Stochastic representation

In Proposition 1, we first provide a stochastic representation of (θ̂, θ̃) that only depends

on four univariate random variables (instead of µ̂ and Σ̂). Such a representation greatly

simplifies the problem and facilitates the derivation of the distributions of (θ̂, θ̃).
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Proposition 1. Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. Let u1 ∼ χ2

T−N , b ∼ Beta((T −
N + 1)/2, (N − 1)/2), and they are independent of each other. Conditional on b, let z̃ ∼
N (

√
b
√
Tθ, 1) and ũ ∼ χ2

N−1((1 − b)Tθ2), and they are independent of each other and u1,

where χ2
ν(δ) stands for a noncentral chi-squared random variable with ν degrees of freedom

and a noncentrality parameter of δ. We have

θ̂
d
=

√
z̃2 + ũ
√
u1

, (9)

θ̃
d
=

θz̃√
z̃2 + ũ

. (10)

Proposition 1 reveals that instead of the individual elements in µ and Σ, the joint distribution

of (θ̂, θ̃) depends only on N , T , and θ. Therefore, for asset pricing models with the same

number of factors (i.e., N), as long as they have the same θ, their joint distributions of (θ̂, θ̃)

are identical regardless of the values of µ and Σ.

With the stochastic representation of (θ̂, θ̃) in Proposition 1, we can obtain the exact

moments and joint moments of θ̂ and θ̃. Lemma 1 presents some low order moments of θ̂

and θ̃.

Lemma 1. Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. We have

E[θ̂] =
Γ
(
N+1
2

)
Γ
(
T−N−1

2

)
Γ
(
N
2

)
Γ
(
T−N

2

) 1F1

(
−1

2
;
N

2
;−Tθ2

2

)
for T ≥ N + 2, (11)

E[θ̃] =
θ2
√
TΓ
(
N+1
2

)
Γ
(
T−N+2

2

)
Γ
(
T
2

)
√
2Γ
(
N+2
2

)
Γ
(
T−N+1

2

)
Γ
(
T+1
2

) 1F1

(
1

2
;
N + 2

2
;−Tθ2

2

)
for T ≥ N + 1, (12)

E[θ̂2] =
Tθ2 +N

T −N − 2
for T ≥ N + 3, (13)

E[θ̃2] = θ2
[
T −N + 1

T
− (N − 1)(T −N)

NT
1F1

(
1;

N + 2

2
;−Tθ2

2

)]
for T ≥ N + 1, (14)

E[θ̂θ̃] =
θ2
√
T (T −N)Γ

(
T
2

)
√
2(T −N − 1)Γ

(
T+1
2

) for T ≥ N + 2, (15)

where Γ(a) is the gamma function and 1F1(a; b;x) is the confluent hypergeometric function.

The stochastic representation in Proposition 1 and the expressions in Lemma 1 enable

us to derive some important inequalities, which are presented in Lemma 2.

11



Lemma 2. Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. We have

E[θ̃ − θ̂] < 0, (16)

Cov[θ̃ − θ̂, θ̂] < 0. (17)

From (10), it is easy to see that θ̃ < θ because
∣∣z̃/√z̃2 + ũ

∣∣ < 1. This finding is not

surprising: since ŵ is estimated with errors, the out-of-sample Sharpe ratio of ŵ is not

as good as the Sharpe ratio of the true optimal portfolio. In addition, we know that θ̂

is an upward biased estimator of θ, i.e., E[θ̂] > θ. This is because the in-sample Sharpe

ratio is computed after µ̂ and Σ̂ are observed, and the look-ahead bias allows the sample

optimal portfolio to have a better in-sample performance than the population Sharpe ratio

on average. Thus, the out-of-sample Sharpe ratio is lower than the in-sample Sharpe ratio

on average (i.e., E[θ̃ − θ̂] < 0). The second inequality in Lemma 2 suggests that an investor

would experience a larger disappointment (in terms of θ̃ − θ̂) when the asset pricing model

realizes a higher in-sample Sharpe ratio. This confirms our finding from the empirical results

that the observable in-sample Sharpe ratio is not a reliable indicator of what an investor can

get out-of-sample.

Fig. 1 about here

In Fig. 1, we plot E[θ̃− θ̂] as a function of the population Sharpe ratio θ for two different

values of N (3 and 6) and T (120 and 240). It is evident that estimation errors have a

substantial negative impact on the out-of-sample performance of a multi-factor asset pricing

model, and the influence of estimation risk is more pronounced for a larger model and a

shorter estimation window. For example, when θ = 0.1, the out-of-sample Sharpe ratio is,

on average, 0.204 lower than the in-sample Sharpe ratio for T = 120 and N = 6. Conversely,

for T = 240 and N = 3, this reduction is 0.075, which still represents 75% of the population

Sharpe ratio. In addition, Fig. 1 shows that the magnitude of the reduction is decreasing in

θ, which is due to a higher signal-to-noise ratio associated with larger θ.

3.3. Theoretical distributions

With the stochastic representation in Proposition 1, we derive both the finite sample

distributions and the asymptotic distributions of θ̂ and θ̃ in this subsection.

12



3.3.1. Finite sample distributions

For the marginal distribution of θ̂, we can write θ̂
d
=

√
u3/

√
u1, where u3 = z̃2 + ũ ∼

χ2
N(Tθ

2). This implies that θ̂2
d
= u3/u1 is proportional to a noncentral F -distribution with

degrees of freedom N and T − N and a noncentrality parameter Tθ2, a well-known result

in the literature (e.g., Gibbons, Ross, and Shanken, 1989; Kan and Robotti, 2016). Let

F δ
m,n(·) and f δ

m,n(·) denote the cumulative distribution function and the density function

of a noncentral F random variable with m and n degrees of freedom and a noncentrality

parameter δ. The distribution and density functions of θ̂ are given by

P[θ̂ < c] = P[θ̂2 < c2] = F Tθ2

N,T−N

(
(T −N)c2

N

)
, (18)

fθ̂(c) =
2(T −N)c

N
fTθ2

N,T−N

(
(T −N)c2

N

)
. (19)

In Fig. 2, we plot the density function of θ̂/θ for two different values of N (3 and 6) and

θ (0.2 and 0.4) with T = 120. As pointed out in the previous subsection, θ̂ is an upward

biased estimator of θ. Fig. 2 shows that the bias increases with N and decreases with θ.

Thus, an asset pricing model with more factors tends to have a higher in-sample Sharpe

ratio on average, even though the population Sharpe ratio may not improve from having

more factors.

Fig. 2 about here

To derive the marginal distribution of θ̃, we define q = z̃/
√
ũ and obtain

θ̃
d
=

θz̃√
z̃2 + ũ

=
θq√
1 + q2

. (20)

Expression (20) suggests that θ̃ is a monotonically increasing function of q and −θ ≤ θ̃ ≤ θ.

Conditional on b, q is proportional to a doubly noncentral t-distribution, and we can compute

the cumulative distribution function of θ̃ using the following:

P[θ̃ < c] = P
[
q <

c√
θ2 − c2

]
= P

[
z̃ <

c
√
ũ√

θ2 − c2

]

=

∫ 1

0

∫ ∞

0

Φ

(
c
√
ũ√

θ2 − c2
−
√
b
√
Tθ

)
fũ(ũ)fb(b)dũdb for −θ < c < θ, (21)
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where Φ(·) is the cumulative distribution function of a standard normal, fũ(ũ) is the density

function of ũ ∼ χ2
N−1((1 − b)Tθ2), and fb(b) is the density function of b ∼ Beta((T − N +

1)/2, (N − 1)/2). Taking the derivative yields the density function of θ̃ as follows:

fθ̃(c) =
θ2

(θ2 − c2)
3
2

∫ 1

0

∫ ∞

0

ϕ

(
c
√
ũ√

θ2 − c2
−
√
b
√
Tθ

)
√
ũfũ(ũ)fb(b)dũdb for −θ < c < θ,

(22)

where ϕ(·) is the density function of a standard normal.

Fig. 3 about here

In Fig. 3, we plot the density function of θ̃/θ for two different values of N (3 and 6)

and θ (0.2 and 0.4) with T = 120.7 The figure shows that θ̃ is quite volatile and highly

left-skewed. When N is large and θ is small, there is a substantial deterioration in the out-

of-sample performance when an investor holds the sample optimal portfolio. For example,

when N = 6 and θ = 0.2, we have P[θ̃/θ < 0.8] = 0.7027, i.e., there is more than 70%

probability that an investor will lose more than 20% of the Sharpe ratio due to estimation

risk. And this probability drops down to 19% when θ = 0.4.

Next, we derive the joint distribution of (θ̂, θ̃). The joint cumulative distribution of (θ̂, θ̃)

can be written as a triple integral, whereas the joint density of (θ̂, θ̃) can be written as a

double integral. These expressions are summarized in Proposition 2.

Proposition 2. Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. When c1 > 0 and 0 < c2 ≤ θ, we have

P[θ̂ < c1, θ̃ < c2]

=

∫ ∞

0

∫ 1

0

∫ c21v

0

[
Φ

(
min

[
c2
√
ũ√

θ2 − c22
,
√
c21v − ũ

]
−
√
Tθ

√
b

)
− Φ

(
−
√

c21v − ũ−
√
Tθ

√
b

)]
× fũ(ũ)fb(b)fu1(v)dũdbdv, (23)

where fũ(ũ) is the density function of χ2
N−1((1 − b)Tθ2), fb(b) is the density function of

Beta((T −N + 1)/2, (N − 1)/2), and fu1(v) is the density function of χ2
T−N . When c1 > 0

and −θ ≤ c2 ≤ 0, we have

P[θ̂ < c1, θ̃ < c2]

7It can be shown that when N > 3, limc→θ− fθ̃(c) = 0 and limc→(−θ)+ fθ̃(c) = 0. When N = 3, these two
limits are finite, and when N = 2, these two limits are infinity. Proof of these results as well as the explicit
expressions of the two limits for the case of N = 3 are available upon request.
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=

∫ ∞

0

∫ 1

0

∫ c21(θ
2−c22)v

θ2

0

[
Φ

(
c2
√
ũ√

θ2 − c22
−
√
Tθ

√
b

)
− Φ

(
−
√

c21v − ũ−
√
Tθ

√
b

)]
× fũ(ũ)fb(b)fu1(v)dũdbdv. (24)

The joint density of (θ̂, θ̃) is given by8

fθ̂,θ̃(c1, c2) =

∫ 1

0

∫ ∞

0

fũ

(
c21(θ

2 − c22)v

θ2

)
ϕ

(
c1c2

√
v

θ
−
√
Tθ

√
b

)
2c21v

3
2

θ
fu1(v)fb(b)dvdb (25)

for c1 > 0 and −θ < c2 < θ.

With the expression of the joint density of (θ̂, θ̃) and the marginal density of θ̂, we can

compute the density of θ̃ conditional on θ̂ using the following:

fθ̃|θ̂(c2|c1) =
fθ̂,θ̃(c1, c2)

fθ̂(c1)
. (26)

In Fig. 4, we plot the conditional density of θ̃/θ for two different values of N (3 and 6)

and θ (0.2 and 0.4) with T = 120. The plots present the conditional density of θ̃/θ for three

different values of θ̂: the first one is at the 10th percentile of θ̂ (solid line), the second one

is at the 50th percentile of θ̂ (dotted line), and the last one is at the 90th percentile of θ̂

(dashed line). The figure shows that the conditional density of θ̃ can be quite sensitive to

the value of θ̂.

Fig. 4 about here

3.3.2. Asymptotic distributions

Instead of the exact distribution, researchers may opt to use the asymptotic distribution

because the asymptotic distribution is often simpler than the finite sample distribution.

The simplicity is particularly appealing when the approximation error of the asymptotic

distribution is small. In this subsection, we present the asymptotic distributions of (θ̂, θ̃)

and evaluate their accuracy using the finite sample results obtained previously.

There are two different limiting distributions for (θ̂, θ̃), depending on whetherN is fixed or

N → ∞ as T → ∞. For both cases, we can use the stochastic representation in Proposition 1

8When N is even, the inner integrals of fθ̃(c) and fθ̂,θ̃(c1, c2) can be solved analytically, so fθ̃(c) and

fθ̂,θ̃(c1, c2) can be evaluated using a single rather than a double integral. These results are available upon
request.
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to derive the limiting distributions of θ̂ and θ̃. Proposition 3 presents the limiting distribution

under the assumption that N is fixed when T → ∞. This assumption is used for the

traditional asymptotic analysis.

Proposition 3. Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. When N is fixed and T → ∞, we have[ √

T (θ̂ − θ)

T (θ̃ − θ)

]
d→
[
X
Y

]
, (27)

where X ∼ N
(
0, 1 + θ2

2

)
and Y ∼ −(1 + θ2)/(2θ)χ2

N−1, and they are independent of each

other.

The limiting distribution of
√
T (θ̂ − θ) is well known (e.g., Barillas, Kan, Robotti, and

Shanken, 2020). Note that the asymptotic distribution of θ̂ is the same as the one for the

single asset case as discussed in Lo (2002), suggesting that using ŵ instead of w∗ has no

impact on the asymptotic distribution of θ̂.

Our result of the limiting distribution of T (θ̃ − θ) is new. There are two points to note

here. First, unlike θ̂, which converges to θ at a rate of 1/
√
T , θ̃ converges to θ at a rate of

1/T . Second, the limiting distribution of T (θ̃− θ) is not normal; instead, it is distributed as

a negative random variable that is proportional to χ2
N−1. This is because while θ̃ converges

to θ, it is always less than θ in a finite sample, so the limiting distribution of T (θ̃ − θ) is a

negative random variable.

Instead of the traditional asymptotic analysis, which assumes fixed N , Proposition 4

presents the limiting distribution assuming both N and T go to infinity, but N/T → ρ ∈
(0, 1).

Proposition 4. Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. Let θ(N) denote the population Sharpe

ratio when N is a finite number and θ be the limit of θ(N) as N → ∞ with θ(N) − θ =

o(1/
√
N). When N → ∞, T → ∞, N/T → ρ ∈ (0, 1), we have

[ √
T (θ̂ − θ̄)√
T (θ̃ − θ)

]
d→ N

02,

 θ4+2θ2+ρ
2(1−ρ)2(θ2+ρ)

ρθ2

2(θ2+ρ)2

ρθ2

2(θ2+ρ)2
ρθ2

2(θ2+ρ)

[
(1−ρ)(2ρ+θ2)

(θ2+ρ)2
+ 2 + θ2

]  , (28)

where

θ̄ =

√
θ2 + ρ√
1− ρ

> θ, (29)
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θ =
θ2
√
1− ρ√

θ2 + ρ
< θ. (30)

Unlike the fixed N asymptotic results, Proposition 4 shows that θ̂ and θ̃ no longer converge

to θ for the case of N/T → ρ. This is because for fixed N , the effect of estimation risk

diminishes to nil as T → ∞, but it is not the case when N → ∞ and T → ∞.

The result that θ̂
p→ θ̄ under the assumption that N/T → ρ can be obtained from

Theorem 4.6 of El Karoui (2010). The result that θ̃
p→ θ when N/T → ρ is shown in Ao, Li,

and Zheng (2019). However, the limiting distribution of (θ̂, θ̃) under the assumption that

N/T → ρ is not available in the literature. The stochastic representation in Proposition 1

enables us to obtain this limiting distribution by taking the appropriate limit.

Next, we evaluate the accuracy of the two asymptotic distributions of θ̂ and θ̃ by com-

paring them to the exact distributions obtained previously. In Fig. 5, we plot the exact

marginal density of θ̂/θ (solid line) versus its two approximations: the fixed N asymptotic

(dashed line) and the N/T → ρ asymptotic (dotted line). We consider two different values

of N (3 and 6) and θ (0.2 and 0.4) with T = 120. The figure shows that the approximate

distribution based on the traditional fixed N asymptotic does not perform well, especially

for the cases with large N and small θ. By contrast, the approximation based on the fixed

N/T asymptotic works quite well in all cases. Thus, Fig. 5 provides supporting evidence

to use the fixed N/T asymptotic distribution to approximate the exact distribution of θ̂, if

needed.

Fig. 5 about here

In Fig. 6, we plot the exact marginal density of θ̃/θ (solid line) versus its two approxi-

mations: the fixed N asymptotic (dashed line) and the N/T → ρ asymptotic (dotted line).

Similarly, we consider two different values of N (3 and 6) and θ (0.2 and 0.4) with T = 120.

The figure shows that when N = 3, the fixed N asymptotic approximation works well, es-

pecially when θ = 0.4. By contrast, the fixed N/T asymptotic approximation of θ̃, which is

a normal distribution, does a poor job in approximating the exact distribution of θ̃. When

N = 6, the fixed N/T asymptotic approximation continues to perform poorly; and the fixed

N asymptotic approximation starts to deviate significantly from the exact distribution of

θ̃, especially for the case with θ = 0.2. Therefore, unless N is very small, none of the two

asymptotic approximations provides a reliable approximation of the exact distribution of θ̃.
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Fig. 6 about here

In terms of approximating the exact distribution of θ̃ conditional on θ̂, Proposition 3

shows that when N is fixed and T → ∞, the limiting distributions of θ̂ and θ̃ are independent

of each other, and therefore, the limiting conditional distribution of θ̃ is the same as the

marginal one. From Proposition 4, it is obvious that when both N and T → ∞, the

limiting distribution of θ̃ conditional on θ̂ is a normal distribution, which clearly deviates

from the exact conditional distribution of θ̃, as shown in Fig. 4. Thus, none of the asymptotic

approximations accurately approximates the exact conditional distribution of θ̃.

4. Model comparison with estimation risk

The theoretical results in the previous section suggest that estimation errors in the sample

optimal portfolio result in a lower out-of-sample Sharpe ratio. In this section, we examine its

implication when comparing across asset pricing models. Because relative to the population

Sharpe ratio, the out-of-sample Sharpe ratio is more relevant to investors, we argue that the

effect of estimation risk needs to be considered when comparing across models.

In this section, we use the CAPM as the benchmark model because its out-of-sample

Sharpe ratio is free from estimation risk. We then assess the performance of a multi-factor

model (with the market factor as one of its factors) against this benchmark, taking into

account the effect of estimation risk. When estimation risk is taken into account, the multi-

factor model needs a higher population Sharpe ratio to be seen as equally good as the CAPM.

In Section 4.1, we propose a way to obtain this break-even Sharpe ratio. In Sections 4.2 and

4.3, we illustrate how to incorporate the break-even Sharpe ratio in model comparisons, in

both the classical frequentist framework and the Bayesian framework.

4.1. Break-even Sharpe ratio

When comparing asset pricing models, most of the tests focus on the equality of the

population Sharpe ratios across models. However, when estimation risk is taken into account,

the equality in the population Sharpe ratio does not necessarily suggest that two models are

equally good. A larger model (in terms of number of factors) contains a higher level of

estimation risk, and it needs a higher population Sharpe ratio (i.e., the break-even Sharpe
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ratio) to be seen as equally good as a smaller model.9

We define the break-even Sharpe ratio based on the finite sample distribution of the

out-of-sample Sharpe ratio of a multi-factor model that is presented in (22). Let θ1 and θ

denote the population Sharpe ratio of the CAPM and an N -factor model (with N ≥ 2),

respectively. Because the out-of-sample Sharpe ratio of the CAPM is free from estimation

risk, we have θ̃1 = θ1. The out-of-sample Sharpe ratio of the multi-factor model is a random

variable that is smaller than its population Sharpe ratio, θ̃ < θ, and it is severely left-skewed,

as shown in Fig. 3. Investors are concerned about the randomness, and in particular, the

long left tail in the distribution of θ̃. We propose using an expected shortfall measure to

obtain the break-even Sharpe ratio because such a measure aggregates the information in

the left tail of a distribution.

Let θ̃c be the c-percentile value of θ̃. The expected shortfall of θ̃ at c-percentile is E[θ̃|θ̃ ≤
θ̃c]. At a selected value of c with 0 < c < 100, we define the break-even Sharpe ratio as the

θ such that E[θ̃|θ̃ ≤ θ̃c] = θ1, and denote it as θb.
10 The choice of c, to some extent, reflects

the risk preference of the investor: a lower value of c is associated with a higher break-even

Sharpe ratio. We set c = 50 in our base case. From (22), it can be seen that at a given value

of c, θb is a function of N , T , and θ1. When estimation risk is taken into account, instead

of testing H0 : θ = θ1 vs. H1 : θ > θ1, we test H0 : θ ≤ θb vs. H1 : θ > θb to compare the

multi-factor model to the CAPM.

Table 4 about here

Table 4 presents the break-even Sharpe ratio for different values of θ1 (0.05 ≤ θ1 ≤ 0.4),

N (2 ≤ N ≤ 6), and T (120 and 240).11 Panels A and B report the results for c = 50

9The parsimony principle suggests that if two models have equal population Sharpe ratios, the smaller
model is preferred. We argue that even if the larger model has a population Sharpe ratio that is slightly
higher, it is not necessarily a better model. In order for the larger model to be a better model, the improve-
ment in the population Sharpe ratio must outweigh the effect of estimation risk. Our proposed break-even
Sharpe ratio is a measure to incorporate such a trade-off.

10When a multi-factor model, instead of the CAPM, is used as the benchmark model, the out-of-sample
Sharpe ratio of the benchmark model is also random. Then the break-even Sharpe ratio will be defined
based on the joint distribution of the out-of-sample Sharpe ratio of the benchmark model and that of the test
model. When both nested and non-nested models are considered, the derivation of this joint distribution is
not straightforward and is beyond the scope of this paper. We leave it as well as the design of a comprehensive
methodology of model comparison with estimation risk for future study.

11Based on (22), the explicit expression of E[θ̃|θ̃ ≤ θ̃c] contains a triple integral, which is difficult and

19



and 25, respectively. The table shows that when the estimation risk is accounted for, the

population Sharpe ratio of a multi-factor model needs to substantially surpass that of the

CAPM for the two models to be deemed equivalent. For example, when c = 50, T = 120,

and θ1 = 0.10 (Panel A1), even for a two-factor model, it needs a population Sharpe ratio at

least 62% higher than that of the CAPM (i.e., θb = 0.162). Not surprisingly, the break-even

Sharpe ratio increases with N and decreases with T due to a higher level of estimation risk

that is associated with a larger model and a shorter estimation window. In addition, the

table shows that the required improvement in the population Sharpe ratio of the multi-factor

model is larger when θ1 is smaller due to a low signal-to-noise ratio.

4.2. GRS test and the break-even Sharpe ratio

Gibbons, Ross, and Shanken (1989) provide a well-known spanning test (i.e., the GRS

test) for the ex ante efficiency of a given portfolio. To compare the performance of a multi-

factor model with that of the CAPM, the GRS test statistic is given by

W =
(T −N)δ̂2

(N − 1)(1 + θ̂21)
, (31)

where δ̂2 = θ̂2 − θ̂21, and θ̂ and θ̂1 are the in-sample Sharpe ratios of the multi-factor model

and the CAPM, respectively. Under the i.i.d. normality assumption, this test statistic follows

a noncentral F -distribution with N − 1 and T −N degrees of freedom and a noncentrality

parameter of Tδ2/(1 + θ̂21) with δ2 = θ2 − θ21,

W ∼ F
Tδ2

1+θ̂21
N−1,T−N . (32)

If the CAPM is ex ante efficient (i.e., δ2 = 0), then W follows an F -distribution with N − 1

and T −N degrees of freedom.

When the estimation risk is considered, instead of testing H0 : δ
2 = 0 vs. H1 : δ

2 > 0, we

test H0 : δ
2 ≤ δ2b vs. H1 : δ

2 > δ2b , where δ2b = θ2b − θ21. And the null distribution of W is

W ∼ F
Tδ2b
1+θ̂21
N−1,T−N . (33)

Because θb is a function of θ1, the null distribution now depends on the nuisance parameter

θ1. We examine the test results for various values of θ1. Specifically, we assume that the

time consuming to obtain. Instead of the explicit expression, we compute the break-even Sharpe ratio using
simulation based on the stochastic representation in Proposition 1.
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observed in-sample Sharpe ratio of the CAPM (θ̂1) is at a certain percentile of its distribution,

and obtain the corresponding population Sharpe ratio (θ1). Under the i.i.d. multivariate

normality assumption, we know that the distribution of θ̂21 is proportional to a noncentral

F -distribution with 1 and T − 1 degrees of freedom and a noncentrality parameter of Tθ21,

(T − 1)θ̂21 ∼ FTθ21
1,T−1. (34)

For a given value of α with 0 < α < 1, the value of θ1, such that θ̂1 is at 100(1 − α)-

percentile of the distribution, can be determined from the following equation

F
Tθ21
1,T−1

(
(T − 1)θ̂21

)
= 1− α. (35)

Since the cdf of the noncentral F -distribution is decreasing in its noncentrality parameter,

θ1 increases with α for a given θ̂1. In Table 5, we consider five different values of α: 10%,

25%, 50%, 75%, and 90%. Panels A, B, and C report the results based on the most recent

25% (i.e., 2008/4–2021/12, T = 165), 50% (i.e., 1994/7–2021/12, T = 330), and 100%

(i.e., 1967/1–2021/12, T = 660) of the sample, respectively. In all the panels, the column

“GRS” reports the in-sample Sharpe ratios (θ̂1 and θ̂) of the models using all T observations,

together with the p-values associated with the GRS test. The remaining five columns report

θ1 (in the row of the CAPM) and θb (in the rows of the multi-factor models) for different

values of α, as well as the p-values from the null distribution as specified in (33).

Table 5 about here

Because the cdf of the noncentral F -distribution is decreasing in its noncentrality param-

eter, and given that δ2b > 0, the p-values based on the null in (33) are larger than that from

the GRS test, as shown in Table 5. In addition, the p-values increase with α. This is because

δ2b increases with α. Note that even though θb− θ1 decreases with α, both θb and θ1 increase

with α, and as a result, δ2b = θ2b − θ21 increases with α. Across the three panels, the shortest

estimation window (i.e., T = 165) is used in Panel A, and the effect due to estimation risk

is more evident. In the 2008/4–2012/12 period, the GRS test results suggest that BAB

outperforms the CAPM at the 5% significance level, and FF-5 and HMXZ q5 outperform the

CAPM at the 1% level. When the estimation risk is taken into account, BAB and FF-5 are

no longer significant for any of the cases; and HMXZ q5 becomes significant at the 5% level

for most of the cases. In Panel B, whether to consider the effect of estimation risk leads to

different conclusions for the performance of Carhart-4. The GRS test results suggest that
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Carhart-4 outperforms the CAPM at the 5% level, and the significance disappears when the

effect of estimation risk is considered. Even in Panel C, when we use the full sample, we

continue to find some different conclusions. For FF-3, the GRS test results suggest that it

outperforms the CAPM at the 1% level, but it is no longer the case when the estimation

risk is taken into account.

4.3. The Bayesian framework

Other than the classical frequentist approach (e.g., the GRS test), the Bayesian approach

has also been used in model comparisons. In this subsection, we investigate the difference in

the test results when the estimation risk is taken into account in the Bayesian framework.

The classical approach ignores the prior information about the distribution of the param-

eter values, which is specified in the Bayesian approach. Following many previous studies

(e.g., Harvey and Zhou, 1990; Pástor and Stambaugh, 2000; Barillas and Shanken, 2018), we

assume the prior distribution of δ2 is proportional to a chi-squared distribution with N − 1

degrees of freedom12

δ2 ∼ kχ2
N−1. (36)

Following the base case specification in Barillas and Shanken (2018), we set k = 0.25θ21,

which corresponds to a potential 50% increase in the Sharpe ratio of a six-factor model

relative to that of the CAPM.

In addition to δ2, we also need to specify the prior distribution of θ1. We choose a bounded

support for θ1 (i.e., 0 ≤ θ1 ≤ 0.4), and assume that the prior of θ1 is a beta distribution

θ1 ∼ 0.4× Beta(a, b), (37)

where a and b are parameters to be specified.13 The prior mean of θ1 is given by

E[θ1] =
0.4a

a+ b
. (38)

12This assumption is built on the positive link between the magnitude of alpha to the residual variance,
and asset pricing theory provides some motivations for such link (e.g., Harvey and Zhou, 1990; MacKinlay,
1995; Pástor and Stambaugh, 2000; Barillas and Shanken, 2018).

13We assume that the prior distribution of δ2 depends on θ1 only through k in (36) with k = 0.25θ21, and
the prior distribution of θ1 does not depend on δ2. Thus, the joint prior distribution of δ2 and θ1 is the
product of the prior of δ2 in (36) and the prior of θ1 in (37), i.e., f(δ2, θ1) = f(δ2|θ1)f(θ1).
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We consider three different combinations of a and b. With a = 3 and b = 3, the prior

distribution of θ1 is symmetric with a mean of 0.20. With a = 3 and b = 5, the prior

distribution of θ1 is right-skewed with a mean of 0.15 and a mode of 0.133. With a = 5 and

b = 3, the prior distribution of θ1 is left-skewed with a mean of 0.25 and a mode of 0.267.

Given the prior distribution of δ2 and θ1 in (36) and (37), together with δ̂2 and θ̂21 from

the data, the marginal likelihood under the null H0 : δ
2 ≤ δ2b and that under the alternative

H1 : δ
2 > δ2b can be computed as

ML0(δ
2
b ) ≡ ML(H0 : δ

2 ≤ δ2b ) =

∫ ∫ δ2b

0

f
(
δ̂2
∣∣∣ θ̂21, δ2) f ( θ̂21∣∣∣ θ1) f(δ2, θ1)dδ2dθ1, (39)

ML1(δ
2
b ) ≡ ML(H1 : δ

2 > δ2b ) =

∫ ∫ ∞

δ2b

f
(
δ̂2
∣∣∣ θ̂21, δ2) f ( θ̂21∣∣∣ θ1) f(δ2, θ1)dδ2dθ1, (40)

where f(δ̂2|θ̂21, δ2) is the density function of δ̂2 conditional on θ̂21 and δ2 in (32), f(θ̂21|θ1) is the
density function of θ̂21 conditional on θ1 in (34), and f(δ2, θ1) is the joint prior distribution

of δ2 and θ1. The posterior null probability can be computed as

p1(δ
2
b ) =

ML0(δ
2
b )

ML0(δ2b ) +ML1(δ2b )
, (41)

which measures the support for the null hypothesis using both the prior knowledge on the

parameters and the evidence from the data.14

For H0 : δ2 = 0 vs. H1 : δ2 > 0, the distribution of δ2 in (36) is the prior distribution

under the alternative, and the marginal likelihood under the alternative is given by,

ML1(0) ≡ ML(H1 : δ
2 > 0) =

∫ ∫
f
(
δ̂2
∣∣∣ θ̂21, δ2) f ( θ̂21∣∣∣ θ1) f(δ2, θ1)dδ2dθ1. (43)

To obtain the marginal likelihood under the null, we set δ2 = 0, thus the integration over δ2

is no longer needed,

ML0(0) ≡ ML(H0 : δ
2 = 0) =

∫
f
(
δ̂2
∣∣∣ θ̂21, δ2 = 0

)
f
(
θ̂21

∣∣∣ θ1) f(θ1)dθ1. (44)

14The prior probability for the null hypothesis H0 : δ2 ≤ δ2b can be computed as

p0(δ
2
b ) =

∫ ∫ δ2b

0

f(δ2, θ1)dδ
2dθ1. (42)

For a given multi-factor model, because δ2b decreases with the length of the estimation window T , the prior
null probability decreases with T . The relation between p0(δ

2
b ) and N is less straightforward: δ2b increases

with N , but at the same time, the prior distribution of δ2 in (36) also depends on N . The results in Table 6
suggest that p0(δ

2
b ) decreases with N .
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Because of the sharp null hypothesis (i.e., δ2 = 0), we also need to separately specify the

prior null probability to compute the posterior null probability. We assume equal prior odds

for the null and the alternative (i.e., the prior null probability is set to 0.5, p0(0) = 0.5),

then the posterior null probability can be computed as

p1(0) =
ML0(0)

ML0(0) +ML1(0)
. (45)

Note that with the separately specified p0(0), the comparable posterior null probability for

H0 : δ
2 ≤ δ2b needs to be adjusted as follows15

p̃1(δ
2
b ) = p1(0) + (1− p1(0)) p1(δ

2
b ), (47)

where p1(δ
2
b ) is from (41). Thus, when the estimation risk is taken into account, the proba-

bility for the null hypothesis increases.

Table 6 reports the test results based on the Bayesian approach. Panels A, B, and

C present the results for different combinations of a and b in (37). Similar to Table 5, we

conduct the test using data over three different periods: 2008/4–2021/12 (T = 165), 1994/7–

2021/12 (T = 330), and 1967/1–2021/12 (T = 660). The results of p1(0), p1(δ
2
b ), p0(δ

2
b ), and

p̃1(δ
2
b ) in (45), (41), (42), and (47) are shown in the table. For brevity, we omit p0(0) = 0.5

from the table.

Table 6 about here

As expected, the results in Table 6 suggest that the probability for the null hypothesis

increases when the estimation risk is taken into account, and the impact is larger for the

shorter estimation window. For example, for a = 3 and b = 3 (Panel A) and the 2008/4–

2021/12 period, without considering the estimation risk, the probability for the null H0 :

δ2 = 0 varies between 1.6% and 60.6% across the multi-factor models when both the prior

information and the data are taken into account (i.e., p1(0)). When the estimation risk

is considered (i.e., H0 : δ2 ≤ δ2b ), all the null probabilities (i.e., p̃1(δ
2
b )) increase, and the

magnitude of the increase (i.e., p̃1(δ
2
b ) − p1(0)) ranges from 9.8% for HMXZ q5 to 36.7%

15The corresponding prior null probability is then

p̃0(δ
2
b ) = p0(0) + (1− p0(0)) p0(δ

2
b ), (46)

where p0(δ
2
b ) is from (42).
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for BAB. The magnitude is smaller for the longer estimation window. For the 1994/7–

2021/12 period, the increase in the null probability ranges from 0% to 26.2%; and for the

1967/1–2021/12 period, the range is 0% to 16.6%.

In addition, Table 6 shows that whether the estimation risk is considered or not, the role

of data can change for a given model. For example, to test FF-3 against the CAPM using

data over 2008/4–2021/12 in Panel A, without considering the estimation risk, the posterior

null probability is lower than the prior null probability (i.e., p1(0) = 0.496 < p0(0) = 0.50),

suggesting that the data does not provide further support for the null. However, note that

p1(δ
2
b ) = 0.715 > p0(δ

2
b ) = 0.650, and therefore, p̃1(δ

2
b ) = 0.856 > p̃0(δ

2
b ) = 0.5+0.5×0.650 =

0.825. That is, when the estimation risk is considered, the data now provide further support

for the null hypothesis.

Finally, comparing across the three panels in Table 6, we find that the results are not

very sensitive to different values of a and b.

5. Conclusion

Academic asset pricing models have produced increasingly large sample Sharpe ratios

over time. Starting with the value-weighted market portfolio of the CAPM, which produced

a sample Sharpe ratio of 0.133, there are now multi-factor model that produces a sample

Sharpe ratio of 0.599, more than four times larger than that of the market portfolio. Such a

good performance is not seen in the investing world, and the high sample Sharpe ratios of the

popular multi-factor asset pricing models are also at odd with a long-standing belief in finance

that high Sharpe ratios are good deals and are unlikely to survive. For example, Ross (1976)

assumes that no portfolio can have Sharpe ratio that is twice as large as that of the market

portfolio. MacKinlay (1995) thinks that Fama-French 3-factor model has unreasonably high

sample Sharpe ratio, even after taking into account of sampling variability. Cochrane and

Saá-Requejo (2000) believe that no asset should have a Sharpe ratio that is twice that of the

S&P 500 (which they assume to have an annual value of 0.5, or a monthly value of 0.1443)

and use this assumption to derive bounds on option prices.

While there are a number of possible reasons why the recent asset pricing models produce

high sample Sharpe ratios that are unattainable for real-world investors, we focus on one

possible explanation: estimation risk. In practice, because the mean and covariance matrix

of the factors are unknown, investors are not able to construct and hold the true optimal
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portfolio of the multi-factor models. Instead, they need to estimate the optimal weights,

which will lead to deteriorated out-of-sample performance.

We show empirically that the out-of-sample Sharpe ratios of the multi-factor models are

significantly lower than their in-sample Sharpe ratios. Even after using a bootstrap simula-

tion to control for potential time-varying model performance, the performance deterioration

of the out-of-sample Sharpe ratio remains substantial. Estimation risk is the likely reason

for this remaining gap between the in-sample and the out-of-sample Sharpe ratios.

We theoretically analyze the effect of estimation risk by obtaining the finite sample

distributions of the in-sample and the out-of-sample Sharpe ratios of a multi-factor asset

pricing model. The results show that the out-of-sample Sharpe ratio is always lower than the

population Sharpe ratio, whereas the in-sample Sharpe ratio is an upward biased estimator

of the population Sharpe ratio. The results also show that the performance deterioration of

the out-of-sample Sharpe ratio is negatively correlated with the observed in-sample Sharpe

ratio, suggesting that the in-sample Sharpe ratio is not a reliable indicator of what investors

can obtain out-of-sample.

Given that the out-of-sample Sharpe ratio is more relevant for investors and it is subject

to estimation risk, the effect of estimation risk needs to be considered when comparing asset

pricing models. We recommend the use of a break-even Sharpe ratio to incorporate the

effect of estimation risk, and illustrate how to include the break-even Sharpe ratio in the

test to compare a multi-factor asset pricing model against the CAPM. In both the classical

frequentist framework and the Bayesian framework, we show that the use of the break-even

Sharpe ratio makes the null hypothesis that a multi-factor model is as good as the CAPM

less likely to be rejected.

One of the limitations of our theoretical analysis is that it is based on the i.i.d. multivariate

normality assumption for the returns of the traded factors. With fat-tailed distributions,

it is conceivable that the problem of estimation risk is more severe than in the normality

case.16 So one should take our results as a lower bound on the impact of estimation risk on

the out-of-sample performance of the multi-factor asset pricing models. In addition, if there

is a concern that parameters in these models are not constant over time, then there is an

additional source of risk that hampers the out-of-sample performance of the sample optimal

16In a recent study, Kan and Lassance (2024) examine optimal portfolio choice when the return distribution
exhibits fat tails.
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portfolio based on a multi-factor model.

Appendix: Proofs

Proof of Proposition 1: Under the multivariate normality assumption, it is well known

that µ̂ and Σ̂ are independent of each other and have the following distributions:

µ̂ ∼ N (µ,Σ/T ), (A1)

Σ̂ ∼ WN(T − 1,Σ/T ), (A2)

whereWN(T−1,Σ/T ) is a Wishart distribution with T−1 degrees of freedom and covariance

matrix Σ/T . Define η = Σ− 1
2µ/θ, we have η′η = 1. Let P be an N ×N orthonormal matrix

with its first column to be η. By defining

z =
√
TP ′Σ− 1

2 µ̂ ∼ N
([ √

Tθ
0N−1

]
, IN

)
, (A3)

W = TP ′Σ− 1
2 Σ̂Σ− 1

2P ∼ WN(T − 1, IN), (A4)

we can write

θ̂ = (µ̂′Σ̂−1µ̂)
1
2 = (z′W−1z)

1
2 , (A5)

θ̃ =
µ′Σ̂−1µ̂

(µ̂′Σ̂−1ΣΣ̂−1µ̂)
1
2

=

√
Tθe′1W

−1z

(Tz′W−2z)
1
2

=
θe′1W

−1z

(z′W−2z)
1
2

, (A6)

where e1 = [1, 0′N−1]
′. Define an N × N orthonormal matrix Q = [z̃, Q1] with its first

column to be z̃ ≡ z/(z′z)
1
2 . Let

A = (Q′W−1Q)−1 =

[
z̃′W−1z̃ z̃′W−1Q1

Q′
1W

−1z̃ Q′
1W

−1Q1

]−1

≡
[
A11 A12

A21 A22

]
∼ WN(T − 1, IN), (A7)

where A11 is the (1, 1) element of A. Theorem 3.2.10 of Muirhead (1982) suggests that

u1 ≡ A11·2 = A11 − A12A
−1
22 A21 ∼ χ2

T−N , (A8)

and it is independent of A12 and A22. In addition, using the result of Dickey (1967), we can

show that

−A−1
22 A21 ∼

x
√
u2

, (A9)
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where x ∼ N (0N−1, IN−1), u2 ∼ χ2
T−N+1, and they are independent of each other and u1.

Since the distribution of A is independent of z, x, u1 and u2 are also independent of z. Using

the formula for the inverse of a partitioned matrix, we can easily verify that

z̃′W−1z̃ = A−1
11·2 =

1

u1

, (A10)

Q′
1W

−1z̃ = −A−1
22 A21A

−1
11·2 =

x

u1
√
u2

. (A11)

With these identities, we can write

z′W−2z = z′W−1 (z̃z̃′ +Q1Q
′
1)W

−1z = (z′z)

(
1

u2
1

+
x′x

u2
1u2

)
. (A12)

Let z1 ∼ N (
√
Tθ, 1) and x1 ∼ N (0, 1) be the first element of z and x, respectively. We can

write z′z = z21 + u and x′x = x2
1 + u3, where u ∼ χ2

N−1 and u3 ∼ χ2
N−2. It follows that

z′W−2z =
(z21 + u)

u2
1

(
1 +

x2
1 + u3

u2

)
. (A13)

Without loss of generality, let the first column of Q1 be

ξ =
(IN − z̃z̃′)e1

[e′1(IN − z̃z̃′)e1]
1
2

=
(IN − z̃z̃′)e1√

1− z21
z′z

. (A14)

From (A11), we know that

x1

u1
√
u2

= ξ′W−1z̃ =
e′1W

−1z̃ − e′1z̃

u1√
1− z21

z′z

=
e′1W

−1z − z1
u1√

u
, (A15)

and hence

e′1W
−1z =

z1
u1

+
x1

√
u

u1
√
u2

=
1

u1

(
z1 +

x1

√
u

√
u2

)
. (A16)

Define q1 = x1/
√
x′x and q2 = z2/

√
u, where z2 ∼ N (0, 1) is the second element of z. It is

well known that q1 is independent of x′x and q2 is independent of u [e.g., Theorem 1.5.6 of

Muirhead (1982)]. Since x is independent of u, q1 and q2 are independent of both u and x′x.

In addition, q1 and q2 have the same distribution, so we can replace q1 with q2 and write

x1

√
u =

x1√
x′x

√
x′x

√
u

d
=

z2√
u

√
x′x

√
u = z2

√
x′x. (A17)

In addition, let

b =
u2

x′x+ u2

∼ Beta

(
T −N + 1

2
,
N − 1

2

)
. (A18)

28



We can write

e′1W
−1z =

1

u1

(
z1 +

z2
√
x′x

√
u2

)
=

1

u1

(
z1
√
b+ z2

√
1− b√

b

)
, (A19)

z′W−2z =
z′z

u2
1b

=
z21 + z22 + u0

u2
1b

, (A20)

where u0 ∼ χ2
N−2 and it is independent of z1 and z2. We have

θ̂ = (z′W−1z)
1
2 = (z′z)

1
2 (z̃′W−1z̃)

1
2

d
=

√
z21 + z22 + u0√

u1

, (A21)

θ̃ =
θe′1W

−1z√
z′W−2z

=
θ(
√
bz1 +

√
1− bz2)

(z′z)
1
2

d
=

θ(
√
bz1 +

√
1− bz2)√

z21 + z22 + u0

. (A22)

Finally, let z̃ =
√
bz1 +

√
1− bz2 ∼ N (

√
b
√
Tθ, 1) and ũ = z21 + z22 + u0 − z̃2 = z′z − z̃2 ∼

χ2
N−1((1 − b)Tθ2), and conditional on b, z̃ and ũ are independent of each other. Therefore,

we can write

θ̂
d
=

√
z̃2 + ũ
√
u1

, (A23)

θ̃
d
=

θz̃√
z̃2 + ũ

. (A24)

This completes the proof.

Proof of Lemma 1: We first cite some explicit expressions of moments of noncentral chi-

squared and beta random variables. Suppose X ∼ χ2
ν(λ) and B ∼ Beta(ν1, ν2). We have

E[Xr] =
2rΓ

(
ν
2
+ r
)

Γ
(
ν
2

) 1F1

(
−r;

ν

2
;−λ

2

)
for r > −ν

2
, (A25)

E[Br] =
B(ν1 + r, ν2)

B(ν1, ν2)
for r > −ν1, (A26)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function. (A25) is given in Krishnan (1967),

and (A26) is obtained by direct integration. Using (A25) and the fact that z̃2+ ũ ∼ χ2
N(Tθ

2)

and it is independent of u1, we can obtain E[θ̂] and E[θ̂2] as

E[θ̂] = E[(z̃2 + ũ)
1
2 ]E[u

− 1
2

1 ]

=
Γ
(
N+1
2

)
Γ
(
T−N−1

2

)
Γ
(
N
2

)
Γ
(
T−N

2

) 1F1

(
−1

2
;
N

2
;−Tθ2

2

)
for T ≥ N + 2, (A27)
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E[θ̂2] = E[z̃2 + ũ]E[u−1
1 ]

=
N + Tθ2

T −N − 2
for T ≥ N + 3, (A28)

For θ̃, we use independence between b and (z1, z2, u0) in (A22) and apply (A26) to obtain

E[θ̃] = θE[b
1
2 ]E

[
z1√

z21 + z22 + u0

]
= θ

B
(
T−N+2

2
, N−1

2

)
B
(
T−N+1

2
, N−1

2

)E[ z1√
z21 + z22 + u0

]
. (A29)

By using the symmetry argument, the term
√
1− bz2 drops out because z2 ∼ N (0, 1). For

the last expectation, we use a lemma in Kan, Wang, and Zhou (2022) to show that

E

[
z1√

z21 + z22 + u0

]
=

√
TθE

[
1
√
y

]
, (A30)

where y ∼ χ2
N+2(Tθ

2). Then using (A25), we obtain

E[θ̃] = θ
Γ
(
T−N+2

2

)
Γ
(
T
2

)
Γ
(
T−N+1

2

)
Γ
(
T+1
2

)√TθΓ
(
N+1
2

)
√
2Γ
(
N+2
2

) 1F1

(
1

2
;
N + 2

2
;−Tθ2

2

)
.

For E[θ̃2], we use (A22) and apply (A26) to obtan

E[θ̃2] = θ2E

[
bz21 + (1− b)z22 + 2

√
b(1− b)z1z2

z21 + z22 + u0

]

= θ2E
[
bz21 + (1− b)z22
z21 + z22 + u0

]
=

θ2

T
E
[
(T −N + 1)z21 + (N − 1)z22

z21 + z22 + u0

]
. (A31)

Note that the term 2
√

b(1− b)z1z2/(z
2
1 + z22 +u0) vanishes in the above expectation because

of symmetry. The last expectation term can be written as E[(z′Az)/(z′z)], where A =

Diag(T − N + 1, N − 1, 0′N−2). Using Theorem 4 of Hillier, Kan, and Wang (2014), we

obtain the expectation of the ratio of quadratic form in z as

E
[
z′Az

z′z

]
=

T

N
1F1

(
1;

N + 2

2
;−Tθ2

2

)
+

Tθ2(T −N + 1)

N + 2
1F1

(
1;

N + 4

2
;−Tθ2

2

)
= T −N + 1− (N − 1)(T −N)

N
1F1

(
1;

N + 2

2
;−Tθ2

2

)
, (A32)

30



where the last equality follows from a recurrence relation of confluent hypergeometric func-

tion.17 It follows that

E[θ̃2] = θ2
[
T −N + 1

T
− (N − 1)(T −N)

NT
1F1

(
1;

N + 2

2
;−Tθ2

2

)]
for T ≥ N + 1. (A34)

Finally, using (9) and (10), E[θ̂θ̃] is given by

E[θ̂θ̃] = θE
[

z̃
√
u1

]
= θE[b

1
2 ]
√
TθE[u− 1

2
1 ]

= θ
B
(
T−N+2

2
, N−1

2

)
B
(
T−N+1

2
, N−1

2

)√Tθ
Γ
(
T−N−1

2

)
√
2Γ
(
T−N

2

)
=

θ2
√
T (T −N)Γ

(
T
2

)
√
2(T −N − 1)Γ

(
T+1
2

) for T ≥ N + 2. (A35)

This completes the proof.

Proof of Lemma 2: To prove E[θ̃ − θ̂] < 0, we show that E[θ̃] < θ and E[θ̂] > θ. From (10),

it is easy to see that θ̃ < θ because |z̃/
√
z̃2 + ũ| < 1. Therefore, E[θ̃] < θ. To prove E[θ̂] > θ,

note that

θ̂ =
ŵ′µ̂

(ŵ′Σ̂ŵ)
1
2

≥ w∗′µ̂

(w∗′Σ̂w∗)
1
2

, (A36)

with the equality holds if and only if ŵ is proportional to w∗. Since this event has probability

zero, we can write the above with a strict inequality. Taking expectation on both sides and

using the fact that µ̂ is independent of Σ̂, we have

E[θ̂] > E

[
w∗′µ̂

(w∗′Σ̂w∗)
1
2

]
= w∗′µE

[
1

(w∗′Σ̂w∗)
1
2

]
= θE

[(
w∗′Σw∗

w∗′Σ̂w∗

) 1
2

]
. (A37)

Using 3.2.5 of Muirhead (1982), we know y ≡ Tw∗′Σ̂w∗/(w∗′Σw∗) ∼ χ2
T−1, so we have

E

[(
w∗′Σw∗

w∗′Σ̂w∗

) 1
2

]
= T

1
2E
[
y−

1
2

]
≥ T

1
2

(E[y])
1
2

=
T

1
2

(T − 1)
1
2

> 1, (A38)

17The recurrence relation is

b1F1(a; b; z)− b1F1(a− 1; b; z) = z1F1(a; b+ 1; z). (A33)

The equality is obtained by setting a = 1, b = (N + 2)/2 and z = −Tθ2/2.
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where the inequality follows because of Jensen’s inequality. Therefore, we have E[θ̂] > θ.

Next, we prove Var[θ̂] > Cov[θ̃, θ̂]. In our proof, we assume Cov[θ̃, θ̂] > 0.18 Denote

λ = Tθ2. Using Lemma 1 and applying a transformation of the confluent hypergeometric

function,

ez1F1(a; b;−z) = 1F1(b− a; b; z), (A39)

we can write

eλVar[θ̂] =

(
N + λ

T −N − 2

)
eλ − c1

Γ
(
N+1
2

)2
Γ
(
N
2

)2 1F1

(
N + 1

2
;
N

2
;
λ

2

)2

, (A40)

eλCov[θ̃, θ̂] = λc2

[
eλ − c3 × 1F1

(
N + 1

2
;
N + 2

2
;
λ

2

)
1F1

(
N + 1

2
;
N

2
;
λ

2

)]
, (A41)

where

c1 =
Γ
(
T−N−1

2

)2
Γ
(
T−N

2

)2 , (A42)

c2 =
(T −N)Γ

(
T
2

)
√
2T (T −N − 1)Γ

(
T+1
2

) , (A43)

c3 =
Γ
(
N+1
2

)2
Γ
(
N
2

)
Γ
(
N+2
2

) . (A44)

Using the inequality (see Kazarinoff, 1956)

x− 1

2
< x− 1

4
<

Γ
(
x+ 1

2

)2
Γ(x)2

< x (A45)

for x > 0, we can show that

c1 <
1

T−N−1
2

− 1
2

=
2

T −N − 2
, (A46)

c2 <
(T −N)

(T −N − 1)
√
2T

√
1

T
2
− 1

4

=
T −N

(T −N − 1)
√

T (T − 1
2
)
<

1

T −N − 2
, (A47)

where the last inequality holds because
√

T (T − 1
2
) > T −N and 1/(T −N − 1) < 1/(T −

N − 2). Then we have

eλVar[θ̂] >

(
N + λ

T −N − 2

)
eλ − 2

T −N − 2

Γ
(
N+1
2

)2
Γ
(
N
2

)2 1F1

(
N + 1

2
;
N

2
;
λ

2

)2

18When Cov[θ̃, θ̂] < 0, it is trivial that Var[θ̂] > Cov[θ̃, θ̂]. We can prove that Cov[θ̃, θ̂] > 0. For brevity,
we skip the proof, but it is available upon request.
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=
1

T −N − 2

∞∑
k=0

ãk
k!
λk, (A48)

eλCov[θ̃, θ̂] <
λ

T −N − 2

[
eλ − c3 × 1F1

(
N + 1

2
;
N + 2

2
;
λ

2

)
1F1

(
N + 1

2
;
N

2
;
λ

2

)]
=

λ

T −N − 2

∞∑
k=0

b̃k
k!
λk =

1

T −N − 2

∞∑
k=1

kb̃k−1

k!
λk, (A49)

with

ãk = (N + k)− 1

2k−1

k∑
i=0

(
k

i

)
Γ
(
N+1
2

+ i
)
Γ
(
N+1
2

+ k − i
)

Γ
(
N
2
+ i
)
Γ
(
N
2
+ k − i

) , (A50)

b̃k = 1− 1

2k

k∑
i=0

(
k

i

)
Γ
(
N+1
2

+ i
)
Γ
(
N+1
2

+ k − i
)

Γ
(
N
2
+ i
)
Γ
(
N+2
2

+ k − i
) . (A51)

If ã0 > 0 and ãk > kb̃k−1 for k ≥ 1, then Var[θ̂] > Cov[θ̃, θ̂]. Using (A45), we can show

ã0 = N −
2Γ
(
N+1
2

)2
Γ
(
N
2

)2 > N − 2× N

2
= 0. (A52)

Let gN(k) = ãk − kb̃k−1 for k ≥ 1, and we will show

gN(k) = N − 1

2k−1

[
k∑

i=0

(
k

i

)
Γ
(
N+1
2

+ i
)
Γ
(
N+1
2

+ k − i
)

Γ
(
N
2
+ i
)
Γ
(
N
2
+ k − i
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− k
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(
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i
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(
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2
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(
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2

+ k − 1− i
)

Γ
(
N
2
+ i
)
Γ
(
N
2
+ k − i

) ]

= N − (N − 1)

2k
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i=0

(
k

i

)
Γ
(
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2

+ i
)
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(
N−1
2

+ k − i
)

Γ
(
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2
+ i
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Γ
(
N
2
+ k − i

) > 0. (A53)

Note that

gN(1) = N −
(
N − 1

2

)
Γ
(
N+1
2

)
Γ
(
N−1
2

)
Γ
(
N
2

)
Γ
(
N+2
2

) ×N = N

[
1−

Γ
(
N+1
2

)2
Γ
(
N
2

)
Γ
(
N+2
2

)] > 0 (A54)

due to log-convexity of Γ(x). Using(
k + 1

i

)
=

(
k

i

)
+

(
k

i− 1

)
, (A55)

we can write

gN(k + 1) = N − (N − 1)

2k+1

[
k∑

i=0

(
k

i

)
Γ
(
N+1
2

+ i
)
Γ
(
N−1
2

+ k + 1− i
)

Γ
(
N
2
+ i
)
Γ
(
N
2
+ k + 1− i

)
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+
k∑

i=0

(
k

i

)
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(
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2

+ i+ 1
)
Γ
(
N−1
2

+ k − i
)

Γ
(
N
2
+ i+ 1

)
Γ
(
N
2
+ k − i

) ]
. (A56)

Then for k ≥ 1,

gN(k + 1)− gN(k) =
(N − 1)

2k

k∑
i=0

(
k

i
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2

+ i
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2
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2
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(k − 2i)

]
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(
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(
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2

+ i
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Γ
(
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2

+ k − i
)
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Γ
(
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2

+ i
)
Γ
(
N+2
2

+ k − i
) > 0, (A57)

where the second last equality is obtained by summing the series forward and backward and

taking the average of the two sums. This completes the proof.

Proof of Proposition 2: From Proposition 1, we have

θ̂ < c1 ⇒ −
√

c21u1 − ũ < z̃ <
√

c21u1 − ũ, (A58)

θ̃ < c2 ⇒ z̃ <
c2
√
ũ√

θ2 − c22
. (A59)

When c2 ≤ 0, the range of z̃ is −
√

c21u1 − ũ < z̃ < c2
√
ũ√

θ2−c22
, when

√
c21u1 − ũ >

∣∣∣∣∣ c2
√
ũ√

θ2 − c22

∣∣∣∣∣⇒ 0 < ũ <
c21u1(θ

2 − c22)

θ2
. (A60)

Therefore,

P[θ̂ < c1, θ̃ < c2]

=

∫ ∞

0

∫ 1

0

∫ c21(θ
2−c22)v

θ2

0

[
Φ

(
c2
√
u√

θ2 − c22
−
√
Tθ

√
b

)
− Φ

(
−
√

c21v − u−
√
Tθ

√
b

)]
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× fũ(u)fb(b)fu1(v)dudbdv. (A61)

When c2 > 0, the range of z̃ is

−
√

c21u1 − ũ < z̃ <
c2
√
ũ√

θ2 − c22
if 0 < ũ <

c21u1(θ
2 − c22)

θ2
, (A62)

−
√

c21u1 − ũ < z̃ <
√

c21u1 − ũ if
c21u1(θ

2 − c22)

θ2
< ũ < c21u1. (A63)

Therefore,

P[θ̂ < c1, θ̃ < c2]

=

∫ ∞

0

∫ 1

0

∫ c21v

0

[
Φ

(
min

[
c2
√
u√

θ2 − c22
,
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c21v − u
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Tθ

√
b

)
− Φ

(
−
√

c21v − u−
√
Tθ

√
b

)]
× fũ(u)fb(b)fu1(v)dudbdv. (A64)

Taking derivative of P[θ̂ < c1, θ̃ < c2] with respect to c1 and c2 and using the Leibniz integral

rule, we obtain the joint density of (θ̂, θ̃) for both cases as

fθ̂,θ̃(c1, c2) =

∫ ∞

0

∫ 1

0

fũ

(
c21(θ

2 − c22)v

θ2

)
ϕ

(
c1c2

√
v

θ
−

√
Tθ

√
b

)
2c21v

3
2

θ
fb(b)fu1(v)dbdv.

(A65)

This completes the proof.

Proof of Proposition 3: Using the representation of θ̂ in (A21) and defining w1 and w2 as

z1 −
√
Tθ = w1 ∼ N (0, 1), (A66)

T − u1√
2T

d→ w2 ∼ N (0, 1), (A67)

where the limiting distribution of (T − u1)/
√
2T is obtained by using the central limit

theorem, we can write

√
T (θ̂ − θ) =

√
T

(√
z21 + z22 + u0√

u1

− θ

)

=
√
T

(
1

√
u1

− 1√
T

)√
z21 + z22 + u0 +

(√
z21 + z22 + u0 −

√
Tθ

)
=

√
T (T − u1)√

T
√
u1(

√
T +

√
u1)

√
z21 + z22 + u0 +

z21 + z22 + u0 − Tθ2√
z21 + z22 + u0 +

√
Tθ
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=

√
2(T − u1)√

2T

 1
√
u1√
T

(
1 +

√
u1√
T

)
(z21 + z22 + u0

T

) 1
2

+
2θw1 +

w2
1+z22+u0√

T(
z21+z22+u0

T

) 1
2
+ θ

d→ θw2√
2
+ w1 ≡ X ∼ N

(
0, 1 +

θ2

2

)
. (A68)

The last equality is obtained by using the fact that u1/T
p→ 1, (z21 + z22 + u0)/T

p→ θ2, and

(w2
1 + z22 + u0)/

√
T

p→ 0.

Using the representation of θ̃ in (A22) and defining v as

T (1− b)
d→ v ∼ χ2

N−1, (A69)

we can write

T (θ̃ − θ) = Tθ

(√
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√
1− bz2 −

√
z21 + z22 + u0√

z21 + z22 + u0

)

= −Tθ
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√
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√
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√
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√
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]
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T
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1−bz2√

T
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(
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T

) 1
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d→ −θ

[
θ2v + z22 + u0 − 2θ

√
vz2

θ(θ + θ)

]
= −θ2v + z22 + u0 − 2θ

√
vz2

2θ
≡ Y. (A70)

The second last equality follows because b
p→ 1, (1 − b)

√
Tθw1

p→ 0, (1 − b)w2
1

p→ 0,√
b(1− b)w1z2

p→ 0, (z21 + z22 + u0)/T
p→ θ2,

√
bz1/

√
T

p→ θ,
√
1− bz2/

√
T

p→ 0. It remains

to show that Y ∼ −(1 + θ2)/(2θ)χ2
N−1. In order to show that, we let

W =

[ √
v 0

z2
√
u0

] [ √
v z2
0

√
u0

]
. (A71)

From the Bartlett decomposition of Wishart distribution, we know W ∼ W2(N − 1, I2).

Then using 3.2.8 of Muirhead (1982), we have

Y = −θ2v + z22 + u0 − 2θ
√
vz2

2θ
= − [θ, −1]W [θ, −1]′

2θ
∼ −

(1 + θ2)χ2
N−1

2θ
. (A72)

36



Finally, X is independent of Y because X is a function z1 and u1, and Y is a function of

z2, b, u0, and (z1, u1) are independent of (z2, b, u0) from the proof of Proposition 1. This

completes the proof.

Proof of Proposition 4: Based on the definition of random variables in Proposition 1, we let

z̃1 =
z1√
T
, (A73)

z̃2 =
z2√
T
, (A74)

w1 =
u0

T
, (A75)

w2 =
u1

T
. (A76)

Using the central limit theorem, we can easily show that when N → ∞, T → ∞, and

N/T → ρ, we have

√
T (z̃1 − θ) ∼ N (0, 1), (A77)

√
T z̃2 ∼ N (0, 1), (A78)

√
T (w1 − ρ)

d→ N (0, 2ρ), (A79)
√
T (w2 − (1− ρ))

d→ N (0, 2(1− ρ)), (A80)
√
T (b− (1− ρ))

d→ N (0, 2ρ(1− ρ)), (A81)

and these five random variables are independent of each other. From (A21) and (A22), we

can write θ̂ and θ̃ as

θ̂ =
(z̃21 + z̃22 + w1)

1
2

w
1
2
2

, (A82)

θ̃ =
θ(
√
bz̃1 +

√
1− bz̃2)

(z̃21 + z̃22 + w1)
1
2

, (A83)

and both of them are functions of (z̃1, z̃2, w1, w2, b). Then using the delta method and upon

simplification, we obtain

√
T

[ θ̂

θ̃

]
−
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√

θ2+ρ√
1−ρ
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02,
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ρθ2
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ρθ2

2(θ2+ρ)

[
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(θ2+ρ)2
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]  .

(A84)

This completes the proof.
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Fig. 1. Expected Difference in Out-of-sample and In-sample Sharpe Ratio of an Asset Pricing
Model

The figure plots the expected difference between the out-of-sample Sharpe ratio and the in-sample

Sharpe ratio, E[θ̃ − θ̂], as a function of the population Sharpe ratio, θ, for an asset pricing model

with N traded factors and an estimation window with T periods. Plots for two different values of

N (3 and 6) and T (120 and 240) are presented.
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Fig. 2. Density of In-sample Sharpe Ratio of an Asset Pricing Model (T = 120)

The figure plots the density of θ̂/θ of an asset pricing model withN traded factors when the length of

estimation window is T = 120, where θ̂ is the in-sample Sharpe ratio and θ is the population Sharpe

ratio. Plots for two different values of number of traded factors (N = 3 and 6) and population

Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Fig. 3. Density of Out-of-sample Sharpe Ratio of an Asset Pricing Model (T = 120)

The figure plots the density of θ̃/θ of an asset pricing model with N traded factors when the

length of estimation window is T = 120, where θ̃ is the out-of-sample Sharpe ratio and θ is the

population Sharpe ratio. Plots for two different values of number of traded factors (N = 3 and 6)

and population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Fig. 4. Conditional Density of Out-of-sample Sharpe Ratio of an Asset Pricing Model (T = 120)

The figure plots the conditional density of the normalized out-of-sample Sharpe ratio (θ̃/θ) of an

asset pricing model when conditional on the in-sample Sharpe ratio (θ̂) is at its 10th (solid line),

50th (dotted line), and 90th (dashed line) percentiles. The length of estimation window is T = 120

and plots for two different values of number of traded factors (N = 3 and 6) and population Sharpe

ratio (θ = 0.2 and 0.4) are presented.
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Fig. 5. Exact and Approximate Densities of In-sample Sharpe Ratio of an Asset Pricing Model
(T = 120)

The figure plots the exact density (solid line) of the normalized in-sample Sharpe ratio (θ̂/θ) and

two different approximated density, the first one assumes N is fixed and T → ∞ (dashed line),

and the second one assumes both N and T → ∞ with N/T → ρ (dotted line). The length of time

series is T = 120 and plots for two different values of number of traded factors (N = 3 and 6) and

population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Fig. 6. Exact and Approximate Densities of Out-of-sample Sharpe Ratio of an Asset Pricing
Model (T = 120)

The figure plots the exact density (solid line) of the normalized out-of-sample Sharpe ratio (θ̃/θ)

and two different approximated density, the first one assumes N is fixed and T → ∞ (dashed line),

and the second one assumes both N and T → ∞ with N/T → ρ (dotted line). The length of time

series is T = 120 and plots for two different values of number of traded factors (N = 3 and 6) and

population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Table 1
In-sample Sharpe Ratios of Asset Pricing Models

This table reports the in-sample Sharpe ratios of eight asset pricing models for the full sample
period (1967/1–2021/12) as well as the two subperiods (1967/1–1994/6 and 1994/7–2021/12). The
asset pricing models considered are: CAPM, Fama-French 3-factor model (FF-3), Carhart 4-factor
model (Carhart-4), Betting-against-beta 2-factor model (BAB), Fama-French 5-factor model (FF-
5), HXZ’s q-factor model, Barillas and Shanken 6-factor model (BS-6), and HMXZ’s q5 model. The
column “Publication Year” presents the year that the model was first published. The Gibbons-
Ross-Shanken F -test is conducted to compare the in-sample Sharpe ratio of a given multi-factor
model with that of the CAPM. ∗∗∗, ∗∗, and ∗ denote that the in-sample Sharpe ratio of the given
model is higher than that of the CAPM at the 1%, 5%, and 10% significance levels.

Publication Full Sample First Half Second Half

Year 1967/1–2021/12 1967/1–1994/6 1994/7–2021/12

CAPM 1964 0.133 0.087 0.182

FF-3 1993 0.184∗∗∗ 0.248∗∗∗ 0.185

Carhart-4 1997 0.278∗∗∗ 0.386∗∗∗ 0.244∗∗

BAB 2014 0.305∗∗∗ 0.392∗∗∗ 0.307∗∗∗

FF-5 2015 0.325∗∗∗ 0.496∗∗∗ 0.368∗∗∗

HXZ q 2015 0.399∗∗∗ 0.611∗∗∗ 0.350∗∗∗

BS-6 2018 0.464∗∗∗ 0.787∗∗∗ 0.367∗∗∗

HMXZ q5 2021 0.599∗∗∗ 0.775∗∗∗ 0.510∗∗∗
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Table 2
In-sample versus Out-of-sample Sharpe Ratios of Asset Pricing Models

In this table, we divide the sample period into halves, and treat the first half as the estimation
window and the second half as the out-of-sample period. Using data in the estimation window, the
sample optimal portfolio is constructed, and the out-of-sample Sharpe ratio (OS-SR) is computed
using the returns in the out-of-sample period of the sample optimal portfolio. For comparison, the
in-sample Sharpe ratio (IS-SR) based on the return data in the estimation window is also reported.
Gibbons-Ross-Shanken F -test is conducted to compare IS-SR of a given multi-factor model with
that of the CAPM. One-sided test based on asymptotic distribution is conducted to compare the
OS-SR of a given multi-factor model with that of the CAPM. ∗∗∗, ∗∗, ∗ denote that the Sharpe ratio
of a given multi-factor model is higher than that of the CAPM at the 1%, 5%, and 10% significance
levels. The sample period for the left and the right panel are 1967/1–2021/12 and 1994/7–2021/12,
respectively.

1967/1–2021/12 1994/7–2021/12

IS-SR OS-SR IS-SR OS-SR

CAPM 0.087 0.182 0.137 0.223

FF-3 0.248∗∗∗ 0.111 0.262∗∗ 0.094

Carhart-4 0.386∗∗∗ 0.154 0.353∗∗∗ 0.113

BAB 0.392∗∗∗ 0.189 0.331∗∗∗ 0.286∗

FF-5 0.496∗∗∗ 0.192 0.393∗∗∗ 0.317∗∗

HXZ q 0.611∗∗∗ 0.214 0.439∗∗∗ 0.269

BS-6 0.787∗∗∗ 0.226 0.500∗∗∗ 0.238

HMXZ q5 0.775∗∗∗ 0.411∗∗∗ 0.601∗∗∗ 0.419∗∗∗
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Table 3
In-sample versus Out-of-sample Sharpe Ratios – Simulation Results

We apply the stationary block bootstrap procedure of Politis and Romano (1994) to our empirical
dataset (1967–2021) to generate T monthly data, with an expected block length of 10 months. The
T monthly data are divided into halves, with the first half treated as the estimation window and the
second half as the out-of-sample period. IS-SR and OS-SR are computed using the simulated data,
following the same procedure as in Table 2,. We run the simulation 10,000 times. Cross-simulation
average values of IS-SR and OS-SR, and the corresponding standard deviations (in brackets), are
reported in the table. In the left panel, T = 660, and in the right panel, T = 330.

T = 660 T = 330

IS-SR OS-SR IS-SR OS-SR

CAPM 0.137 0.136 0.139 0.140
(0.062) (0.062) (0.088) (0.088)

FF-3 0.211 0.163 0.227 0.146
(0.074) (0.076) (0.123) (0.113)

Carhart-4 0.303 0.260 0.320 0.239
(0.073) (0.075) (0.127) (0.119)

BAB 0.316 0.299 0.310 0.277
(0.115) (0.115) (0.196) (0.189)

FF-5 0.365 0.300 0.400 0.284
(0.061) (0.067) (0.094) (0.102)

HXZ q 0.424 0.386 0.442 0.373
(0.066) (0.067) (0.115) (0.108)

BS-6 0.506 0.441 0.537 0.424
(0.084) (0.085) (0.143) (0.133)

HMXZ q5 0.624 0.585 0.647 0.574
(0.069) (0.071) (0.103) (0.105)
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Table 4
Break-even Sharpe Ratios

The break-even Sharpe ratio is defined as the value of θ such that E[θ̃|θ̃ ≤ θ̃c] = θ1 where θ1 is the
population Sharpe ratio of the CAPM, θ is the population Sharpe ratio of a multi-factor model, θ̃
is the out-of-sample Sharpe ratio of the multi-factor model, and θ̃c is the c-percentile value of θ̃.
The finite sample distribution of θ̃ is available in (22). This table reports the break-even Sharpe
ratios for different values of number of traded factors in the multi-factor model (N), the length of
estimation window (T ), and the population Sharpe ratio of the CAPM (θ1). Panels A and B present
the results for c = 50 and c = 25 respectively, where c is the percentile specified in E[θ̃|θ̃ ≤ θ̃c].

A. c = 50

θ1 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

A1. T = 120

N = 2 0.123 0.162 0.200 0.240 0.283 0.328 0.375 0.422
N = 3 0.133 0.176 0.217 0.258 0.301 0.346 0.392 0.438
N = 4 0.141 0.187 0.229 0.272 0.315 0.360 0.405 0.452
N = 5 0.147 0.195 0.239 0.283 0.327 0.371 0.417 0.463
N = 6 0.152 0.203 0.248 0.293 0.337 0.382 0.427 0.474

A2. T = 240

N = 2 0.098 0.136 0.176 0.220 0.266 0.314 0.362 0.411
N = 3 0.107 0.148 0.189 0.232 0.277 0.324 0.372 0.420
N = 4 0.113 0.156 0.198 0.241 0.286 0.332 0.379 0.427
N = 5 0.118 0.163 0.206 0.249 0.294 0.340 0.386 0.434
N = 6 0.122 0.169 0.212 0.256 0.301 0.346 0.393 0.440
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Table 4
Break-even Sharpe Ratios (Cont’d)

B. c = 25

θ1 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

B1. T = 120

N = 2 0.154 0.187 0.221 0.258 0.299 0.342 0.388 0.434
N = 3 0.164 0.202 0.240 0.279 0.320 0.363 0.407 0.453
N = 4 0.171 0.213 0.253 0.293 0.335 0.378 0.422 0.468
N = 5 0.177 0.222 0.263 0.305 0.347 0.391 0.435 0.481
N = 6 0.182 0.229 0.273 0.315 0.358 0.402 0.447 0.492

B2. T = 240

N = 2 0.118 0.152 0.189 0.230 0.275 0.321 0.369 0.417
N = 3 0.127 0.164 0.203 0.244 0.288 0.333 0.380 0.428
N = 4 0.133 0.173 0.213 0.254 0.298 0.343 0.389 0.436
N = 5 0.137 0.180 0.221 0.263 0.306 0.351 0.397 0.443
N = 6 0.142 0.185 0.227 0.270 0.313 0.358 0.404 0.450
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Table 5
GRS Test and the Break-even Sharpe Ratios

In this table, we compare the multi-factor asset pricing models against the CAPM using the GRS
test as well as the test that also incorporates the break-even Sharpe ratio. The in-sample Sharpe
ratios of the models, together with the corresponding p-values (in italics) from the GRS test, are
reported in the column “GRS”. Assuming that the observed in-sample Sharpe ratio of the CAPM
(θ̂1) is at 100(1− α)-percentile of its distribution, we obtain the corresponding population Sharpe
ratio (θ1) and report it in the row of CAPM. Given θ1, the break-even Sharpe ratio is derived
for each multi-factor model and reported in the corresponding row. The p-values from the null
distribution in (33) are presented in italics, below the break-even Sharpe ratios. Five different
values of α are examined: 10%, 25%, 50%, 75%, and 90%. Panels A, B, and C use data in 2008/4–
2021/12, 1994/7–2021/12, and 1967/1–2021/12, respectively.

A. 2008/4–2021/12 (T = 165)

α = 1− Fθ1(θ̂1)

GRS 10% 25% 50% 75% 90%

CAPM 0.223 0.121 0.168 0.222 0.275 0.323

FF-3 0.267 0.178 0.218 0.263 0.311 0.355
0.193 0.554 0.583 0.602 0.616 0.628

Carhart-4 0.268 0.189 0.229 0.275 0.322 0.366
0.340 0.711 0.746 0.771 0.789 0.802

BAB 0.288 0.164 0.203 0.248 0.297 0.342
0.024 0.192 0.194 0.192 0.192 0.195

FF-5 0.376 0.197 0.238 0.285 0.332 0.375
0.009 0.114 0.143 0.169 0.191 0.209

HXZ q 0.294 0.189 0.229 0.275 0.322 0.366
0.135 0.479 0.522 0.555 0.579 0.598

BS-6 0.315 0.204 0.246 0.293 0.340 0.384
0.194 0.575 0.633 0.679 0.713 0.738

HMXZ q5 0.430 0.197 0.238 0.285 0.332 0.375
0.001 0.022 0.030 0.038 0.046 0.053
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Table 5
GRS Test and the Break-even Sharpe Ratios (Cont’d)

B. 1994/7–2021/12 (T = 330)

α = 1− Fθ1(θ̂1)

GRS 10% 25% 50% 75% 90%

CAPM 0.182 0.110 0.144 0.181 0.219 0.252

FF-3 0.185 0.146 0.174 0.207 0.241 0.273
0.828 0.955 0.958 0.960 0.962 0.963

Carhart-4 0.244 0.154 0.182 0.215 0.249 0.280
0.041 0.298 0.325 0.346 0.362 0.375

BAB 0.307 0.136 0.164 0.197 0.232 0.264
0.000 0.002 0.002 0.001 0.001 0.002

FF-5 0.368 0.160 0.189 0.221 0.255 0.286
0.000 0.001 0.001 0.002 0.002 0.003

HXZ q 0.350 0.154 0.182 0.215 0.249 0.280
0.000 0.001 0.002 0.002 0.002 0.002

BS-6 0.367 0.165 0.194 0.227 0.261 0.291
0.000 0.002 0.004 0.005 0.006 0.007

HMSZ q5 0.510 0.160 0.189 0.221 0.255 0.286
0.000 0.000 0.000 0.000 0.000 0.000
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Table 5
GRS Test and the Break-even Sharpe Ratios (Cont’d)

C. 1967/1–2021/12 (T = 660)

α = 1− Fθ1(θ̂1)

GRS 10% 25% 50% 75% 90%

CAPM 0.133 0.083 0.106 0.133 0.159 0.183

FF-3 0.184 0.107 0.127 0.150 0.174 0.197
0.006 0.100 0.106 0.111 0.114 0.117

Carhart-4 0.278 0.112 0.133 0.156 0.179 0.201
0.000 0.000 0.000 0.000 0.000 0.000

BAB 0.305 0.100 0.120 0.144 0.168 0.191
0.000 0.000 0.000 0.000 0.000 0.000

FF-5 0.325 0.117 0.137 0.160 0.184 0.205
0.000 0.000 0.000 0.000 0.000 0.000

HXZ q 0.399 0.112 0.133 0.156 0.179 0.201
0.000 0.000 0.000 0.000 0.000 0.000

BS-6 0.464 0.120 0.141 0.164 0.188 0.209
0.000 0.000 0.000 0.000 0.000 0.000

HMXZ q5 0.599 0.117 0.137 0.160 0.184 0.205
0.000 0.000 0.000 0.000 0.000 0.000
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Table 6
Test in the Bayesian Framework

In this table, the multi-factor asset pricing models are compared to the CAPM in a Bayesian
framework. The prior distributions are specified in (36) and (37). For the sharp null (H0 : δ

2 = 0),
we assume a prior null probability of 0.5 (i.e., p0(0) = 0.5); and report the posterior null probability
(i.e., p1(0)) in the columns “δ2 = 0”. In the columns “δ2 ≤ δ2b”, p1(δ

2
b ), p0(δ

2
b ), and p̃1(δ

2
b ) in (41),

(42) and (47) are reported. Three different sample periods, i.e., 2008/4–202112, 1994/7–2021/12,
and 1967/1–2021/12, are examined in the table. Panels A, B, and C present the results for different
values of a and b in (37).

A. a = 3, b = 3

2008/4–2021/12 1994/7–2021/12 1967/1–2021/12

δ2 = 0 δ2 ≤ δ2b δ2 = 0 δ2 ≤ δ2b δ2 = 0 δ2 ≤ δ2b

FF-3 (p1) 0.496 0.715 0.753 0.877 0.079 0.180
(p0) 0.650 0.464 0.305
(p̃1) 0.856 0.970 0.245

Carhart-4 (p1) 0.606 0.750 0.272 0.360 0.000 0.000
(p0) 0.573 0.371 0.216
(p̃1) 0.901 0.534 0.000

BAB (p1) 0.253 0.491 0.002 0.016 0.000 0.000
(p0) 0.748 0.604 0.466
(p̃1) 0.620 0.018 0.000

FF-5 (p1) 0.101 0.256 0.000 0.005 0.000 0.000
(p0) 0.507 0.303 0.161
(p̃1) 0.331 0.005 0.000

HXZ q (p1) 0.445 0.613 0.000 0.008 0.000 0.000
(p0) 0.573 0.371 0.216
(p̃1) 0.785 0.008 0.000

BS-6 (p1) 0.542 0.577 0.000 0.008 0.000 0.000
(p0) 0.452 0.252 0.125
(p̃1) 0.806 0.008 0.000

HMXZ q5 (p1) 0.016 0.099 0.000 0.000 0.000 0.000
(p0) 0.507 0.303 0.161
(p̃1) 0.114 0.000 0.000
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Table 6
Test in the Bayesian Framework (Cont’d)

B. a = 3, b = 5

2008/4–2021/12 1994/7–2021/12 1967/1–2021/12

δ2 = 0 δ2 ≤ δ2b δ2 = 0 δ2 ≤ δ2b δ2 = 0 δ2 ≤ δ2b

FF-3 (p1) 0.481 0.773 0.725 0.893 0.082 0.198
(p0) 0.788 0.619 0.444
(p̃1) 0.882 0.970 0.264

Carhart-4 (p1) 0.572 0.802 0.266 0.403 0.000 0.001
(p0) 0.735 0.539 0.353
(p̃1) 0.915 0.562 0.001

BAB (p1) 0.272 0.572 0.002 0.023 0.000 0.000
(p0) 0.849 0.724 0.585
(p̃1) 0.688 0.025 0.000

FF-5 (p1) 0.113 0.327 0.000 0.008 0.000 0.000
(p0) 0.686 0.474 0.289
(p̃1) 0.403 0.008 0.000

HXZ q (p1) 0.430 0.683 0.000 0.011 0.000 0.000
(p0) 0.735 0.539 0.353
(p̃1) 0.820 0.012 0.000

BS-6 (p1) 0.503 0.650 0.001 0.011 0.000 0.000
(p0) 0.641 0.420 0.241
(p̃1) 0.826 0.012 0.000

HMXZ q5 (p1) 0.021 0.143 0.000 0.000 0.000 0.000
(p0) 0.686 0.474 0.289
(p̃1) 0.161 0.000 0.000

57



Table 6
Test in the Bayesian Framework (Cont’d)

C. a = 5, b = 3

2008/4–2021/12 1994/7–2021/12 1967/1–2021/12

δ2 = 0 δ2 ≤ δ2b δ2 = 0 δ2 ≤ δ2b δ2 = 0 δ2 ≤ δ2b

FF-3 (p1) 0.511 0.664 0.784 0.858 0.077 0.153
(p0) 0.514 0.325 0.189
(p̃1) 0.836 0.969 0.218

Carhart-4 (p1) 0.640 0.698 0.283 0.314 0.000 0.000
(p0) 0.416 0.225 0.107
(p̃1) 0.892 0.508 0.000

BAB (p1) 0.239 0.432 0.001 0.012 0.000 0.000
(p0) 0.647 0.493 0.363
(p̃1) 0.568 0.013 0.000

FF-5 (p1) 0.094 0.206 0.000 0.004 0.000 0.000
(p0) 0.338 0.158 0.064
(p̃1) 0.280 0.004 0.000

HXZ q (p1) 0.462 0.552 0.000 0.006 0.000 0.000
(p0) 0.416 0.225 0.107
(p̃1) 0.759 0.006 0.000

BS-6 (p1) 0.585 0.506 0.000 0.006 0.000 0.000
(p0) 0.277 0.114 0.040
(p̃1) 0.795 0.006 0.000

HMXZ q5 (p1) 0.013 0.075 0.000 0.000 0.000 0.000
(p0) 0.338 0.158 0.064
(p̃1) 0.087 0.000 0.000
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